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Considering two-dimensional potential ideal flow with a free surface and finite
depth, we study the dynamics of small-amplitude and short-wavelength wavetrains
propagating in the background of a steepening nonlinear wave. This can be seen as a
model for small ripples developing on the slopes of breaking waves in the surf zone.
Using the concept of wave action as an adiabatic invariant, we derive an explicit
asymptotic expression for the change of ripple steepness. Through this expression,
nonlinear effects are described using the intrinsic frequency and intrinsic gravity along
Lagrangian (material) trajectories on a free surface. We show that strong compression
near the tip on the wave leads to an explosive ripple instability. This instability may
play an important role in the understanding of fragmentation and whitecapping at the
surface of breaking waves. Analytical results are confirmed by numerical simulations
using a potential theory model.

Key words: surface gravity waves

1. Introduction

Water waves propagating on a moving background, such as for example a mean
flow or a current, represent a problem of great interest from the theoretical and
applications related viewpoints. Here asymptotic methods can be used within either
the Eulerian or Lagrangian description in combination with the notions of adiabatic
invariance and wave action conservation (Bühler 2014). The concept of wave action in
fluid dynamics, which we use as the main analytical tool in our work, goes back to the
classical work by Bretherton & Garrett (1968), who presented a general formulation
for wave action conservation given a non-uniform underlying flow. Their approximate
theory, analogous to the Wentzel–Kramers–Brillouin (WKB) approximation, considers
a slowly varying wavetrain, of small amplitude, propagating in a non-homogenous
moving medium. The wave action is defined as the ratio E/Ω of the wave energy
density E to the intrinsic frequency Ω , computed along rays. The intrinsic frequency
(or relative frequency) is the frequency measured in the moving reference frame of
the local mean flow. Accounting for a Doppler shift, it is expressed as

Ω =ω−Uk, (1.1)
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Explosive ripple instability due to incipient wave breaking 877

where ω is the frequency, k is the wavenumber and U is the medium’s local speed
relative to the observer. Lighthill (2001) calls attention to the fact that this scenario
can modify the energetics of the wave propagation: wave energy increases (at the
expense of the mean flow) whenever the rays move into regions of greater Ω .

In the present work we use the same wave action principles, but, in connection to
nonlinear effects, our route to obtaining the intrinsic quantities in the wave action is
different. In our formulation the background flow is taken to be that on the surface
of a steepening nonlinear wave, while the propagating wavetrain refers to ripples
– small-amplitude and short-wavelength surface perturbations. As will be shown, in
order to capture nonlinear effects acting on the ripple, one needs an extra quantity,
g∗, representing the local intrinsic gravity. In this fashion we are able to accurately
account for a strongly accelerated background flow which, through strong compression,
leads to an explosive ripple instability at the expense of this mean flow. The intrinsic
gravity is obtained from the (nonlinear) momentum equation written in Lagrangian
form. Once g∗ is obtained, the respective intrinsic frequency Ω is readily available
from the dispersion relation and we can compute the wave action E/Ω . Finally, using
wave action conservation, we present an analytic expression for the evolution of the
ripple’s steepness. This expression shows that the explosive instability is promoted
when the modulated wave moves into regions where the surface particle trajectories
display a strong compression pattern. This compression induces an increase in the
ripple wavenumber and amplitude. Our simple expression captures this growth very
accurately when compared to the numerical simulations using a potential theory
model.

Note that a rigorous theory for the problem presented here is not yet available and
is desirable for a better understanding, for example, of the parameter range where the
instability takes place, as well as the possible applications in the ocean. An important
(potential) application is discussed next, which considers the ripple instability as
an integral part of the complex multi-scale process of wave surface fragmentation
and whitecapping (Villermaux 2007; Dyachenko & Newell 2016). Such application
requires further investigations, which at this stage are beyond the scope of the present
work.

This paper is organized as follows. In § 2 we describe the features of marker
dynamics on the surface of the steeping wave. Section 3 presents the wave action
formulation and our new simple formula for the ripple instability, expressing the
explosive growth of the ripple’s steepness. Numerical results are presented in § 4.
A remarkable agreement is observed between our formula and simulations with
the nonlinear potential theory equations. The conclusions are given in § 5, and the
appendix A contains details of the numerical method.

2. Lagrangian dynamical features at the onset of wave breaking
Our goal is to study dynamical features for a small ripple riding on the front face

of a nonlinear breaking wave. First we will describe, through numerical simulations,
Lagrangian properties (of material points) on the surface of a breaking wave. Then
we consider the added ripple.

The phenomenon of gravity wave breaking is described by the Euler equations

vt + v · ∇v =−∇p/ρ + g, div v = 0, (2.1)

where the effects of viscosity and surface tension are neglected; comments on capillary
effects will be made later. In the two-dimensional formulation, (x, y) are the horizontal
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and vertical coordinates, v= (u, v) is the fluid velocity satisfying the incompressibility
condition, ρ is the constant density and g is the vector of gravitational acceleration.
We will consider the potential flow over a flat rigid bottom, which is bounded from
above by a free surface y=F(x, t). A dimensionless formulation of the potential theory
equations (Whitham 1974; Landau & Lifshitz 1987) will be considered with unit water
depth, density and gravitational acceleration. For numerical convenience, we assume
that the flow is periodic in the horizontal direction with period 2π, and set the rigid
bottom coordinate at y=−1.

We write the (kinematic and dynamic) boundary conditions at the free surface as

y= F(x, t): v = Ft + Fxu, p= Patm, (2.2a−c)

where Patm is a constant atmospheric pressure, and the subscripts t, x and y are used
in this section to denote partial derivatives. At the bottom, we have

y=−1: v = 0. (2.3a,b)

For potential incompressible flow, we can introduce the complex potential Φ =
ϕ + iψ , which is a holomorphic function of z= x+ iy in the fluid domain. The real
potential function ϕ(x, y, t) and the streamfunction ψ(x, y, t) are related to the fluid
velocities as

u= ϕx =ψy, v = ϕy =−ψx. (2.4a,b)

Expressing velocities from (2.4) and the pressure from the Bernoulli equation, the
boundary conditions (2.2)–(2.3) can be written as (Whitham 1974; Landau & Lifshitz
1987)

y= F(x, t): ϕy = Ft + Fxϕx, ϕt +
1
2(ϕ

2
x + ϕ

2
y )+ gy= 0, (2.5a−c)

y=−1: ϕy = 0. (2.6a,b)

Let z(ζ , t) with ζ = ξ + iη be a conformal mapping from a horizontal strip
−K 6 η 6 0 onto the fluid domain at time t. Such a mapping provides the free
surface parametrization as x + iy = z(ξ , t), with a real coordinate ξ . Note that this
mapping does not require that the free surface equations can be resolved with respect
to the vertical coordinate, y= F(x, t), i.e. it can be used when the free boundary has
overhanging sections. With the method of complex analysis (Dyachenko, Zakharov
& Kuznetsov 1996b; Zakharov, Dyachenko & Vasilyev 2002; Ribeiro, Milewski &
Nachbin 2017) one can describe the flow in the whole fluid domain in terms of real
functions defined at the free surface; see § A.1. In this description, the equations
of motion reduce to non-local differential equations in one spatial dimension ξ and
time t. This setting is very convenient for simulating numerically the potential theory
equations taking advantage of the properties of harmonic functions in a strip.

The following numerical results illustrate the wave overturning; details of the
numerical method are presented in § A.2. Figure 1 shows a familiar overturning wave
profile above a flat rigid bottom at y = −1. Of particular interest at this stage, we
demonstrate the surface compression near the tip of a breaker displayed by numerical
markers. We have chosen the initial profile y = 0.35 cos x and the velocity potential
at the surface ϕ = (0.35/

√
tanh 1) sin x, motivated by linear theory. We will use this

specific initial profile for all numerical simulations throughout the paper. We also
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FIGURE 1. (Colour online) Profile of a breaking wave over a flat bottom y=−1 at three
different times: t= 0, 2.6 and 3.35. Dot markers correspond to material points, which are
distributed at equal distances at the initial time; for a better visualization we display only
a few markers. The free surface is strongly compressed at the overhanging tip, as seen
by the increasing marker density, while it gets stretched at the front slope on the right.
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FIGURE 2. Temporal dependence of the minimum curvature radius R along the free
surface; logarithmic vertical scale.

performed simulations for different initial conditions (not reported here) and observed
qualitatively the same results for all aspects discussed in this work.

The curvature of the profile displayed in figure 1 increases rapidly at the
overhanging tip. The plot of its minimal curvature radius as a function of time
is presented in a logarithmic vertical scale in figure 2, demonstrating the nearly
exponential decrease at later times. Similar solutions were reported in many earlier
studies, such as, for example, in Baker, Meiron & Orszag (1982), Peregrine (1983),
Grilli & Svendsen (1990), Baker & Xie (2011). There exist initial conditions that can
be rigorously tracked until a splash singularity (e.g. intersection of the wave tip with
the bottom) occurs in finite time (Castro et al. 2012). But this strong overturning
is not the main goal of our work. Considering the incipient breaking wave as the
large-scale underlying flow, our focus here will be on the study of much shorter
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U + cg

U + cp

FIGURE 3. (Colour online) Small ripple (solid blue line) travelling on top of the
unperturbed wave profile (dotted line). Motion of the ripple is approximately described
by the sum of the unperturbed flow speed U and the relative group/phase speeds.

small-amplitude ripples evolving on the surface of such steepening wave profiles (see
figure 3).

Small-amplitude ripples are described, as a first approximation, with equations
linearized about the time-dependent unperturbed wave solution. Let us introduce a
local (arc length) coordinate s along the surface, which defines the surface spatial
coordinates as x(s, t) and y(s, t). Then, it is convenient to consider ripple perturbations
in the form of a slowly modulated wavetrain (Bretherton & Garrett 1968; Peregrine
1976) with frequency ω(s, t), a carrier wavenumber k(s, t) and amplitude a(s, t). The
regime of interest is such that these ripple parameters may vary with position and
time, where appreciable changes are observed after many periods (2π/ω) and many
wavelengths (2π/k). Then, in the first approximation, the underlying flow due to the
wave steepening is locally constant with respect to the ripple, but accelerating in time.
The frequency and wavenumber of the ripple can be derived from the phase function
θ(s, t) by

ω=−
∂θ

∂t
, k=

∂θ

∂s
. (2.7a,b)

If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then, as
mentioned in the introduction, one has (Bretherton & Garrett 1968)

ω=Uk+Ω, (2.8)

where Ω(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

Ω =
√

g∗k. (2.9)

Here g∗(s, t) is the effective (intrinsic) gravity acting on the ripple in the local
reference frame, as its background flow is moving towards overturning. The effective
gravity is defined as g

∗
= g − a, where a = (Dv/Dt) = −(∇p)/ρ + g is the material

acceleration at the surface, under the Euler equations (2.1). As a result, we have

g
∗
=
∇p
ρ
=−g∗n, (2.10)
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FIGURE 4. (Colour online) (a) Profiles of the effective gravity g∗ (in units of g) along the
water surface at different times; times and selected markers are the same as in figure 1.
(b) Minimum and maximum of the effective gravity at the water surface as functions of
time.

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in figure 1, the value of g∗ along the wave profile at different times is shown in
figure 4(a) with the time dependence of its minimum and maximum presented in
figure 4(b). At the final time, g∗ varies from the minimum g∗≈ 0.2g at the wave tip to
the maximum g∗≈ 3g at the foot of the wave. The value of g∗ remains positive at all
times in our simulation. As proved by Wu (1997), the positivity of g∗ holds as long as
the interface is non-self-intersecting. Therefore we are in the stable Rayleigh–Taylor
regime. The local phase speed cp and group speed cg are defined as

cp =
Ω

k
=

√
g∗
k
, cg =

∂Ω

∂k
=

1
2

√
g∗
k
, (2.11a,b)

in the Lagrangian reference frame.

3. Wave action and the adiabatic approximation for ripple evolution
The consistency conditions for the second derivatives of the phase in (2.7) yield the

relation (Bretherton & Garrett 1968)

∂k
∂t
+
∂ω

∂s
= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law

∂k
∂t
+
∂

∂s
[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e. when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)

∂

∂t
E
Ω
+
∂

∂s

[
(U + cg)

E
Ω

]
= 0, (3.3)
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for the wave action density E/Ω . Here E is the ripple energy, which can be
obtained by considering a linear wave of amplitude a with the effective gravitational
acceleration g∗. Considering the time-averaged values over an oscillation period and
equipartition of the kinetic and potential energies, the local energy density of the
ripple is written as (Landau & Lifshitz 1987)

E= 1
2ρg∗a2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of
the overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and
(3.4) define the evolution of the local wavenumber k and amplitude a of the ripple. We
will now show that these equations can be solved approximately for the small ripples,
when the ripple wavelength `= 2π/k is considered small compared to the scale of the
unperturbed nonlinear wave. As it follows from (2.11), such an assumption implies
that the ripple phase and group velocities are small compared to the local flow speed,

cp�U, cg�U. (3.5a,b)

Hence, equations (3.2) and (3.3) in a first approximation reduce to the form

∂k
∂t
+
∂

∂s
(Uk)= 0,

∂

∂t

(
E
Ω

)
+
∂

∂s

(
U

E
Ω

)
= 0. (3.6a,b)

Recall that U(s, t) in these equations is the local flow speed on the surface of
unperturbed steepening wave; for the linearized formulation, it is not affected by a
small-amplitude ripple motion.

Both equations in (3.6) have the form of the continuity equation

∂σ

∂t
+
∂

∂s
(Uσ)= 0. (3.7)

Consider
t= 0: σ(x)≡ 1 (3.8a,b)

to represent an initial uniform marker (material tracer) distribution along the free
surface; see figure 1. In this case, the (marker density) function σ(s, t) describes the
stretching (for σ < 1) and compression (for σ > 1) of these material markers along
the free surface in time. By using (3.6) and (3.7), one can check that

D
Dt

(
k
σ

)
= 0,

D
Dt

(
E
σΩ

)
= 0, (3.9a,b)

where the D/Dt = ∂/∂t + U∂/∂s is the material derivative. In other words, the
following quantities

k
σ
= const,

E
σΩ
= const, (3.10a,b)

are invariant along Lagrangian trajectories at the fluid surface. These two quantities,
which refer to the local ripple properties, represent approximate (adiabatic) Lagrangian
invariants on the free surface. Nonlinear effects of compression are now built-in to
expressions (3.10).
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The first relation in (3.10) implies that the ripple wavelength ` = 2π/k changes
proportionally to 1/σ , i.e.

`

`0
=

1
σ
, (3.11)

where the zero subscript denotes the initial length value at t= 0; recall that σ0= 1 due
to (3.8a,b). This formula captures the physical feature that the ripple travels along
the Lagrangian trajectory, while stretching or compressing according to the material
marker’s dynamics. To interpret the second relation in (3.10), recall that E/Ω was
defined as the wave action density per unit surface length. Therefore, E/(σΩ) is the
conserved Lagrangian wave action density, corresponding to the unit surface length at
the initial time.

The conserved wave action in (3.10) will capture the explosive instability. It can be
written using the dispersion relation (2.9) for the intrinsic frequency and the energy
density expression (3.4) as

E
σΩ
=

ρg∗a2

2σ
√

g∗k
=

ρ`
1/2
0

23/2π1/2

g1/2
∗

a2

σ 3/2
, (3.12)

where in the last equality we used (3.11) to express k = 2π/` = 2πσ/`0. Since the
first factor in the last expression of (3.12) is constant, the conservation property (3.10)
yields

g1/2
∗

a2

σ 3/2
= const. (3.13)

Evaluating the constant from the initial time, one obtains

a
a0
=

(
σ 3g∗0

g∗

)1/4

, (3.14)

where a0 and g∗0 are, respectively, the values of a and g∗ at t = 0. Combining
expressions (3.11) and (3.14), we express the ripple steepness (the ratio of height to
wavelength) as

S=
2a
`
=

2σa
`0

(3.15)

which yields our final formula

S
S0
=

(
σ 7g∗0

g∗

)1/4

, (3.16)

where S0 = 2a0/`0.
Recall that all relations (3.10)–(3.16) are deduced along Lagrangian trajectories at

the water surface. As will be shown numerically, it is remarkable that these rather
simple formulas encompass the full action of the changing large-scale wave profile
on the passive small-scale ripple with several non-trivial implications. First, the ripple
steepness is fully controlled by the surface compression ratio σ and the local effective
gravity g∗. Due to the rather large exponent of the term σ 7/4 in (3.16), the marker
density function has a strong effect. Going back to § 2, note that the compression ratio
strongly varies within a wave during the breaking process; see, e.g. two Lagrangian
points very close to the wave tip in figure 1. Second, expression (3.16) does not
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FIGURE 5. (Colour online) Profile of the surface marker density σ versus the
corresponding horizontal coordinate x at different times. For t = 3.35 the graph is
multi-valued due to the overhanging wave profile; see figure 1.

depend on the ripple wavelength, predicting that all ripples steepen at the same rate. In
particular, this justifies the use of formula (3.16) for a ripple in the form of a general
short-wavelength modulated perturbation on top of the original wave profile.

Note that the presented approach can be used for other dispersion relations instead
of (2.9). For example, ω =

√
g∗k+ γ k3/ρ takes into account the surface tension

coefficient γ (Landau & Lifshitz 1987, § 62) and may be useful in the case of wind
generated ripples. In particular, for very short capillary ripples, a similar derivation
yields S/S0 = σ

5/4, i.e. the adiabatic amplification mechanism holds with a different
power law.

4. Numerical results
In the simulations, we consider the ripples in the form of short Gaussian wave

packets. According to relations (3.5a,b), such wave packets follow approximately the
Lagrangian fluid trajectories at the surface. Expression (3.16) for the ripple steepness
depends only on the unperturbed solution in figure 1 and, thus, can be evaluated at
every point of the wave profile. The profiles of the effective gravity g∗ were already
shown in figure 4. Numerically computed profiles of the surface marker density σ
are presented in figure 5, demonstrating the strong compression (large σ ) at the wave
tip, and some stretching (σ < 1) at the wave foot. Together, these results provide the
change in ripple steepness along the wave profile, which is depicted in a logarithmic
colour scale in figure 6.

Here one observes an explosive growth of ripple steepness by a factor of almost
50 near the overhanging wave tip (red colour). At the foot of the wave the steepness
decreases (blue colour) depleting the surface roughness. Note that our results are
obtained within the two-dimensional model. The third dimension is not crucial for
the dynamics of short-wave ripples, since their speeds in the direction transverse
to the wave can be neglected due to relations (3.5a,b). The steepness increases
super-exponentially at later times, as shown in figure 7(a). Such explosive behaviour
distinguishes the present adiabatic steepening mechanism from common instabilities
featuring an exponential growth.

For verification of our theory, we added small ripples in the form of Gaussian wave
packets with steepness S≈ 0.02 and wavenumber k= 128 located at different parts of
the initial nonlinear wave profile and repeated our numerical simulations; see § A.3 for
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FIGURE 6. (Colour online) Colour (in log scale) shows the change of ripple steepness,
S(t)/S0, at different points on the wave profile. The steepness decreases at the wave foot
(blue) and then increases by almost two orders of magnitude at the wave tip (red). Black
curves on a surface show the wave profiles at times t = 0, 0.5, 1, . . . , 3 and the final
time 3.35. Dashed red curves indicate the trajectories of small ripples (centres of Gaussian
wave packets) located initially at (I) x= 2, (II) x= 2.9 and (III) x= 3.8; the simulation
in case III was stopped at t= 2.575. The insets present the shape and steepness of these
ripples at the initial time (circle at the bottom) and at different later times (circles at the
top), shown with the subtracted background profile and magnified vertical scale 100:1.
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FIGURE 7. (Colour online) (a) Increase of ripple steepness (maximum value within a
wave), demonstrating a super-exponential growth at later times; vertical log scale. The
ripple steepness increases approximately 50 times. (b) Change of steepness with time
for three different Gaussian ripples, see also figure 6. Adiabatic theoretical prediction is
compared with numerical simulations. The dashed line corresponds to the simulation of a
ripple with a twice larger wavelength.

numerical aspects of creating such perturbed initial conditions. Trajectories of these
packets, computed via the centres of their envelopes, are shown in figure 6 by red
dotted lines. Their shapes at different times are displayed in the insets, where the
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FIGURE 8. (Colour online) (a) Onset of angle formation at ripple crests. Shown is a
segment of the wave profile at the late time t= 2.575 in case III; see figure 6. (b) Time
dependence of curvature radius at ripple crests indicated in (a); vertical log scale.

background profile was subtracted and the vertical scale was magnified with the ratio
100:1. One can see that the ripple steepness increases as a combination of two factors:
the decrease of ripple wavelength and the increase of its amplitude. Recall that such
ripples are small perturbations, which do not affect considerably the overturning wave
profile.

Figure 7(b) demonstrates an excellent agreement between the numerical steepness
measured at the centre of each packet and the theoretical (adiabatic) prediction (3.16).
In case III of figure 7(b), we observe both a decrease of steepness (depleting the
surface roughness) at early times followed by its sudden increase by more than one
order of magnitude. We also performed the simulation for a Gaussian packet with
a twice larger wavelength in case III; see the dashed black line in figure 7(b). This
confirms the theoretical prediction given by (3.16), where the steepness ratio does not
depend on the ripples’ wavelength.

It is instructive to provide the reader with an example of the corresponding
dimensional variables for our simulations: one can take the water depth to be 5 m,
the wave height to be 3 m and the initial ripples to have a wavelength of 0.25 m.
Thus, the ripples are short compared to the underlying wave, but not necessarily
in the regime where surface tension plays a role. Nevertheless, due to the strong
compression this will change later in time. Nonlinear effects also become important
at later times when the ripples become steep, breaking down our adiabatic model.
This should typically happen in the yellow-to-red region around the wave tip in
figure 6. Considering as an example the case III, we observe in figure 8(a) that
singularities (sharp angles) are about to form at the ripple crests when the steepness
gets close to S ≈ 0.18. At these points, the curvature radius is decreasing at least
exponentially with time, as shown in figure 8(b), suggesting that surface tension
becomes inevitably important in the vicinity of the ripple crests. In our simulations,
according to figure 8, this can be expected around the time t ≈ 2.6, i.e. prior to
overturning in figure 1.

In figure 9 we present numerical results for our model, now taking surface tension
into account. In this case, the dynamical (stress balance) condition for the pressure at
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FIGURE 9. (Colour online) Ripple shape at the late time t= 2.85 for the simulation with
dimensionless surface tension coefficient γ =6×10−6. The initial wave packet corresponds
to the case III, where we increased by four times the ripple wavelength to improve
numerical resolution. (b) Represents the magnified region of the ripple shown with the
small red square in (a). The arrow indicates the direction of the (small) group speed of
the ripple relative to the fluid. One can see the formation of parasitic capillary waves
developing in front of the ripple crests.

the free surface yields
p= Patm + γ /R, (4.1)

where γ is the surface tension coefficient and R is the curvature radius of the free
surface. The simulation producing figure 9 was performed with the dimensionless
value γ = 6 × 10−6, which corresponds to a realistic value of surface tension for
breaking waves of moderate height; see § A.1 for details of the numerical method.
The combined effect of surface tension and nonlinearity can be seen in the magnified
profile presented in figure 9(b). It reveals the secondary ‘ripple breaking’ when
the curvature at the ripple crests become large, followed by the generation of the
so-called ‘parasitic’ capillary waves (Ceniceros & Hou 1999). Such capillary waves
are known to form near the crests of nonlinear gravity waves in a resonant manner
(Longuet-Higgins 1995), and could be a mechanism for whitecapping (Dyachenko &
Newell 2016).

5. Conclusions
We developed the asymptotic theory describing the coupling of large-scale wave

breakers to the small-scale ripples travelling on its surface. This theory is constructed
using the analogy with wavetrains propagating on a free surface of water that are
influenced by large-scale currents. However, in contrast to the latter case, where the
wavetrain behaviour is governed by the intrinsic frequency through the approximate
conservation of the wave action (Bretherton & Garrett 1968; Peregrine 1976), in our
case, two distinct quantities are important: the intrinsic frequency and the nonlinear
intrinsic gravity. Both these quantities are introduced in the local Lagrangian reference
frame at each point on the free surface. They define the wave action as an adiabatic
Lagrangian invariant for the potential ideal flow.

In the numerical example considered, this mechanism predicts the super-exponential
growth of ripple steepness at later times, resulting from the simultaneous decrease of
wavelength and increase of amplitude, with excellent quantitative agreement between
the developed theory and numerical simulations. When taking capillary effects into
account, our simulations anticipate the small-scale ‘ripple breaking’ along the water
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FIGURE 10. (Colour online) Breakdown of a smooth water surface in a plunging ocean
wave (figure courtesy of Keahi de Aboitiz).

surface, revealing the increasing complexity of the subsequent nonlinear process. The
proposed theory is asymptotic and requires further development both for its rigorous
justification (along with the underlying adiabatic approach for gravity waves) and for
a better understanding, for example, of the parameter range wherein the instability
takes place. The study of ripples in the nonlinear regime is also of interest, e.g. from
the perspective of finite-time singularities (Longuet-Higgins 1983; Kuznetsov, Spector
& Zakharov 1994; Zeff et al. 2000). The same approach may be useful for describing
ripples developing in different environments; for example, similar numerical methods
are available for deep-water waves (Longuet-Higgins & Cokelet 1976; Dyachenko
et al. 1996a).

We expect that our results may contribute to the understanding of multi-scale
aspects of wave breaking, such as surface fragmentation and whitecapping. This
expectation is based on the observation that the ripple instability we described occurs
in the ideal Euler setting prior to the onset of parasitic (capillarity) oscillations
(Longuet-Higgins 1995); the latter are conjectured to be a mechanism of bubble
formation (Dyachenko & Newell 2016). Figure 10 shows the formation of small
white sprays (left side) developing later into a strongly fragmented wave tip (right
side); a closer look reveals that the appearance of white regions has correlations with
the locations of the ripple crests.
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Appendix A. Numerical method

In this section we describe briefly the numerical method and provide the final
equations to be simulated. For more details see Dyachenko et al. (1996a), Ribeiro
et al. (2017) and also Zakharov et al. (2002) for an alternative way to represent the
same equations of motion.

Having three dimensional parameters, the channel period L [m], the acceleration
of gravity g [m s−2] and the fluid density ρ [kg m−3], we define the dimensionless
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variables for space, time, velocity and pressure as

x 7→ x
2π

L
, y 7→ y

2π

L
, t 7→ t

√
2πg

L
, v 7→ v

√
2π

gL
, p 7→ p

2π

ρgL
. (A 1a−e)

In the new variables, the dimensional parameters become L 7→ 2π, ρ 7→ 1 and g 7→ 1.
For the surface tension coefficient, this procedure yields the dimensionless parameter
γ 7→ 4π2γ /(ρgL2). In dimensionless variables, we consider a potential flow with
period 2π in the horizontal direction x, over a flat rigid bottom at y=−1.

A.1. Basic equations
Using the methods of complex analysis, it is possible to write the Euler equations in
terms of three real scalar functions K(t), Â(ξ , t) and ϕ̂(ξ , t), where the dependence on
ξ is 2π-periodic; we use the hats to distinguish the functions of ξ . These equations
have the form (Dyachenko et al. 1996b; Zakharov et al. 2002; Ribeiro et al. 2017)

Kt =−
1

2π

∫ 2π

0

Rϕ̂ξ
|ẑξ |2

dξ, (A 2)

Ât = [(RÂξ )− (1+ Âξ )T]
Rϕ̂ξ
|ẑξ |2

, (A 3)

ϕ̂t =−ϕ̂ξT
Rϕ̂ξ
|ẑξ |2
−
|ϕ̂ξ |

2
− |Rϕ̂ξ |2

2|ẑξ |2
− gŷ, (A 4)

where
|ẑξ | = |x̂ξ + iŷξ | = |1+ (1+ iR)Aξ |, (A 5)

with

x̂(ξ , t)= ξ + Â(ξ , t), ŷ(ξ , t)=K(t)− 1+ RÂ(ξ , t). (A 6a,b)

The operators R and T are defined as

Rf̂ (ξ)=
∑
m∈Z

i tanh(Km)fmeimξ , Tf̂ (ξ)=−
∑
m6=0

i coth(Km)fmeimξ , (A 7a,b)

for any periodic function f̂ (ξ) =
∑

fmeimξ . Here, the shape of the free surface is
obtained implicitly as x = x̂(ξ , t) and y = ŷ(ξ , t), where ξ is the auxiliary variable
parametrizing the surface.

The complex potential Φ(z, t) in the fluid domain is given implicitly by

Φ = Sϕ̂, z= i(K − 1)+ ζ̂ + SÂ, (A 8a,b)

with the operator

Sf̂ =
∑
m∈Z

fm exp[im(ζ + iK)]
cosh Km

. (A 9)

Here, ζ = ξ + iη with −K 6 η 6 0, where the free surface corresponds to η = 0 and
the rigid bottom to η =−K. The velocity field can be obtained from the derivatives
of the potential using (2.4), and then the pressure is given by the Bernoulli equation,
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ϕt+ (ϕ
2
x +ϕ

2
y )/2+ p/ρ+ gy= const. All quantities used in this paper can be computed

from the velocity and pressure distributions.
When surface tension γ is taken into account, one substitutes equation (A 4) by

Dyachenko et al. (1996a)

ϕ̂t =−ϕ̂ξT
Rϕ̂ξ
|ẑξ |2
−
|ϕ̂ξ |

2
− |Rϕ̂ξ |2

2|ẑξ |2
− gŷ−

γ

R
. (A 10)

Here the surface tension is represented by the last term, where the radius of curvature
is given by the standard relation R= (x̂2

ξ + ŷ2
ξ )

3/2/(x̂ξ ŷξξ − ŷξ x̂ξξ ).

A.2. Initial conditions and numerical scheme
Initial conditions for the system (A 2)–(A 4) are obtained as follows. Consider the
initial wave profile given by the function y = yini(x); in our simulations we used
yini(x)= 0.35 cos x. Then, initial condition for the function Â(ξ) is obtained as Â(ξ)=
Tŷ(ξ), where ŷ(ξ) is a limiting point of the iterative scheme ŷn+1(ξ)= yini(ξ + Tŷn(ξ))
(n → ∞); see Yu & Howard (2012). Then for the initial function ϕ̂(ξ), we have
ϕ̂(ξ)= ϕini(x̂(ξ)) with x̂(ξ)= ξ + Tŷ(ξ), where ϕini(x) is the initial value of the real
potential at the free surface. In our simulations, ϕini(x)= (0.35/

√
tanh 1) sin x. Finally,

the initial (canonical) depth value is K = 1+ (1/2π)
∫ 2π

0 ŷ(ξ) dξ .
In the numerical simulations, we use a uniform grid ξ = 2πj/N with j =

0, 1, . . . , N − 1 and apply the spectral method for computing derivatives with
respect to ξ as well as for the operators R and T. Integration in time is done using
the fourth-order Runge–Kutta method. To suppress numerical instability at large
wavenumbers, which we observed in the simulations, we use 36th-order smoothing
with the Fourier filter, exp(−36(2k/N)36)), at each time step. This filter was suggested
and has been proven to be efficient in high-accuracy numerical simulations of the
three-dimensional incompressible Euler equations (Hou 2009), and it also worked
very efficiently in our simulations. Considering different types of Fourier cutoffs, we
checked that the numerical results were not affected by the choice of the filter.

We paid special attention to the high accuracy of the obtained solution. For this
reason we applied the strategy of adaptive mesh refinement similar, e.g. to Agafontsev,
Kuznetsov & Mailybaev (2015), Dyachenko & Newell (2016) for optimizing the
computational performance without affecting the numerical accuracy. We start with
n = 214

= 16 384 grid points and continue the simulation while the solution is only
affected by round-off errors. This can be controlled by checking the wave solution
spectrum Â as shown in figure 11. With the chosen grid the simulation error is
dominated by round-off errors until time t ≈ 2.2875. At this time, we use a very
accurate Fourier interpolation to a (twice) larger grid, which extends the spectrum
in figure 11 to the right. Then the same procedure is repeated with the larger grid,
etc. We finished our simulations with the fine grid of 221

= 2097 152 points at time
t= 3.35. Further increase of the grid is not possible due to computational limitations.
Thus, the accuracy of all presented numerical results is kept at the level of round-off
errors. We verified that, although simulation can be continued beyond this time
with the same grid, the errors increase very fast and the results do not provide any
additional insight for our problem. Following Dyachenko et al. (1996b), the energy
can be conveniently computed with the formula E= (1/2)

∫ 2π

0 (gŷ2x̂ξ − ϕ̂Rϕ̂ξ ) dξ ; this
was conserved very accurately during the whole simulation with the relative error
below 10−10.
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FIGURE 11. (Colour online) Spectrum of numerical wave solution for the Fourier
transformed function Â(ξ , t) at different times. At the final time, the spectrum approaches
the limit to the right. Then the grid is refined and the same procedure is repeated.

A.3. Gaussian wave packets
Using the deep-water linear theory (Landau & Lifshitz 1987, §12), we have
chosen initial conditions for the small-scale ripples as Gaussian wave packets,
y= a0e−100x2 cos kx and ϕ =−a0ω

−1e−100x2 sin kx. Such packets have width 0.05, and
we considered the wavenumber k= 128 as providing ripples with a small wavelength
2π/k ≈ 0.049. The frequency was determined from (2.9). The amplitude a0 was
chosen to give a small ripple steepness S0 = 0.02 at t = 0. This wave packet was
shifted and superimposed on top of the unperturbed initial wave profile at different
locations, as specified in the caption of figure 6. In this superposition, a linear
interpolation was used to extend the unperturbed velocity potential to the perturbed
profile. In some simulations, we also used wider Gaussian packets with k= 64.
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