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ABSTRACT
A novel image-based method is presented in this paper to estimate the poses of commercial
aircrafts in a runway end safety area. Based on the fact that similar poses of an aircraft will
have similar geometry structures, this method first extracts features to describe the structure
of an aircraft’s fuselage and aerofoil by RANdom Sample Consensus algorithm (RANSAC),
and then uses the central moments to obtain the aircrafts’ pose information. Based on the
proposed pose information, a two-step feature matching strategy is further designed to identify
an aircraft’s particular pose. In order to validate the accuracy of the pose estimation and the
effectiveness of the proposed algorithm, we construct a pose database of two common aircrafts
in Asia. The experiments show that the designed low-dimension features can accurately
capture the aircraft’s pose information and the proposed algorithm can achieve satisfied
matching accuracy.
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NOMENCLATURE
(ai, bi, ci ) parameters to describe the characteristic of each straight line
A symmetric positive definite matrix
B normalised second central moments to compute A

ID index of matched prototype image to the query image
n total number of the fitting straight lines
RANSAC RANdom Sample Consensus algorithm
S prototype database

Greek symbols
α pitch angle
β,λ angles between the aerofoil branches of the skeleton and the horizontal direction
σ threshold to determine the aircraft’s longitudinal axis
ϕ counter clockwise orientation of an equivalent ellipse’s major axis relative to the

vertical axis
� extracted skeleton structure

1.0 INTRODUCTION
Runway excursions such as takeoff overrun, takeoff veer-off, landing overrun and landing
veer-off have become the most common accident type for commercial aircraft, covering 70%
of aviation accidents in the world(1,2) recently. Such accidents will not only cause loss due
to the damage on aircraft and other objects struck by the aircraft, but also threatens lives on
board and the surrounding areas. Effective prediction of such accidents is an urgent problem
to be solved.

Since the poses of aircrafts during taking off or landing gives much information about
the aircrafts’ flight states, accurate pose estimation can effectively predict the aircrafts’ flight
safety. The pixel-based ground monitoring system(3) has been used to supervise the takeoff
and landing performance of an aircraft in the airport, the key task of which is the accurate
estimation of the flight pose parameters.

Actually, the pose estimation has always been one of the research hotspots in computer
vision area and has wide applications such as bin picking(6,7), medical diagnosis(8,9) and
image registration(10-15). One ambitious idea is to estimate objects’ pose parameters in 3D
space from their 2D images, which generates the classical Perspective-n-Point problem(16).
Many algorithms(17-19) have been proposed to solve this problem and successfully obtain
high-angle resolution. However, these algorithms all assume the correspondences between
model points and image points are known, although the correspondences are very difficult
and time-consuming to set up.

Therefore, researchers begin to study the pose estimation directly between 2D objects.
Feature matching is a key issue for this problem, which however is quite different from the
common key-point matching problem. Lowe’s SIFT (Scale Invariant Feature Transform)(20,21)

descriptor is one of the most effective features in key-point matching, with which one
could find out the prototype image most similar to the query image. This kind of matching
can recognise objects in a cluttered scene but is unable to represent the objects’ structure
information. Therefore, it cannot effectively describe the relationship between parts among

https://doi.org/10.1017/aer.2016.16 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.16


Wang ET AL 677Pose estimation in runway end safety area…

the object. To conquer this problem, many novel methods have been proposed to describe
the objects’ structure information in the image domain. Ou(6) makes use of the bilinear
model to separate the pitch information and the yaw information by projecting the image
in the horizontal and vertical directions respectively, and computes the minimum Euclidean
distance1 between the extracted feature vectors of the prototype image and the query image to
identify the angles of the query image. Since this method loses space information about the
object, it is more appropriate to estimate the pose of the objects only rotating on the image
plane. Soderberg(22) describes a low-dimension feature vector named the tensor doublet,
which is realised by first extracting the corner information of an object in the image using
the fourth-order tensor. Then pairs of tensors are chosen to construct a 6-dim vector, which
represents the estimated pose, scale, position and rotation of the object. Finally, the feature
matching process is finished by computing the distance between feature vectors. However, the
maximal and minimal distances for a pair of features are difficult to choose, which will have
significant influence on the estimation result.

This paper presents a novel geometry structure feature to estimate the pose of commercial
aircrafts in a runway end safety area. We first extract the skeleton of the aircraft. Then the
orientation features of fuselage and aerofoils of the aircraft are computed using the RANdom
Sample Consensus (RANSAC) algorithm and the information of central moments. Since
the features are extracted in different ways and have different properties, a two-step feature
matching algorithm based on the proposed geometry structure feature is designed to measure
the similarity between the prototype image and the query image. This similarity measure can
independently estimate the roll angle and pitch angle of an aircraft; therefore, the estimation of
the roll angle and pitch angle will not affect each other so as to maximise the discriminability
of the similarity measure between features. In experiments, the simulated database consisting
of different poses of two common types of aircrafts in Asia are used to validate the accuracy of
the proposed geometry structure feature and the effectiveness of the two-step feature matching
algorithm, which gives satisfactory results.

The rest of the paper is organised as follows: The pre-processing is introduced in Section 2
to distil the structure information of an aircraft. The pose estimation including pitch and roll
information are extracted in Section 3, and then a two-step feature matching algorithm is
designed in Section 4. The experiments are shown in Section 5. The conclusion and discussion
comprise Section 6.

2.0 PRE-PROCESSING TO EXTRACT STRUCTURE
INFORMATION

The main steps of the proposed method is shown in Fig. 1. When an aircraft is landing or
taking off as illustrated in Fig. 2, its pose parameters will be in the allowable ranges. Therefore,
by comparing the pose parameters of an aircraft with the pre-obtained pose parameters, we can
effectively predict the aircraft’s flight state. It is assumed in this paper that we have obtained
the aircraft’s 2D projection image just as shown in Fig. 1(a), and therefore the main task will
be to effectively and efficiently estimate the aircraft’s pose from its 2D image.

Comparing with other common descriptors such as SIFT, HOG, etc., skeletons can globally
describe objects’ structures, especially for those with many branches. Since the parts of

1 In mathematics, the Euclidean distance is the “ordinary” (i.e. straight line) distance between two points in Euclidean
space.
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Figure 1. (Colour online) The extraction process of the proposed geometry structure features.
(a) The input 2D projection image. (b) The segmentation result of (a). (c) Extraction of the

aircraft’s skeleton. (d) The proposed geometry structure features.

Figure 2. Illustration of where a camera is located during an aircraft’s
landing or takeoff to capture its 2D projection image.

an aircraft are rigidly connected with each other, the skeleton can effectively represent the
structure of an aircraft. Because the background of the images is the sky and quite clean, it
is not difficult to segment out the aircrafts from the background as illustrated in Fig. 1(b).
Then the skeleton can be further obtained by the classical morphology methods as shown in
Fig. 1(c).

It is difficult to directly compare the extracted skeletons for two main reasons: (1) The
skeleton is unstable. This is because some branches of the skeleton will be unconnected with
each other, there are some extra branches in the skeleton, and some branches are not as wide
as one pixel as shown in Fig. 3(a). (2) The existing line-fitting methods such as LSM (Least
Square Method) and its variations cannot fit skeleton branches precisely(5). Therefore, we use
several straight lines to fit the branches of the skeleton as illustrated in Fig. 3(b). The lines
have the forms as in Equation (1)

aix + biy + ci = 0, i ∈ {1, 2, . . . , n} … (1)

where n represents the total number of the fitting straight lines. Taking shift invariance into
account, parameter ci can be omitted and only parameter (ai, bi ) is used to describe the
characteristic of each straight line. The set of the fitting straight lines can represent the
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Figure 3. (Colour online) Illustration of the skeleton and fitting lines for a segmented aircraft. (a) The
skeleton overlapped on the segmented aircraft image. (b) The obtained fitting lines marked in red.

Figure 4. (Colour online) The three rotation directions of an aircraft in flight.

aircraft’s structure. Once obtaining the structure information of an aircraft, we can next extract
the geometry structure features to estimate its pose as shown in Fig. 1(d).

3.0 POSE ESTIMATION
An aircraft in flight is free to rotate in three dimensions as illustrated in Fig. 4: pitch (nose
up or down around an axis running from wing to wing), roll (rotation around an axis running
from nose to tail) and yaw (nose left or right around an axis running up and down). When
the optical axis of the camera is properly placed perpendicular to the runway as shown in
Fig. 2, the yaw can be reduced. Therefore, the aircraft’s pose can be effectively estimated by
obtaining the pitch information and the roll information.

3.1 Features about pitch information

Since the pitch information can be represented by the angle between the aircraft’s longitudinal
axis and horizontal direction, the pitch orientation can be obtained through a line-fitting
process to get the aircraft’s longitudinal axis as seen the red line in Fig. 1(d).

The most common type of line fitting methods are the Least Square Method (LSM) and its
favors, which take all the data into account to obtain the linear model. The main drawback
of LSM is that it is easily influenced by bad points which are defined as outliers in Ref.
[23]. The RANSAC algorithm is a good data processing method and was first introduced to
solve the location determination problem. It can handle data that has more than 50% outliers
in the dataset(5). Comparing with LSM that makes use of all the data available, RANSAC
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Figure 5. (Colour online) Line-fitting results of artificial data by LSM and RANSAC where (a) is the
artificial dataset and (b) shows the results by LSM (blue line) and RANSAC (green line).

Figure 6. (Colour online) The fitted longitudinal axis of the aircraft where (a) is the
segmented image of an aircraft. (b) is the extracted skeleton, and

(c) illustrates the results by LSM (red line) and RANSAC (green line).

randomly samples a minimal data set (“minimal” means the fewest points to calculate model
parameters) from observed data and then enlarges the set using consistent data that fits the
calculated model. Then it employs an effective smoothing technique to compute an improved
model when enough compatible points are obtained.

An intuitive example is shown in Fig. 5, where the artificial dataset represented by red
points combining two groups of data as shown in Fig. 5(a). One group consists of 200
points generated by the model y = 3x + 2 (denoted as a red line) with normally distributed
random noise n1 ∼ N(0, 0.05), and the other group includes 20 random points satisfying
n2 ∼ N(1.5, 0.1). In Fig. 5(b), the blue line and green line are the results by LSM and
RANSAC, respectively. The magenta points and blue points are the outliers and inliers of
the RANSAC result. From Fig. 5(b), we see that RANSAC can accurately fit the objective
model, but LSM is greatly influenced by the outliers and is subject to error, demonstrating
the robustness of RANSAC in relation to outliers. When LSM and RANSAC are performed
to fit the longitudinal axis of an aircraft, RANSAC can also obtain more accurate results, one
example of which is shown in Fig. 6 where (a) is the segmented image of an aircraft, (b) is the
extracted skeleton, and (c) illustrates the results by LSM and RANSAC. In Fig. 6(c), the red
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Figure 7. (Colour online) Features representing the aircraft’s pose.

line is for LSM and the green line is for RANSAC. It is obvious that the RANSAC results are
more precise for fitting the longitudinal axis of the aircraft.

The output of RANSAC is a straight line, which can be represented by Equation (2):

y = ax + b, … (2)

where a and b are the slope and the intercept of the fitting line (b can be ignored to keep the
shift invariance). Then the pitch angle can be computed by Equation (3)

α = Tan−1a, … (3)

where α represents the pitch angle as illustrated in Fig. 7.

3.2 Features about roll information

As shown in Fig. 7, the roll information of an aircraft is related to its aerofoil, namely β

and γ, which are angles between the aerofoil branches of the skeleton and the horizontal
direction. Therefore, β and γ can be represented by the aerofoil branches of the skeleton. For
this purpose, a threshold σ is first used to remove the aircraft’s longitudinal axis from the
extracted skeleton structure �. As illustrated in Fig. 8, set (xi, yi ) = (0, 0) and ∀(xi, yi ) ∈ �

if it satisfies

|yi − axi − b|√
(1 + a2)

≤ σ … (4)

Then we compute the centroid of each connected branch for the rest skeleton structure
one by one. The centroids of the two aerofoil branches (marked as 3 and 4 in Fig. 8) will
correspond to the two nearest aerofoil branches of the centroid of the aircraft longitudinal
axis (marked as 1 in Fig. 8). Since the aerofoil branches of the skeleton are irregular as shown
in Fig. 8, it is difficult to directly fit a linear model to every aerofoil branch for estimating
the angle parameters. Therefore, we use the major axis of an equivalent ellipse to extract the
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Figure 8. (Colour online) Removing the aircraft skeleton and finding its aerofoil branches.

Figure 9. (Colour online) The orientation information of a shape computed by an equivalent ellipse.

orientation of the aerofoils. The equivalent ellipse has the same normalised second central
moment as the irregular shape(25). A very intuitive description of this method is shown in
Fig. 9, in which the blue squares represent pixels of a shape and φ represents the orientation
of the green line, which is the major axis of the equivalent ellipse.

Without loss of generality, an ellipse centred at (x0, y0) can be defined as

(
x − x0

y − y0

)T

A
(

x − x0

y − y0

)
= 1, … (5)

where A is a symmetric positive definite matrix. The ellipse matrix A can be computed by the
normalised second central moments B(24) as below:

A = 1
4

B−1, … (6)

where B can be represented as

B =
(

μxx

μxy

μxy

μyy

)
… (7)
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According to the definition of central moments, the counter-clockwise orientation of the
major axis relative to the vertical axis is given as

ϕ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Tan−1

(
μxx−μyy+

√
(μxx−μyy )2+4μ2

xy

−2μxy

)
, μxx > μyy

Tan−1

(
−2μxy

μyy−μxx+
√

(μyy−μxx )2+4μ2
xy

)
, μxx ≤ μyy

… (8)

The elements in matrix B can be computed using irregular shape pixels I(x, y)(25,26)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μxx =
∫∫

(x − x̄)2I (x, y)dxdy∫∫
I (x, y)dxdy

μyy =
∫∫

(y − ȳ)2I (x, y)dxdy∫∫
I (x, y)dxdy

μxy =
∫∫

(x − x̄)(y − ȳ)I (x, y)dxdy∫∫
I (x, y)dxdy

, … (9)

where x̄ and ȳ are centroids of the shape and have the following forms:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̄ =
∫∫

xI (x, y)dxdy∫ ∫
I (x, y)dxdy

ȳ =
∫∫

yI (x, y)dxdy∫∫
I (x, y)dxdy

… (10)

Substituting values from Equations (9) and (10) into (8), we can obtain the orientation
information of a shape computed by the equivalent ellipse. The whole process of extracting
features about roll information is illustrated in Fig. 10. We first use the RANSAC algorithm
to extract the features about pitch information as shown in Fig. 10(a), and Equation (4) is
used to remove the aircraft longitudinal axis from the extracted skeleton structure as shown
in Fig. 10(b). Then the orientations of two aerofoil branches are calculated with the central
moment by Equation (8)-(10). Figure 10(c-d) illustrates the aerofoil features, from which
it can be found that the central moment method can achieve a satisfying estimation of the
aerofoil information.

Since β and γ are angles between the major axis of aerofoil branches and the horizontal
direction and ϕ in Equation (8) describes the major axis relative to the vertical axis, we can
make a transformation as below {

β = ϕ1 + 90◦

γ = ϕ2 + 90◦ , … (11)

where ϕ1 and ϕ2 are calculated by Equation (8), corresponding to β and γ, respectively.
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Figure 10. (Colour online) The process of extracting features about roll information where (a) is the fitting
result of RANSAC, (b) is remaining skeleton structure except the aircraft longitudinal axis by Equation (4),

and (c) and (d) are the aerofoil orientations represented with green lines.

4.0 TWO-STEP FEATURE MATCHING ALGORITHM
After getting features (α, β, γ), we finish the pose estimation of the aircraft. In order to test
the accuracy of the proposed features, a two-step feature-matching algorithm is designed to
compare the query image with the prototype database. The database includes pre-obtained
aircraft images of different roll angles and pitch angles, and therefore we can get the estimated
pose of an unknown query image by obtaining the index of the most similar prototype image
with the query image.

As for implementation, since α and (β, γ) measure the aircraft’s pose from two different
aspects, we will measure the similarity between the query image and the prototype image by a
two-step decision-tree-like method. The m most similar prototype images are first discovered
from the prototype database S by parameter α, which can be written below:⎧⎪⎨

⎪⎩
max

i∈Spitch

(
‖α−αi‖1

180◦

)
≤ min

j∈(S−Spitch )

(‖α−α j‖1
180◦

)
∣∣Spitch

∣∣ = m

, … (12)
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Figure 11. (Colour online) Flowchart of the proposed algorithm.

where α is the feature about pitch information of the query image, αi is the feature
about pitch information of the ith prototype image, | � | computes the cardinality of the
argument, ‖ � ‖1 computes the 1-norm distance of the arguments, n is the total number
of prototype database, and 180◦ is divided to transform degree into radian. Spitch consists
of m indexes corresponding to the m most similar prototype images with the query
image. Here we suggest m is twice the number of the roll angles in the prototype
database.

Then, the most similar prototype image can be further obtained according to (β, γ), which
can be written as

ID = arg min
j

(∥∥β − β j
∥∥

1 + ∥∥γ − γ j
∥∥

1

)
, j ∈ Spitch, … (13)

where ID represents the index of matched prototype image of the query image, and (β, γ) is
the extracted feature about roll information of the query image and (β j, γ j ) is that of the ith
prototype image.

This two-step matching strategy can independently estimate the roll angle and pitch angle
of an aircraft, and therefore avoid the interaction between the roll information and pitch
information so as to maximise the discriminability of the similarity measure between features.
The overall process of the proposed method is illustrated by Fig. 11.
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Figure 12. (Colour online) Two aircraft models: (a) Model 1 and (b) Model 22.

Figure 13. Images database gained by rotating θ and ϕ.

5.0 EXPERIMENTS
5.1 Experiment setup

In this section, we design experiments to validate the effectiveness of the proposed features
and algorithm. Since different aircrafts have different aerofoil structures that will lead to
different skeleton results, two models are created to simulate the two common commercial
aircrafts, the Boeing series and the Airbus series as shown in Fig. 12. The prototype images
in Fig. 13 is acquired by rotating these two models around x and y axis respectively to imitate
the changes of the roll angle θ and pitch angle ϕ. The sampled θ and ϕ are shown in Table 1,
where a total number of 66 prototype images are acquired for each model. Our query images
are obtained in the same way with different θ and ϕ shown in Table 1. It can be seen that there
are differences between the query images and the prototype images which can validate the

2 These two models are downloaded from http://www.3dcool.net.
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Table 1
The roll angle θ and pitch angle φ of the simulated prototype and query images.

Image Angle θ φ

−70◦,−50◦,−30◦ 50◦, 40◦, . . . , 0◦,−10◦, . . . ,−50◦
Prototype

70◦, 50◦, 30◦ −130◦,−140◦, . . . ,−170◦, 180◦, . . . , 130◦

−60◦,−50◦,−40◦ 45◦, 35◦, . . . , 5◦,−5◦, . . . ,−45◦
Query

60◦, 50◦, 40◦ −135◦,−145◦, . . . ,−175◦, 175◦, . . . , 135◦

robustness of the proposed method. The total number of our query images for each model is
60. Both the prototype images and query images have the same size of 270×269 for Model 1
and 238×247 for Model 2.

The parameters of the proposed method are set as follows. Since the extracted skeleton is
one pixel wide and there is no need to delete too many skeleton points while removing the
aircraft longitudinal axis, the threshold σ = 2. The parameters in RANSAC are set according
to Ref. [23]: (1) the error tolerance ɛ, which determines whether a point can be accepted by a
model or not. Let ε = 0.3, which means a point belongs to the random selected model if the
distance between this point and the model is less than 0.3. (2) w = 0.05, which is the ratio
of inlier size to total data size. (3) The maximum trail threshold k is the maximum trail to
select new subsets from data and is equal to 2000 in this paper. (4) The probability p = 0.99
is related to the selection of the inliers from the input data set in some iteration. (5) Since
RANSAC will fit a straight line, the least number n of points to fit the model is set to 2.

5.2 Experiment results and analysis

We first use one query image to validate the algorithm by illustrating the intermediate results
step by step. The first image in the query images database of Mode l is chosen whose
angle parameter is (θ,φ) = (−60◦, 45◦). The features of the query image and the prototype
images, which are (α, β, γ) = (44.1,−10.57, 64.36) and (αi, βi, γi ), i = 1, 2, . . . , 66,
are first extracted. Then the similarity based on pitch information between the query image
and the prototype images is computed as shown in Fig. 14. According to the similarity, the
m = 12 most similar prototype images Spitch are found according to Equation 12. Then
the most matched prototype image can be further obtained by Equation 13. Figure 15 shows
the similarity based on roll information, from which we can see that the prototype image
of the index 1 is the most similar to the query image, which has the pose parameters
(θ,φ) = (−70◦, 50◦). This is the expected result, which indicates the effectiveness of the
proposed method.

We next test all the query images following the same way above. Figures 16 and 17 show the
matching results for Model 1 and 2 respectively, where the red diamonds represent prototype
images and the blue circles are the query images. The lines connecting the red diamonds
and the blue circles indicate the query image is matched with the prototype image. Since
each query image has four neighbour prototype images, it will be considered correctively
matched if the query image matches any one of the four images using Equations 12 and 13.
Here, blue lines indicate correct matching and red lines represent mismatching. It can be
seen that most of the lines are blue, which indicates the proposed algorithm can correctly
match most of the query images with the corresponding prototype images. The matching
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Figure 14. (Colour online) Comparison between α with αi, i = 1, 2, . . . , 66 using Euclidean distance.

Figure 15. (Colour online) Calculation of the Euclidean distance between (β, γ) and (βi, γi ), j = 1, 2, . . . , m.

accuracy is 96.67% for Model 1 and 93.33% for Model 2, which proves the effectiveness and
accuracy of the proposed method. However, we also notice some red lines between the 9th
image (whose angle parameter is (θ,φ) = (−35◦,−60◦)) and 32th image ((−40◦,−30◦)),
the 32th image ((−145◦, 60◦)) and 57th image ((−140◦, 30◦)) for Model 1, the 42th image
((−145◦, 50◦)) and 35th image ((−140◦, 70◦)), the 51th image ((−135◦, 40◦)) and 34th image
((−130◦, 70◦)), the 52th image ((−145◦, 40◦)) and 35th image ((−140◦, 70◦)), the 59th image
((−145◦, 40◦)) and 42th image ((−150◦, 70◦)) for Model 2. Comparing two models and the
images in the database, the angle between the aerofoil and the aircraft longitudinal axis in
Model 1 is larger than that in Model 2. When the aerofoils and the aircraft longitudinal axis
are simultaneously perpendicular to the camera’s optical axis such as in the 32th image in
Fig. 13, the axis from one aerofoil to the other aerofoil will influence the extraction of the
aircraft longitudinal axis. In Model 2, since the angle between the aerofoil and the aircraft
longitudinal axis is small, it is very easy for the aerofoils to be occluded by the aircraft’s
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Figure 16. (Colour online) Illustration of the matching results of two databases for Model 1.
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Figure 17. (Colour online) Illustration of the matching results of two databases for Model 2.

body such as in the 35th and 42th images in Fig. 13. Therefore, extracting features about roll
information will be difficult for Model 2.

6.0 CONCLUSION
This paper proposes a geometry structure-based method to evaluate the pose parameters of an
aircraft in runway end safety area from its 2D image. This method can be used to monitor the
landing or takeoff of aircrafts and to predict the related aviation accidents and avoid loss of
human lives and heavy material damage. A geometry structure feature is designed to describe
the pose of an aircraft, which combines the RANSAC algorithm and the information of central
moments. The former algorithm is used extract the aircraft longitudinal axis, while the latter
is adopted to represent the aerofoils. This kind of feature realises a novel idea to characterise
the structure of the objects with rigid parts. In order to validate the proposed feature, we
design a two-step feature-matching strategy to measure the feature similarity between the test
database and the prototype database, which can avoid interactions between different kinds of
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information so as to maximise the discriminability of the similarity measure between features.
Experiments on two common types of aircraft in Asia indicate that the proposed features can
effectively estimate the pitch angle and the roll angle of an aircraft, and the algorithm can
obtain results with a high degree of accuracy.
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11. Mitrović, U., Spiclin, Z. and Likar, B.F. 3D-2D registration of cerebral algorithms: A method
and evaluation on clinical images, IEEE Transactions on Medical Imaging, 2013, 32, (8), pp 1550-
1563.

12. Iwashita, Y., Kurazume, R., Hasegawa, T. and Hara, K. Fast alignment of 3D geometrical
models and 2D color images using 2D distance maps, Fifth International Conference on 3-D Digital
Imaging and Modeling, Ottawa, Canada, 2005, pp 164-171.

13. Wunsch, P. and Hirzinger, G. Registration of CAD-models to images by iterative inverse
perspective matching, Proceedings of the 13th International Conference on Pattern Recognition,
Vienna, Austria, 1996, 1, pp 78-83.

https://doi.org/10.1017/aer.2016.16 Published online by Cambridge University Press

http:$/$$/$old.vision.ece.ucsb.edu$/$�egingroup count@ "223Celax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 126 count@ egroup spacefactor accent@spacefactor uppercase {gdef $sim ${{char '176}}}endgroup setbox 	hr@@ hbox {$sim $}@tempdima wd 	hr@@ advance @tempdima ht 	hr@@ advance @tempdima dp 	hr@@ $sim $zuliani$/$Research$/$RANSAC$/$docs$/$RANSAC4Dummies.pdf
https://doi.org/10.1017/aer.2016.16


Wang ET AL 691Pose estimation in runway end safety area…

14. Cross, A.D.J. and Hancock, E.R. Graph matching with a dual-step EM algorithm, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1998, 20, (11), pp 1236-1253.

15. David, P., Daniel, D., DuraiswamI, R. and Samet, H. Evaluation of the SoftPOSIT model to
image registration algorithm, University of Maryland Technical Report CAR-TR-974, 2002.

16. Shan, G.L., Ji, B. and Zhou, Y.F. A review of 3D pose estimation from a monocular image
sequence, The 2nd International Congress on Image and Signal Processing, Tianjin, China, 2009,
pp 1-5.

17. Gao, X.S., Hou, X.R., Tang, J.L. and Cheng, H.F. Complete solution classification for the
perspective-three-point problem, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2003, 25, (8), pp 930-943.

18. Moreno-Noguer, F., Lepetit, V. and Fua, P. Accurate non-iterative O(n) solution to the PnP
problem, IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007,
pp 1-8.

19. Lu, C.P., Hager, G.D. and Mjolsness, E. Fast and globally convergent pose estimation from video
images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22, (6), pp 610-
622.

20. Lowe, D.G. Local feature view clustering for 3D object recognition, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii USA, 2001, 1, pp 682-
688.

21. Lowe, D.G. Distinctive image features from scale-invariant key points, International, J Computer
Vision, 2004, 60, (2), pp 91-110.

22. Robert, S. and Klas, N. An invariant and compact representation for unrestricted pose estimation,
Second Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal, 2005.

23. Fischler, M.A. and Bolles, R.C. Random sample consensus: A paradigm for model fitting with
applications to image analysis, Communications of the ACM, 1981, 24, (6), pp 381-395.

24. Haralick, R.M. and Shapiro, L.G. Computer and Robot Vision Volume I, 1992, Addison-Wesley,
Boston, USA.

25. Sun, J.X. Image Analysis, 2005, Science Press, Beijing, China.
26. Hu, M.K. Visual pattern recognition by moment invariants, IRE Transactions on Information

Theory, 1962, 8, (2), pp 179-187.

https://doi.org/10.1017/aer.2016.16 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.16

	1.0 INTRODUCTION
	2.0 PRE-PROCESSING TO EXTRACT STRUCTURE INFORMATION
	3.0 POSE ESTIMATION
	3.1 Features about pitch information
	3.2 Features about roll information

	4.0 TWO-STEP FEATURE MATCHING ALGORITHM
	5.0 EXPERIMENTS
	5.1 Experiment setup
	5.2 Experiment results and analysis

	6.0 CONCLUSION
	ACKNOWLEDGEMENTS
	References

