

Measure comparison problems for dilations of convex bodies

Malak Lafi and Artem Zvavitch®

Abstract. We study a version of the Busemann-Petty problem for log-concave measures with an additional assumption on the dilates of convex, symmetric bodies. One of our main tools is an analog of the classical large deviation principle applied to log-concave measures, depending on the norm of a convex body. We hope this will be of independent interest.

1 Introduction

We denote by \mathbb{R}^n the *n*-dimensional Euclidean space equipped with the inner product $\langle \cdot, \cdot \rangle$ and the standard orthonormal basis $\{e_1, \ldots, e_n\}$, and we denote by $|\cdot|$ the standard Euclidean norm on \mathbb{R}^n . For a measurable set $A \subset \mathbb{R}^n$, we refer to its volume (the Lebesgue measure) by |A| and its boundary by ∂A . The notation B_2^n stands for the closed unit ball in \mathbb{R}^n , and \mathbb{S}^{n-1} for the unit sphere (i.e., $\mathbb{S}^{n-1} = \partial B_2^n$). A convex body is a convex, compact set with a nonempty interior. Furthermore, a convex body *K* is symmetric if K = -K. A measure μ is log-concave on \mathbb{R}^n if for every pair of nonempty compact sets *A* and *B* in \mathbb{R}^n and $0 < \lambda < 1$, we have

$$\mu(\lambda A + (1 - \lambda)B) \ge \mu(A)^{\lambda} \mu(B)^{1 - \lambda},$$

where the addition is the Minkowski sum which is defined as the set $A + B = \{a + b : a \in A, b \in B\}$, and the constant multiple (dilation) of a set $A \subset \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ is defined as $\alpha A = \{\alpha a : a \in A\}$. It follows from the Prékopa-Leindler inequality [18, 19, 9] that if a measure μ that is defined on the measurable subsets of \mathbb{R}^n is generated by a log-concave density, then μ is also log-concave. Furthermore, Borell provides a characterization for log-concave measures [3]; precisely, a locally finite and regular Borel measure μ is log-concave, if and only if its density (with respect to the Lebesgue on the appropriate subspace) is log-concave.

In 1956, Busemann and Petty [5] posed the following volume comparison problem: Let K and L be symmetric convex bodies in \mathbb{R}^n so that the (n-1)-dimensional volume of every central hyperplane section of K is smaller than the same section for L. Does it follow that the *n*-dimensional volume of K is smaller than the *n*-dimensional volume of L? In the late 1990s, the Busemann-Petty problem was solved as a result of many works including [8, 10, 13, 14, 21]. The answer is affirmative when $n \leq 4$ and

the United States - Israel Binational Science Foundation (BSF) Grant 2018115. AMS Subject Classification: 52A20, 52A21, 46T12, 60F10.

Received by the editors March 22, 2024; revised September 22, 2024; accepted October 3, 2024. Both authors are supported in part by the U.S. National Science Foundation Grant DMS-1101636 and

Keywords: Busemann-Petty problem, log-concavity, large deviation.

negative whenever $n \ge 5$. It is natural to consider an analog of the Busemann-Petty problem for a more general class of measures. The first result in this direction was a solution of the Gaussian analog of the Busemann-Petty problem [22]. It turns out that the answer for the Busemann-Petty problem is the same if we replace the volume with the Gaussian measure. Moreover, it was proved in [23] that the answer is the same if we replace the volume with any measure with continuous, positive, and even density.

V. Milman [16] asked whether the answer to the Gaussian Busemann-Petty problem would change in a positive direction if we compared not only the Gaussian measure of sections of the bodies but also the Gaussian measure of sections of their dilates; that is, consider two convex symmetric bodies $K, L \subset \mathbb{R}^n$, such that

$$\gamma_{n-1}(rK \cap \xi^{\perp}) \leq \gamma_{n-1}(rL \cap \xi^{\perp}), \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0,$$

where ξ^{\perp} denotes the central hyperplane perpendicular to ξ . Does it follow that

$$\gamma_n(K) \leq \gamma_n(L)$$

Here, γ_n denotes the standard Gaussian measure on \mathbb{R}^n , and

$$\gamma_{n-1}(K\cap\xi^{\perp})=\frac{1}{(\sqrt{2\pi})^{n-1}}\int_{K\cap\xi^{\perp}}e^{-\frac{|x|^2}{2}}dx.$$

The addition of dilation to the Busemann-Petty problem, clearly, would not change anything in the case of the volume measure. Still, in the case of more general log-concave measures, the behavior of the measure of a dilation of a convex body is very interesting; we refer to [1, 6, 12, 15] for just a few examples of such results.

Even though the dilation adds some strength to the condition of the bodies, the answer to the dilation problem for Gaussian measure is positive for $n \le 4$ and negative for $n \ge 7$ (see [24]). That leaves the problem open for n = 5, 6.

To show the strength of the condition of the dilates, it was proved in [24] that the dilation problem has an affirmative answer when *K* is a dilate of a centered Euclidean ball: Consider a star body $L \subset \mathbb{R}^n$ and assume there exists R > 0, such that

$$\gamma_{n-1}(rRB_2^n \cap \xi^{\perp}) \leq \gamma_{n-1}(rL \cap \xi^{\perp}), \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0.$$

Then, it follows that $RB_2^n \subseteq L$.

In this paper, we review some generalizations of the above fact. In particular, we study measures μ for which we have an affirmative answer for the following problem:

Question 1 Consider a convex, symmetric body $K \subset \mathbb{R}^n$ such that for every t large enough and for some R > 0,

$$\mu(tRB_2^n) \le \mu(tK).$$

Does it follow that $RB_2^n \subseteq K$?

In Section 2, we will present a solution for Question 1 for the case of a log-concave rotation invariant probability measure μ .

In Section 3, we consider a more general case. Instead of comparing *K* with B_2^n , we will compare *K* with another convex, symmetric body *L*. Let us denote by $||x||_L$ the Minkowski functional of *L* which is defined to be $||x||_L = \min{\{\lambda > 0 : x \in \lambda L\}}$.

Question 2 Let $K, L \subset \mathbb{R}^n$ be convex, symmetric bodies, and let μ be a log-concave probability measure with density $e^{-\phi(||x||_L)}$, where $\phi : [0, \infty) \to [0, \infty)$ is a nonconstant, convex function. If for every t large enough and some R > 0,

$$\mu(tRL) \le \mu(tK),$$

does it follow that $RL \subseteq K$?

One of the core steps in answering Questions 1 and 2 is a generalization of the classical large deviation principle, which is provided in Lemma 2.6 and Equation (3.2) below: Consider two symmetric, convex bodies $K, L \subset \mathbb{R}^n$, and let $r(K, L) = \max\{R > 0 : RL \subset K\}$. Then,

$$\limsup_{t\to\infty}\frac{\ln\mu((tK)^c)}{\phi(r(K,L)t)}=-1,$$

where μ is a log-concave probability measure with density $e^{-\phi(||x||_L)}$, and by A^c we denote a complement of a set $A \subset \mathbb{R}^n$ (i.e., $A^c = \mathbb{R}^n \setminus A$).

Finally, in Section 4, we will discuss the generalization of the dilation problem for Gaussian measures:

Question 3 Consider a measure μ with continuous positive density f. Let $\mu_{n-1}(K \cap \xi^{\perp}) = \int_{K \cap \xi^{\perp}} f(x) dx$. Consider two convex symmetric bodies $K, L \subset \mathbb{R}^n$, such that

$$\mu_{n-1}(rK \cap \xi^{\perp}) \leq \mu_{n-1}(rL \cap \xi^{\perp}), \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0.$$

Does it follow that

$$\mu(K) \le \mu(L)?$$

We show that, in general, the answer is still negative in dimension $n \ge 5$, even under the assumption that f is a nonconstant log-concave function. We also prove that if we add the requirement for the measure to be rotation invariant, the answer will be negative in dimension $n \ge 7$, which leaves the case of rotation invariant log-concave measures open in dimension n = 5, 6.

2 The case of rotation invariant measures

In this section, we consider a rotation invariant probability log-concave measure μ with nonconstant density – that is,

$$\mu(A) = \int_A e^{-\phi(|x|)} dx,$$

where $\phi : [0, \infty) \to [0, \infty)$ is a nonconstant, convex function. We will denote by $\phi'(t)$ the left derivative in the case when the convex function $\phi(t)$ is not differentiable at *t*.

Theorem 2.1 Consider a convex, symmetric body $K \subset \mathbb{R}^n$ such that for every t large enough and some R > 0,

$$\mu(tRB_2^n) \le \mu(tK).$$

Then, $RB_2^n \subseteq K$.

In order to prove the above theorem, we will need two lemmas.

Lemma 2.2 Consider R > 0. Then,

(2.1)
$$\limsup_{t\to\infty} \frac{\ln \mu((tRB_2^n)^c)}{\phi(tR)} = -1.$$

Proof Without loss of generality, we may assume that R = 1. Let us first show that the left-hand side of equality (2.1) is less or equal to -1. Writing the integral in polar coordinates, we get

$$\limsup_{t\to\infty}\frac{\ln\int_{S^{n-1}}\int_t^\infty e^{-\phi(r)}r^{n-1}drd\theta}{\phi(t)} = \limsup_{t\to\infty}\frac{\ln\int_t^\infty e^{-\phi(r)}r^{n-1}dr}{\phi(t)}.$$

We remind that $\lim_{t\to\infty} \phi(t) = \infty$. Let $\eta(t) = -(n-1)\ln t + \phi(t)$. Using that ϕ is a convex and nonconstant function, we get that there exists $t_0 \ge 0$ such that $\phi'(t_0) > 0$. Thus, $\phi'(t) > 0$ for all $t > t_0$, and there exists a constant a > 0 such that $\eta'(t) > a$ for all $t > t_0$. Thus, $\eta(r) \ge \eta(t) + a(r-t)$ for $r > t > t_0$, and

$$\limsup_{t \to \infty} \frac{\ln \int_t^\infty e^{-\phi(r)} r^{n-1} dr}{\phi(t)} \le \limsup_{t \to \infty} \frac{\ln \int_t^\infty e^{-\eta(t) - a(r-t)} dr}{\phi(t)}$$
$$= \limsup_{t \to \infty} \frac{\ln e^{-\eta(t)} + \ln \int_t^\infty e^{-a(r-t)} dr}{\phi(t)}$$
$$= \limsup_{t \to \infty} \frac{\ln (t^{n-1} e^{-\phi(t)}) + \ln \frac{1}{a}}{\phi(t)}$$
$$= -1 + \limsup_{t \to \infty} \frac{\ln \frac{1}{a}}{\phi(t)}$$
$$= -1.$$

Next, we will show that the right-hand side of equality (2.1) is greater or equal to -1. Since r > t, we have

$$\limsup_{t \to \infty} \frac{\ln \int_t^\infty e^{-\phi(r)} r^{n-1} dr}{\phi(t)} \ge \limsup_{t \to \infty} \frac{\ln \left(t^{n-1} \int_t^\infty e^{-\phi(r)} dr \right)}{\phi(t)}$$
$$= \limsup_{t \to \infty} \frac{\ln \int_t^\infty e^{-\phi(r)} dr}{\phi(t)}.$$

To finish proving the lemma, we prove the following claim.

Claim 2.3
$$\limsup_{t\to\infty} \frac{\ln \int_t^{\infty} e^{-\phi(r)} dr}{\phi(t)} \ge -1.$$

Proof of Claim 2.3. Assume the result is not true. Then, there exists $\alpha > 1$ such that

$$\limsup_{t\to\infty}\frac{\ln\int_t^\infty e^{-\phi(r)}dr}{\phi(t)}<-\alpha.$$

Thus, there exists $t_0 > 0$ such that for all $t > t_0$, we have

(2.2)
$$\int_{t}^{\infty} e^{-\phi(r)} dr \le e^{-\alpha\phi(t)}.$$

Let $F(t) = \int_t^\infty e^{-\phi(t)} dr$, and note that $F'(t) = -e^{-\phi(t)}$, and thus, (2.2) is equivalent to $F(t)^{\frac{1}{\alpha}} \leq -F'(t)$. Therefore, for $t > t_0$, we have

$$1 \le -\frac{F'(t)}{F(t)^{\frac{1}{\alpha}}}.$$

Integrating both sides of the above inequality over $t \in [t_0, \infty)$, we get that $\frac{1}{1-\frac{1}{\alpha}}F(t)^{1-\frac{1}{\alpha}}$ is unbounded, which gives a contradiction, and the claim is proved. This finishes the proof of Lemma 2.2.

Remark 2.4 We note that in Claim 2.3, we have proved a stronger statement. Indeed, fix $\alpha > 1$ and let

$$E = \left\{ t : \ln \int_t^\infty e^{-\phi(r)} dr < -\alpha \phi(t) \right\}.$$

Then, $|E| < \infty$. This follows from the fact that for all $t \in E$, we have that

$$1 < -\frac{F'(t)}{F(t)^{\frac{1}{\alpha}}}$$

Thus,

(2.3)
$$|E| \leq \int_{E} -\frac{F'(t)}{F(t)^{\frac{1}{\alpha}}} dt \leq \int_{t_{0}}^{\infty} -\frac{F'(t)}{F(t)^{\frac{1}{\alpha}}} dt < \infty.$$

Remark 2.5 It is tempting to replace limit superior by the actual limit in the statement of Lemma 2.2. This may be done in many particular cases of measure μ , but it is not true in general. Indeed, if we assume that

$$\lim_{t \to \infty} \frac{\ln \int_t^\infty e^{-\phi(r)} dr}{\phi(t)} = -1$$

then there exits T > 0 such that for all t > T, we have

$$\left|\frac{\ln\int_t^\infty e^{-\phi(r)}dr}{\phi(t)}+1\right|\leq 1.$$

In particular,

(2.4)
$$\int_t^\infty e^{-(\phi(r)-\phi(t))} dr \ge e^{-\phi(t)}.$$

Using convexity of ϕ , we get that $\phi(r) - \phi(t) \ge \phi'(t)(r-t)$, and thus, combining this with (2.4), we get that

(2.5)
$$\phi'(t) \le e^{\phi(t)}, \text{ for all } t > T.$$

Let us show that there is an increasing, positive, convex, piecewise quadratic function ϕ which has sufficiently large derivative at a sequence of points $t_k \rightarrow \infty$; such ϕ would contradict (2.5).

We define function ϕ to be quadratic on each interval [k, k+1] and show that there exist $t_k \in (k, k+1)$, for all $k \in \{0, 1, ...\}$, which would contradict (2.5). Let $\phi(0) = \phi'(0) = 1$. Assume we have constructed desired function ϕ on interval [0, k]with $\phi(k) = a_k, \phi'(k) = b_k$. Consider an auxiliary quadratic function $\phi_k : [k, \infty) \rightarrow [a_k, \infty)$, such that $\phi'_k(t) = \alpha_k(t-k) + b_k$, where $\alpha_k > 0$ to be selected later. Thus, $\phi_k(t) = \alpha_k(t-k)^2/2 + b_k(t-k) + a_k$. Our goal is to find $t_k \in (k, k+1)$ and α_k such that $\alpha_k(t-k) + b_k > e^{\alpha_k(t-k)^2/2 + b_k(t-k) + a_k}$. Let $t_k = k + 1/\sqrt{\alpha_k}$. Then, the previous inequality becomes $\sqrt{\alpha_k} + b_k > e^{1/2 + b_k/\sqrt{\alpha_k} + a_k}$, which is true for all α_k large enough (and in particular allows us to guarantee that $t_k \in (k, k+1)$). We now set $\phi(t) = \phi_k(t)$ for $t \in [k, k+1]$ and repeat the process for the interval [k+1, k+2].

We remind that for two convex, symmetric bodies $K, L \subset \mathbb{R}^n$, we define $r(K, L) = \max\{R > 0 : RL \subset K\}$. The next lemma may be seen as a generalization of the classical large deviation principle (see, for example, Corollary 4.9.3 in [2]).

Lemma 2.6 Consider a symmetric body $K \subset \mathbb{R}^n$. Then,

$$\limsup_{t\to\infty}\frac{\ln\mu((tK)^c)}{\phi(r(K,B_2^n)t)}=-1.$$

Proof Let $R = r(K, B_2^n)$. Then, $(tK)^c \subset (tRB_2^n)^c$. Using Lemma 2.2, we get

$$\limsup_{t\to\infty}\frac{\ln\mu((tK)^c)}{\phi(tR)}\leq\limsup_{t\to\infty}\frac{\ln\mu((tRB_2^n)^c)}{\phi(tR)}=-1.$$

To obtain the reverse inequality, we denote by *P* a plank of width 2*R* which contains *K*. More precisely, using the maximality of *R*, there exist at least two tangent points $y, -y \in R\mathbb{S}^{n-1} \cap \partial K$. Thus, we may consider $P = \{x \in \mathbb{R}^n : |\langle x, y \rangle| \le R\}$. Next,

$$\limsup_{t\to\infty} \frac{\ln \mu((tK)^c)}{\phi(tR)} \ge \limsup_{t\to\infty} \frac{\ln \mu((tP)^c)}{\phi(tR)}$$

By the rotation invariant of μ , we may assume that $y = Re_n$, and so

$$\mu((tP)^{c}) = 2 \int_{tR}^{\infty} \int_{\mathbb{R}^{n-1}} e^{-\phi(|ze_n+x|)} dx dz.$$

Using the triangle inequality and the polar coordinates, we get

$$\mu((tP)^{c}) \geq 2 \int_{tR}^{\infty} \int_{\mathbb{R}^{n-1}} e^{-\phi(z+|x|)} dx dz$$
$$= 2 \int_{tR}^{\infty} \int_{\mathbb{S}^{n-2}} \int_{0}^{\infty} e^{-\phi(z+r)} r^{n-2} dr d\theta dz$$
$$= 2|\mathbb{S}^{n-2}| \int_{0}^{\infty} r^{n-2} \int_{tR}^{\infty} e^{-\phi(z+r)} dz dr$$
$$= 2|\mathbb{S}^{n-2}| \int_{0}^{\infty} r^{n-2} \int_{tR+r}^{\infty} e^{-\phi(z)} dz dr$$

$$= 2|\mathbb{S}^{n-2}| \int_{tR}^{\infty} e^{-\phi(z)} \int_{0}^{z-tR} r^{n-2} dr dz$$
$$= 2\frac{|\mathbb{S}^{n-2}|}{n-1} \int_{tR}^{\infty} (z-tR)^{n-1} e^{-\phi(z)} dz.$$

Now to finish the proof of Lemma 2, we need to prove the following claim.

Claim 2.7

$$\limsup_{t\to\infty}\frac{\ln\int_{tR}^{\infty}(z-tR)^m e^{-\phi(z)}dz}{\phi(Rt)}\geq -1,$$

for any nonnegative integer m.

Proof of Claim 2.7. Making the change of variables, we get

$$\limsup_{t\to\infty}\frac{\ln\int_{tR}^{\infty}(z-tR)^m e^{-\phi(z)}dz}{\phi(Rt)}=\limsup_{t\to\infty}\frac{\ln\int_{t}^{\infty}(r-t)^m e^{-\phi(r)}dr}{\phi(t)}.$$

We will first prove the following inductive step: fix a nonnegative integer *m*, and let

$$F_m(t) = \int_t^\infty (r-t)^m e^{-\phi(r)} dr.$$

Then,

(2.6)
$$\liminf_{t\to\infty} \frac{\ln F_m(t)}{\ln F_{m-1}(t)} = 1, \text{ for all } m \in \mathbb{N}.$$

We note that $F_m(t) \leq 1$, for *t* large enough, and thus, the denominator and numerator are negative. It is a bit easier to work with a fraction when both the denominator and numerator are nonnegative. So we will prove that $\liminf_{t\to\infty} \frac{-\ln F_m(t)}{-\ln F_{m-1}(t)} = 1$. Using integration by parts, we get

$$F_{m-1}(t) = \frac{1}{m} \int_{t}^{\infty} (r-t)^{m} \phi'(r) e^{-\phi(r)} dr \ge \frac{1}{m} \phi'(t) \int_{t}^{\infty} (r-t)^{m} e^{-\phi(r)} dr,$$

where, again, we denote by $\phi'(t)$ the left derivative of ϕ . Thus,

$$-\ln F_{m-1}(t) \leq -\ln(\phi'(t)/m) - \ln F_m(t),$$

and

$$\liminf_{t\to\infty}\frac{-\ln F_m(t)}{-\ln F_{m-1}(t)}\geq\liminf_{t\to\infty}\frac{\ln(\phi'(t)/m)-\ln F_{m-1}(t)}{-\ln F_{m-1}(t)}.$$

Now we may use that $\phi'(t) > a > 0$ for *t* large enough and $\lim_{t\to\infty} \ln F_{m-1}(t) = -\infty$ to claim that

(2.7)
$$\liminf_{t \to \infty} \frac{-\ln F_m(t)}{-\ln F_{m-1}(t)} \ge \liminf_{t \to \infty} \frac{\ln(a/m) - \ln F_{m-1}(t)}{-\ln F_{m-1}(t)} \ge 1.$$

To prove the reverse inequality, we note that

$$F'_m(t) = -m \int_t^\infty (r-t)^{m-1} e^{-\phi(r)} dr$$

Assume that

$$\liminf_{t\to\infty}\frac{-\ln F_m(t)}{-\ln(-\frac{1}{m}F'_m(t))}>\alpha>1,$$

but then, again there exists $t_0 > 0$ such that for all $t > t_0$, we have

$$-\ln F_m(t) > -\alpha \ln(-\frac{1}{m}F'_m(t)),$$

and thus,

$$m < \frac{-F'_m(t)}{F_m(t)^{\frac{1}{\alpha}}}.$$

Take an integral over $t \in [x, \infty)$ from both sides to get $F_m^{1-\frac{1}{\alpha}}(x) = \infty$, which is a contradiction. This finishes the proof of the inductive step, but we actually need a bit stronger statement, which is similar to Remark 2.4. Indeed, consider any $m \in \mathbb{N}$ and $\alpha > 1$. Let

$$E_{m,\alpha} = \{t : -\ln F_m(t) > -\alpha \ln F_{m-1}(t)\}.$$

Then, using the same ideas as in (2.3), we get $|E_{m,\alpha}| < \infty$.

To complete our proof, let

$$X_i(t) = \frac{\ln F_i(t)}{\ln F_{i-1}(t)} \text{ and } Y(t) = \frac{\ln F_0(t)}{\phi(t)}.$$

Using (2.6), we get $\liminf_{t\to\infty} X_i(t) = 1$, and using (2.1), we get $\limsup_{t\to\infty} Y(t) = -1$. Now let $X(t) = \prod_{i=1}^{m} X_i(t)$. Our goal is to prove that

$$\limsup_{t\to\infty} X(t)Y(t) \ge -1.$$

Assume that this is not true. Then, there exists $\alpha > 1$ such that

$$\limsup_{t\to\infty} X(t)Y(t) < -\alpha < -1.$$

Therefore, there exists t_0 such that for all $t > t_0$,

$$(2.8) X(t)Y(t) \le -\alpha.$$

Using (2.7), we may also assume that $X_i(t) > 0$ for all $t > t_0$. Next, consider the set

$$A \coloneqq \left\{ t > t_0 : X(t) > \frac{\alpha + 1}{2} \right\}.$$

We claim that $|A| < \infty$. Note that

$$\left|\left\{t: X(t) > \frac{\alpha+1}{2}\right\}\right| \le \left|\left\{t: X_i(t) > \left(\frac{\alpha+1}{2}\right)^{\frac{1}{m}} \text{ for some } i \in \{1, \dots, m\}\right\}\right|$$
$$< \sum_{i=1}^{m} \left|\left\{t: X_i(t) > \left(\frac{\alpha+1}{2}\right)^{\frac{1}{m}}\right\}\right| < \infty.$$

We also note that $\frac{2\alpha}{\alpha+1} > 1$, and thus,

$$\left|\left\{t:Y(t)<-\frac{2\alpha}{\alpha+1}\right\}\right|<\infty.$$

Finally,

$$\left|\left\{t > t_0 : X(t)Y(t) < -\alpha\right\}\right| = \left|\left\{t > t_0 : Y(t) < -\frac{\alpha}{X(t)}\right\}\right|$$
$$\leq |A| + \left|\left\{t > t_0 : Y(t) < -\frac{\alpha}{X(t)} \text{ and } X(t) < \frac{\alpha+1}{2}\right\}\right|$$
$$\leq |A| + \left|\left\{t : Y(t) < -\frac{2\alpha}{\alpha+1}\right\}\right| < \infty,$$

which contradicts with (2.8). The claim is proved, and this finishes the proof of Lemma 2.6.

We are now ready to prove Theorem 2.1.

Proof Let $K \subset \mathbb{R}^n$ be a convex, symmetric body such that $\mu(tRB_2^n) \leq \mu(tK)$ holds for for some fixed R > 0 and every *t* large enough, but $RB_2^n \notin K$. Thus, the maximal Euclidean ball in *K* has radius *rR*, with $r \in (0, 1)$. From the assumption, it follows that

$$\mu((tRB_2^n)^c) \ge \mu((tK)^c),$$

which implies that

$$\frac{\ln \mu((tRB_2^n)^c)}{\phi(tR)} \ge \frac{\ln \mu((tK)^c)}{\phi(tRR)} \frac{\phi(tR)}{\phi(tR)}$$

From the convexity of ϕ and $r \in (0, 1)$, we get that

$$\phi(trR) = \phi(trR + (1-r)0) \le r\phi(tR) + (1-r)\phi(0).$$

Using that $\phi(tR) \to \infty$, we get that there exists $r' \in (0,1)$ and $t_0 > 0$ such that $\frac{\phi(tR)}{\phi(tR)} \le r'$ for all $t > t_0$. Thus,

(2.9)
$$\frac{\ln \mu((tRB_2^n)^c)}{\phi(tR)} \ge r' \frac{\ln \mu((tK)^c)}{\phi(tR)}$$

for all $t > t_0$. Taking the limit superior, as $t \to \infty$, from both sides of the inequality (2.9), we obtain $-1 \ge -r'$. But this contradicts the fact that r' is less than 1. Therefore, our assumption that $RB_2^n \notin K$ must be false.

Remark 2.8 The rotation invariant assumption on μ in Theorem 2.1 is necessary. Indeed, one can construct an example of a log-concave probability measure that is not rotation invariant in \mathbb{R}^2 which does not satisfy the statement of Theorem 2.1. Consider the rectangle $\Omega = \{(x, y) : |x| \le \frac{\pi}{2}, |y| \le \frac{1}{2}\}$, and define the measure μ as

 $\mu(K) = \frac{|K \cap \Omega|}{|\Omega|}$. Taking $K = \Omega$, we have

$$B_2^2 \notin \Omega$$
, but $|B_2^2| = |\Omega| = \pi$ and $|tB_2^2| = |t\Omega|$, $\forall t > 0$.

Note that $\mu(tB_2^2) \le \mu(t\Omega)$; $\forall t > 0$; indeed, this is equivalent to $|tB_2^2 \cap \Omega| \le |t\Omega \cap \Omega|$. If $t \le 1$, then we have $|tB_2^2 \cap \Omega| \le |tB_2^2| = |t\Omega|$, and if $t \ge 1$, we get $|tB_2^2 \cap \Omega| \le |\Omega|$. So, we provided an example where

$$\mu(tB_2^2) \le \mu(tK); \quad \forall t > 0,$$

but $B_2^2 \notin K$.

3 The cases where density depends on the norm

In this section, we would like to give a proof Theorem 2.1 in a more general case, which would answer Question 2. The main idea and computation are in the same spirit as in the proof of Theorem 2.1.

Theorem 3.1 Let $K, L \subset \mathbb{R}^n$ be convex, symmetric bodies, and let μ be a log-concave probability measure, with density $e^{-\phi(||x||_L)}$, where $\phi : [0, \infty) \to [0, \infty)$ is an increasing, convex function. If for every t large enough and some R > 0,

$$\mu(tRL) \le \mu(tK),$$

then $RL \subseteq K$.

Proof We have to check Lemma 2.2 and Lemma 2.6 (i.e., to prove yet another generalization of the classical large deviation principle (see (3.2) below)).

We claim that for any R > 0,

$$\limsup_{t\to\infty}\frac{\ln\mu((tRL)^c)}{\phi(tR)}=-1.$$

We can assume R = 1. Moreover, as before, using convexity of ϕ , we may assume that $\phi(t)$ is a strictly increasing function for large enough *t*. Thus,

$$\mu((tL)^{c}) = \int_{(tL)^{c}} e^{-\phi(||x||_{L})} dx = \int_{(tL)^{c}} \int_{\phi(||x||_{L})}^{\infty} e^{-u} du dx$$

$$= \int_{\mathbb{R}^{n}} \int_{\phi(||x||_{L})}^{\infty} \chi_{(tL)^{c}}(x) e^{-u} du dx = \int_{0}^{\infty} \int_{\{x:\phi(||x||_{L}) < u\}} \chi_{(tL)^{c}}(x) e^{-u} dx du$$

$$= \int_{0}^{\infty} e^{-u} |\{x: ||x||_{L} \in [t, \phi^{-1}(u)]\} | du = |L| \int_{\phi(t)}^{\infty} ((\phi^{-1}(u))^{n} - t^{n}) e^{-u} du$$

$$= |L| \int_{t}^{\infty} (v^{n} - t^{n}) \phi'(v) e^{-\phi(v)} dv = -|L| \int_{t}^{\infty} (v^{n} - t^{n}) de^{-\phi(v)}$$

(3.1)
$$= n|L| \int_{t}^{\infty} v^{n-1} e^{-\phi(v)} dv.$$

Note that $\phi(t)$ may be a constant function on some interval $[0, t_0]$ and strictly increasing on $[t_0, \infty)$. In such a case, we define $\phi^{-1}(\phi(0)) = t_0$. So, we have

$$\limsup_{t \to \infty} \frac{\ln \mu((tL)^c)}{\phi(t)} = \limsup_{t \to \infty} \frac{\ln(n|L|\int_t^\infty e^{-\phi(v)}v^{n-1}dv)}{\phi(t)}$$
$$= \limsup_{t \to \infty} \frac{\ln \int_t^\infty e^{-\phi(v)}v^{n-1}dv}{\phi(t)},$$
$$= -1.$$

where the last equality follows from the proof of Lemma 2.2.

To finish the proof, we must check Lemma 2.6. In particular, we want to show that

(3.2)
$$\limsup_{t \to \infty} \frac{\ln \mu((tK)^c)}{\phi(r(K,L)t)} = -1$$

for symmetric, convex bodies $K, L \subset \mathbb{R}^n$, convex, increasing function $\phi : [0, \infty) \rightarrow [0, \infty)$ and measure μ with density $e^{-\phi(\|x\|_L)}$.

Let R = r(K, L). Then, we have $(tK)^c \subset (tRL)^c$ from the assumption. Thus, using Lemma 2.2, we get

$$\limsup_{t \to \infty} \frac{\ln \mu((tK)^c)}{\phi(tR)} \le \limsup_{t \to \infty} \frac{\ln \mu((tRL)^c)}{\phi(tR)} = -1.$$

Using that *RL* is the maximal dilate of *L* inside *K*, we get that there is a pair of points $v, -v \in \partial RL \cap \partial K$. Let *P* be a plank created by tangent planes to *RL* and *K* at *v* and -v. Let n_v be a normal vector to ∂RL at *v*. Then, the width of the plank *P* is $2Rh_L(n_v) = 2h_K(n_v)$: $P = \{x \in \mathbb{R}^n : |\langle x, n_v \rangle| \le Rh_L(n_v)\}$, where $h_L(x) = \sup\{\langle x, y \rangle : y \in L\}$ is the support function of *L* (see [20] for basic definitions and properties). Next,

$$\limsup_{t\to\infty} \frac{\ln \mu((tK)^c)}{\phi(tR)} \ge \limsup_{t\to\infty} \frac{\ln \mu((tP)^c)}{\phi(tR)}.$$

Selecting a proper system of coordinates, we may assume that $n_v = e_n$. Let $a = tRh_L(e_n)$. Then,

$$\mu((tP)^{c}) = 2 \int_{a}^{\infty} \int_{e_{n}^{\perp}} e^{-\phi(\|ze_{n}+x\|_{L})} dx dz$$

= $2 \int_{a}^{\infty} \int_{e_{n}^{\perp}} \int_{\phi(\|ze_{n}+x\|_{L})}^{\infty} e^{-u} du dx dz$
= $2 \int_{a}^{\infty} \int_{0}^{\infty} \int_{\{x \in e_{n}^{\perp}: \phi(\|ze_{n}+x\|_{L}) < u\}}^{\infty} e^{-u} dx du dz$
= $2 \int_{a}^{\infty} \int_{0}^{\infty} e^{-u} \left| \left\{ x \in e_{n}^{\perp}: \|ze_{n}+x\|_{L} \le \phi^{-1}(u) \right\} \right| du dz$

Now note that

$$\left|\left\{x \in e_n^{\perp} : \|ze_n + x\|_L \le \phi^{-1}(u)\right\}\right| = \left|\left\{x \in e_n^{\perp} : ze_n + x \in \phi^{-1}(u)L\right\}\right|.$$

The above volume is zero if $z > \phi^{-1}(u)h_L(e_n)$ (or $\phi(z/h_L(e_n)) > u$). For $z \in [0, \phi^{-1}(u)h_L(e_n)]$, we note that $\phi^{-1}(u)L$ is a convex body and thus contains

https://doi.org/10.4153/S0008439524000729 Published online by Cambridge University Press

inside a pyramid Δ with base $L \cap e_n^{\perp}$ and the height $\phi^{-1}(u)h_L(e_n)$ (with apex $\phi^{-1}(u)h_L(e_n)v/R$). Then,

$$\begin{split} \left| \left\{ x \in e_n^{\perp} : ze_n + x \in \phi^{-1}(u)L \right\} \right| &\ge |\Delta \cap (e_n^{\perp} + ze_n)| \\ &= (\phi^{-1}(u)h_L(e_n) - z)^{n-1} |L \cap e_n^{\perp}|. \end{split}$$

Thus,

$$\begin{split} \mu((tP)^{c}) &\geq 2|L \cap e_{n}^{\perp}| \int_{a}^{\infty} \int_{\phi(z/h_{L}(e_{n}))}^{\infty} e^{-u} (\phi^{-1}(u)h_{L}(e_{n}) - z)^{n-1} du dz \\ &= 2|L \cap e_{n}^{\perp}| \int_{a}^{\infty} \int_{z/h_{L}(e_{n})}^{\infty} e^{-\phi(u)} \phi'(u) (uh_{L}(e_{n}) - z)^{n-1} du dz \\ &= -2|L \cap e_{n}^{\perp}| \int_{a}^{\infty} \int_{z/h_{L}(e_{n})}^{\infty} (uh_{L}(e_{n}) - z)^{n-1} de^{-\phi(u)} dz \\ &= 2(n-1)|L \cap e_{n}^{\perp}| \int_{a}^{\infty} \int_{z/h_{L}(e_{n})}^{\infty} e^{-\phi(u)} (uh_{L}(e_{n}) - z)^{n-2} du dz \\ &= 2(n-1)|L \cap e_{n}^{\perp}| \int_{a/h_{L}(e_{n})}^{\infty} \int_{a}^{h_{L}(e_{n})u} e^{-\phi(u)} (uh_{L}(e_{n}) - z)^{n-2} dz du \\ &= 2|L \cap e_{n}^{\perp}| \int_{a/h_{L}(e_{n})}^{\infty} e^{-\phi(u)} (uh_{L}(e_{n}) - a)^{n-1} du \\ &= 2h_{L}^{n-1}(e_{n})|L \cap e_{n}^{\perp}| \int_{tR}^{\infty} e^{-\phi(u)} (u - tR)^{n-1} du. \end{split}$$

So, we have

$$\limsup_{t \to \infty} \frac{\ln \mu((tP)^c)}{\phi(tR)} \ge \limsup_{t \to \infty} \frac{\ln \left(2h_L^{n-1}(e_n)|L \cap e_n^{\perp}|\int_{tR}^{\infty} e^{-\phi(u)}(u-tR)^{n-1}du\right)}{\phi(tR)}$$
$$= \limsup_{t \to \infty} \frac{\ln \int_{tR}^{\infty} e^{-\phi(u)}(u-tR)^{n-1}du}{\phi(tR)}.$$

By Claim 2, the above quantity is greater than or equal to −1; thus, Lemma 2.6 is applied here, which finishes the proof for our main result.

Remark 3.2 The proofs for Theorem 2.1 and Theorem 3.1 apply similarly to an asymmetric convex body *K* with the origin as an interior point of it. The only difference is that instead of dealing with a plank *P* in Lemma 2.6, we need to work with a half-space. Specifically, for Theorem 2.1, one would use the half-space $H = \{x \in \mathbb{R}^n : \langle x, y \rangle \leq R\}$, where $y \in R \mathbb{S}^{n-1} \cap \partial K$. For Theorem 3.1, one may use the half-space defined by $H = \{x \in \mathbb{R}^n : \langle x, n_v \rangle \leq Rh_L(n_v)\}$, where n_v is the normal vector to ∂RL at a tangent point *v*.

4 The Busemann - Petty type problems

In this section, we will discuss Question 3. We first note that one must make some additional assumptions on the measure μ to avoid a trivial answer. Indeed, if a measure

 μ has a homogeneous density (i.e., $f(rx) = r^p f(x)$, for r > 0 and p > 1 - n), then the answer is identical to the one given in [23].

Let us first show that in dimension $n \ge 5$, one can always find a pair of convex, symmetric bodies *K* and *L* and measure μ , such that the answer to Question 3 is negative. The main idea follows from the construction in [24]. We begin with the following fact:

Fact If $d\mu = e^{-\phi(||x||_L)} dx$ is a log-concave measure and $K, L \subset \mathbb{R}^n$ are convex, symmetric bodies such that $|K| \leq |RL|$ for some R > 0, then

$$\mu(K) \le \mu(RL).$$

Proof Using calculations similar to (3.1), we get

$$\mu(K) = \int_0^\infty e^{-u} |K \cap \phi^{-1}(u)L| du$$

and

$$\mu(RL) = \int_0^\infty e^{-u} |RL \cap \phi^{-1}(u)L| du.$$

To get $\mu(K) \le \mu(RL)$, we only need to check that $|K \cap \phi^{-1}(u)L| \le |RL \cap \phi^{-1}(u)L|$. Indeed, if $R \le \phi^{-1}(u)$, then we have

$$|K \cap \phi^{-1}(u)L| \le |K| \le |RL| = |RL \cap \phi^{-1}(u)L|,$$

and if $R \ge \phi^{-1}(u)$, then we get

$$|K \cap \phi^{-1}(u)L| \le |\phi^{-1}(u)L| = |RL \cap \phi^{-1}(u)L|.$$

Hence, $\mu(K) \leq \mu(RL)$ for any R > 0.

Next, we show that Question 3 has a negative answer for $n \ge 5$.

Theorem 4.1 For $n \ge 5$, there are convex symmetric bodies $K, L \subset \mathbb{R}^n$ and log-concave measure μ with density $e^{-\phi(||x||_L)}$, such that

(4.1)
$$\mu(rK \cap \xi^{\perp}) \leq \mu(rL \cap \xi^{\perp}), \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0,$$

but $\mu(K) > \mu(L)$.

Proof Let us assume, toward the contradiction, that Question 3 has an affirmative answer in \mathbb{R}^n for some fixed $n \ge 5$. So, for any pair of convex symmetric bodies K, L that satisfy (4.1), we would get $\mu(K) \le \mu(L)$. The condition on sections (4.1) will be also satisfied for the dilated bodies tK and tL, for all t > 0. Therefore, we have

(4.2)
$$\mu(tK) \le \mu(tL), \quad \forall t > 0,$$

which, by definition of μ , means

$$\int_{tK} e^{-\phi(||x||_L)} dx \leq \int_{tL} e^{-\phi(||x||_L)} dx,$$

282

or equivalently, applying the change of variables x = tx, we have

$$\int_{K} e^{-\phi(t||x||_{L})} dx \leq \int_{L} e^{-\phi(t||x||_{L})} dx$$

Using the continuity of ϕ and compactness of *K* and *L*, we can take the limit for the above inequality as $t \to 0^+$ to obtain

$$|K| \leq |L|.$$

Therefore, we have a relation between the dilation problem for a log-concave probability measure, with the Busemann-Petty problem for volume measure, which is if

$$\mu(rK \cap \xi^{\perp}) \leq \mu(rL \cap \xi^{\perp}), \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0,$$

then $|K| \leq |L|$.

A number of very interesting counterexamples to the Busemann-Petty problem were shown by Papadimitrakis [17]; Gardner [7]; Gardner, Koldobsky, and Schlumprecht [10]: there are convex symmetric bodies K, L in \mathbb{R}^n for $n \ge 5$ such that

$$(4.3) |K \cap \xi^{\perp}| \le |L \cap \xi^{\perp}|, \quad \forall \xi \in \mathbb{S}^{n-1},$$

but

$$(4.4) |K| > |L|.$$

Note that because the volume measure is homogeneous, the condition on sections (4.3) is also true for dilates of *K* and *L*, so we have

(4.5)
$$|rK \cap \xi^{\perp}| \le |rL \cap \xi^{\perp}|, \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0.$$

Now, applying the fact to (4.5), we get that

$$\mu(rK \cap \xi^{\perp}) \leq \mu(rL \cap \xi^{\perp}), \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0.$$

Thus, using (4.2), we have

 $\mu(tK) \le \mu(tL), \qquad \forall t > 0.$

Dividing by t^n and taking the limit of the above inequality as $t \to 0^+$, we get

 $|K| \le |L|,$

and this contradicts (4.4).

It is interesting to note that the measure μ constructed above is very specific. For example, we cannot use this construction directly with the assumption that μ is rotation invariant.

Still, we can show that the answer to Question 3 is negative in \mathbb{R}^n for $n \ge 7$ even when μ is a log-concave measure with rotation invariant density.

Theorem 4.2 For dimension $n \ge 7$, and $d\mu = e^{-\phi(|x|)} dx$, there is a convex symmetric body $K \subset \mathbb{R}^n$ such that

$$\mu(rK \cap \xi^{\perp}) \leq \mu(rB_2^n \cap \xi^{\perp}), \quad \forall \xi \in \mathbb{S}^{n-1}, \quad \forall r > 0,$$

but $\mu(K) > \mu(B_2^n)$.

Proof Giannopoulos [11] and Bourgain [4] constructed an example in \mathbb{R}^n for $n \ge 7$ of convex body $K \subset \mathbb{R}^n$ that satisfies

$$|K \cap \xi^{\perp}| \le |B_2^n \cap \xi^{\perp}|, \quad \forall \xi \in \mathbb{S}^{n-1},$$

but $|K| > |B_2^n|$. To prove Theorem 4.2, one may take the same convex body *K* and B_2^n as provided in [11, 4] and repeat the proof of Theorem 4.1.

Acknowledgements We are grateful to Matthieu Fradelizi, Dylan Langharst, Fedor Nazarov, and Mokshay Madiman for a number of valuable discussions and suggestions. Finally, we thank the two anonymous referees, whose remarks and corrections were an enormous help!

References

- S. G. Bobkov and F. Nazarov, Sharp dilation-type inequalities with fixed parameter of convexity. Zap. Nauchn. Sem. POMI 351(2007), 54–78. English translation in J. Math. Sci. (N.Y.) 152(2008), 826–839.
- [2] V. Bogachev, *Gaussian measures*, Mathematical Surveys and Monographs, Vol. 62, American Mathematical Society, Providence, RI, 1998.
- [3] C. Borell, Convex set functions in d-space. Period. Math. Hungar 6(1975), no. 2, 111-136.
- [4] J. Bourgain, On the Busemann-Petty problem for perturbations of the ball. Geom. Funct. Anal. 1(1991), 1–13.
- [5] H. Busemann and C. M. Petty, *Problems on convex bodies*. Math. Scand. 4(1956), 88–94.
- [6] D. Cordero-Erausquin, M. Fradelizi and B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214(2004), no. 2, 410–427.
- [7] R. J. Gardner, Intersection bodies and the Busemann-Petty problem. Trans. Amer. Math. Soc. 342(1994), no. 1, 435–445.
- [8] R. J. Gardner, *Geometric tomography*, second edition, Cambridge University Press, New York, 2006.
- [9] R. J. Gardner, The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.). 39(2002) no. 3, 355–405.
- [10] R. J. Gardner, A. Koldobsky and Th. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies. Ann. of Math. (2) 149(1999), no. 2, 691–703.
- [11] A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies. Mathematika 37(1990), no. 2, 239–244.
- [12] M. Fradelizi, *Concentration inequalities for s-concave measures of dilations of Borel sets and applications*. Electron. J. Probab. 14(2009), no. 71, 2068–2090.
- [13] A. Koldobsky, Intersection bodies, positive definite distributions and the Busemann-Petty problem. Amer. J. Math. 120(1998), no. 4, 827–840.
- [14] E. Lutwak, Intersection bodies and dual mixed volumes. Adv. Math. 71(1988), no. 2, 232–261.
- [15] R. Latala and K. Oleszkiewicz, Gaussian measures of dilations of convex symmetric sets. Ann. Probab. 27(1999), no. 4, 1922–1938.
- [16] V. Milman, Personal communication, 2007.
- [17] M. Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in \mathbb{R}^n . Mathematika 39(1992), no. 2, 258–266.
- [18] A. Prékopa, Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged) 32(1971), 301–316
- [19] A. Prékopa, On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34(1973), 335–343.
- [20] R. Schneider, Convex bodies: The Brunn-Minkowski Theory, second expanded edition, Encyclopedia of Mathematics and Its Applications, Vol. 151, Cambridge University Press, Cambridge, 2014.
- [21] G. Zhang, A positive solution to the Busemann-Petty problem in \mathbb{R}^4 . Ann. of Math. (2) 149(1999), no. 2, 535–543.
- [22] A. Zvavitch, Gaussian measure of sections of convex bodies. Adv. Math. 188(2004), no. 1, 124-136.

- [23] A. Zvavitch, The Busemann-Petty problem for arbitrary measures. Math. Ann. 331(2005), no. 4, 867–887.
- [24] A. Zvavitch, Gaussian measure of sections of dilates and translations of convex bodies. Adv. Appl. Math. 41(2008), no. 2, 247–254.

Department of Mathematical Sciences, Kent State University, Kent, OH, 44242 e-mail: mlafil@kent.edu azvavitc@kent.edu