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Abstract

Purpose: This exploration is intended to analyse the dosimetric characteristics of proton
beams of multiple energies using different snout sizes. Materials and methods: A synchrotron
was used for the extraction of eight proton beam energies (100–250MeV). Dosimetric
measurements were taken in a water phantom that was irradiated with a proton beam
emanating from the gantry system at angles 0, 90, 180 and 270 degree using a large and a
medium snout. The range of beam energies in the phantom, their corresponding centre
modulation depth (CMD) and the width of spread out Bragg peak (SOBP) were measured by
Markus chamber. Double scattering technique was employed for the creation of SOBPs.
Results: The range of proton beams varied from 4·3 cm for 100MeV beam to 28·5 cm for
250MeV beam with the medium snout and from 4·3 cm for 100MeV to 25 cm for 250MeV
beam with large snout in the water phantom. SOBP width showed a variation from 4 to 10 cm
with medium and large snout. While determining the output with medium snout, the
discrepancy of 1·1% was observed between the maximum and minimum mean values of
output for all the given set of energies and angles. There occurred a difference of 0·9%
between the maximum and minimum mean values of output with the large snout. Beam
output at SOBP centre was 12% higher with large snout as compared to that with medium
snout for all the given beam energies. Flatness and symmetry were found within ±2·5%
tolerance limits with medium and large snouts. Conclusion: Flatness and symmetry were
found within explicit limits with both medium and large snouts. Large snout produced higher
beam output than that of medium snout at the centre of SOBP. This exploration can be
extended to the determination of beam output, flatness and symmetry with a small snout.

Introduction

Among the various sophisticated and highly advanced radiotherapy techniques, proton beam
therapy (PBT) has emerged as the most promising treatment modality because it shows
precise targeting of the tumour site and deposits maximum dose to the malignant region.1 Due
to the very low exit dose, PBT ensures maximum sparing of organs at risk. Proton beams
demonstrate a well-defined range on entering into the medium. Beyond that range, no energy
is deposited. It contains a highly concentrated and high-dose volume in a narrow region
termed as Bragg peak.2 Due to this unique property, PBT is recommended for the treatment of
tumours near sensitive areas like brain, skull or spinal cord. As Bragg peak width is only few
millimetres in depth, it is broadened by passive scattering and spot scanning techniques to
create spread out Bragg peak (SOBP) for the delivery of a uniform dose distribution to the
target volume.3,4

The University of Texas, M. D. Anderson Proton Therapy Center at Houston (PTC-H) is
providing PBT through both passive scattering (double scattering) and spot scanning tech-
niques to combat cancer near sensitive sites in the body. It has a Hitachi synchrotron (Hitachi
America, Ltd, Tarrytown, NY, USA) (70–250MeV) and G1, G2 and F2 scattering beam lines
with double scattering approach. Each beam line has small, medium and large snouts with 10,
18 and 25 cm diameter, respectively, and 8 beam energies (100–250MeV). Each beam line has
24 options.5 Snout is a part of the nozzle lying closest to the patient and it consists of a
compensator and aperture.

PBT requires a high level of quality control over the whole process from the treatment
planning to the treatment delivery.6 For this purpose, Radiation Physics Department of
PTC-H contributes to the quality assurance (QA) of treatment planning systems and treat-
ment delivery equipment to ensure optimal and accurate treatment delivery. Bijon Arjomandy
et al. established the QA procedures to ensure accurate and safe treatment delivery from the
synchrotron placed at M. D. Anderson PTC-H.7 Actis et al. have also developed and discussed
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the daily QA procedures to assess the dosimetric parameters of
the proton beam in their published work.8 Gillin et al. have
provided commissioning data for the proton beam using discrete
spot scanning technique at PTC-H.9

This investigation is aimed to report on the impact of large
and medium snouts on the dosimetric specifications of the proton
beam as a crucial part of the QA procedures performed at PTC-H.
This study is also intended to analyse the output dependency of
proton beam on various gantry angles and the effect of both snout
sizes on the beam output.

Materials and methods

This exploration included Hitachi synchrotron (Hitachi America,
Ltd, Tarrytown, NY, USA) placed at The University of Texas,
M. D. Anderson Proton Therapy Center at Houston (PTC-H), for
the extraction of eight proton beam energies of 100, 120, 140, 160,
180, 200, 225 and 250MeV. Each beam energy took a different
beam spill from the synchrotron.9,10 The maximum time length of
4·4 seconds was required by each spill. In the synchrotron, the
beam was accelerated to its maximum energy and then deceler-
ated after each spill. The deceleration lasted for only 1 second.
Again the beam began to accelerate until the protons gained
the required energy. Before extracting the proton beam from the
synchrotron, the beam energy was examined by measuring the
orbit position and revolution frequency.

The given proton beam energies from G1 scattering beam line
using medium and large snouts were applied to an MP3-P water
phantom (PTW, Freiburg, Germany) at the gantry angles of 0, 90,
180 and 270 degrees. The isocentre of gantry rotation was kept
within 1mm under all gantry angles. This phantom is a fully
automated 3D water tank with up to 38 cm scanning depth. Due to
the pulsed nature of the synchrotron, the scanning equipment was
reviewed to ensure that this equipment would function during the
1·5 seconds between spills. A PTWMarkus chamber (PTW 34045)
was used to measure the range, Pristine Bragg peaks, SOBPs,
CMD, beam output, flatness and symmetry in the water phantom.
This chamber has a plate separation of 1mm and a sensitive
volume of 0·02 cm3. It can be positioned accurately at 0·1mm in
this water scanning system. It was positioned in such a manner
that the centre of the chamber was aligned with the central axis of
the field. This detector measured range at the 90% dose location in
the water phantom along the central axis of the beam. Proton
beam energies (100–250MeV) on entering into the phantom
showed variation in their range from 4·3 cm for 100MeV beam to

28·5 cm for 250MeV beam. Flatness was determined by comput-
ing the ratio between maximum and minimum doses.

Flatness %ð Þ=Dmax =Dmin ´ 100%

Symmetry was analysed by taking the ratio of the doses at two
symmetric points relative to the field central axis.

Symmetry %ð Þ= D x; yð Þ½ � = D �x;�yð Þ½ � ´ 100%
Double scattering technique was used for the creation of

SOBPs to ensure the delivery of uniform dose distribution to the
target volume.11–14 This technique used a combination of scat-
terers, range modulation wheels (RMWs), compensators and
field-shaping apertures (comparison of surface doses). Scatterers
spread the proton beam laterally. RMW added together Bragg
peaks of different beam energies and weights to spread the
stopping region of proton beam at depth.1 The aperture was
positioned on the retractable snout and shaped the lateral edges of
the beam. Compensators were placed at the end of the snout to
conform the beam distally. An air gap of 8 cm was maintained
between the snout and the water tank to reduce scattering. In this
investigation, beam dosimetric data were obtained using a med-
ium and large snouts. Medium and large snouts determined the
treatment field sizes of 18 and 25 cm2, respectively. The isocentre
was adjusted at the middle of the SOBPs. Beam data processing
and management were performed by the MOSAIQ System from
IMPAC Medical System. The schematic representation of double-
scattering technique is given below.

Results

In PBT, an extensive QA program is required to validate the beam
characteristics to confirm the functionality of the treatment
delivery and patient safety system.15,16 Constancy of the beam
dose, range uniformity, width of SOBP, flatness and symmetry at
any one angle (0 or 90 or 180 or 270 degree) and beam output
dependence on gantry angle are among the essential dosimetric
checks of the QA process.

The checks of QA program are given below for the beam
energies 250, 225, 200, 180, 160, 140, 120 and 100MeV at the
gantry angles of 0, 90, 180 and 270 degrees using medium and
large snouts for G1 scattering beam line (Figure 1).

Range, centre modulation depth (CMD) and width of SOBP of
proton beam are given in Figures 2a, 2b and 2c using medium and
large snouts, respectively. The range of the proton beam in the
medium or the water phantom depends upon the energy of the
proton beam.17 The ICRU Report 78 has defined the range as the
depth along the beam central axis in water to the distal 90% point
of the maximum dose value, and SOBP width as the distance in
water between the distal and proximal 90% points of the max-
imum dose value.16,18 It varied from 4·3 to 28·5 cm for the beam
energies ranging from 100 to 250MeV when medium snout
(18 × 18 cm) was used. The width of SOBP ranged from 4 to
10 cm both with medium and large snouts. The dose deposited by
the proton beam was measured at the centre of SOBPs and cor-
responded to the CMD. This is documented in IAEA TRS 398
report.19 For proton beam of nominal energy 250MeV, with
range of 28·5 cm in phantom using medium snout, 1 MU became
equal to 1 cGy dose when determined at the CMD of 23·5 cm
which is situated at the centre of 10 cm SOBP.

With the large snout (25 × 25 cm), the proton beam ranged
from 4·3 to 25 cm for beam energies ranging from 100 to
250MeV. CMD at which depth doses were determined varied

Figure 1. Representation of double-scattering technique for the creation of spread
out Bragg peaks (SOBPs).
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from 2·3 to 20 cm. A dose of 1 cGy was measured at CMD of
20 cm with beam range of 25 cm at the centre of SOBP of 10 cm
width using large snout. The range of the proton beam was
smaller with large snout as compared to that with medium snout.

The uniformity of the proton beam dose distribution around
the target volume was confirmed by determining the flatness and
symmetry of the beam dose measured from the depth dose profile
in both X and Y directions using medium and large snouts.

In this approach, IAEA TRS 398 dosimetry protocol was used.
It defined the clinically acceptable limits of ±2·5% for both flat-
ness and symmetry. As seen from the data in Table 1, all the
values of flatness and symmetry remained within their limits
recommended by the dosimetry protocol, with both medium and
large snouts. The highest observed value of flatness was 1·99%,
and it depicted more inhomogeneous dose distribution around
the target volume but within the recommended limits.20 Flatness
is merely the ratio between the two doses and it can be varied by
the size and shape of the phantom, which in this case, remained
unchanged.21 Symmetry was not affected by the range of the
proton beam inside the phantom.22

In Table 2, symmetry and flatness of the proton beam at 90
gantry angle did not exceed the limits recommended by the
dosimetry protocol. Flatness and symmetry ranged from 0·88% to
2·05% and 0·82% to 1·98%, respectively, with medium and large
snout sizes. From these results, mean of flatness X and flatness Y
was 1·30% and 1·41% with medium snout and 1·25% and 1·30%
with large snout. Their mean values showed a much

homogeneous dose distribution around the target site. Similarly,
symmetry X and symmetry Y had mean values of 1·51% and
1·28% with medium snout and 1·31% and 1·42% with large snout.
Snout sizes did not produce any variations in these values.

At the gantry angle of 180 degree in Table 3, flatness and
symmetry remained within the 2·5% specified limit for all beam
energies. Flatness X and flatness Y mean values were 1·25% and
1·27%, respectively, and symmetry X and symmetry Y mean
values were 0·87% and 1·14% with medium snout. For flatness X
and Y the mean values were 1·18% and 1·01% with large snout.
Mean of symmetry X and Y values was 1·46% and 1·30% with
large snout size.

For gantry angle of 270 degrees in Table 4, flatness (X and Y)
varied from 0·76% to 1·92%. Symmetry (X and Y) values varied
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Figure 2. (a) Representation of the range of proton beam in the water phantom using
medium (M) and large (L) snouts. (b) Representation of CMD of the proton beam in
the water phantom using medium (M) and large (L) snouts. (c) Representation of
SOBPs of the proton beam in the water phantom using medium (M) and large (L)
snouts. Abbreviations: CMS, centre modulation depth; SOBPs, spread out
Bragg peaks.

Table 1. Flatness and symmetry of dose distribution of proton beam at
0 degree gantry angle

Flatness X
(%)

Flatness Y
(%)

Symmetry X
(%)

Symmetry Y
(%)

Snout size
Medium
large

Medium
large Medium large Medium large

Energy (MeV)

250 1·83, 1·93 0·94, 1·40 1·65, 1·37 0·97, 0·93

225 1·40, 1·27 1·07, 0·99 1·64, 1·56 1·11, 1·13

200 1·45, 0·85 1·51, 1·25 1·66, 1·41 1·96, 1·85

180 1·99, 1·42 1·43, 0·80 1·42, 1·41 1·81, 1·09

160 1·39, 0·77 1·16, 1·38 1·39, 1·51 1·63, 1·28

140 1·05, 1·25 1·15, 1·88 1·43, 1·69 1·39, 1·81

120 1·13, 0·80 1·83, 1·08 1·45, 1·47 1·22, 1·45

100 1·11, 1·16 1·52, 1·87 1·34, 1·56 1·20, 2·00

Table 2. Flatness and symmetry of dose distribution of proton beam at
90 degree gantry angle

Flatness X
(%)

Flatness Y
(%)

Symmetry X
(%)

Symmetry Y
(%)

Snout size
Medium
large

Medium
large Medium large Medium large

Energy (MeV)

250 1·55, 1·73 1·64, 1·51 1·38, 0·86 1·30, 1·57

225 1·07, 1·13 0·92, 1·48 1·19, 0·79 1·05, 1·75

200 1·01, 0·91 1·09, 0·88 1·63, 1·40 1·01, 1·45

180 2·05, 1·31 1·69, 1·36 1·98, 0·82 1·72, 1·05

160 1·21, 1·23 1·31, 1·09 1·32, 1·77 1·54, 1·20

140 0·97, 1·32 1·23, 1·70 1·08, 1·39 1·26, 1·64

120 1·31, 1·15 1·80, 0·92 1·79, 1·67 1·29, 1·32

100 1·23, 1·24 1·59, 1·42 1·72, 1·75 1·14, 1·37
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from 1·02% to 1·81%. All these values were found within toler-
ance limits for the given set of beam energies.

This exploration was further extended to the analysis of output
of the beam versus angle of the synchrotron’s gantry with med-
ium and large snouts as shown in Table 5.

Table 5 represents the gantry output of a synchrotron at the
pre-mentioned gantry angles and beam energies. Output was
defined at the centre of SOBP with both medium and large
snouts.23 The output of proton beam was seen nearly the same for
all the given beam energies. While determining output with
medium snout, the discrepancy of 1·1% was observed between the
maximum and minimum mean values of output for all the given
set of energies. There occurred a difference of 0·9% between the

maximum and minimum mean values of output with large snout.
For all the given beam energies, mean output of the proton beam
showed a deviation of 12%, 11·9%, 11·9% and 12·1% between
medium and large snout at 0, 90, 180 and 270 degree angle,
respectively. The highest observed difference in output between
medium and large snout was approximately 27%.

Figure 3a reveals the gantry output at the angles 0, 90, 180 and
270 degrees relative to the gantry output at 0 degree angle. All the
relative outputs at 90, 180 and 270 degree angles were found close
to the gantry output at 0 degree angle. The maximum observed
deviation was of 1·48% from the output at 0 degree angle.

Relative output to zero gantry angle output with large snout is
given in Figure 3b. Beam output data at 0, 90, 180 and 270 degree

Table 3. Flatness and symmetry of dose distribution of proton beam at
180 degree gantry angle

Flatness X
(%)

Flatness Y
(%)

Symmetry X
(%)

Symmetry Y
(%)

Snout size
Medium
large

Medium
large Medium large Medium large

Energy (MeV)

250 1·62, 1·94 1·13, 1·34 1·30, 1·84 0·80, 0·98

225 1·24, 1·28 1·01, 0·79 0·57, 1·37 0·71, 0·97

200 1·11, 0·94 1·06, 0·97 0·73, 1·37 1·00, 1·03

180 1·75, 1·22 1·41, 0·96 0·75, 1·27 1·26, 1·16

160 1·16, 0·68 1·00, 1·10 0·75, 1·30 1·41, 1·22

140 0·80, 1·08 1·27, 1·33 0·68, 1·33 1·25, 1·17

120 1·24, 1·27 1·84, 1·20 1·00, 1·28 1·46, 1·89

100 1·04, 1·03 1·43, 0·42 1·22, 1·93 1·29, 1·95

Table 4. Flatness and symmetry of dose distribution of proton beam at
270 degree gantry angle

Flatness X
(%)

Flatness Y
(%)

Symmetry X
(%)

Symmetry Y
(%)

Snout size
Medium
large

Medium
large Medium large Medium large

Energy (MeV)

250 1·62, 1·92 1·32, 1·52 1·36, 1·53 1·30, 1·39

225 1·23, 1·26 1·04, 0·94 1·41, 1·54 1·16, 1·32,

200 1·29, 0·78 1·04, 1·19 1·48, 1·55 1·16, 1·43

180 1·61, 1·44 1·33, 1·35 1·33, 1·59 1·17, 1·76

160 1·11, 0·91 0·87, 1·18 1·32, 1·55 1·24, 1·42

140 0·76, 1·43 1·11, 1·69 1·19, 1·60 1·02, 1·66

120 1·19, 1·00 1·57, 1·55 1·17, 1·81 1·31, 1·48

100 1·22, 1·62 1·43, 1·77 1·24, 1·93 1·16, 1·92

Table 5. Output dependency of proton beam Q (nC/pC) on gantry angle

Gantry
angles

Gantry angle
0

Gantry angle
90

Gantry angle
180

Gantry angle
270

Snout size
Medium
large Medium large Medium large Medium large

Energy (MeV)

250 5·15, 5·50 5·17, 5·53 5·20, 5·56 5·18, 5·53

225 5·10, 5·48 5·11, 5·51 5·14, 5·54 5·12, 5·51

200 5·06, 5·52 5·08, 5·53 5·10, 5·56 5·09, 5·53

180 5·21, 5·73 5·24, 5·77 5·28, 5·78 5·25, 5·78

160 5·32, 5·72 5·39, 5·76 5·39, 5·78 5·39, 5·77

140 5·40, 6·18 5·44, 6·18 5·46, 6·24 5·42, 6·26

120 5·01, 6·81 5·02, 6·86 5·07, 6·88 5·04, 6·87

100 5·13, 5·42 5·14, 5·44 5·17, 5·48 5·20, 5·46

Mean 5·17, 5·80 5·20, 5·82 5·23, 5·85 5·21, 5·84
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Figure 3. (a) Representation of relative output to zero gantry angle output with
medium snout. (b) Representation of relative output to zero gantry angle output with
large snout.

Journal of Radiotherapy in Practice 183

https://doi.org/10.1017/S1460396918000675 Published online by Cambridge University Press

https://doi.org/10.1017/S1460396918000675


angles was consistent to that at 0 degree angle with a negligible
deviation of 1·4%.

Overall, a very consistent beam output data were observed at
all the given angles, but negligible deviations were noticed owing
to the fact that as protons go through the varying thickness of the
scattering material, there occurs a slight deviation in the energy
spectrum.24

Discussion

From the dosimetric results of proton beams from G 1 scattering
beam line, medium snout can provide the possibility for the
treatment of target with depth ranging from 4·3 to 28·5 cm, for
example, for prostate cancer. With the large snout, tumours lying
in a depth of up to 25 cm can be treated with a maximum
treatment field of 25 × 25 cm.24

The quality of proton beam depends on the parameters like
flatness and symmetry. The QA procedure in clinical practice of
radiation treatment and the treatment results relies on the dosi-
metric parameters (flatness and symmetry) of treatment delivery.
ICRU report 78 and TRS report 398 specified flatness ≤3% and
symmetry ≤2%. The limits suggested by these reports and also
presented in other published studies were also satisfied in this
exploration.16,19,25–28 All of the flatness and symmetry values,
determined for both medium and large snouts in this investigation
at all the given gantry angles, remained within the tolerance limits.

While acquiring dosimetric data for proton beams, the
determination of output dependency on gantry angle is essential
because of the presence of a fine wedge that cause the compen-
sation for magnet shifting during gantry rotation.24 It was noticed
in this exploration that beam output at all the given beam angles
and beam energies were approximately 12% higher with large
snout as compared to that medium snout at SOBP centre.

Conclusion

Flatness and symmetry were found within limits with both
medium and large snouts. The large snout produced higher beam
output than that of medium snout at the centre of SOBP. This
exploration can be extended to the determination of beam output,
flatness and symmetry with a small snout.
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