
TPLP 21 (5): 575–592, 2021. c© The Author(s), 2021. Published by Cambridge University Press

doi:10.1017/S1471068421000399

575

Utilizing Treewidth for Quantitative Reasoning on
Epistemic Logic Programs

VIKTOR BESIN
TU Wien, Vienna, Austria

(e-mail: vbesin@dbai.tuwien.ac.at)

MARKUS HECHER
TU Wien, Vienna, Austria

(e-mail: hecher@dbai.tuwien.ac.at)

STEFAN WOLTRAN
TU Wien, Vienna, Austria

(e-mail: woltran@dbai.tuwien.ac.at)

submitted 9 August 2021; revised 25 August 2021; accepted 27 August 2021

Abstract

Extending the popular answer set programming paradigm by introspective reasoning capacities
has received increasing interest within the last years. Particular attention is given to the formal-
ism of epistemic logic programs (ELPs) where standard rules are equipped with modal operators
which allow to express conditions on literals for being known or possible, that is, contained in all
or some answer sets, respectively. ELPs thus deliver multiple collections of answer sets, known
as world views. Employing ELPs for reasoning problems so far has mainly been restricted to
standard decision problems (complexity analysis) and enumeration (development of systems) of
world views. In this paper, we take a next step and contribute to epistemic logic programming
in two ways: First, we establish quantitative reasoning for ELPs, where the acceptance of a cer-
tain set of literals depends on the number (proportion) of world views that are compatible with
the set. Second, we present a novel system that is capable of efficiently solving the underlying
counting problems required to answer such quantitative reasoning problems. Our system ex-
ploits the graph-based measure treewidth and works by iteratively finding and refining (graph)
abstractions of an ELP program. On top of these abstractions, we apply dynamic programming
that is combined with utilizing existing search-based solvers like (e)clingo for hard combinato-
rial subproblems that appear during solving. It turns out that our approach is competitive with
existing systems that were introduced recently.

KEYWORDS: epistemic logic programming, treewidth, tree decompositions, abstractions, hy-
brid solving, nested dynamic programming

1 Introduction

Answer set programming (ASP) is a well-studied problem modeling and solving frame-

work that is particularly suited for solving problems related to knowledge representa-

tion and reasoning and artificial intelligence, see, for example, the work of Brewka et

al. Brewka et al . (2011). In ASP, questions are modeled in the form of logic programs

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399
mailto:vbesin@dbai.tuwien.ac.at
https://orcid.org/0000-0003-0131-6771
mailto:hecher@dbai.tuwien.ac.at
https://orcid.org/0000-0003-1594-8972
mailto:woltran@dbai.tuwien.ac.at
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068421000399&domain=pdf
https://doi.org/10.1017/S1471068421000399

576 V. Besin et al.

(LPs), which can be seen as a rule-based language whose solutions are referred to by an-

swer sets and which has been significantly extended over the time. The major driver in

enabling the use of LPs for a broad use in both academia and industry was the develop-

ment of efficient solvers. However, while the ASP framework is quite powerful, its limits in

terms of expressiveness are visible when turning the attention to epistemic specifications.

The idea of these epistemic specifications, which dates back to the early 90s (Gelfond

1991), allows to precisely describe the behavior of rational agents who are capable of

reasoning over multiple worlds. There, depending on whether some objections are possible

(true in some world) or known (i.e. true in all worlds) certain consequences have to

be derived. This is often modeled by means of operators K or M, which represents

that certain objections are known to be true or are possibly true, respectively. Internally

these operators can be translated to epistemic negation not, which expresses that some

objection is not known, that is, not true in all worlds. Enhancing standard rules by

such operators leads to the development of epistemic logic programs (ELPs). Indeed,

depending on the different semantics for ELPs, which have been developed and refined

over the years (Truszczynski 2011; Kahl et al . 2015; Shen and Eiter 2016; Cabalar et al .

2019), usual reasoning problems like world view existence and certain extensions reach the

third and fourth level of the polynomial hierarchy, respectively, and thus are considered

significantly harder than reasoning in standard ASP (Eiter and Gottlob 1995).

In this work, we take a step further and initiate the study of quantitative reasoning

for ELPs, where decisions concerning the acceptance of a given set of literals depend on

the actual number (proportion) of world views compatible with the set. This allows us to

reason about the acceptance of certain literals based on the likelihood of being contained

in an arbitrary world view. To the best of our knowledge, a few works on quantitative

reasoning in ASP exist (Fierens et al . 2015), but it has not yet been studied for ELPs.

As a second contribution we present a new system tailored for quantitative reasoning in

ELPs. Although there has been progress in developing ELP solvers (e.g. EP-ASP (Son

et al . 2017), selp (Bichler et al . 2020) and a very recent extension of clingo for ELPs,

called eclingo (Cabalar et al . 2020)), these approaches basically rely on reducing ELP

problems to standard ASP. Thus, these solvers typically materialize all world views,

which is not necessary for quantitative reasoning. We take here a novel route by utilizing

ideas from parameterized algorithmics which appear better suited for counting problems

that underlie the quantitative reasoning approach.

Our approach works on abstractions of the internal (graph) structure of ELPs; that is,

we take the primal graph1 of an ELP and contract certain paths between nodes referring

to epistemic literals. On this graph we implicitly utilize the measure treewidth, which aims

at measuring the tree-likeness of a given graph. The measure treewidth gives rise to a

so-called tree decomposition (TD), which allows to solve a problem by following a divide-

and-conquer approach, where world views of ELPs are computed by solving subprograms

and combining world views accordingly. Our solver adheres to this approach, where we

approximate suitable abstractions of the primal graph structure of an ELP in order to

evaluate the program in a way that is guided along a TD of the abstraction. So, the

idea of these abstractions compared to the full primal graph is to decrease treewidth

1 Basically, the primal graph of an (E)LP comprises of the atoms of the program, where two atoms are
adjoined by an edge whenever these two atoms appear together in at least one rule.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 577

such that still structural information in the form of TDs can be utilized. In addition to

the abstractions and in order to efficiently apply our approach also to (practical) ELPs

of high treewidth, we present the following additions: (i) We nest the computation of

abstractions and (ii) for hard combinatorial subprograms of (E)LPs, we employ existing

standard solvers like (e)clingo. Both additions combined, together with the guidance of

abstract (implicit) structure of ELPs, allows us to efficiently evaluate ELPs.

Contributions. More concretely, we establish the following.

1. We motivate the problem of world view counting. This then leads to probabilis-

tic world view acceptance, which accepts certain literals based on a quantitative

argument concerning the proportion of world views agreeing with those literals.

2. Rooted in the theoretical investigation of Hecher et al. Hecher et al . (2020), we take

up this idea and design an improved algorithm for evaluating ELPs by means of

treewidth. Our algorithm lifts nested dynamic programming (Hecher et al . 020b)

from satisfiability to logic programming, where treewidth is utilized on subsequently

refined abstractions.

3. Finally, we present a system that implements this algorithm for quantitative rea-

soning. It turns out that the system is competitive and scales well for typical

benchmarks.

Related Work. Treewidth was already utilized for the evaluation of standard LPs (Jakl

et al . 2009; Hecher 2020). The concept of using abstractions was stipulated before as well,

but in a different context (Hecher et al . 020b) or with the purpose of establishing theo-

retical results (Ganian et al . 2017). However, we improved an existing algorithm (Hecher

et al . 2020) and to the best of our knowledge, our solver is the first implementation of

solving ELPs that is guided by TDs. While the solver selp (Bichler et al . 2020) uses

decompositions for breaking large rules into smaller ones, the solving itself is not guided

by TDs. Also studies for measures different from treewidth have been conducted in the

ASP domain (Lonc and Truszczynski 2003; Bliem et al . 2016; Fichte et al . 2019).

2 Preliminaries

Answer Set Programming (ASP). We follow standard definitions of propositional

ASP (Brewka et al . 2011). Let k, m, n be non-negative integers such that k ≤ m ≤ n

and a1, . . ., an be distinct propositional atoms. Moreover, we refer by literal to an atom

or the negation thereof. A program P is a set of rules of the form a1 ∨ · · · ∨ ak ←
ak+1, . . . , am,¬am+1, . . . ,¬an.
For a rule r, we let Hr := {a1, . . . , a�}, B+

r := {a�+1, . . . , am}, and B−
r :=

{am+1, . . . , an}. We denote the sets of atoms occurring in a rule r or in a program P by

ats(r) := Hr ∪ B+
r ∪ B−

r and ats(P) :=
⋃

r∈P ats(r). An interpretation I ⊆ ats(P) is a

set of atoms. I satisfies a rule r if (Hr ∪ B−
r) ∩ I �= ∅, or B+

r \ I �= ∅, or both. I is a

model of P if it satisfies all rules of P. The Gelfond-Lifschitz (GL) reduct of P under I is

the program PI obtained from P by first removing all rules r with B−
r ∩ I �= ∅ and then

removing all ¬z where z ∈ B−
r from the remaining rules r. Then, I is an answer set of

a program P if I is a minimal model of PI . We refer to the set of answer sets of a given

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

578 V. Besin et al.

program P by AS(P). The problem of deciding whether a program has an answer set,

that is, whether AS(P) �= ∅, is ΣP
2 -complete (Eiter and Gottlob 1995).

Example 1

Consider the program P := {
r1︷ ︸︸ ︷

{a ∨ b},
r2︷ ︸︸ ︷

{c← ¬d},
r3︷ ︸︸ ︷

{d← ¬c}}. The set AS(P), denoting

the answer sets for the LP P, consists of {a, c}, {a, d}, {b, c} and {b, d}.

Tree Decompositions and Treewidth. We assume that graphs are undirected, simple, and

free of self-loops. Let G = (V,E) be a graph and U ⊆ V be a set of vertices. Then,

G− U := (V \ U, {e ∈ E | e ∩ U = ∅}) is the graph obtained from removing U from G.

Further, U is a connected component of a graph G′ = (V ′, E′) if U ⊆ V ′, U is connected

and U = {u′ | u ∈ U, {u, u′} ∈ E′}.
Let G = (V,E) be a graph, T a rooted tree with root node root(T), and χ a labeling

function that maps every node t of T to a subset χ(t) ⊆ V called the bag of t. The pair

T = (T, χ) is called a TD (Bodlaender and Kloks 1996) of G iff (i) for each v ∈ V , there

exists a t in T , such that v ∈ χ(t); (ii) for each {v, w} ∈ E, there exists t in T , such that

{v, w} ⊆ χ(t); and (iii) for each r, s, t of T , such that s lies on the unique path from r

to t, we have χ(r) ∩ χ(t) ⊆ χ(s). Intuitively, a TD allows to solve problems on a graph

by analyzing parts of the graph and combining solutions to these accordingly. In order

to simplify presentation, restricted node types and decompositions are oftentimes used,

which are given as follows. For a node t of T , we say that type(t) is leaf if t has no children

and χ(t) = ∅; join if t has children t′ and t′′ with t′ �= t′′ and χ(t) = χ(t′) = χ(t′′); intr
(“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+1; rem (“removal”)

if t has a single child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for every node t ∈ T ,

type(t) ∈ {leaf, join, intr, rem}, then (T, χ) is called nice. For every TD, one can compute

a nice TD in polynomial time (Bodlaender and Kloks 1996) without increasing the width

by adding intermediate (auxiliary) nodes accordingly. The width of a TD is defined as the

cardinality of its largest bag minus one. The treewidth of a graph G, denoted by tw(G),

is the minimum width over all TDs of G. Note that if G is a tree, then tw(G) = 1.

3 Counting and reasoning for epistemic programs

Epistemic Logic Programming. An epistemic literal is a formula not�, where � is a literal

and not is the epistemic negation operator. Let k, m, j, n be non-negative integers such

that k ≤ m ≤ j ≤ n and a1, . . ., an be distinct propositional atoms. An ELP is a set

Π of ELP rules of the form a1 ∨ · · · ∨ ak ← �k+1, . . . , �m, ξm+1, . . . , ξj ,¬ξj+1, . . . ,¬ξn,
where each �i with k + 1 ≤ i ≤ m is a literal over atom ai, and each ξi with m + 1 ≤
i ≤ n is an epistemic literal of the form not�i, where �i is a literal over atom ai. Then,

ats(r) := {a1, . . . , an} denotes the set of atoms occurring in an ELP rule r, e-ats(r) :=

{am+1, . . . , an} denotes the set of epistemic atoms, that is, those used in epistemic literals

of r, and a-ats(r) := ats(r) \ e-ats(r) refers to the non-epistemic atoms of r. We call r

purely epistemic if a-ats(r) = ∅. These notions naturally extend to programs. In a rule

we sometimes write K� and M� for a literal �, which refers to the expressions ¬not�
and not¬�, respectively.

Given an ELP Π, a world view interpretation (WVI) I for Π is a consistent set I of

literals over a set A ⊆ ats(Π) of atoms, that is, I ⊆ {a,¬a | a ∈ A} such that there

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 579

is no a ∈ A with {a,¬a} ⊆ I. Intuitively, every � ∈ I is considered as “known” and

every a ∈ A with {a,¬a} ∩ I = ∅ is treated as “possible”. We denote the WVI over a

set X ⊆ ats(Π) of atoms obtained by restricting I to Y = (A∩X) by I|X := I ∩{a,¬a |
a ∈ Y }. Next, we define compatibility with a set of interpretations.

Definition 1 (WVI Compatibility)

Let I be a set of interpretations over a set A of atoms. Then, a WVI I is compatible with

I if:

1. I �= ∅;
2. for each atom a ∈ I, it holds that for each J ∈ I, a ∈ J ;

3. for each ¬a ∈ I, we have for each J ∈ I, a �∈ J ;

4. for each atom a ∈ A with {a,¬a} ∩ I = ∅, there are J, J ′ ∈ I, such that a ∈ J ,

but a �∈ J ′.

While there are many different semantics (Gelfond 1991; Truszczynski 2011; Kahl et al .

2015; Shen and Eiter 2016), we follow the approach of Gelfond (Gelfond 1991), syntac-

tically denoted according to recent work (Morak 2019). The epistemic reduct (Gelfond

1991) of program Π w.r.t. a WVI I over A, denoted ΠI , is defined as ΠI = {rI | r ∈ Π}
where rI denotes rule r where each epistemic literal not�, whose atom is also in A, is

replaced by ⊥ if � ∈ I, and by otherwise. Note that ΠI is a plain LP with all oc-

currences of epistemic negation removed. Now, a WVI I over ats(Π) is a world view

(WV) of Π iff I is compatible with the set AS(ΠI). Without loss of generality we

only consider ELPs Π, where every epistemic atom appears non-epistemically, that is,

e-ats(Π) = a-ats(Πe-ats(Π)). We refer by Π � I to the ELP Π ∪ {← ¬K� | � ∈ I} ∪ {←
¬Ma;← ¬M¬a | a ∈ A, a /∈ I,¬a /∈ I} used for verifying whether I can be extended to

a WV. The set of WVs of an ELP Π is denoted WV S(Π). One of the reasoning tasks

for ELPs is world view existence deciding for an ELP Π whether WV S(Π) �= ∅. This
problem is known to be ΣP

3 -complete (Truszczynski 2011).

Example 2

Consider program Π := P ∪ {a ← ¬Kb; b ← ¬Ka; c ← ¬Kd; d ← ¬Kc; ←
¬Ka,¬K¬a; ← ¬Kb,¬K¬b; ← ¬Ka,¬Kc; ← ¬Ka,¬Kb,Kc; ← Kc,Kd}, where P

is defined as in Example 1, that is, the ELP Π depicts an epistemic extension of the plain

LP P. For simplicity, let the rules be numbered equally from r1 to r12. When constructing

a WVI I over e-ats(Π) one guesses for each atom a ∈ e-ats(Π) either (1) a ∈ I, (2) ¬a ∈ I

or (3) {a,¬a} ∩ I = ∅ as described earlier, that is, for the three atoms in e-ats(Π) we

obtain 34 possibilities. Each WVI I can be checked with the corresponding epistemic

reduct ΠI by verifying Definition 1 for AS(ΠI).

Consider I1 = {a, d,¬b,¬c} with its epistemic reduct ΠI1 := P ∪ {a; d}. Note that

the epistemic reduct is indeed a plain LP, since by semantics of LPs, rules r with ⊥ ∈ B+
r

or ∈ B−
r can obviously be dropped. Since AS(ΠI1) = {{a, d}}, compatibility of I1 can

be checked trivially which validates I1 as WV of Π. Similarly WVIs I2 = {a, c,¬b,¬d}
and I3 = {b, c,¬a,¬d} can be constructed and correctly validated as WVs, that is,

WV S(Π) = {I1, I2, I3}.

Counting and Reasoning. In this work, we mainly cover the following counting problem,

which can then be used as a basis to solve (quantitative) reasoning problems.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

580 V. Besin et al.

Definition 2 (World View Counting)

Let Π be an ELP and Q be a WVI, called query, over atoms ats(Π). Then, the prob-

lem #ELP(Π, Q) asks to count the number of world views W with Q ∩ ats(Π) ⊆ W

and {a | ¬a ∈ Q} ∩W = ∅.

As a special case, where Q = ∅, a problem instance #ELP(Π, ∅) amounts to counting

world views. Interestingly, the problem can be used to reason about the likelihood of an

atom or a set of atoms being contained in an arbitrary world view, defined as follows.

Definition 3 (Probability of World View Acceptance)

Let Π be an ELP and Q be a WVI over ats(Π). We define the probability of Q being

compatible with a world view by prob(Π, Q) := #ELP(Π,Q)
#ELP(Π,∅) .

Consequently, counting allows us to reason about the degree of believing in literals

being part of world views. This degree of belief can then be used for accepting literals

depending on its probability exceeding a certain value, referred to by probabilistic world

view acceptance.

Example 3

Recall Π from Example 2. Given Q := {a,¬b}, the number #ELP(Π, Q) = 2 naturally

agrees with the number of WVs including a, but not b. The probability prob(Π, Q) = 2
3

can be used to argue about the chance of a WV of Π containing a but not b, which

renders a and ¬b very likely.

For Definitions 2 and 3, we only consider WVIs over epistemic atoms to simplify presen-

tation.2

4 Quantitative reasoning for ELPs via dynamic programming

Next, we discuss core ideas of dynamic programming for the evaluation of ELPs. We

demonstrate this technique in Section 4.1 on a problem for ELPs that is much simpler

than computing world views. Then, we extend this technique to nested dynamic program-

ming in order to count world views in Section 4.2, which finally leads to probabilistic

reasoning.

4.1 Basics of dynamic programming

Algorithms that utilize treewidth for solving a problem in linear time typically proceed

by dynamic programming (DP) along the TD. Thereby, the tree is traversed in post-

order and at each node t of the tree, information is gathered (Bodlaender and Kloks

1996) in a table τt. A table τt is a set of rows, where a row u ∈ τt is a sequence or

tuple of fixed length. These tables are derived by an algorithm, which we therefore call

table algorithm A. The actual length, content, and meaning of the rows depend on the

algorithm A that derives tables.

The DP approach for solving problems of an ELP relies on a table algorithm A and

consists of the following four steps:

2 This is not a hard restriction that could be circumvented for a non-epistemic atom a, for example, via
constraint ← ¬Ka,Ka.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 581

Prepare: Construct a graph representation G of the given ELP Π.

Decompose: Compute a tree decomposition (T, χ) of G, which can be obtained by using

efficient heuristics (Abseher et al . 2017).

Compute: Execute table algorithm A for every node t of T in post-order, which

returns the corresponding table for t. Algorithm A takes as input the

corresponding bag χ(t), the assigned instance Πt for node t, as well as the

child tables previously computed during the post-order traversal for child

nodes of t in T , and outputs a table τt.

Output: Print the solution by interpreting the table for root n = root(T) of T .

For simplicity and the ease of presentation, the table algorithms presented in this work

are specified for nice TDs due to clear case distinctions depending on type(t). However,

the implemented architecture does not depend on certain normal forms of TDs. So, our

approach works independently of whether such a TD is nice or not, since the different

cases can be combined programmatically and TD nodes of any interleaved (combined)

type can be processed.

Next, we briefly present a table algorithm for computing plausible WVIs of an ELP Π,

which is a WVI I over ats(Π) such that AS({r ∈ Π | a-ats(r) = ∅}I) �= ∅, denoted
by I |=p Π. Observe that every WV of Π is always plausible as well. While counting

plausible WVI serves the purpose of demonstrating and explaining dynamic program-

ming, interestingly it is actually a #P-complete problem.

Proposition 1 (Complexity of Counting Plausible WVIs)

The problem of counting for a given ELP Π the number of plausible WVIs is #P-

complete.

Proof (Sketch)

For membership, observe that one can guess a WVI I and then check whether I |=p Π in

polynomial time. Hardness is by reducing from #SAT, where one aims for counting the

number of models of a 3-CNF formula F = {c1, . . . , cl}. We construct an ELP Π that

contains for every variable v of F a rule← ¬Kv,¬K¬v and for every clause ci = �1∨�2∨�3
of F a rule ← ¬K�1,¬K�2,¬K�3. Then, the number of plausible WVIs of Π precisely

captures the number of models of F .

Before we discuss a table algorithm for counting plausible WVIs, we first require a

graph representation. To this end, we employ the epistemic primal graph EΠ of an ELP Π,

whose vertices stem only from the epistemic atoms e-ats(Π) and there is an edge between

two vertices whenever the corresponding epistemic atoms appear together in a common

purely epistemic rule of Π. Formally3, we let EΠ = (e-ats(Π)e, E) with E being {{ae, be} |
r ∈ Π, a-ats(r) = ∅, {a, b} ⊆ e-ats(r)}. Now, let T = (T, χ) be a TD of the epistemic

primal graph EΠ and t be a node of T . Then, the epistemic bag program for t is given

by Πt := {r ∈ Π | a-ats(r) = ∅, e-ats(r)e ⊆ χ(t)}. This allows us to refer to the epistemic

bag program up to t by Π≤t :=
⋃

t′ is a descendant node of t in T Πt′ ∪Πt, which is the union

over all epistemic bag programs for nodes below t in T Consequently, the epistemic bag

program Π≤root(T) up to the root corresponds to Π.

3 For a set X of elements, we use the shortcuts Xe := {xe | x ∈ X}.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

582 V. Besin et al.

Fig. 1. Epistemic primal graph EΠ (left) of Π from Example 2 and a TD T (right) of EΠ.

Listing 1: Table algorithm #PWV(χt,Πt, 〈τ1, . . . , τ�〉) for Counting Plausible WVIs.

In: Node t, bag χt, epistemic bag program Πt, and child tables 〈τ1, . . . , τ�〉 of t.
Out: Table τt.

1 if type(t) = leaf then
2 τt ← {〈∅, 1〉}
3 else if type(t) = intr and ae ∈ χt is introduced then
4 τt ← {〈J, c〉 | 〈I, c〉 ∈ τ1, J ∈ {I, I ∪ {a}, I ∪ {¬a}}, J |=p Πt}
5 else if type(t) = rem and ae �∈ χt is removed then
6 τt ← {〈I ′,

∑
〈J,c′〉∈τ1:I′⊆J c′〉 | 〈I, c〉 ∈ τ1, I

′ = I \ {a,¬a}}
7 else if type(t) = join then
8 τt ← {〈I, c1 · c2〉 | 〈I, c1〉 ∈ τ1, 〈I, c2〉 ∈ τ2}
9 return τt

Example 4

Figure 1 depicts the epistemic primal graph EΠ for Π as defined in Example 2 as well as

one corresponding TD T of EΠ of width 2. Further, consider the epistemic bag programs

Πt1 = {r8, r9, r10, r11}, Πt2 = {r12} and Πt3 = ∅. Note that by definition of Πt only

rules solely built from e-ats(Π), that is, only purely epistemic rules are being considered.

Observe that for the root node t3 we have Π≤t3 = Π.

Listing 1 depicts a table algorithm #PWV for counting plausible WVIs. Observe that it

thereby suffices to compute WVIs over epistemic atoms, as such a WVI already uniquely

identifies one WVI over all atoms. Then, algorithm #PWV stores rows of the form 〈I, c〉,
where I is a WVI over χ(t) and c is an integer (counter) referring to the number of

plausible WVIs of the epistemic bag program up to t, that when restricted to χ(t) coincide

with I. Consequently, for decompositions whose roots have empty bags, the counter of

a stored row refers to the number of plausible world views of Π. As already mentioned

above, for the ease of presentation, table algorithm #PWV is given for nice TDs, that

is, in Listing 1 we distinguish the four different cases of nice TDs. So, if node t is a

leaf node, cf. Line 2, the only row matching these conditions is 〈∅, 0〉. Then, whenever a
vertex ae is introduced in a node t, Line 4 guesses all three possibilities for extending an

existing WVI I by atom a and checks that the resulting WVI J ensures Πt. For nodes t

with type(t) = rem, where we remove ae, Line 6 removes the mapping of a in any existing

WVI I and sums up the counters of collapsing WVIs, that is, where all atoms guessed

in I ′ match, accordingly. Finally for a join node t, we intuitively keep only rows, whose

WVIs are in all child nodes tables, and counters of those rows need to be multiplied. Note

that the clear case distinction between node types of nice TDs simplifies the processing

of child tables, for example, when processing a node of type join, since there are at most

two child nodes.

Example 5

Considering program Π from Example 2, we obtain three world views as described earlier.

Table algorithm #PWV can be used to restrict the possible WVIs. Figure 2 shows a nice

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 583

Fig. 2. A nice TD T of the epistemic primal graph EΠ of program Π from Example 2 as well
as selected tables obtained by #PWV on Π and T .

TD T = (T, χ) of EΠ and a selection of the tables τ1, . . ., τ12, which illustrate computation

results obtained during post-order traversal of T by #PWV.

Table τ1 = {〈∅, 1〉} as per definition for type(t1) = leaf. Since type(t2) = intr, we con-

struct table τ2 from τ1 by taking I1.i, I1.i ∪ {b} and I1.i ∪ {¬b} for each 〈I1.i, c1.i〉 ∈ τ1
(corresponding to a guess on b). Since e-ats(r9) ⊆ χ(t2) we have Πt2 = {r9} for t2 as

described in Example 4. In consequence, for each I2.i of table τ2, we have I2.i |= {r9}
since PWV enforces satisfiability of Πt in node t. Then, t3 introduces ae and t4 introduces

ce in similar fashion while satisfying the appropriate epistemic bag programs Πt3 = {r8}
and Πt4 = {r10, r11}. We derive tables τ7 to τ9 similarly. Since type(t5) = rem, we

remove atom a from all elements in τ4 to construct τ5. As described earlier, this is ac-

complished by summing up the counters for matching WVIs when removing the atom a,

for example, since the remaining, guessed atoms be and ce are matching, counters for

line 2 and 4 in table τ4 are summed up, resulting in line 2 in table τ5. Note that we

have already seen all rules where ae occurs and hence ae can no longer affect witnesses

during the remaining traversal. We similarly construct τ6 = {〈∅, 4〉, 〈{c}, 3〉, 〈{¬c}, 2〉}
and τ10 = {〈∅, 3〉, 〈{c}, 2〉, 〈{¬c}, 3〉}. Since type(t11) = join, we construct table τ11 by

taking the intersection τ6 ∩ τ10. Intuitively, this combines witnesses agreeing on c while

multiplying the counters for matching guesses. Node t12 is again of type rem. By def-

inition (primal graph and TDs) for every r ∈ Π, atoms a-ats(r) occur together in at

least one common bag. Hence, Π = Πt12 and since τ12 = {〈∅, 24〉}, we end up with 24

plausible WVIs of Π which we can construct from the tables. For example, we obtain the

interpretation {¬a, b, c,¬d} = I11.2 ∪ I4.8 ∪ I9.6, as highlighted in yellow.

4.2 Counting world views via nested dynamic programming

In order to extend DP for solving #ELP, we require a suitable graph representa-

tion that still allows for simple table algorithms. Let therefore Π be an ELP. Then,

the primal graph GΠ uses atoms and epistemic atoms as vertices and it is defined

by GΠ := ({a◦ | a ∈ ◦-ats(Π), ◦ ∈ {a, e}}, E), where E := {{a◦, b�} | r ∈ Π, a ∈
◦-ats(r), b ∈ �-ats(r), {◦, �} ⊆ {a, e}} ∪ {{aa, ae} | a ∈ e-ats(Π)}. For our purposes, we

require suitable abstractions of GΠ, given as follows. A non-epistemic path in GΠ is a

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

584 V. Besin et al.

Fig. 3. Primal graph GΠ (left) of Π, the nested primal graph GA
Π for A = {b, c, d} (middle) and

a TD T for the nested primal graph GA
Π (right).

path of the form ae, va1, . . . , v
a
l , b

e with l ≥ 0. The nested primal graph GA
Π over a given

set A ⊆ e-ats(Π) of epistemic atoms is given by GA
Π := (Ae, E′) with E′ := {{ae, be} |

{a, b} ⊆ A, there is a non-epistemic path from ae to be in GΠ}.

Example 6

Recall program Π of Example 2. Figure 3 shows the primal graph GΠ for program Π.

Given epistemic atoms A = {b, c, d} the nested primal graph GA
Π can be constructed

with edges {be, ce} and {ce, de} through any of the non-epistemic paths between the two

correlating vertices in GΠ.

Indeed, in this section we use the nested primal graph GA
Π for applying DP in a nested

fashion. There, the nested primal graph provides sufficient abstractions of the primal

graph, where we count plausible WVIs over A, similar to Listing 1. These plausible

WVIs over A are then subsequently extended and refined (to obtain world views), since

in each node of a TD, one chooses again an abstraction A′ that decides on remaining

epistemic atoms until all epistemic atoms are considered. So, if in the beginning we decide

that A=e-ats(Π), we end up with full DP and zero nesting, whereas setting A=∅ results
in full nesting, that is, no DP. Before we discuss how to choose such a set A somewhere

between these two extreme cases, we define how the ELP that is subject to nesting looks

like. To formalize this, we assume a TD T = (T, χ) of GA
Π and say a set U ⊆ ats(Π) of

atoms is compatible with a node t of T , and vice versa, if

(I) there is a connected component C of graph GΠ −Ae such that U = {a | {ae, aa} ∩
C �= ∅};

(II) all neighbor vertices of C in GΠ that are in Ae, are contained in χ(t), that is,

{ae | a ∈ A, u ∈ U, there is a non-epistemic path from ue to ae in GΠ} ⊆ χ(t).

If such a set U ⊆ ats(Π) of atoms is compatible with a node of T , we say that U is a

compatible set. By construction of the nested primal graph, any atom not in A is in at

least one compatible set, but a compatible set could be compatible with several nodes

of T . Hence, to enable nested evaluation, we ensure that each nesting atom is evaluated

in one unique node t.

As a result, we formalize for every compatible set U a unique node t of T that is

compatible with U , denoted by comp(U) := t. We denote the union of all compatible

sets U with comp(U) = t, by nested bag atoms At :=
⋃

U :comp(U)=t U . Finally, the

nested bag program ΠA
t for a node t of T , that is, the ELP subject to nesting, equals

ΠA
t := {r ∈ Π | a-ats(r) ⊆ At, e-ats(r) ⊆ At ∪ {a | ae ∈ χ(t)}} \ Πt. Observe that the

definition of nested bag programs ensures that any connected component U of GΠ −Ae

“appears” among nested bag atoms of some unique node of T . Consequently, for each

atom a ∈ ats(Π) \A there is a unique node t such that a ∈ ats(ΠA
t).

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 585

Example 7

Considering program Π from Example 2 and the nested primal graph GA
Π for A =

{b, c, d}, Figure 3 shows a corresponding TD T for the nested primal graph GA
Π.

When removing vertices Ae from GΠ one can identify the two connected compo-

nents {aa, ba, ae} and {ca, da} each of which building a compatible set in the form

of U1 := {a, b} uniquely compatible with node t1 and U2 := {c, d} uniquely com-

patible with node t2, that is, comp(U1) = t1 and comp(U2) = t2. Then nested

bag programs ΠA
t1 = {r1, r4, r5, r8, r9, r10, r11} and ΠA

t2 = {r2, r3, r6, r7, r12} emerge

from At1 = {a, b} and At2 = {c, d}, respectively. Note that ΠA
t3 = ∅ because of At3 = ∅.

Nested dynamic programming for ELPs

Next, we discuss nested dynamic programming (nested DP) in order to count world views

of an ELP Π. Thereby we aim at solving the more elaborated problem #ELP(Π�W, ∅)
for a WVI W over a set X ⊆ a-ats(Π) of atoms of Π. This problem amounts to counting

the number of world views of Π that agree with W over atoms X. Hence, we consider

a more fine-grained variant of counting world views that for the special case of X = ∅
actually coincides with #ELP(Π, ∅) as stated in Definition 2.

Our algorithm for nested dynamic programming, called NestELP, is presented in List-

ing 2 and relies on the nested primal graph that is utilized in a nested fashion. Therefore,

Algorithm NestELP takes as first argument an integer for the nesting depth, the ELP Π

and the WVI W . Listing 2 consists of four separated blocks. The first block (Lines 1–4)

comprises solving the base case where Π has no epistemic atoms, that is, no epistemic

“decisions” are left for solving Π. There, if all atoms of X appear positively or negatively

in W , we use two ASP solver calls to check Conditions (1) or (2)+(3) of Defnition 1,

respectively. Otherwise all four conditions of Definition 1 are verified via one ELP solver

call. The next block consists of Lines 5–Lines 7, which computes a TD T of the primal

graph of Π (nested primal graph with A = e-ats(Π)). Then this block utilizes stan-

dard ELP solvers in case width(T) is out of reach (thresholdhybrid) or nesting is already

too deep (thresholddepth). If this is not the case and width(T) is insufficient for DP

(thresholdabstr), the third block consisting of Lines 8–10 chooses a suitable abstraction A

and computes a TD T of the nested primal graph GA
Π. Finally, the last block comprises

of the remaining lines of Listing 2, which performs DP on the TD T that is obtained

either in Block 2 or Block 3 and returns the solution in Line 14. The actual recursion

(nesting) is via table algorithm #ELP that is used during DP in Line 13, discussed next.

The table algorithm #ELP is given in Listing 3. Compared to Listing 1, we have two

additional parameters, namely the nested bag program and WVI W . The main difference

is in Line 5 of Listing 3, where an additional recursive call to NestELP is performed. This

recursive call increases the depth and concerns about the nested bag program that is

simplified by the current WVI J and aims at verifying WVI W ∪ J restricted to those

atoms that appear also in non-epistemic atoms of a rule of the nested bag program. The

other atoms not appearing in such a rule will be checked in the context of an other bag.

Intuitively, the resulting count c′ of the recursive call needs to be multiplied as it concerns

different epistemic atoms, cf. Line 4 of Listing 3.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

586 V. Besin et al.

Listing 2: Algorithm NestELP(depth,Π,W) for world view counting by means of nestedDP.

In: Nesting depth ≥ 0, epistemic logic program Π, and a WVI W over a set X ⊆ a-ats(Π)
of atoms.

Out: The number #ELP(Π �W, ∅) of world views.

1 A← e-ats(Π)
2 if A = ∅ /* No Epistemic Decisions left; Verify Decisions */ then
3 if {a∈X |a /∈W,¬a /∈W}=∅ then return |AS(Π)|=1 and |AS(Π ∪ {←W})|=0 /* ASP */

4 else return WV S(Π �W) �= ∅ /* Verify via Standard ELP Solver */

5 T = (T, χ)← Decompose(GΠ) /* Decompose via Heuristics */

6 if width(T) ≥ thresholdhybrid or depth ≥ thresholddepth /* Standard ELP Solver */

then
7 return #ELP(Π �W, ∅)

8 if width(T) ≥ thresholdabstr /* Abstract & Decompose via Heuristics */ then
9 A ← Choose-Abstraction(A,Π)

10 T = (T, χ)← Decompose(GA
Π)

11 for iterate t in post-order(T) /* Dynamic Programming */ do
12 Child-Tabs← 〈τt1 , . . . , τt�〉 where children(t) = 〈t1, . . . , t�〉
13 τt ← #ELP(depth, χ(t),Πt,Π

A
t ,W,Child-Tabs)

14 return
∑

〈I,c〉∈τroot(T)
c /* Return Total Count */

Fig. 4. A TD T of the nested primal graph GA
Π of program Π from Example 2 for A = {b, c, d}

as well as selected tables obtained by #ELP on Π and T .

Example 8

Recall program Π, set A of epistemic atoms, TD T of nested primal graph GA
Π and

nested bag programs given in Example 7. Figure 4 illustrates computation results ob-

tained during post-order traversal of T by #ELP. Notice that similar to #PWV the

algorithms enforces the entailment of Πt for each guess, reducing the number of rules

for the actual nested call, for example the nested call for node t1 will only include

rules {r1, r4, r5, r8, r10, r11}, c.f. Example 7. Further observe that while guessing intro-

duced epistemic atoms as in node t1 and t2, the epistemic reduct is built over all guessed

atoms, but the guess of c is only checked actively in node t2 using epistemic constraints.

Since joining the nodes naturally enforces agreeing assignments of c this is indirectly

checked for t1. Similar to Example 5, one can identify that epistemic program Π has

three world views which can be reconstructing joining agreeing assignments of the tables

in-order. For example, we obtain the (incomplete) world view {b, c,¬d} = I3.2∪I1.3∪I2.1,
as highlighted in yellow.

Having established an algorithm for counting, we only briefly discuss how to extend the

table algorithm of Listing 3 for probabilistic world view acceptance of a WVI (query) Q

via Definition 3. To this end, instead of storing only a WVI and a counter, the rows

of the tables of the obtained table algorithm PELP are of the form 〈I, c, q〉, where I

is a WVI and c as well as q are counters. Thereby, I and c are maintained as before

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 587

Listing 3: Table algorithm #ELP(depth, χt,Πt,Π
A
t ,W, 〈τ1, . . . , τ�〉) for Counting WVIs.

In: Nesting depth ≥ 0, bag χt, epistemic bag program Πt, nested bag program ΠA
t , world

view interpretation W , and sequence 〈τ1, . . . , τ�〉 of child tables of t.
Out: Table τt.

1 if type(t) = leaf then
2 τt ← {〈∅, 1〉}
3 else if type(t) = intr and ae ∈χt is introduced then
4 τt ← {〈J, c′〉 | 〈I, c〉 ∈ τ1, J ∈ {I, I ∪ {a}, I ∪ {¬a}}, J |=p Πt,

5 P = (ΠA
t)

J , c′ = c · NestELP(depth+1,P, (W ∪ J)|a-ats(P)), c
′ > 0}

6 else if type(t) = rem and ae �∈ χt is removed then
7 τt ← {〈I ′,

∑
〈J,c′〉∈τ1:I′⊆J c′〉 | 〈I, c〉 ∈ τ1, I

′ = I \ {a,¬a}}
8 else if type(t) = join then
9 τt ← {〈I, c1 · c2〉 | 〈I, c1〉 ∈ τ1, 〈I, c2〉 ∈ τ2}

10 return τt

and q is computed similarly to c, but in Line 5 the recursive call for obtaining q′ involves
the nested bag program extended by Q, that is, ΠA

t � Q. Then, instead of summing up

counters c in Line 14 of Listing 2, these adapted tables computed by PELP explained

above are used to sum up fractions q
c , which leads the desired result. Detailed algorithms

for PELP and NestELPPELP are depicted in the supplementary material of this paper, cf.

Listings 4 and 5.

5 Implementation & preliminary experiments

We implemented the algorithm NestELP, resulting in the solver nestelp4, which is writ-

ten in Python3. It is based on the system nesthdb that was presented for variants of

model counting (Hecher et al . 020b). For manipulating tables during DP, nestelp uses

the open source database Postgres 12, which supports instant parallelization and was

run on a tmpfs-ramdisk as intended by nesthdb. In order to compute TDs (Lines 5

and 10 of Listing 2), we use htd (Abseher et al . 2017), which for every instance outputs

TDs of decent widths in a runtime below some seconds. For solving decision problems

of LPs in Line 3 we used clingo 5.4. For solving ELP problems in Lines 4 and 7, we

utilized eclingo 0.2. Internally, we set thresholdhybrid = 45, thresholdabstract = 8 and

allowed nesting once, which overall seemed to produce good results. However, these pa-

rameters are not the result of extensive performance tuning, but were chosen as initial

values with the goal of balancing abstractions and hybrid (standard) solving. For finding

good abstractions in Line 9, that is, searching for epistemic atoms when constructing the

nested primal graph, we employ a L similar to nesthdb. Intuitively, we thereby aim for a

preferably large set A of epistemic atoms such that the resulting graph NA
Π is reasonably

sparse. This is achieved heuristically by minimizing the number of edges of NA
Π . To this

end, we use built-in optimization of clingo, where we take the best results after run-

ning at most 35 seconds. For the concrete encodings, we refer to the online repository

of nestelp as given above. Our implementation supports both world view counting as

given in Definition 2 as well as probabilistic world view acceptance of Definition 3.

4 The solver nestelp is open source and available at github.com/viktorbesin/nestelp.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://github.com/viktorbesin/nestelp
https://doi.org/10.1017/S1471068421000399

588 V. Besin et al.

Benchmark setting

In order to draw conclusions about the efficiency of our implementation, we conducted a

series of benchmarks. All our used benchmark instances, raw results and detailed data are

available online at tinyurl.com/iclp21-nestelp. In our benchmarks we compare wall clock

runtime of nestelp and eclingo (Cabalar et al . 2020), where a timeout is considered to

occur after 1200 seconds and each solver was granted 16GB of main memory (RAM) per

run. We restricted our solver to 12 physical cores. In single core mode (sc) of nestelp,

only one physical core was used, which allows us to compare the performance with other

single-core solvers. Benchmarks were conducted on a cluster consisting of 12 nodes. Each

node of the cluster is equipped with two Intel Xeon E5-2650 CPUs and each of these

12 physical cores runs at 2.2 GHz clock speed that has access to 256 GB shared RAM.

Results are gathered on Ubuntu 16.04.1 LTS OS that is powered on kernel 4.4.0-139. We

disabled hyperthreading and used Python 3.7.6.

Benchmark instances

The following instances are considered from the literature and extended accordingly.

Classic-Scholarship. As in previous works (Cabalar et al . 2020), this is a set of 25 non-

ground ELP programs encoding the Scholarship Eligibility problem (Gelfond 1991) for

one to twenty-five students, where all entities are independent from each other. If a

students eligibility is not determined by the plain logic rules, an epistemic rule implies

the interview of the student.

Yale-Shooting. This is a set of 12 non-ground ELP programs (Cabalar et al . 2020) en-

coding the Yale Shooting problem (Hanks and Mcdermott 1986). With each instance the

knowledge of the initial state, that is, if the gun is initially loaded or not, is incomplete.

Large-Scholarship (L-S). While classic-scholarship is limited to 25 instances, large-

scholarship can be configured to a number of students, that is, a student-wise exten-

sion to classic-scholarship. As part of our testing, we implemented a generator for such

instances, using existing instances to initialize more students. This set consists of 500

instances ranging from 5 to 2500 students.

Many-Scholarship (M-S). In comparison to classic-scholarship, where all students are

part of one unique world view, many-scholarship extends the situation and aims for

a more relaxed situation, where additionally a students eligibility is ranked with low

or high chances. This often results in many world views per student. Our generator is

implemented in a way such that both introduced instance sets are supported. Also this

set consists of 500 instances.

Benchmark scenarios

We considered the following three scenarios in order to test the efficiency of nestelp.

S1 Counting world views for the classical-scholarship as well as Yale-shooting in-

stances.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://tinyurl.com/iclp21-nestelp
https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 589

S2 Counting world views for large-scale instances, thereby using large-scholarship and

many-scholarship instances. For a fair comparison, we allow eclingo to decide WV

existence.

S3 Probabilistic reasoning [pr] for large-scale instances. This scenario concerns proba-

bilistic WV acceptance using also large-scholarship and many-scholarship instances.

Based on these scenarios, we state corresponding hypothesis that shall be verified in this

section.

H1 nestelp is competitive for counting, although monolithic solvers like eclingo are

faster.

H2 Our implementation nestelp is rather competitive for large-scale instances.

H3 Probabilistic reasoning comes almost for the same cost as counting in the solver

nestelp.

Experimental results

The results for Scenario S1 in comparison with eclingo are summarized in the table of

Figure 5. Overall it can be seen that nestelp can keep up with a traditional solver like

eclingo, but, as expected, nestelp introduces additional overhead by the creation of

tables and the general build-up for dynamic programming. Small instances, as for S1, do

not benefit from that process, that is why we expected such results. The number of solved

instances is the same for both systems, overall agreeing with our Hypothesis H1. The

line plot in Figure 5 shows an outstanding performance of nestelp for instances L-S and

even M-S. Both instance sets allow their instances to be arranged into decompositions

with low treewidth, representing instances where nestelp can exploit all its features.

Further it can be seen that parallelism of nestelp has better performance than the

single-core experiments (nestelp (sc)), indicating that there are enough independent

nodes such that parallelism is beneficial. Even with the fair comparison to eclingo,

the solver nestelp proves its ability to handle large-scale instances well, as proposed

in Hypothesis H2. As it can be seen in the cactus plot in Figure 6, the effort needed

for probabilistic reasoning is very small in comparison to world view counting. Since

Fig. 5. Detailed results (left) over Scenario S1 showing maximal width of the primal graph
among solved instances, solved instances over certain width ranges, as well as total runtime in
hours, where timeouts count as 1200s. Line plot (right) of instances L-S and M-S for Scenario

S2, where instances are ordered ascendingly according to instance size.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

590 V. Besin et al.

Fig. 6. Scenario S3: Cactus plot (left), whose x-axis shows the number of instances; the y-axis
depicts runtime sorted ascendingly for each solver individually. Detailed results (right).

nestelp intuitively only processes sub-calls where they are justified, that is, only when

there are any world views, there is little to no difference in the plot. While agreeing with

Hypothesis H3, we even believe that the visible differences are due to scattering factors

like query optimization and CPU clocking. To summarize, the systems performance can

be described quite competitively with a higher number of solved instances in similar or

even shorter runtimes. Furthermore, consider that nestelp uses eclingo for sub-calls,

leading to the assumption that every revision of the base solver will improve our system

too.

6 Conclusion

In this work we studied counting world views of ELPs and extended this further to prob-

abilistic reasoning. We took up ideas of a theoretical algorithm that utilizes treewidth

and progressively turned this into an efficient solver. Our solver nestelp works on it-

eratively computing and refining (graph) abstractions of the ELP and counting world

views over epistemic atoms of the abstract program. Then, the count is subsequently

improved by refining the abstraction in a nested fashion, for which we use our algo-

rithm or existing (E)LP solvers. Specifically for counting and probabilistic reasoning,

nestelp seems to scale well. For future work we plan on further optimizing this tech-

nique, which however automatically improves with the availability of faster solvers as

those are the core engines in nestelp. Further, given recent insights on complexity re-

sults for treewidth (Fichte et al . 2020; 2021), the techniques developed and applied in

this work could be also carried out for other formalisms like abstract argumentation or

description logics.

Acknowledgements

This work has been supported by the Austrian Science Fund (FWF), Grants P32830 and

Y698, as well as the Vienna Science and Technology Fund, Grant WWTF ICT19-065.

We would like to thank the reviewers for their detailed and valuable comments. Part

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

Utilizing Treewidth for Quantitative Reasoning on Epistemic Logic Programs 591

of the research was carried out while Hecher was visiting the Simons Institute for the

Theory of Computing.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/10.

1017/S1471068421000399.

References

Abseher, M., Musliu, N. and Woltran, S. 2017. htd – A free, open-source framework for
(customized) tree decompositions and beyond. In CPAIOR’17. LNCS, vol. 10335. Springer
Verlag, 376–386.

Bichler, M., Morak, M. and Woltran, S. 2020. selp: A single-shot epistemic logic program
solver. Theory and Practice of Logic Programming 20, 4, 435–455.

Bliem, B., Ordyniak, S. and Woltran, S. 2016. Clique-width and directed width measures
for answer-set programming. In Proc. ECAI. 1105–1113.

Bodlaender, H. L. and Kloks, T. 1996. Efficient and constructive algorithms for the path-
width and treewidth of graphs. Journal of Algorithms 21, 2, 358–402.

Brewka, G., Eiter, T. and Truszczyński, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Cabalar, P., Fandinno, J. and Fariñas del Cerro, L. 2019. Splitting epistemic logic pro-
grams. In LPNMR. 120–133.

Cabalar, P., Fandinno, J., Garea, J., Romero, J. and Schaub, T. 2020. eclingo : A solver
for epistemic logic programs. Theory and Practice of Logic Programming 20, 6, 834–847.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15, 3–4, 289–323.

Fichte, J. K., Hecher, M. and Meier, A. 2021. Knowledge-base degrees of inconsistency:
Complexity and counting. In AAAI. AAAI Press, 6349–6357.

Fichte, J. K., Hecher, M., and Pfandler, A. 2020. Lower bounds for QBFs of bounded
treewidth. In LICS. ACM, 410–424.

Fichte, J. K., Kronegger, M. and Woltran, S. 2019. A multiparametric view on answer
set programming. Annals of Mathematics and Artificial Intelligence 86, 1–3, 121–147.

Fierens, D., den Broeck, G. V., Renkens, J., Shterionov, D. S., Gutmann, B., Thon, I.,
Janssens, G. and Raedt, L. D. 2015. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory and Practice of Logic Programming 15, 3, 358–401.

Ganian, R., Ramanujan, M. S., and Szeider, S. 2017. Combining treewidth and backdoors
for CSP. In STACS’17. 36:1–36:17.

Gelfond, M. 1991. Strong introspection. In Proc. AAAI. AAAI Press/The MIT Press, 386–391.

Hanks, S. and Mcdermott, D. 1986. Default reasoning, nonmonotonic logics, and the frame
problem. In AAAI’86: Proceedings of the Fifth AAAI National Conference on Artificial Intel-
ligence, 328–333.

Hecher, M. 2020. Treewidth-aware reductions of normal ASP to SAT - is normal ASP harder
than SAT after all? In KR 2020. 485–495.

Hecher, M., Morak, M. and Woltran, S. 2020. Structural decompositions of epistemic logic
programs. In AAAI 2020. AAAI Press, 2830–2837.

Hecher, M., Thier, P. and Woltran, S. 2020b. Taming high treewidth with abstraction,
nested dynamic programming, and database technology. In SAT 2020. LNCS, vol. 12178.
Springer, 343–360.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1471068421000399
http://dx.doi.org/10.1017/S1471068421000399
https://doi.org/10.1017/S1471068421000399

592 V. Besin et al.

Jakl, M., Pichler, R. and Woltran, S. 2009. Answer-set programming with bounded
treewidth. In IJCAI. 816–822.

Kahl, P. T., Watson, R., Balai, E., Gelfond, M. and Zhang, Y. 2015. The language of
epistemic specifications (refined) including a prototype solver. Journal of Logic and Compu-
tation 25.

Lonc, Z. and Truszczynski, M. 2003. Fixed-parameter complexity of semantics for logic
programs. ACM Trans. Comput. Log. 4, 1, 91–119.

Morak, M. 2019. Epistemic logic programs: A different world view. In Proc. ICLP, 52–64.

Shen, Y. and Eiter, T. 2016. Evaluating epistemic negation in answer set programming.
Artificial Intelligence 237, 115–135.

Son, T. C., Le, T., Kahl, P. T. and Leclerc, A. P. 2017. On computing world views of
epistemic logic programs. In IJCAI, 1269–1275.

Truszczynski, M. 2011. Revisiting epistemic specifications. In Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565. Springer Verlag, 315–333.

https://doi.org/10.1017/S1471068421000399 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000399

	Introduction
	Preliminaries
	Counting and reasoning for epistemic programs
	Quantitative reasoning for ELPs via dynamic programming
	Basics of dynamic programming
	Counting world views via nested dynamic programming

	Implementation & preliminary experiments
	Conclusion
	References

