

A rapid method for planning paths in three dimensions for a
small aerial robot
M. Williams and D.I. Jones
School of Informatics, University of Wales, Dean Street, Bangor, Gwynedd LL57 1UT, UK

(Received in Final Form: July 17, 2000)

SUMMARY
This paper describes a path planning method for a small
autonomous aerial vehicle to be used for inspecting
overhead electricity power lines. A computational algorithm
is described which converts a standard three dimensional
array representation of one or more obstacles in the
vehicle’s environment into an octree and a connectivity
graph. This achieves a significant reduction in computer
memory usage and an increase in execution speed when the
graph is searched. Path planning is based on a three-
dimensional extension of the distance transform. Test results
demonstrate rapid and effective operation of the planner
within different workspaces.

KEYWORDS: Aerial robot; Path planning; Three dimensions;
Distance transform.

1. INTRODUCTION
Planning paths is a central requirement of mobile robotics.
It is essential that the vehicle is able to move between two
points without causing damage to itself or its surroundings
and without an impractical limitation being imposed on its
speed of movement. Many methods have been proposed to
achieve this although most of the literature describes path
planning methods for ground based, that is, two-dimen-
sional environments. The application considered here is
different being concerned with path planning methods for a
small autonomous aerial vehicle under consideration for use
in video inspection of overhead power lines. The primary
requirement is to plan paths in three-dimensions quickly and
reliably. In particular, should an obstacle be discovered on
the nominal flight path, an alternative path must be
produced from the vehicle’s current position to a position of
safety and thence to re-join the nominal path once the
obstacle has been passed. The new path need not be
particularly distance or time efficient but it must be
generated rapidly and be safe. This paper describes a three-
dimensional path planner, based on the distance transform
and an octree and connectivity graph representation of the
vehicle’s environment, which meets these goals. Its main
contribution is a rapid and efficient computational method
that allows path planning to be implemented with the
limited resources on-board the vehicle.

In the United Kingdom alone, the electricity companies
together own about 150,000 km of overhead distribution
lines that must be inspected at regular intervals. Routine

inspection is often performed from a helicopter but there are
advantages to using an unmanned aerial vehicle instead. The
concept and requirements for a “Robot Inspector of Power
Lines” based on a small, remotely piloted helicopter (RPH)
such as ‘Sprite’ (see Figure 1) has been described by Jones
& Earp.1 Many of the sub-systems needed to realise the
concept already exist but it is apparent that one of the major
barriers to adoption of this technology is the regulatory
requirement for air-worthiness. Thus the Civil Aviation
Authority (CAA) requires that the reliability and safety of
the vehicle and its support system are such that no more
than a given number of fatal accidents occur per million
flying hours, typically 3 to 10 per million hours. A more
detailed account of the issues involved and the motivation
for this work are to be found in the paper by Williams et al.2

Conventionally, it is the pilot’s function to recognise
potential hazards to the aircraft or hazards which the aircraft
itself may cause and hence to take appropriate avoiding
action. The work reported here is part of a programme of
research investigating whether it is possible to automate this
function, at least in part, by the use of machine vision.
Specifically, if an unexpected static obstacle is detected on
the flight path, path planning is required to plot an avoiding
course and then return to routine inspection of the overhead
line once past the obstacle. It is essential that this be done
on-board the RPH because it is a function that must be
retained even during failure of the communications link to
the ground station.

Fig. 1. Sprite miniature rotorcraft.

Robotica (2001) volume 19, pp. 125–135. Printed in the United Kingdom © 2001 Cambridge University Press

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

Automatic navigation and obstacle detection for manned
helicopters is an established research topic (e.g. Bhanu et
al.),3 usually in a military context – typically for ‘nap-of-
the-earth’ flight or to aid an incapacitated pilot. These
systems often use a number of different sensors to obtain
information about the airspace around the helicopter
including millimetre wave radar and laser ranging systems.
Generally, the sophistication, expense and size of such
systems preclude their use in a small RPH and it is
necessary to seek a relatively low cost solution which is
compatible with commercial budgets and appropriate to the
limited physical volume and electrical power available.
Similar design constraints apply to the path planner – unlike
the hostile and rapidly changing battlefield, the civil
environment considered here is relatively benign but the
limitations on sensors and computing power are severe.
Many different approaches to path planning have been
proposed such as the potential field, cell decomposition and
roadmap methods; a comprehensive survey is to be found in
Latombe’s book.4 However, the method which best matches
our requirements is based on the distance transform which is
extended here to the case of three dimensions. The concept
of the distance transform and its suitability for this
application is described in the next section. Section 3 is a
detailed discussion of the algorithm for constructing the
connectivity graph, which is crucial to minimising computer
memory and achieving rapid path computation. Section 4
discuses how paths are derived from the graph and discusses
the data structures and implementation details of the code.
The method was tested by simulation and the results
presented in Section 5 show its effectiveness.

2. PATH PLANNING WITH THE DISTANCE
TRANSFORM

2.1 Principle of the distance transform approach
The distance transform was first presented by Jarvis and
Byrne.5 It is a relatively simple concept that is best grasped
by means of a graphical example. Suppose that the two
dimensional matrix in Figure 2(a) shows the occupancy of
an environment where the black cells of the matrix are
obstacles, the white cells are freespace, S marks the start
cell and G the goal cell. The distance transform is calculated

using the connectivity of the matrix structure. Starting at the
goal cell, which has a distance transform of zero, successive
connected cells are incrementally labelled with the next
positive integer. This process can be thought of as an
expanding wave centred on the goal location that flows
through the matrix structure. On completion, all free-space
cells that can be reached from the goal have been labelled
with a distance transform value; thus starting at any labelled
free space cell guarantees that a path exists to the goal.
Figure 2(b) shows the distance transform generated for
Figure 2(a). Having computed the distance transform, a
simple descent search is used to produce a cell sequence that
is then interpolated and smoothed to give an actual motion
path. In Figure 2(b), a number of paths from cell ‘S’ to cell
‘G’ are possible, one of which is shown in Figure 2(c).

2.2 Application of the distance transform in path planning
In recent years, several authors6–8 have used the distance
transform as a basis for two-dimensional path planning and
exploration algorithms.

Shin6 presents a fast motion planning algorithm for a
mobile robot using the distance transform, although it is
used in a different way to that described here. Shin uses the
distance transform to measure how close an obstacle is to a
free space location and the result is conceptually similar to
applying a potential function to the workspace. Once the
distance transform has been calculated, path planning can
be performed. To simplify the process of path planning it is
common to ‘reduce’ the robot to a point4 which usually
requires the obstacles to be grown by at least the same
amount as the robot was reduced. However, this is not
necessary when using the distance transform because the
distance from a freespace cell to the nearest obstacle is
implicit to the transform. By using a guard space of at least
the amount by which the robot was reduced, an effective
safety margin can be placed around obstacles.

Zelinsky7 presents an exploration algorithm using the
distance transform where the robot’s environment is initially
totally unknown. Zelinsky’s implementation uses the dis-
tance transform in the same mode as presented here. The
unknown area is treated as “free-space” until an obstacle is
found using tactile sensors located on the robot. Using the
sensed data, a local map of the environment is constructed
but the exploration concludes once the goal has been

Fig. 2. Graphical example of path planning using the distance transform.

Aerial robot126

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

achieved. In other applications of the distance transform,9 it
is necessary to discover the full details of the environment.

Jarvis has been an exponent of the distance transform
producing several papers on its application such as the
development of an all-terrain vehicle using sensor-fusion-
based navigation.8 This vehicle uses a number of sensors
such as flux gate compasses, the differential global position-
ing system, range sensors to construct an environmental
map and also explores the possibility of using stereopsis
ranging and natural landmark based localisation. Jarvis
claims that the distance transform path planning method-
ology is ideal for supporting an outdoor navigation project,
its advantages being that it can model various types of
terrain in terms of navigability costs and allow a variety of
path planning modes (point-to-point, search all space, etc).

The simple concept and previous applications of the
distance transform are strong indications of its suitability for
this application. However, there is little or no reference in
the literature for its use for planning in three dimensions. In
fact, extending the two dimensional method to three
dimensions is straightforward in principle but a simplistic
extension would result in a dramatic increase in computer
memory requirements and program run time. For our
application rapid path planning is essential so calculation of
the distance transform and subsequent derivation of a path
must be implemented with care.

The method depends, of course, on a 3D map of the
environment being available. As explained by Williams et
al.,2 several different methods for building a workspace
were considered. Although active systems such as milli-
metre wave radar have the advantage of producing range
information, cost and off-the-shelf availability predomi-
nated in the decision to use a vision system as the primary
sensor. Motion stereo and optical flow techniques are used
to update a map of the environment.

2.3 Octrees and quadtrees
For efficient computation and use of memory a spatial
decomposition of the environment map into a searchable
representation is vital. Several decomposition schemes exist
whose properties are discussed by Samet.10 Here, use is
made of octrees – an octree4 is an ordered tree composed of
labelled nodes having eight child nodes each. Construction
of the octree is performed recursively on workspace sizes of
2n

� 2n
� 2n (n = 2, 3, 4 . . .), allowing integer division for

improved computational speed. The structure of the resul-
tant tree depends on the pattern of occupancy of the
workspace. For the sparsely populated workspace antici-
pated in this application, the tree structure would be
relatively small, resulting in a substantial reduction in
memory requirement compared to the matrix representation.
Figure 3 shows the node labelling convention for a
6-connected octree (node 7 is occluded). Connections
between neighboring nodes are limited to the city-block (or
‘6-connected’) method so that each internal node has a
neighbor on each face of the cuboid cell. An alternative
connection method is the chessboard method which allows
a cell to have 26 neighbours. This can, however, produce
diagonal paths that clip obstacles so, because this applica-

tion requires a conservative approach, the city-block method
is used despite the fact that it can yield non-optimal
paths.11

Continuing with the explanation of the principle by
means of the 2D example, the workspace of Figure 2(a) is
converted into a quadtree (which has only 4 child nodes per
branch) by examining whether successive sub-divisions are
all freespace (‘white’), all occupied (‘black’) or contain
both types of cell (‘grey’). One of these three values is
assigned to each node during the decomposition procedure
until the final resolution level is reached. The recursive
algorithm starts with the current quadrant set to the whole
workspace:

Function generate tree
{

Scan the current quadrant
If quadrant contains both free and obstacle cells
{

Mark node as ‘grey’
Divide quadrant into sub-quadrants
Label each new sub-quadrant as a child node
For each sub-quadrant
{

Call generate tree
}

}
Else
{

If quadrant is all free
{

Mark node as ‘white’
}
Else
{

Mark node as ‘black’
}

}
Return

}

Note that, if the root node is marked ‘white’ then no path
planning is required and if it is marked ‘black’ then no path
is possible.

Figure 4 shows the first sub-division. Each node is
labelled with a location code that gives its position in the
tree and its position with respect to its siblings. This

Fig. 3. Octree node labelling convention.

Aerial robot 127

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

produces the four children of the quadtree’s root node, as
shown in Figure 7. Figure 5 shows the workspace after the
second decomposition. The number of digits in the label (N)
gives its depth within the tree (the root node is at depth zero)
where the first (N-1) digits are the parent node’s label. For
example, node 431 in Figure 6 is a depth three node, whose
parent is node 43 and grandparent is node 4. Figure 6 shows
the workspace after decomposing down to cell resolution
and Figure 7 shows the complete quadtree for this
example.

Quadtrees and octrees convert a matrix structure into a
memory efficient tree structure but the key to rapid path
computation is to create a graph consisting of only freespace
nodes whose adjacency is denoted by the graph’s edges.
This is examined in detail in Section 3.

2.4 Memory requirements
The Quadtree Complexity Theorem12 states that, except for
pathological cases, the number of nodes in the quadtree
representation of a region is proportional to the perimeter of
the region. Given a square (or cube for three-dimensional
data) region of side length l units, the matrix representation
requires l2 elements whereas the number of nodes in a
quadtree representation is proportional to l. The Quadtree
Complexity Theorem also holds for 3-dimensional data13

where the perimeter is replaced by the surface enclosing the
workspace volume, so for a cube the number of nodes is
proportional to 6 l2.

A three dimensional matrix representation stores the
information for the distance transform in a multidimen-
sional matrix of integers (two bytes per matrix cell). The
data structure shown in Figure 8 requires 50 bytes of
memory per node. So comparing the memory requirements
for the two representations gives:

Memorymatrix = 2.l3 bytes

Memoryoctree = 50.6.l2 bytes

Fig. 4. First decomposition of workspace for quadtree repre-
sentation.

Fig. 5. Next level of decomposition of workspace.

Fig. 7. Complete quadtree for the example workspace.

Fig. 6. Final decomposition at cell level of resolution.

Aerial robot128

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

Figure 9 shows the difference in memory requirement as the
size of the workspace increases. The solid line shows the
amount of memory required to store a matrix representation
of the workspace and the dashed line shows the memory
requirement to store the same amount of data in an octree
representation. For small size workspaces, the matrix
representation is more efficient because of the lower
overhead associated with each node but, at perimeter sizes
of over 150 cells, the octree representation is superior.

The execution time of most algorithms that operate on a
quadtree representation is proportional to the number of
nodes in the tree. The Quadtree Complexity Theorem states
that, in general, the execution time of a quadtree-based
algorithm on a d-dimension problem is similar to a matrix-
based algorithm on a (d-1)-dimension problem. Thus,
octrees and quadtrees act as dimension-reducing devices.

3. CONNECTIVITY GRAPH CONSTRUCTION
The octree must be transformed into an undirected con-
nectivity graph containing information about the adjacency
of freespace nodes before the distance transform can be

applied. Establishing the connectivity requires three stages:
initial neighbour assignments followed by two further node-
linking passes through the structure. The 2D example will
again be used to demonstrate the principles involved.

3.1 Stage 1: Initial neighbour assignments
Construction of the connectivity graph starts by forming
links only between nodes that share a common parent. The
children of every node in the quadtree (Figure 7) are
examined in turn and a link made between all non-black
nodes whose corresponding cells (see Figures 4 to 6) share
a common boundary. The result is a number of intra-child-
group connections as shown in Figure 10. Valid connections
are stored as a pointer-driven list of Neighbour Information
within each node’s data structure (see Figure 8); links to
black nodes never appear in the list.

3.2 Stage 2: Update connections
Two further types of connection are established at Stage 2.
First, connections are made between the white children of a
grey node and any neighbouring white node. An example of
this in Figure 5 is the connection of cell 12 (a child of grey
node 1) to white node 2. Secondly, all valid connections
between nodes that lie at the same depth but do not share a
common parent are added to the Neighbour Information list.
An example of this in Figure 6 is the connection of cell 342
(a child of grey node 34) with cell 431 (a child of its
neighbour grey node 43).

Traversal of the tree is accomplished in depth-first
fashion by the recursive function diver, beginning at the root
node, and applying the connection update1 when the
conditions stated above are encountered.

Fig. 8. Node data structure for a connectivity graph derived from
an octree.

Fig. 9. Relationship between computer memory requirement and workspace size for matrix and octree representations.

Aerial robot 129

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

Function diver(current_node)
{

For n = 1:8
{

temp_node = nth child of the current node
If temp_node is a grey node
{

diver(temp_node)
}
update1(temp_node) /* call to the

connection function */
}
Return

}

The update1 function is called repeatedly during Stage 2
and the key to fast execution is the node labelling scheme
which selects only those pairs of nodes which correspond to
spatially adjacent cells to be tested for a freespace-to-
freespace connection. The logical rules are described in
Appendix A. The tables IA and IB give the linking rules
based on the final digits of the current node (C) and the
neighbour node (N). For example if the current node is 34
(X = 34) and the neighbour node is 43 (Y = 43) then C = 4
and N = 3. Using table 1B, X2 (child 2 of the current node,
in this case 342) would be linked to Y1 (child 1 of the
neighbour node, in this case 431) and X4 (344) would be
linked to Y3 (433).

Fig. 10. First stage of building the connectivity graph showing intra-child-group connections.

Table I. Truth tables used to determine adjacency relationships in the connection function update1.

Truth Table 1A

C N 1 2 3 4

1 X2�Y
X4�Y

X3�Y
X4�Y

2 X1�Y
X3�Y

X2�Y
X4�Y

3 X1�Y
X2�Y

X2�Y
X4�Y

4 X1�Y
X2�Y

X1�Y
X3�Y

Truth Table 1B

C N 1 2 3 4

1 X2�Y1
X4�Y3

X3�Y1
X4�Y2

2 X1�Y2
X3�Y4

X2�Y1
X4�Y2

3 X1�Y3
X2�Y4

X2�Y1
X4�Y3

4 X1�Y3
X2�Y4

X1�Y2
X3�Y4

Blank spaces indicate that no connections are made

Aerial robot130

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

Function update1(current_node)
{

X = current node’s label
C = final digit of X
For Each node in the current node’s Neighbour
Information List
{

Y = neighbour node’s label
N = final digit of Y
If current node is grey AND neighbour node is
white
{

Apply truth-table IA to link white or grey
children of the current node to the neigh-
bour node.

}
Else If both current node AND neighbour node
are grey
{

Apply truth-table 1B to link the white or
grey children of the current node to the
white or grey children of the neighbour
node.

}
Else /* current node is white

AND neighbour node is
grey OR both current node
AND neighbour node are
white */

{
Do nothing /* the first case is dealt with

in update2; the second case
does not occur because such
links will already have been
made */

}
}
Return

}

The dotted lines in Figure 11 show the connections for the
example workspace after applying the update1 algorithm.

3.3 Stage 3: Update connections
Stage 3 connects nodes at different depths in the tree. The
links that were made during the two previous stages are
retained and the function diver is applied once more to
traverse the tree but with the update1 function replaced by
the update2 function, which again relies on the node
labelling scheme for fast execution.

Function update2(current_node)
{

X = current node’s label
C = final digit of X
P = Parent node of X
If current node has children
{

Switch (C)
{

Case 1:
X2 linked P2; X3 linked P3; X4
linked P2 and P3

Case 2:
X1 linked P1; X3 linked P1 and P4;
X4 linked P4

Case 3:
X1 linked P1; X2 linked P1 and P4;
X4 linked P4

Case 4:
X1 linked P2 and P3; X2 linked P2;
X3 linked P3

}
}
Return

}

The dashed lines in Figure 11 show the Stage 3 connections
for the example workspace. Note that Figure 11 now
contains only the links between freespace nodes which are

Fig. 11. Final connectivity graph after stages 2 and 3; note that links exist only between white nodes.

Aerial robot 131

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

needed for path planning; the others are redundant once the
connectivity graph is complete and are omitted. Whilst it
would be possible to search this graph directly for a path, a
much more efficient guided search can be performed using
distance transform annotation.

4. THE DISTANCE TRANSFORM AND PATH
PLANNING

4.1 Distance transform
Applying the distance transform (DT) to the connectivity
graph is straightforward. The algorithm to generate the
distance transform uses queues as data structures as
follows:

Function distance transform
{

Create empty queue
Add goal node to queue
Mark the goal node with a DT value of zero
While the queue is occupied
{

Remove head of queue and make it the current
node

Copy all unlabelled neighbours of the current
node onto the tail of the queue

Mark all unlabelled neighbours of the current
node with a DT value of one greater than the
current node

}
Return

}

In this way, every node that can be reached from the goal
node will be labelled with a DT value and those that cannot
will remain unmarked. In particular, if the start node is
unmarked, the graph is not connected and the start node is
not reachable from the goal so it is immediately known that
no feasible path exists (Figure 12).

4.2 Path planning
The path planner first examines the start node’s neighbours
to find the one with the lowest DT value, which is made the
current node. In turn, its neighbours are examined for the
lowest DT value and this process continues until the goal
node is reached. If two nodes are found with the same
distance transform value, then the first one found is used.
Whilst it would be possible to resolve the selection by
weighting the distance transform with another metric (for
example, the area covered by the node), this could lead to
production of a false minimum and possible failure of the
planner.

Once a list of nodes has been produced, path planning is
complete and it is necessary to generate the motion plan
which controls the vehicle’s motion through physical space.
Optimal methods of utilising the distance transform infor-
mation have been described, such as that proposed by Chen
et al.14 who introduced a framed-quadtree structure which
combines the accuracy of grid-based planning techniques
with the efficiency of quadtree techniques. The method used
here is simply to link the centres of the volumes represented
by the nodes by straight line segments and to interpolate the
corresponding world coordinates that the vehicle should
pass through. In a dynamic environment, path planning is a
continual process. One advantage of the octree representa-
tion is that the whole structure does not need to be re-built
every time. If the apparent movement of the obstacle is
confined to one sub-tree then only that sub-tree needs to be
re-built. Zelinsky7 uses a distance transform partial-update
algorithm to achieve this.

4.3 Implementation details
The current implementation of the algorithm uses the
Borland C++ 5.01 compiler running under Microsoft
Windows 95. This environment was chosen as it fits in with
our overall project, of which the path planner is only one
function. The algorithm runs on a Pentium 166 MHz with
64 MB of memory. The Borland compiler includes support
for templates or parameterised types. Templates are con-
tainer data structures. For example, an array is a container
that can be used to store collections of data of different
types. The Borland environment includes other templates
such as sets, queues and vectors which have proved to be
very useful in the development of the code as they provide
a standard method of handling complex data types such as
the queue structure described in Section 4.1.

5. SIMULATION RESULTS
In this section, simulation results are presented which show
how the path planning algorithm copes with workspaces of
increasing complexity. Testing was performed on hand-
made synthetic data representing different 3D workspaces
stored in matrix format. The test set ranges from a
completely empty workspace to a relatively dense work-
space containing several obstacles and includes a case
where a path is not possible. The test workspaces are
32� 32� 32 (32768) cells in size. Because the simulation
was performed under a multitasking operating system, it
was necessary to run each case about 15 times and to record

Fig. 12. Distance transform applied to the sub-divided work-
space.

Aerial robot132

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

the minimum run time so that errors due to operating system
overhead were minimised.

The first test is performed on a completely empty
workspace in order to determine a reference processing
time, as shown in Table II. An empty workspace requires
neither sub-division nor path planning so the computation
time is almost entirely due to scanning the workspace for
obstacles.

The second test uses a simple workspace containing a few
large obstacles as illustrated in Fig. 13, where the basic tree-
building operations contribute substantially to the
processing time. As shown in Table II, this has almost
doubled.

The third test, as illustrated in Fig. 14, considers a
workspace with a number of small obstacles. As shown in
Table II, the processing time increases once more because
the neighbourhood building operations for this type of
environment are relatively complex.

The fourth test considers an environment in which no
path is possible as shown in Fig. 15. This test demonstrates
that the method can quickly identify when this is the case
(see Table II).

The final test considers combinations of large and small
obstacles producing a complex path, as shown in Fig. 16.
Table II shows that this has the highest computation time,
but nevertheless it is only just over three times the “empty
workspace” case.

Overall, the results show that the proposed method can
deal with all types of workspace. It is essential for this
application that the distance transform algorithm always
shows when no path is possible. Other path planning
algorithms, such as the basic potential field method, can
spend long periods in an iterative search for a non-existent
path. Together, workspace decomposition, neighbourhood
generation and the distance transform provide a method for
path planning which is at least no worse than other methods;
for the type of environment applicable to a RPH it is usually
significantly better.

6. CONCLUSIONS
This paper has described a method for path planning in three
dimensions which is both rapid and safe and well suited to
its intended application of vision based collision avoidance
for a small RPH. The importance of careful implementation
has been emphasised. The examples show that, using octree
representation and a distance transform metric, the pointer-
based connection algorithms developed here allow paths to
be planned in complex workspaces well within the limits of
memory and computational power of an inexpensive
processor.

The planning method used is a simple descent of the
distance transform from the Start to the Goal. It is possible
to include a measure of workspace quality within the

distance transform in order to weight certain areas so that
they are avoided. In ground based applications this weight-
ing can be thought of as a traversability factor that penalises
areas of unsuitable ground – such as uneven, boulder-strewn
ground – in favour of clear areas of flat ground. An
analogous situation for a UAV could be weighting an area
that is dangerous to fly into such as near airfields or in areas
where there may be large downdrafts such as valleys. Whilst
this could produce safer paths, the additional weighting
term could produce false minima in the modified distance
transform values so introducing any preferential path factor
must be set against the possibility of algorithm failure.

The method has been used to demonstrate path planning
on a laboratory test rig2 where the internal map containing

Table II. Measured execution times for the five examples.

Test 1 Test 2 Test 3 Test 4 Test 5

Execution time 30 ms 50 ms 60 ms 50 ms 100 ms

Fig. 13. TEST 2: Three views of a simple workspace showing the
path from start (top) to goal (bottom).

Aerial robot 133

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

information about the obstacle locations is updated by
means of a machine vision system. The major difficulty is
obtaining estimates of the distance of objects from the
vehicle. The optical flow methods currently under investiga-
tion for this purpose are far more computationally intensive
and less robust than the path planner and remain the major
hurdle to be overcome.

Acknowledgements
The authors wish to thank EA Technology Ltd and the
Engineering & Physical Sciences Research Council for
supporting this work. Particular thanks are due to Mr G.K.
Earp for his advice and encouragement.

References
1. D.I. Jones and G.K. Earp, “Requirements for aerial inspection

of overhead electrical power lines”, Proceedings of the 12th
International Conference on Remotely Piloted Vehicles, Bristol,
England (1996) Paper 4.

2. M. Williams, D.I. Jones & G.K. Earp, “Obstacle avoidance
during aerial inspection of power lines”, Proceedings 2nd
International Workshop on European Scientific and Industrial
Collaboration, Newport, Wales (1999) pp. 61–68.

3. B. Bhanu, S. Das, B. Roberts and D. Duncan, “A system for
obstacle detection during rotorcraft low altitude flights”, IEEE
Transactions on Aerospace and Electronic Systems 32(3),
875–897 (1996).

4. J.C. Latombe, Robot Motion Planning (Kluwer Academic
Publishers, 1991).

Fig. 14. TEST 3: A workspace containing small, well-spaced
obstacles, viewed from two different angles. Note that the path
does not go directly from Start to Goal despite the relatively sparse
obstacles.

Fig. 15. TEST 4: Workspace where no path is possible.

Fig. 16. TEST 5: Complex environment with a combination of
large and small obstacles, viewed from two different angles.

Aerial robot134

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

5. R.A. Jarvis and J.C. Byrne, “Robot navigation: Touching,
seeing and knowing”, Proceedings of the 1st Australian
Conference on Artificial Intelligence (1986).

6. D. Shin, “A fast motion planning algorithm for a mobile robot
using a distance transformation image”, Systems and Com-
puters in Japan 25(5), 88–99 (1994).

7. A. Zelinsky, “A mobile robot exploration algorithm”, IEEE
Transactions on Robotics and Automation 8(6), 707–717
(1992).

8. R.A. Jarvis, “An all-terrain intelligent autonomous vehicle
with sensor-fusion-based navigation capabilities”, Control
Engineering Practice 4(4), 481–486 (1996).

9. S. Hert, S. Tiwari and V. Lumeksly, “A terrain-covering
algorithm for an AUV”, Autonomous Robots 3, 91–119
(1996).

10. H. Samet, “An overview of quadtrees, octrees, and related
hierarchical data structures”. In: Theoretical Foundations of
Computer Graphics and CAD (R.A. Earnshaw, Ed.) (Springer-
Verlag, 1988) vol. F40 of NATO ASI, pp. 51–68.

11. A. Klinger, “Patterns and Search Statistics”. In: Optimising
Methods in Statistics, Academic Press (Ed. J.S. Rustagi, 1971)
(Academic Press, 1971) pp. 303–337.

12. G.M. Hunter and K. Steiglitz, “Operations on Images Using
Quad Trees”, IEEE Transactions on Pattern Analysis and
Machine Intelligence 1(2), 145–153 (1979).

13. D. Meagher, “Octree encoding: a new technique for the
representation, the manipulation, and display of arbitrary 3-d
objects by computer”, Technical Report IPL-TR-80–111
(Image Processing Laboratory, Rensselaer Polytechnic Insti-
tute, Troy, New York, 1980).

14. D.Z. Chen, R.J. Szczerba and J.J. Uhran, “A framed-quadtree
approach for determining Euclidean shortest paths on a 2-D
environment”, IEEE Transactions on Robotics and Automation
13(5), 668–681 (1997).

APPENDIX A. ADJACENCY RELATIONSHIPS
The adjacency relationships used by the connection function
update1 are described for the quadtree case – the rules for

an octree are no different in principle but are considerably
longer. Consider Figure A1 which shows the decomposition
of four cells (1, 2, 3 and 4) into 16 sub-cells, whose
corresponding nodes lie at the same depth in the quadtree.

Evidently there are only 16 permutations of sub-cells
(12–21, 21–12, 14–23, 23–14 . . . etc.) which share a
common boundary with sub-cells of another parent, i.e. they
are adjacent sub-cells. The node labelling scheme ensures
that update1 applies the tests for a freespace-freespace
connection to adjacent cells only. In fact, as shown in truth
tables 1A and 1B, any invocation of update1 applies two
tests at most. The truth tables are generic and applicable at
any depth within the tree.

Fig. A1. Illustration of adjacency relationships.

Aerial robot 135

https://doi.org/10.1017/S0263574700002952 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002952

