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Abstract

Objectives: Huntington’s disease (HD) is a neurodegenerative disorder that produces a bias toward risky, reward-driven
decisions in situations where the outcomes of decisions are uncertain and must be discovered. However, it is unclear whe-
ther HD patients show similar biases in decision-making when learning demands are minimized and prospective risks and
outcomes are known explicitly. We investigated how risk decision-making strategies and adjustments are altered in HD
patients when reward contingencies are explicit. Methods: HD (N = 18) and healthy control (HC; N = 17) participants
completed a risk-taking task in which they made a series of independent choices between a low-risk/low reward and
high-risk/high reward risk options. Results: Computational modeling showed that compared to HC, who showed a clear
preference for low-risk compared to high-risk decisions, the HD group valued high-risks more than low-risk decisions,
especially when high-risks were rewarded. The strategy analysis indicated that when high-risk options were rewarded, HC
adopted a conservative risk strategy on the next trial by preferring the low-risk option (i.e., they counted their blessings
and then played the surer bet). In contrast, following a rewarded high-risk choice, HD patients showed a clear preference
for repeating the high-risk choice. Conclusions: These results indicate a pattern of high-risk/high-reward decision bias in
HD that persists when outcomes and risks are certain. The allure of high-risk/high-reward decisions in situations of risk
certainty and uncertainty expands our insight into the dynamic decision-making deficits that create considerable clinical
burden in HD. (JINS, 2016, 22, 426–435)
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INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant neu-
rological disorder causing pronounced neurodegeneration of
neostriatal neurons and associated disruption to frontal-
striatal circuitries. While known for producing involuntary
choreiform movements, HD is accompanied by a range of
neurobehavioral changes that often precede or coincide with
the onset of motor symptoms (Albin, Young, & Penney,
1989; Duff et al., 2007; Mink, 1996; Mink & Thack, 1993).
Clinically, among the most burdensome of these changes are
decisions that are unduly impulsive, lacking forethought, or
risky (Rosenblatt, 2007; Duff et al., 2010). Understanding
the processes underlying these decisions is critical for

developing novel interventions and revealing the scope of
processes linked to frontal-striatal circuitry.
Risky decision-making in HD has been investigated

primarily in situations where the rewarding or punishing con-
sequences of decisions are uncertain and must be discovered
through trial-and-error learning, for example, Stout and collea-
gues studied decision-making in HD using the Iowa Gambling
Task (IGT) (Campbell, Stout, & Finn, 2004; Stout, Rodawalt,
& Siemers, 2001). In this task, participants attempt to win
money by making a series of selections from four available
decks of cards. Whereas healthy controls show an emerging
preference for the advantageous decks (i.e., cumulative
monetary winnings exceed losses) across a series of decisions,
HD patients are particularly drawn to the allure of the
disadvantageous decks of cards that promise large immediate
rewards despite greater long-term consequences.
Related work in HD using reversal learning paradigms has

also revealed deficits in decision learning that involves
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adaptation to changing reward contingencies. In these
paradigms, participants initially learn to dissociate decisions
leading to reward and decisions that lead to punishment. The
key measure is how committed participants are to the initially
rewarding decisions when they cease to be rewarding and
punishing alternatives now become rewarding (i.e., reward
contingencies reverse for the competing decision options).
Like the IGT, rewarding decisions and their subsequent
devaluation must be discovered in a context of uncertainty.
Human and animal (i.e., mice transgenic for HD) studies
generally show that the initial learning of rewarding choices
is preserved in HD, but compared to healthy controls, HD
patients perseverate with these choices long after they cease
to be rewarding (Abada, Nguyen, Ellenbroek, & Schreiber,
2013; Brandt et al., 2008; Brooks et al., 2012; El Massioui,
Ouary, Cheruel, Hantraye, & Brouillet, 2001; Fink et al.,
2012; Lawrence, Sahakian, Rogers, Hodge, & Robbins,
1999; van Raamsdonk et al., 2005). This inflexibility in
adapting behavior to changing reward contingencies
in situations of uncertain risk and outcomes appears to
contribute to the risky decision-making in HD, particularly
when confronted with novel circumstances.

Current Study

In the IGT and reversal learning paradigms, reward con-
tingencies associated with specific decisions are discovered
in a context of uncertainty about risks and potential out-
comes. Deficits in these tasks can be attributed to problems
with implicit learning of the associations between stimuli,
decisions, and outcomes. In HD, deficits in learning pro-
cesses critical to forming expectations and contingencies
between stimuli, actions, and outcomes play a key role in
patterns of decision-making in times of uncertainty. How-
ever, in many life situations, risks and potential outcomes of
decisions are well known in advance. An extensive literature
indicates that risk decisions in situations of uncertainty versus
certainty about outcomes involve dissociable cognitive
mechanisms and neurobiological systems (Euteneuer et al.,
2009; Labudda et al., 2010; Schiebener, Zamarian, Delazer,
& Brand, 2011). To our knowledge, the dynamics of risky
decision-making in HD have not been investigated
in situations where risk and reward contingencies associated
with decision options are certain.
We used a risk-taking paradigm developed by Cohen and

colleagues (Cohen and Ranganath, 2005; Cohen, Heller, &
Ranganath, 2005) to investigate the effects of HD on reward-
based decision-making when rewards and risk options are
known explicitly. The task minimizes learning and working
memory demands common to risk-taking under uncertainty
by asking participants to make a series of choices between a
more certain, but low reward option and a less certain, but
high reward option. The magnitude and probability of reward
associated with each option are made explicit to the partici-
pant at the beginning of the experiment, so they are fully
aware of the risk associated with each option. Additionally,
each decision is independent (in terms of outcome) of the

next as participants are free to choose either option at each
decision point. The paradigm measures general risk
preference between high and low-risk decisions. Cohen and
colleagues further showed that even though the task
eliminates learning processes required to form stimulus-
decision-outcome contingencies, it critically exposes
sequential dependencies and adjustments in risk decision-
making based on the outcomes of previous risk choices
(e.g., how a participant adjusts risk preference when a prior
high-risk choice is rewarded versus unrewarded).
We made specific predictions based on patterns of risk

preferences and adjustments in healthy adults who performed
the current explicit risk-taking task (Cohen and Ranganath,
2005; Cohen et al., 2005) and based on decision-making
deficits in HD on measures of implicit decision-making and
learning. First, because decisions in HD patients appear to be
more sensitive to large rewards in situations where risk is
discovered implicitly, we predicted that HD patients
(in comparison to healthy controls) would show a higher
preference for the high-risk option, which offers the prospect
of obtaining a larger reward. Second, based on reversal
learning studies that show HD patients tend to perseverate
with previously rewarded choices, we predicted that HD
patients would be more inclined to repeat a high-risk decision
after high-risk decision was rewarded (i.e., a win-stay strat-
egy). Establishing these decision patterns in a risk certain
context that minimizes learning demands would offer
evidence that HD has a direct impact on the way prospective
rewards bias decision-making processes.
An additional advantage of the current risk-taking task is

that risk preferences and sequential dependencies associated
with those preferences have been modeled and linked to
specific cortical-striatal circuitries that have been associated
with reward and risk processing (Cohen & Ranganath, 2005;
Cohen et al., 2005; Engelmann & Tamir, 2009; for a review,
see Liu, Hairston, Schrier, & Fan, 2011). The model’s esti-
mated decision-outcome value parameters represent how
reward influences an individual’s preference for risky deci-
sion choices on the next event. For example, enhanced brain
activity in orbitofrontal cortex (OFC), putamen, dorsal cingu-
late, and amygdala was linked to an increase in high-risk-
taking on trials subsequent to a rewarded high-risk decision.
Increased activity in bilateral inferior temporal cortex, on the
other hand, predicted an increase in low-risk taking on the trial
subsequent to a low-risk rewarded trial (Cohen & Ranganath,
2005). Thus, alterations in performance may provide clues
regarding altered cortico-striatal circuitry associated with
risky, impulsive decision-making in HD.

METHODS

Participants

Two groups participated in this study: patients diagnosed
with mild and early-stage HD (N = 18), and HC (N = 17)
matched for age. As shown in Table 1, the two groups were
similar in age (HD = 48.72; HC = 45.88) and gender
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(HD = 7 male; HC = 5 male). HD patients had a mean
Unified Huntington’s Disease Rating Scale (UHDRS) score
of 35.78, and disease duration of 2.26 years.
Participants with HD were recruited from a specialty

Huntington’s Disease Clinic where they had been diagnosed
by movement disorder neurologists (M.B.H., D.O.C.).
HD was genetically confirmed by CAG repeats greater than
40, and patients met the diagnostic criteria as based on
UHDRS (Kieburtz et al., 1996). Patients were given a diag-
nosis of mild to moderate severity of HD, by a movement
disorder neurologist, based on clinical symptoms and motor
severity.
Healthy controls were recruited through community

advertising. Exclusionary criteria for all participants included
history of (other) neurological conditions, unstable mood
disorders, bipolar affective disorder, schizophrenia, or other
psychiatric or medical conditions known to compromise
executive cognitive functioning. A Mini-Mental Status Exam
(MMSE; Folstein, Folstein, & McHugh, 1975) score larger
than 23 was used as an inclusion criterion. All patients were
tested on their usual medication, that is, a combination of
atypical antipsychotics, anti-depressants and anxiolytics.
Participation in the study was voluntary and participants

received no reimbursement. Informed consent, compliant
with the standards of ethical conduct in human research as
governed by the University of Virginia and Vanderbilt Uni-
versity human investigation committees, was obtained from
all participants.

Design and Procedure

Figure 1 shows an example trial of the risk-taking task.
Patients participated subsequent to their clinic visit, but the
testing procedures were identical for HD and HC groups.
Participants completed an explicit risk-taking task in which
they made a series of choices between two response options
(Cohen and Ranganath, 2005; Cohen et al., 2005). The task
was an in-house adaptation of Cohen’s risk-taking task (time
to respond was increased, inter-trial interval was shortened
and the response options were modified) and run on an
IBM-compatible computer using E-prime software (PST 2.0)
in a quiet testing room. All stimuli were presented against a
gray background on a 17-inch screen located approximately 1
meter from the participant and positioned such that the
stimuli appeared at eye-level.
At the beginning of the task, subjects were instructed that

they would be making a series of choices between two
decision options, each of which offered a chance to win
money. They were told that the goal of task was to win as
much money as possible. Next, subjects were then
given explicit information about the probabilities and reward
magnitudes of each risk option. Specifically, subjects were
told that choosing the low-risk option offered an 80%
chance of winning $1.25, but a 20% chance of earning $0.00.
In contrast, selecting the high-risk option carried a
40% chance of winning $2.50, but a 60% chance of
earning $0.00.
Each risk option was assigned to a left or right hand button

press (i.e., a left or right thumb press using handheld button
grips), with the mapping between hand and risk option
counterbalanced across subjects. Subjects were instructed to
choose one of the risk options each time an asterisk symbol
appeared in the center of the computer screen. In separate
practice sessions, subjects next practiced choosing each
option and observing the outcome (10 selections for each
risk type). The experimenter ascertained that each subject
understood the task and risk options before starting the
experimental session.

Table 1. Participant demographics (averages and standard deviation)

HD HC p-Value

Sample size 18 17
Age 48.7(12.6) 45.88(12.8) 0.51
Gender (M: F) 7:11 5:12 0.28
UHDRS 35.78(16.03)
Disease duration 2.26(1.25)

Fig. 1. Trial example from of the risk-taking task.
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Each trial began with a blank screen (1 s) followed by the
appearance of the asterisk (1 s). Upon the presentation of the
asterisk, subjects were given 2 s to decide between the high-
risk and low-risk options by pressing the button assigned to
that option. Feedback was then displayed on the computer
screen (1 s) according to the probabilities associated with the
selected option (i.e., subjects either won the expected reward
or the decision was unrewarded). Outcomes were randomly
determined on a trial-by-trial basis. Given that outcomes were
probabilistic, the chances for reward on each trial were
independent of the outcomes of prior trials. Overall, both
decision options were equivalent in expected value
(0.8 × $1.25 = 0.4 × $2.5), therefore, a particular choice
strategy would not affect the overall outcome. Notably, the
expected values of option decisions and overall outcomes
were not mentioned to the subjects. Following feedback for a
chosen option, the next trial began. For the experimental
session, they performed five blocks of 26 trials. At the end of
the experiment, the total earnings were displayed (but not
actually paid) to the subject.

Data Analyses

Risk-taking strategies

We analyzed overall preference for the two risk strategies as
well as conditional risk-taking strategies. The latter calcu-
lated the probability of choosing a high-risk option based on
whether the previous trial decision was high or low-risk and
rewarded or unrewarded. For example, for trials following a
rewarded high-risk decision, we counted the number of high-
risk and low-risk decisions and divided each count by the
total number of rewarded high-risk decisions. This permitted
analysis of how risk strategies adapted to previous risk
decisions and outcomes and provides insight into the data
from a trial-to-trial perspective. Both the risk-taking strate-
gies as well as the modeling parameters were associated with
the neural correlates as measured by Cohen and Ranganath
(2005). The percentage of high-risk choices were analyzed
using repeated-measures analysis of variance (RM-
ANOVA), including a between-subjects factor group (HD,
HC) and within-subjects factors PreviousRisk (High, Low)
and PreviousOutcome (Rewarded, Unrewarded).

Decision-outcome value parameters

We applied a computational modeling approach similar to
Cohen and Ranganath (2005, 2007), because it has a neuro-
biological basis (Montague, Hyman, & Cohen, 2004), and
the value parameters estimated by this model have been
shown to capture individual differences in cortico-striatal
activity related to behavior on the task that might further
confirm group differences in risk-taking preferences.
Additionally, the model estimates a discount parameter,
reflecting the influence of previous trials on current trial
behavior; it captures value assigned to an individual’s recent
history of decisions. This parameter was used to exclude the

possibility that group differences in risk-taking could be
explained in terms of a memory deficit.
A subset of the subjects (16 HD, 16 HC) was included in the

model parameter estimation analyses. The data from the two
HD and one HC subjects excluded from the analysis did not
converge to the model, that is, the model was not able to
estimate parameters reliably because participants showed
highly repetitive risk decisions (e.g., chose one option >85%
of the time). First, decisions were categorized by their degree
of risk (high vs. low) and reward (rewarded vs. unrewarded),
which resulted in four decision-outcome categories: high-risk
rewarded, high-risk no reward, low-risk rewarded, low-risk no
reward. To investigate the effect of reward history on current
choices, we calculated predictive values for each decision
using a variation of a simple reinforcement learning algorithm
(Barraclough, Conroy, & Lee, 2004; Cohen & Ranganath,
2005; Sutton & Barto, 1998). According to reinforcement
learning models, a decision is based on the difference between
the value functions (i.e., the expected reward) for each of the
choices. The value function for trial t is noted as Vt(highrisk)
for a high-risk choice, and Vt(lowrisk) for a low-risk choice.
The probability of, for example, choosing a high-risk option
on trial t is the log- transformation of the difference between
the value functions (Christensen, 1997).

1: pt highriskð Þ ¼ exp Vt highriskð Þ½ �= exp Vt lowriskð Þ½ �ð
+ exp Vt highriskð Þ½ �Þ:

Vt is the value of each decision option on trial t and is
updated on each trial according to the following formula:

2: Vt+ 1 highriskð Þ ¼ αVt highriskð Þ +wt highriskð Þ:
3: Vt+ 1 lowriskð Þ ¼ αVt lowriskð Þ +wt lowriskð Þ:

In this formula, α is the discount factor (i.e., the forgetting
parameter, reflecting the influence of previous trials on
current trial behavior) and wt is a decision-outcome value that
changes for each decision dependent on its outcome
(four decision-outcome value parameters). Note that this
model (as used by Cohen et al., 2005) is a variation of a
simple reinforcement model1. However, since our task does
not actually require learning of the contingencies (i.e., the
outcome probabilities are known beforehand), this model
does not include a learning rate but instead estimates a value
parameter(wt) for each decision-outcome combination. For
example, when a subject decided to choose a high-risk
decision and this was rewarded, the parameter wHR (high-risk
rewarded) would be updated on that trial, whereas the other
value parameters remain unchanged. When a subject decided
to choose the high-risk decision but it was not rewarded, wHN

(high-risk unrewarded) parameter would be updated.

1 Vt + 1 = Vt(choice) + learning rate × prediction error. The prediction
error consists of the difference between expected and actual reward (reward-
Vt(choice)). Thus the formula can be written as Vt + 1 (choice )=
(1-learning rate) ×Vt(choice) + (learning × reward), where the learning rate
weighted by the reward value would be comparable to the estimated
decision-outcome change values (w) for each of the risk and outcome
combination.
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Similarly, low-risk rewarded and low-risk unrewarded
choices would update, respectively, parameters wLR

(low-risk rewarded) and wLN (low-risk unrewarded). A large
w parameter indicates that participants highly value that
particular decision and its outcome. Since the w value is a
change parameter, it does not convey the participant’s pre-
ference for a particular strategy or choice but merely the
change in the subjective value of a decision option according
to current reinforcements. For example, a high wHR indicates
that the participants highly value high-risk decisions that are
rewarded and those decisions subsequently have a large
influence on the value of a high-risk for the next trial. If the
parameter is close to zero, this means that a high-risk reward
has minimal influence on the future value of that decision. The
sign of the parameter indicates whether the decision value for
the next trial will increase or decrease on the next trial.
The five parameters (four decision-outcome value para-

meters and the discount parameter) were estimated in Matlab,
using a maximum likelihood minimization procedure
(Barraclough et al., 2004; Burnham & Anderson, 2002).
Initial discount and decision-outcome values were set to zero.
To evaluate the model fit, we calculated a pseudo R2 statistic
using the following equation:

4: PseudoR2 ¼ R�Lð Þ=R
L is the maximum log-likelihood for the estimated model

given the data and R is log-likelihood of a model assuming
random choice. A likelihood ratio test was used to evaluate
whether the estimated model provides better a prediction of
the data than a random choice model. The four value para-
meters were compared between groups by a RM-ANOVA
with factors Group (HD, HC), Reward (Present, Absent), and
Risk (High, Low). The discount parameter was compared
between groups with an independent sample t test.

RESULTS

Risk-Taking Strategies

Overall, HC participants adopted a more risk averse strategy,
preferring the low-risk option (63.5%) over the high-risk option
(36.5%). In contrast, HD patients were much more likely to
take risks, preferring the high-risk option (47.0%) almost as
much as the low-risk option (53.0%). Overall, irrespective of
previous outcome or reward, the HD patients showed a higher
preference for the high-risk option compared to HC partici-
pants, Group: F(1,33) = 5.01, p< .05, η2 = .13.
Figure 2 shows group preferences for high-risk decisions

subsequent to high-risk (a) and low-risk decisions (b) as a
function of previous choice outcome. Preference for selecting a
high-risk option did not vary as a function of the previous risk
choice between high and low-risk options, (PreviousRisk:
F(1,33) = .82; p = .37; η2 = .02), a pattern that was consistent
across the groups, (Group × PreviousRisk: F(1,33) = .25;
p = .62; η2 = .01). However, differences emerged between the
groups in response to reward. Overall, when a decision was
rewarded, irrespective of risk, participants generally become

more risk averse; that is, following reward, participants were
less likely to subsequently choose the high-risk option (38.3%)
compared to their preference for the high-risk option
(45.3%) following a unrewarded decision (PreviousOutcome:
F(1,33) = 6.50; p< .05; η2 = .17). However, when HC and HD
groups were compared, the impact of reward on subsequent
choices differed between the groups (PreviousOutcome×Group:
F(1,33) = 9.82; p< .01; η2 = .23).While HCwere less likely to
choose the high-risk option following a rewarded (28.8%)
compared to an unrewarded (44.3%) decision (i.e., they were
risk averse following rewarded decisions) (HC, t(16) = 4.11;
p< .01; r2 = .51), the HD group was just as likely to choose the
high-risk option following a rewarded decision, selecting the
high-risk option equally after rewarded (47.8%) and unrewarded
(46.2%) decisions, (HD, t(17) = .41; p = .69; r2 = .01).
The three-way interaction between Group, PreviousRisk,

and PreviousOutcome showed a trend toward significance,
suggesting a distinction between the HD and HC groups
in their choice behavior after high-risks decisions,
(Group×PreviousRisk × PreviousOutocome: F(1,33) = 3.22;
p = .08; η2 = .09). This prompted separate analysis of

Fig. 2. Percentage of high-risks in HD and HC subsequent to
previously rewarded and unrewarded high-risks (a) and low-risks (b).
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high- and -low-risks. As Figure 2 illustrates, subsequent to
low-risk decisions, HD and HC participants showed a similar
risk averse strategy (i.e., reduced preference for high-risk
option) following low-risk decisions (Group: F(1,33) = 2.63;
p = .1; η2 = .07), and previous outcome did not change this
pattern (PreviousOutcome×Group: F(1,33) = .53; p = .47;
η2 = .02). However, following high-risk decisions, HD
showed an opposite pattern of preferences compared to
the risk aversive HC group (PreviousOutcome×Group:
F(1,33) = 10.07; p< .005; η2 = .23). Whereas HC partici-
pants become risk averse after a high-risk decision was
rewarded (i.e., win-shift strategy), HD patients became more
risky (i.e., win-stay strategy) on a subsequent trial as evidenced
by an increased preference for staying with the high-risk
option, t(33) = 2.36, p< .05, r2 = .14.

Decision-Outcome Value Parameters

Figure 3 shows the estimated decision-outcome value para-
meters (1) and the discount parameter (2) for both HD and
HC groups.

The average individual pseudo-R2 was .20, significantly
better than a model predicting random choice for most
subjects (97%, 31 of n = 32, likelihood ratio test, p < .05)
and not different between HC (R2 = .18) and HD (R2 = .21),
F(1,31) = .66, p = .42.
Overall, low-risk and high-risk options were valued equally

(Risk: F(1,30) = .97; p = .33; η2 = .03) and rewarded and
unrewarded options were valued equally as well (Reward:
F(1,30) = 2.03; p = .17; η2 = .06). However, reward had
a larger impact on the value of low-risks than on high-
risks (Risk ×Reward: F(1,30) = 8.88; p< .01; η2 = .23).
Overall, rewarded low-risk decisions were valued more
positively (.28) than unrewarded decisions (− .19;
t(31) = 3.45; p< .01; r2 = .28), whereas reward did not
make a difference with respect to the value of high-risk deci-
sions (High-risk Reward = − .08; High-risk Unrewarded =
.03; t(31) = .56; p = .58; r2 = .01). Furthermore, the
groups valued high and low-risk decisions differentially,
(Group ×Risk: F(1,30) = 14.3; p< .01; η2 = .32). Whereas
HCs valued low-risk decisions (.15) more positively than
high-risk decisions (− .22) (Risk: HC, F(1,15) = 7.33; p< .05;
η2 = .33), HD patients showed the opposite pattern; they
valued high-risk decisions (.17) more than low-risk decisions
(− .05) (Risk: HD, F(1,15) = 8.7; p< .05; η2 = .37).
Additionally, there was a clear group difference in valuation

of rewarded and unrewarded choices (Group ×Reward:
F(1,30) = 4.62; p< .05; η2 = .13), HCs valued rewarded
and unrewarded decisions equally (Reward = − .08,
Unrewarded = .01,F(1,30) = .19; p = .67; η2 = .01), whereas
HD patients valued rewarded decisions (.28) more than
unrewarded (− .17) decisions (F(1,30) =10.1; p< .01; η2 = .40).
Also, the analysis confirmed groups differences in value

parameters that reflected an interaction between risk and
reward, (Group × Risk × Reward: F(1,30) = 7.36; p< .05;
η2 = .2). HD valued high-risk decisions that were rewarded
(.38) significantly more than HC patients (− .55)
(F(1,30) = 17.28; p< .001; η2 = .37), whereas there were no
significant differences between HD and HC groups on any of
the other parameters (Fs< 1; ps > .4).
Analysis of the discount parameter, which captures value

assigned to an individual’s recent history of decisions, showed
that the groups assigned similar value to recent choices,
(t(31) = .55; p = .59; r2 = .01). This suggests that any
differences in risk-reward decision preferences cannot be
attributed to more global differences in how the groups used
outcomes of recent decisions to influence current decisions.

DISCUSSION

The present study provides novel insight into the decision-
making strategies and preferences of HD patients, compared to
HCs, in a relatively certain decision-making context (i.e., risks
and outcomes are known explicitly). HCs showed a clear
strategy toward risk aversion, particularly after a high-risk
decision happened to be rewarded, which replicates previous
studies with this task and a broader pattern observed across
various risk-taking paradigms (Cohen & Ranganath, 2005;

Fig. 3. Decision-outcome value taking parameters (a) and discount
parameter (b) separately for HD and HC.
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Cohen et al., 2005; Engelmann & Tamir, 2009; Tversky &
Kahneman, 1981). In contrast, HD patients made high and
low-risk decisions equally often, and increased their pre-
ference for high-risk decision-making after a high-risk choice
had been rewarded (i.e., showed heightened risk propensity in
the context of a previous high-risk decision and not in the
context of a previous low-risk decision).
Previous investigations have emphasized the role of

implicit learning processes as contributing to high-risk and
reward persistence decisions in HD. In particular, HD
patients appear less sensitive to losses in gambling situations
where they attempt to discover optimal decision-making
strategies under uncertainty (Campbell et al., 2004; Enzi
et al., 2012; but see Busemeyer and Stout, 2002), and are
slower at learning to shift away from previously positively
reinforced decisions when these decisions unknowingly
cease to be reinforcing (Abada et al., 2013; Brooks et al.,
2012; El Massioui et al., 2001; Fink et al., 2012; Lawrence
et al., 1999; van Raamsdonk et al., 2005).
The current findings expand on this work by demonstrating

a preference for high-risk decisions among HD patients
relative to HC even when uncertainty, learning, and working
memory demands were minimized in the decision-making
context (i.e., risks and rewards were made explicit). In com-
parison to HC participants, HD decision-making was more
strongly driven by outcomes of decisions rather than the
nature of risk on a preceding trial. Decision-making among
HD patients was biased toward the high-risk, high reward
option. Adjustments after low-risk decisions are similar to
healthy controls, thereby excluding the alternative explana-
tion that HD patients show a general absence of the normal
risk aversion, instead high-risk preference depends on the
context of the previous decision and outcome.
A previous analysis of Iowa Gambling Task performance in

HD suggested that poor decision-making, in a context where
risk and reward context were uncertain, may reflect reduced
working memory abilities (Busemeyer and Stout, 2002); HD
showed a heightened bias by more recent experiences, which
leads to faster forgetting of more remote experiences). This is
an unlikely account for the present findings because the
current task minimizes the role of working memory and
implicit learning, thus making each decision independent in
terms of outcome. Second, the discount parameter modeled in
the current data showed no difference between HD and HC,
which indicates that the groups did not show a difference in
general biases related to outcomes of recent decisions
and experiences. Together, these findings demonstrate that
there are different mechanism underlying risk-taking under
uncertainty and risk-taking with explicit rules in HD.

Putative Neural Mechanisms

A recent meta-analysis of functional imaging studies by Liu
et al. (2011) described several cortical (OFC, bilateral ante-
rior insula, anterior and posterior cingulate corticies, inferior
parietal lobule, and prefrontal cortex [PFC]) and basal
ganglia (caudate, putamen, nucleus accumbens, thalamus)

structures that are engaged across reward-based decision
making tasks in healthy young adults. The neurodegenerative
processes in HD directly impact several nodes of these
cortico-basal ganglia circuitries (Hadzi et al., 2012; Paulsen,
2009; Vonsattel et al.,1985; Vonsattel & DiFiglia 1998). In
the specific decision-task paradigm used in the current study,
Cohen et al. (Cohen & Ranganath, 2005; Cohen et al., 2005)
identified a subset of these cortico-basal ganglia regions
whose activation corresponded to specific patterns of risk
decision-making. First, they showed that higher preference
for risky decisions was associated with increased functional
connectivity between anterior cingulate cortex (ACC) and
ventral striatum and between OFC and dorso-lateral PFC
(Cohen et al., 2005). One implication is that HD produces a
functional enhancement of connectivity in these circuitries
that underlies their higher overall preference for the risky
decision option compared to HCs. Alterations in ventral
striatal activity, most notably in the left ventral striatum, have
been linked to alterations in the anticipation of reward and
punishment in individuals who are pre-symptomatic, gene-
positive for HD (Enzi et al., 2012). Moreover, degenerative
changes in ventral striatum and nucleus accumbens innerva-
tion of the ventral striatum are reported in early HD (Aylward
et al., 2011; Rosas et al., 2003; Sánchez-Castañeda et al.,
2013; van den Bogaard et al., 2011). Considered together,
alterations to circuitry involving the ventral striatum may be
critical to understanding the heightened preferences for
high-risk reward decisions in early HD.
Additionally, Cohen and Ranganath (2005) reported that

higher activation in the OFC, dorsal cingulate, putamen, and
amygdala predicted increased likelihood that an individual
would repeat a high-risk decision if they had just been
rewarded for making a high-risk/high reward decision. Albeit
an indirect speculation, these results suggest that HD patients
may experience higher patterns of activation in these circui-
tries in a context of a recently rewarded high-risk decision.
Thus, the changes in risk-taking and the influence of reward
on risk-taking in HD in the current study may be explained by
more pronounced signaling and activity in several key
cortical-basal ganglia regions that are critical for mobilizing
high-risk rewarding decisions. An important question for
future research is determining how the progression of HD
alters these circuitries in the context of decision-making and
whether these circuitries are enhanced due to a more pro-
nounced influence of reward processing or due to ineffective
suppression of these circuitries that would promote the
selection of safer, less risky decision options. The latter is
particularly intriguing given evidence that HD alters
synchronization between cortical regions (e.g., lateral PFC,
ACC) that are critical for detecting conflict and mobilizing
inhibitory control systems to suppress impulsive choices
(Engelmann & Tamir, 2009; Kalkhoven, Sennef, Peeters, &
van den Bos, 2014; Liu et al., 2011; Thiruvady et al., 2007).
The allure of high-risk rewards in HD might reflect

progressive neuroanatomical alterations in reward-related
cortico-basal ganglia circuitries, but might also reflect
alterations in neuromodulators, like dopamine (DA). DA in

432 N.C. Van Wouwe et al.

https://doi.org/10.1017/S1355617715001241 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617715001241


healthy adults, and its alteration in Parkinson’s disease, is
tightly linked to variations in reward learning and reward-
based risk decision-making (Cools et al., 2009; Frank,
Seeberger, & O’Reilly, 2004; Rutledge et al., 2009; Schultz,
2002). The specific patterns of DA changes in HD are not
fully understood yet and seem to vary non-linearly over the
course of the disease (see Schwab et al., 2015 for a review).
Of interest, Schroll, Beste, and Hamker (2015) investigated
reward learning in HD using neuro-computational modeling
and showed that simulated lesions of striatal neurons rather
than DA modulation explained decrements in reward
learning. The putative role of DA in reward processing in HD
in patients at various stages of the disease (in unmedicated
pre-manifest HD and in longitudinal studies of diagnosed HD
patients) awaits future investigation.

LIMITATIONS AND CONCLUSIONS

There are certain limitations in the current study. One lim-
itation is that patients were not withdrawn from medications
aimed at treating their HD symptoms, including a handful of
patients on DA antagonist medication, which could have
altered reward processing. It would seem that DA antagonism
would reduce rather than enhance the influence of reward, but
how DA therapies alter reward circuitry in HD remains an
empirical question.
Another limitation is the lack of detailed neuropsycholo-

gical and clinical characteristics in our HD patient sample.
We included non-demented patients in the early stage of the
disease, and although neuropsychological functions are quite
variable in early HD, we cannot entirely exclude the possi-
bility that subtle neuropsychological changes moderated the
patterns of risk decision-making. It is important to point out
that the task used in the current study places very minimal
demands on learning and working memory skills and, in fact,
the discount parameter from the modeling ruled out any
underlying memory differences across decision selections
between HD and HC groups. However, it will be important to
replicate the study in a sample of HD patients who are
characterized with greater neuropsychological precision. HD
patients also show higher susceptibility to depression, but
notably depression is typically associated with reduced
risk-taking and reward processing (Treadway & Zald, 2013;
Whitton, Treadway, & Pizzagalli, 2015). However, how
depression interacts with HD on reward system processing is
also an open empirical question.
The computational model applied in the current study

helped to exclude alternative explanations (i.e., the role of
memory) and to link the risk-taking parameters to previous
imaging studies. Although this model has been used before
and is based on widely tolerated assumptions and parameter
estimation strategies (Cohen & Ranganath, 2005, 2007;
Montague, Hyman, & Cohen, 2004), we acknowledge that
there may be a more optimal model to fit the decision-making
data in the current paradigm. Future work with this paradigm
would benefit from more formal testing of this model and
plausible alternatives.

In conclusion, our findings point to specific alterations to
reward valuation in the context of risky decision-making in
patients with mild, early-stage HD. HD patients were more
likely to repeat a high-risk decision immediately following a
rewarded high-risk decision. The enhanced allure of reward in
risky contexts in HD might have important implications for
daily life decisions, such as financial choices. For example, in
a recent review of pathological gambling in HD, Kalkhoven
et al. (2014) concluded “HD patients may not have an
increased tendency to start gambling, but they do have an
increased chance of developing an addiction once they engage
in gambling tendencies.” In light of the current findings, we
speculate that perhaps the initial exposure to a rewarded risky
decision may be the trigger for repeating high-risk decisions
that characterizes addictive, risky behaviors in HD.
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