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Abstract

Infinite product operations are at the forefront of the study of homotopy groups of Peano continua and
other locally path-connected spaces. In this paper, we define what it means for a space X to have infinitely
commutative π1-operations at a point x ∈ X. Using a characterization in terms of the Specker group, we
identify several natural situations in which this property arises. Maintaining a topological viewpoint, we
define the transfinite abelianization of a fundamental group at any set of points A ⊆ X in a way that refines
and extends previous work on the subject.
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1. Introduction

Infinitary operations akin to infinite sums and products in analysis arise naturally
in the context of fundamental groups and are often highly noncommutative. Such
operations arise from the ability to form an infinite loop concatenation

∏∞
n=1 αn (with

order type ω) and a transfinite loop concatenation
∏

τ αn (with dense order type) from
a shrinking sequence of loops {αn} based at a point. Even if the space in question
has an abelian fundamental group, infinite permutation of the factors αn may change
the homotopy class of these loop products. In this paper, we define and study a
notion of infinite commutativity for fundamental groups. In particular, we define a
space X to be transfinitely π1-commutative at a point x ∈ X if the infinite permutation
of the factors of transfinite loop concatenations based at x is a homotopy-invariant
action.

Computations of singular homology groups of spaces such as the Hawaiian earring
[15] and other ‘wild’ spaces that admit nontrivial infinitary π1-operations [11,12,
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18, 20] typically depend on the decomposition theory of infinite abelian groups
(cf. [16]) since H1(X) is only the ‘finitary’, that is, ordinary abelianization of the
group π1(X, x). The notion of ‘strong’ or ‘infinite’ abelianization of groups with natural
infinite product operations is not new but has previously been considered in either
a purely algebraic context or in more specialized situations. For instance, Cannon
and Conner defined the strong abelianization of subgroups of the Hawaiian earring
group [5, Section 4]. We define a notion of infinitary abelianization (Definition 5.1),
which may be considered a topological refinement of the group-theoretic notion of
σ-abelianization introduced in [9]. Since it is possible for a fundamental group π1(X, x)
to be transfinitely π1-commutative only at points within a proper subset of X, we define
our notion of infinitary abelianization relative to a subset A ⊆ X. Our approach also
refines the notion of strong abelianization defined in [8], which is defined using the
quotient topology on π1.

Remarkably, the difference between finite and infinite commutativity seems to
disappear in higher dimensions. The work of Eda–Kawamura [14] on the higher
homotopy groups of the n-dimensional Hawaiian earrings ( n ≥ 2) suggests that higher
homotopy groups are always ‘infinitely commutative’. We provide a formalization
of this idea by observing that loop spaces satisfy our definition of transfinite
π1-commutativity at constant loops. In forthcoming work, the authors will show that
all topological monoids (and slightly more general objects called pre-Δ-monoids) are
transfinitely π1-commutative at their identity elements. In particular, the transfinitely
π1-commutative property will play a key role in computations of fundamental groups
of James reduced product spaces and similar constructions.

The remainder of this paper is structured as follows. In Section 2, we set notation
and review the relevant theory of the Hawaiian earring group. In Section 3, we
define the property of a space X being transfinitely π1-commutative at a point x ∈ X
(Definition 3.2). Our main result in this section is Theorem 3.5, which characterizes
this property in terms of canonical factorizations through the Specker group ZN. In
Section 4, we identify several natural examples and situations where the transfinitely
π1-commutative property holds. In Section 5, we define and study the infinitary
commutator subgroup Cτ(A) and infinitary abelianization HA(X) = π1(X, x)/Cτ(A) of
π1(X, x) at a subset A ⊆ X. In the case A = X, we write H(X) for HX(X) and compare
this group to the alternative functorial constructions in the literature, namely Eda’s
σ-commutator and Corson’s ‘strong abelianization’ using the quotient topology on π1
[8]. To illustrate the accessibility of HA(X), we identify the isomorphism type of this
group for several important examples including the Hawaiian earring (Corollary 5.13),
the double Hawaiian earring (Example 5.18), the harmonic archipelago (Example
5.15), and the Griffiths twin cone (Example 5.22). To analyze these examples, we
develop the basic theory of the functor HA(X), including a van Kampen-type result
(Theorem 5.17). It is well known that the first singular homology group of a one-point
union X ∨ Y need not be isomorphic to H1(X) ⊕ H1(Y). We show that such an
isomorphism H(X ∨ Y) � H(X) ⊕ H(Y) does hold for arbitrary path-connected spaces
X and Y (Theorem 5.19).
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2. Preliminaries and notation

For spaces X, Y , let YX denote the space of maps f : X → Y with the compact-open
topology. If A ⊆ X, B ⊆ Y , then (Y , B)(X,A) ⊆ YX will denote the subspace of relative
maps satisfying f (A) ⊆ B. If A = {x0} and B = {y0} contain only basepoints, we may
simply write (Y , y0)(X,x0). The constant function X → Y at y0 is denoted cy0 . We write
Ω(X, x0) for the based loop space (X, x0)(I,∂I), where I = [0, 1] is the closed unit
interval. If f : (X, x)→ (Y , y) is a based map, then f# : π1(X, x)→ π1(Y , y) denotes
the homomorphism induced on the fundamental group.

DEFINITION 2.1. A sequence { fn}n∈N in YX is null at y ∈ Y if for every open
neighborhood U of y, there is an N ∈ N such that Im ( fn) ⊆ U for all n ≥ N, that is, if
{ fn} → cy in YX . We refer to { fn} as a null sequence.

If α1,α2, . . . ,αn is a sequence of paths, that is, continuous functions I → X, satisfy-
ing αi(1) = αi+1(0), we write

∏n
i=1 αi or α1 · α2 · · · · · αn for the n-fold concatenation

defined to be αi on the interval [(i − 1)/n, i/n]. We write α−(t) = α(1 − t) for the
reverse of a path α. If [a, b], [c, d] ⊆ I and α : [a, b]→ X, β : [c, d]→ X are maps,
we write α ≡ β if α = β ◦ λ for some increasing homeomorphism λ : [a, b]→ [c, d].
Throughout this paper, any space in which paths are considered is assumed to be path
connected.

Much of our work will require the use of the fundamental group of the Hawaiian
earring, which we recall here. Let Cn ⊂ R2 denote the circle of radius 1/n centered
at (1/n, 0) and H =

⋃
n∈N Cn be the Hawaiian earring with basepoint b0 = (0, 0). We

define some important loops in H as follows.

• For each n ∈ N, let 
n ∈ Ω(Cn, b0) be the canonical counterclockwise loop travers-
ing the circle Cn.

• Let 
∞ ∈ Ω(H, b0) denote the loop defined as 
n on the interval [(n − 1)/n,
n/(n + 1)] and 
∞(1) = b0.

• Let C ⊆ I be the middle third Cantor set. Write I\C = ⋃n≥1
⋃2n−1

k=1 Ik
n, where Ik

n is
an open interval of length 1/3n and, for fixed n, the sets Ik

n are indexed by their
natural ordering in I. Let 
τ ∈ Ω(H, b0) be the loop defined so that 
τ(C) = b0 and

τ := 
2n−1+k−1 on Ik

n (see Figure 1).

The fundamental group π1(H, b0) is uncountable and is not isomorphic to a free
group. However, π1(H, b0) is locally free and naturally isomorphic to a subgroup of an
inverse limit of free groups. Let H≥n =

⋃
m≥n Cm be the smaller homeomorphic copies

of H and let H≤n =
⋃n

m=1 Cn be the wedge of the first n-circles so that π1(H≤n, b0) = Fn

FIGURE 1. The transfinite concatenation loop 
τ.
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is the group freely generated by the elements [
1], [
2], . . . , [
n]. The retractions rn+1,n :
H≤n+1 → H≤n collapsing Cn+1 to b0 induce an inverse sequence

· · · → Fn+1 → Fn → · · · → F2 → F1

on fundamental groups, in which Fn+1 → Fn deletes the letter [
n+1] from a given
word. The inverse limit π̌1(H, b0) = lim←−−n

Fn is the first shape homotopy group [22].
The retractions rn : H→ H≤n, which collapse H≥n+1 to b0, induce a canonical homo-
morphism

ψ : π1(H, b0)→ π̌1(H, b0), where ψ([α]) = ([r1 ◦ α], [r2 ◦ α], . . .).

It is known that ψ is injective [23]; see also [13]. Thus, a homotopy class [α] ∈
π1(H, b0) is trivial if and only if for every n ∈ N, the projection (rn)#([α]) ∈ Fn reduces
to the trivial word as a word in the letters [
1], [
2], . . . , [
n]. Based on the injectivity of
ψ, we also note that for every n ≥ 2, the inclusions H≤n → H and H≥n+1 → H induce
an isomorphism Fn ∗ π1(H≥n+1, b0)→ π1(H, b0) on the free product. Therefore, every
nontrivial [α] ∈ π1(H, b0) factors uniquely as a finite product of homotopy classes of
loops alternating between H≤n and H≥n+1.

REMARK 2.2. If f : (H, b0)→ (X, x) is a map, then the sequence { f ◦ 
n} is null at
x. Conversely, if {αn} is a null sequence of loops based at x, then we may define a
continuous map f : H→ X by f ◦ 
n = αn. Hence, null sequences of loops based at
x ∈ X are in bijective correspondence with maps (H, b0)→ (X, x).

DEFINITION 2.3. Suppose that αn ∈ Ω(X, x) is a null sequence and f : H→ X is the
map with f ◦ 
n = αn.

• We write
∏∞

n=1 αn for the loop f ◦ 
∞, which we call the infinite concatenation of
the sequence {αn}.

• We write
∏

τ αn for the loop f ◦ 
τ, which we call the transfinite concatenation of
the sequence {αn}.

Since 
∞ and 
τ are fixed, permuting the terms of a null sequence {αn}will generally
change the homotopy class of both

∏∞
n=1 αn and

∏
τ αn even if π1(X, x) is abelian.

3. Defining and characterizing transfinite π1-commutativity

Let T =
∏

n∈N S1 be the infinite torus. Using the canonical embedding η : H→ T
onto the subspace

∨∞
n=1 S1 of T, we may identify H as a subspace of T so that b0 is

the distinguished point of T. The fundamental group π1(T, b0) is isomorphic to the
Specker group ZN, where [η ◦ 
n] is identified with the unit vector en ∈ ZN, which
has 1 in the nth coordinate and 0’s elsewhere. It is well known that the induced
homomorphism η# : π1(H, b0)→ π1(T, b0) is surjective and [α] ∈ ker(η#) if and only
if α has winding number 0 around Cn for all n ∈ N. In [5, 9], π1(T, b0) � ZN is
described as an ‘infinite abelianization’ of π1(H, b0). To put our notion of transfinite
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commutativity into context, we first recall the following purely group-theoretic notions
due to Eda.

DEFINITION 3.1 [9]. The σ-abelianization of a group G is the quotient G/Gσ′,
where Gσ′ is the normal subgroup of G generated by the images f (ker(η#)) for all
homomorphisms f : π1(H, b0)→ G. We refer to Gσ′ as the σ-commutator subgroup
and we define a group G to be σ-commutative if and only if Gσ′ = 1.

Clearly, the σ-commutative property is equivalent to the property that every
homomorphism f : π1(H, b0)→ G factors as f = g ◦ η# for some homomorphism
g : π1(T, b0)→ G. While certainly relevant for group-theoretic purposes, when applied
to fundamental groups G = π1(X, x), this purely algebraic property may fail to relate to
relevant homotopy-invariant properties of X. Our approach to infinite commutativity
will also be founded upon the difference between the highly noncommutative group
π1(H, b0) and the highly commutative group ZN. However, to maintain a topological
viewpoint, we work at the level of loops and consider only spatial, that is, induced,
homomorphisms f# : π1(H, b0)→ π1(X, x).

DEFINITION 3.2. A space X is:

(1) infinitely π1-commutative at x ∈ X if for every null sequence αn ∈ Ω(X, x) and
bijection φ : N→ N, we have [

∏∞
n=1 αn] = [

∏∞
n=1 αφ(n)] in π1(X, x);

(2) transfinitely π1-commutative at x ∈ X if for every null sequence αn ∈ Ω(X, x) and
bijection φ : N→ N, we have [

∏
τ αn] = [

∏
τ αφ(n)] in π1(X, x).

A convergent series
∑∞

n=1 an of real numbers is absolutely convergent if and only
if for every bijection φ : N→ N, we have

∑∞
n=1 an =

∑∞
n=1 aφ(n). In this sense, the

property of being infinitely π1-commutative states that all infinite products of loops
are ‘absolutely convergent’ up to homotopy. The transfinitely π1-commutative property
extends this invariance to products indexed by countable linear orders other than the
naturals.

REMARK 3.3. If X is infinitely or transfinitely π1-commutative at any point x ∈ X,
then π1(X, x) is commutative in the usual sense. For example, if X is transfinitely
π1-commutative at x and α, β ∈ Ω(X, x), we may define f : H→ X by f ◦ 
1 = α,
f ◦ 
3 = β, and f ◦ 
n = cx if n � {1, 3}. Any bijection φ that permutes 1 and 3 gives
[α · β] = [

∏
τ f ◦ 
n] = [

∏
τ f ◦ 
φ(n)] = [β · α]. Any bijection φ that permutes 1 and

2 gives the analogous equality for infinite concatenations. In particular, this means
that any space with a noncommutative fundamental group cannot be transfinitely
π1-commutative at any point. Outside of considering local variants of these two
properties, the transfinitely π1-commutative property is only intended to be considered
in the context of spaces with abelian fundamental groups, including topological
monoids, groups, and other H-spaces.

The proof of the following lemma is sketched in [4, Example 3.10]. Since it is
important for the proof of Theorem 3.5, we give a more detailed proof. In short, it states
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that any nontrivial element [α] ∈ π1(H, b0), where α has winding number 0 around Cn

for all n ∈ N, may be factored, up to homotopy, as an infinite concatenation of a null
sequence of commutators.

LEMMA 3.4. If 1 � [α] ∈ ker(η#), then there is a null sequence γn ∈ Ω(H, b0) such that
[α] = [

∏∞
n=1 γn] and γn ≡

∏kn
i=1(αn,i · βn,i · α−n,i · β−n,i) for loops αn,i, βn,i ∈ Ω(H≥n, b0),

1 ≤ i ≤ kn.

PROOF. Set G = π1(H, b0), Gn = π1(H≥n, b0), and let [K, K] denote the commutator
subgroup of a group K. Consider a non-null-homotopic loop α ∈ Ω(H, b0) such
that [α] ∈ ker(η#). Set γ0 = cb0 and β0 = α so that [α] = [γ0][β0] and let H≥0 = H.
Proceeding by induction, suppose that we have constructed loops γi ∈ Ω(H≥i, b0),
0 ≤ i ≤ n − 1, and βn−1 ∈ Ω(H≥n, b0) such that:

• [α] = (
∏n−1

i=0 [γi])[βn−1];
• [γi] ∈ [Gi, Gi] for 0 ≤ i ≤ n − 1;
• [βn−1] ∈ ker(η#).

Since [βn−1] ∈ π1(H≥n, b0) ∩ ker(η#), we may factorize [βn−1] as
∏m

j=1([δj][
n]εj ), where
the loop δj has image in H≥n+1 and

∑m
j=1 εj = 0. Since βn−1 and βn =

∏m
j=1 δj are

homologous in H≥n, there is a loop γn ∈ Ω(H≥n, b0) such that [γn] ∈ [Gn, Gn] and
[βn−1] = [γn][βn]. Since [βn−1] ∈ ker(η#) and [γn] ∈ [Gn, Gn] ≤ [G, G] ≤ ker(η#), we
have [βn] ∈ ker(η#). This completes the induction.

The induction provides null sequences {βn} and {γn} such that [γn] ∈ [Gn, Gn] and
[α] = (

∏n
i=1[γi])[βn] for all n ∈ N. Notice that [

∏∞
n=1 γn]−1[α] is represented by each

loop in the null sequence {(∏∞i=n+1 γi)− · βn}n∈N. Thus, since π1(H, b0) canonically
injects into lim←−−n

Fn (or, more precisely, since H has the much weaker property of
being homotopically Hausdorff at b0 [7]), we have [

∏∞
n=1 γn]−1[α] = 1 in π1(H, b0).

We conclude that [α] = [
∏∞

n=1 γn], where γn has the form described in the statement
of the lemma. �

THEOREM 3.5. For any space X and x ∈ X, the following are equivalent:

(1) for every map f : (H, b0)→ (X, x), there exists a homomorphism g : π1(T, b0)→
π1(X, x) such that f# = g ◦ η#;

(2) X is transfinitely π1-commutative at x ∈ X;
(3) X is infinitely π1-commutative at x ∈ X.

PROOF. (1) ⇒ (2) Suppose that X satisfies (1), f : (H, b0)→ (X, x) is a map, and
φ : N→ N is a bijection. By assumption, there is a homomorphism g : π1(T, b0)→
π1(X, x) such that g ◦ η# = f#. Set αn = f ◦ 
n for n ∈ N and recall that 
τ =

∏
τ 
n. If

we identify π1(T, b0) with ZN in the natural way, then η#([
τ]) = (1, 1, 1, . . .). Since each

n appears exactly once in the concatenation

∏
τ 
φ(n), we also have η#([

∏
τ 
φ(n)]) =

(1, 1, 1, . . .). Therefore, [
∏

τ αn] = f#([
∏

τ 
n]) = g(η#([
∏

τ 
n])) = g(1, 1, 1, . . .) and,
similarly, we have [

∏
τ αφ(n)] = g(1, 1, 1, . . .). Thus, [

∏
τ αn] = [

∏
τ αφ(n)], proving

transfinite π1-commutativity.
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(2) ⇒ (3) Suppose that X is transfinitely π1-commutative at x ∈ X, αn ∈ Ω(X, x) is
a null sequence, and φ : N→ N is a bijection. Define maps f , g : H→ X so that
f ◦ 
2k−1 = αk, g ◦ 
2k−1 = αφ(k) for all k ∈ N, and f ◦ 
n = g ◦ 
n = cx otherwise.
By this choice, we have

∏
τ f ◦ 
n �

∏∞
k=1 αk and

∏
τ g ◦ 
n �

∏∞
k=1 αφ(k) by

collapsing constant subpaths. Choose any bijection ψ : N→ N satisfying ψ(2k − 1) =
2φ(k) − 1 for all k ∈ N. Then we have [

∏∞
k=1 αk] = [

∏
τ f ◦ 
n] = [

∏
τ f ◦ 
ψ(n)] =

[
∏

τ g ◦ 
n] = [
∏∞

k=1 αφ(k)], where the second equality follows from transfinite
π1-commutativity.

(3) ⇒ (1) Suppose that X is infinitely π1-commutative at x ∈ X and f : (H, b0)→
(X, x) is a map. To show that such a homomorphism g exists, it suffices to show that
f#(ker(η#)) = 1. Let 1 � [α] ∈ ker(η#). By Lemma 3.4, we may assume that

α ≡
∞∏

n=1

( kn∏
i=1

αn,i · βn,i · α−n,i · β
−
n,i

)
, (*)

where αn,i, βn,i ∈ Ω(H≥n, b0), kn ∈ N. Since this concatenation has the order type of
N, we may write α ≡∏∞m=1 δm, where the null sequence {δm} consists of the factors
αn,i, βn,i, α−n,i, and β−n,i appearing in the same order as the concatenation in (*). Let
φ : N→ N be the bijection defined so that for all j ∈ N, we have φ(4j − 3) = 4j − 3,
φ(4j − 2) = 4j − 1, φ(4j − 1) = 4j − 2, and φ(4j) = 4j. By infinite π1-commutativity, we
have [ f ◦ α] = [

∏∞
m=1 f ◦ δm] = [

∏∞
m=1 f ◦ δφ(m)]. The bijection φ was defined so that

∞∏
m=1

δφ(m) ≡
∞∏

n=1

( kn∏
i=1

αn,i · α−n,i · βn,i · β−n,i

)
.

The concatenation on the right is a reparameterization of an infinite concatenation of
consecutive inverse pairs and therefore is null-homotopic in H. Since [

∏∞
m=1 δφ(m)] = 1

in π1(H, b0),

f#([α]) =
[ ∞∏

m=1

f ◦ δφ(m)

]
= f#
([ ∞∏

m=1

δφ(m)

])
= 1

in π1(X, x). �

In Condition (1) of Theorem 3.5, note that if such a g exists, it is necessarily
unique. For the remainder of this section, we consider some immediate consequences
of Theorem 3.5. Note that if π1(X, x) is σ-commutative in the sense of Definition 3.1,
then we have f#(ker(η#)) = 1 for all maps f : (H, b0)→ (X, x). Hence, we have the
following corollary.

COROLLARY 3.6. If π1(X, x0) isσ-commutative, then X is transfinitely π1-commutative
at all of its points.

Applying, once again, the fact that η#([
τ]) = η#([
∞]), the next result follows
immediately.
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COROLLARY 3.7. If X has transfinite π1-commutativity at x ∈ X, then for every null
sequence αn ∈ Ω(X, x), we have [

∏
τ αn] = [

∏∞
n=1 αn].

For a compact nowhere-dense subset A ⊆ I, let I(A) denote the set of connected
components of [min(A), max(A)]\A with the natural linear ordering inherited from I.
For example, the setI(C) of components of the complement of the Cantor set C in I has
the order type of the rationals. Let θ : N→ I(C) denote the bijection corresponding to
the loop 
τ, that is, so that 
τ|θ(n) ≡ 
n for n ∈ N.

LEMMA 3.8. Suppose that X is transfinitely π1-commutative at x ∈ X, α, β ∈ Ω(X, x)
are nonconstant paths, and Kα ⊆ α−1(x) and Kβ ⊆ β−1(x) are closed nowhere-dense
sets each containing {0, 1}. If there is a bijection ψ : I(Kα)→ I(Kβ) such that for
every J ∈ I(Kα), we have α|J ≡ β|ψ(J), then [α] = [β] in π1(X, x).

PROOF. If I(Kα) is finite, then the conclusion follows from the fact that π1(X, x) is
abelian. Suppose that I(Kα) is infinite. Since I(C) is a dense countable order, there
exist order embeddings μ : I(Kα)→ I(C) and ν : I(Kβ)→ I(C). Find a bijection
Ψ : I(C)→ I(C), which extends ψ in the sense that Ψ ◦ μ = ν ◦ ψ. Define a bijection
φ : N→ N by φ = θ−1 ◦ Ψ ◦ θ. Hence, we have the following commutative diagram
of linear orders, where μ and ν are order preserving and all other morphisms are
set-bijections.

I(Kα)

ψ

μ I(C)

Ψ

N

φ

θ

I(Kβ) ν I(C) N
θ

Define null sequences γn, δn ∈ Ω(X, x) as follows. For n ∈ N, let γn ≡ α|J if J ∈
I(Kα) and θ(n) = μ(J) and let γn = cx be constant otherwise. We have

∏
τ γn � α by

collapsing constant loops. Similarly, let δm ≡ β|J if J ∈ I(Kβ) and θ(m) = ν(J) and let
δm = cx be constant otherwise. From this choice, we have

∏
τ δm � β by collapsing

constant loops.
Fix n ∈ N. If θ(n) = μ(J), then we have θ(φ(n)) = ν(ψ(J)) and thus γn ≡ α|J ≡

β|ψ(J) ≡ δφ(n). If θ(n) � Im(μ), then θ(φ(n)) � Im(μ) and we have γn = δφ(n) = cx. Hence,
γn ≡ δφ(n) for all n ∈ N. This gives

[α] =
[∏

τ

γn

]
=

[∏
τ

δφ(n)

]
=

[∏
τ

δn

]
= [β],

where the third equality is given by transfinite π1-commutativity. �

As a specific example, and analogue of infinite double series, the next corollary
applies Lemma 3.8 to infinite concatenations of order type ω2.

COROLLARY 3.9. If X has transfinite π1-commutativity at x ∈ X and αm,n ∈ Ω(X, x),
m, n ∈ N, is a doubly indexed sequence such that every neighborhood of x contains all
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but finitely many of the sets Im (αm,n), then

[ ∞∏
m=1

∞∏
n=1

αm,n

]
=

[ ∞∏
n=1

∞∏
m=1

αm,n

]

in π1(X, x).

COROLLARY 3.10. Let [(H, b0), (X, x)] denote the set of homotopy rel. basepoint
classes of based maps (H, b0)→ (X, x) equipped with the natural group structure from
the co-H-group structure of H. If X is transfinitely π1-commutative at x, then the two
functions [(H, b0), (X, x)]→ π1(X, x) given by [ f ] �→ [ f ◦ 
τ] and [ f ] �→ [ f ◦ 
∞] are
homomorphisms that agree with each other.

PROOF. For maps f , g ∈ (X, x)(H,b0), if we take f ◦ 
n = αn and g ◦ 
n = βn, then
verifying the two desired homomorphism equalities amounts to checking that

∏
τ αn ·∏

τ βn �
∏

τ(αn · βn) and
∏∞

n=1 αn ·
∏∞

n=1 βn �
∏∞

n=1(αn · βn). Each of these homo-
topies may be obtained by an appropriate application of Lemma 3.8. According to
Corollary 3.7, these homomorphisms are equal. �

In our analysis and anticipated applications, it is useful to know that the prop-
erty of being transfinitely π1-commutative at a given basepoint is invariant under
basepoint-preserving homotopy equivalence. Let tc(X) denote the set of points at
which X is transfinitely π1-commutative and ntc(X) = X\tc(X). A space X is, in a
sense, ‘wild’ at the points of ntc(X): either π1(X, x0) is nonabelian (in which case
ntc(X) = X) or π1(X, x0) is abelian and ntc(X) consists of those points at which a
nontrivial and noninfinitely commuting infinite product exists. Thus, it is the subspace
ntc(X), rather than tc(X), which gives rise to a homotopy invariant of X.

LEMMA 3.11. If a map f : X → Y induces an injection on π1, then f (ntc(X)) ⊆ ntc(Y).
Moreover, the homotopy type of ntc(X) is a homotopy invariant of X.

PROOF. Suppose that f (x) = y with x ∈ ntc(X). Then there exist a null sequence αn ∈
Ω(X, x) and a bijection φ : N→ N such that

∏
τ αn and

∏
τ αφ(n) are not homotopic in

X. Since f# : π1(X, x)→ π1(Y , y) is injective, f ◦ αn ∈ Ω(Y , y) is a null sequence, where∏
τ( f ◦ αn) and

∏
τ( f ◦ αφ(n)) are not homotopic in Y. Thus, y ∈ ntc(X), proving that

f (ntc(X)) ⊆ ntc(Y).
For the second statement, suppose that f : X → Y and g : Y → X are homotopy

inverses. Then f (ntc(X)) ⊆ ntc(Y) and g(ntc(Y)) ⊆ ntc(X) by the first paragraph.
Therefore, the restrictions f |ntc(X) : ntc(X)→ ntc(Y) and g|ntc(Y) : ntc(Y)→ ntc(X) are
well defined. Let H : X × I → X be a homotopy with H(x, 0) = x and H(x, 1) = g( f (x)).
Since the projection X × I → X and inclusions X × {t} → X × I all induce injections
on π1, we have ntc(X × I) = ntc(X) × I. Since H also induces an injection on π1, we
have H(ntc(X) × I) = H(ntc(X × I)) ⊆ ntc(X). Thus, H restricted to ntc(X) × I is a
homotopy in ntc(X) from idntc(X) to g|ntc(Y) ◦ f |ntc(X). The symmetric argument shows
that idntc(Y) is homotopic to f |ntc(X) ◦ g|ntc(Y). �
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COROLLARY 3.12. If f : (X, x)→ (Y , y) is a basepoint-relative homotopy equiva-
lence, then X is transfinitely π1-commutative at x if and only if Y is transfinitely
π1-commutative at y.

4. Examples of transfinite π1-commutativity

4.1. Cotorsion-free groups. Recall from Corollary 3.6 that if π1(X, x) is
σ-commutative in the sense of Definition 3.1, then X is transfinitely π1-commutative
at all of its points. We combine this observation with Eda and Kawamura’s
characterization of H1(H) in [15]. Recall that an abelian group A is cotorsion provided
that whenever A ≤ G with G abelian and G/A torsion-free, we have G = A ⊕ B for
some B ≤ G. The abelian group A is called cotorsion-free if it does not contain a
nontrivial cotorsion subgroup.

REMARK 4.1. The cotorsion-free group H1(T) � ZN may be naturally identified
with the first Čech homology group Ȟ1(H). It is shown in [15] that the kernel of
the induced homomorphism η∗ : H1(H)→ Ȟ1(H) is cotorsion and hence H1(H) �
Ȟ1(H) ⊕ ker(η∗). Applying the decomposition theory of infinite abelian groups (as in
[16]), it is known that ker(η∗) is abstractly (that is, not naturally) isomorphic to the
group ZN/ ⊕N Z.

Let hX : π1(X, x)→ H1(X) denote the Hurewicz homomorphism for a space X.

PROPOSITION 4.2. If π1(X, x) is a cotorsion-free abelian group for some x ∈ X, then
X is transfinitely π1-commutative at all of its points.

PROOF. If π1(X, x) is cotorsion-free, then π1(X, y) is cotorsion-free for all y ∈ X.
Hence, it suffices to show that X is transfinitely π1-commutative at the given
point x ∈ X. Let f : (H, b0)→ (X, x) be a map. Since π1(X, x) is abelian, there is a
unique homomorphism g′ : H1(H)→ π1(X, x) such that g′ ◦ hH = f#. Since ker(η∗) is
cotorsion and any homomorphic image of a cotorsion group is cotorsion, we must
have g′(ker(η∗)) = 0. Hence, there is a unique homomorphism g′′ : H1(H)/ ker(η∗)→
π1(X, x) such that if p : H1(H)→ H1(H)/ ker(η∗) is the projection, then g′′ ◦ p = g′.
Let k : H1(T)→ H1(H)/ ker(η∗) be the canonical isomorphism and set g = g′′ ◦ k ◦ hT.
From the naturality of the Hurewicz homomorphisms, it follows directly that g ◦ η# =

f#, verifying Condition (1) in Theorem 3.5. �

Since the Specker group is cotorsion-free, it follows that the infinite torus T is
transfinitely π1-commutative at all of its points.

4.2. Semilocally simply connected spaces. Here, we consider when transfinite
π1-commutativity holds trivially for topological reasons in a refinement of the
semilocally simply connected property.

DEFINITION 4.3 [2]. A space X is π1-finitary at x ∈ X if for every map f : (H, b0)→
(X, x), there exists N ∈ N such that f ◦ 
n is null-homotopic in X for all n ≥ N.
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The algebraic 1-wild set of X is the subspace aw(X) ⊆ X consisting of all x ∈ X at
which X is not π1-finitary at x. We say that X is π1-finitary if aw(X) = ∅.

Note that X is π1-finitary at x if and only if for every map f : (H, b0)→ (X, x), there
exists N such that f#(π1(H≥N , b0)) = 1. If X is semilocally simply connected at x, then
X is π1-finitary at x and the converse holds if X is first countable at x. Additionally, if
π1(X, x) is noncommutatively slender in the sense of [9], X is π1-finitary at all of its
points. Much like ntc(X), the homotopy type of aw(X) is a homotopy invariant of X;
we refer to [2] for more on aw(X).

PROPOSITION 4.4. If π1(X, x) is abelian, then ntc(X) ⊆ aw(X).

PROOF. Suppose that x � aw(X). It suffices to show that X is transfinitely
π1-commutative at x. Suppose that f : (H, b0)→ (X, x) is a map and [α] ∈ ker(η#).
By Lemma 3.4, we may assume that α ≡∏∞n=1 γn, where γn is a finite concatenation
of commutators in H≥n. Find N ∈ N such that f#(π1(H≥N , b0)) = 0. Then

f#([α]) =
( N−1∏

n=1

[ f ◦ γn]
)[

f ◦
∞∏

n=N

γn

]
=

N−1∏
n=1

[ f ◦ γn] = 0

since finite products of commutators in π1(X, x) are trivial. Thus, f#(ker(η#)) = 0. By
Theorem 3.5, x is transfinitely π1-commutative at x, that is, x � ntc(X). �

COROLLARY 4.5. If π1(X, x) is abelian and X is π1-finitary at all of its points, then X
is transfinitely π1-commutative at all of its points.

EXAMPLE 4.6. If X is any CW-complex or manifold with abelian, but non-cotorsion-
free, fundamental group, then X is transfinitely π1-commutative at all of its points.
In particular, one may construct a CW-complex X, with fundamental group iso-
morphic to ZN/ ⊕N Z, which is a torsion-free, cotorsion group. However, according
to Proposition 4.4, X is (trivially) transfinitely π1-commutative at all of its points
since no geometrically represented infinite π1-products exist. Hence, the converse
of Proposition 4.2 is far from being true. This example emphasizes the fact that
the transfinitely π1-commutative property is an invariant property of the infinitary
structure of fundamental groups inherited from the loop space and not the underlying
(finitary) group structure.

PROPOSITION 4.7. If {Xj | j ∈ J} is a set of spaces, then tc(
∏

j∈J Xj) =
∏

j∈J tc(Xj).

PROOF. We prove that
∏

j∈J Xj is transfinitely π1-commutative at (xj) ∈
∏

j∈J Xj if
and only if for every j ∈ J, Xj is transfinitely π1-commutative at xj ∈ Xj. First, if∏

j∈J Xj is transfinitely π1-commutative at J-tuple (xj), then for fixed j0 the embedding
Xj0 →

∏
j∈J Xj onto Xj0 ×

∏
j�j0{xj} induces an injection on π1. Lemma 3.11 then

implies that Xj is transfinitely π1-commutative at xj. For the converse, suppose
that Xj is transfinitely π1-commutative at xj for all j ∈ J and let pj :

∏
j∈J Xj → Xj

denote the projection map. Suppose that f : (H, b0)→ (
∏

j∈J Xj, (xj)) is a map.
By assumption, we have (pj ◦ f )#(ker(η#)) = 0 for all j ∈ J and so we have an
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induced homomorphism gj : π1(T, b0)→ π1(Xj, xj) such that gj ◦ η# = pj ◦ f . Let
φ : π1(

∏
j∈J Xj, (xj))→

∏
j∈J π1(Xj, xj) be the canonical isomorphism and (gj) :

π1(T, b0)→∏j∈J π1(Xj, xj) be the induced homomorphism to the product. Then
g = φ−1 ◦ (gj) : π1(T, b0)→ π1(

∏
j∈J Xj, (xj)) is the desired homomorphism satisfying

g ◦ η# = f and confirming Condition (1) in Theorem 3.5. �

EXAMPLE 4.8. If {Xj | j ∈ J} is any infinite set of CW-complexes or manifolds
with nontrivial, abelian fundamental groups, then

∏
j∈J Xj is not π1-finitary but is

transfinitely π1-commutative at all of its points. This includes spaces, such as the
infinite product

∏∞
n=1 RP

2 of projective planes, whose fundamental groups are not
torsion-free or, more generally, do not satisfy the cotorsion-freeness condition.

We also note that even though the transfinitely π1-commutative property is defined
‘at a point’, it is not a purely local property since it is possible for a space to fail to be
transfinitely π1-commutative at a point due to the global structure of the space.

EXAMPLE 4.9. Let T′ be a homeomorphic copy of T with basepoint b′0. Consider
the Peano continuum X = (T ∪ I ∪ T′)/∼, where 0 ∼ b0 and 1 ∼ b′0. Then π1(X, b0) is
isomorphic to the free product π1(T, b0) ∗ π1(T′, b′0) by the van Kampen theorem. Since
π1(X, b0) is not abelian, X is not transfinitely π1-commutative at any point. However,
the open sets U, V ⊆ X, which are the respective images of [0, 2/3) ∪ T and (1/3, 1] ∪
T
′ in X, cover X and have cotorsion-free fundamental groups isomorphic to ZN. Hence,

by Proposition 4.2, U and V are each transfinitely π1-commutative at all of their points.
Similar observations show that every point x ∈ X has a neighborhood basis consisting
of open sets, which are transfinitely π1-commutative at x.

4.3. Loop spaces. For n ∈ N and a based space (X, x), the relative mapping
space Ωn(X, x) = (X, x)(In,∂In) is transfinitely π1-commutative at the constant map
cx ∈ Ωn(X, x). To show this, we employ the k-dimensional Hawaiian earring Hk, which
we construct as the (k − 1)th reduced suspension Σk−1

H of H. It is known that for
k ≥ 2, Hk is (k − 1)-connected and the natural embedding ζ : Hk →

∏
m∈N Sk induces

an isomorphism on πk. Hence, πk(Hk, b0) � ZN [14].
Consider a map f : (H, b0)→ (Ωn(X, x), cx). By the loop-suspension adjunction,

there is a unique based map f̃ : Hn+1 → X such that f = Ωn( f̃ ) ◦ σ, where σ :
H→ Ωn(Hn+1, b0) is the unit map of the adjunction. The induced homomorphism
f# : π1(H, b0)→ π1(Ωn(X, x), cx) = πn(X, x) factors as in the diagram below, where
the bottom isomorphism is induced by the product of the suspension isomorphism
π1(S1)→ πn+1(Sn+1).

π1(H, b0)

f#

η#

σ#
πn+1(Hn+1, b0)

ζ#�

Ωn( f̃ )#

πn(X, x)

π1(T, b0) � πn+1(
∏

m∈N Sn+1, b0)
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Since f# factors through η#, Condition (1) of Theorem 3.5 is satisfied and we obtain
the following result.

THEOREM 4.10. For any based space (X, x) and n ∈ N, Ωn(X, x) is transfinitely
π1-commutative at the constant loop cx.

Theorem 4.10 suggests that there is no need to define a point-wise notion of
‘transfinitely πn-commutative’ for n ≥ 2 (for example, using the n-dimensional Hawai-
ian earring) since this theorem states that higher dimensional homotopy groups
are infinitely commutative at the basepoint. Additionally, using Theorem 4.10, one
can directly prove that the higher-dimensional analogue [(Hk, b0), (X, x)]→ πk(X, x),
[ f ] �→ [ f ◦ Σk−1
∞] of the function in Corollary 3.10 is a group homomorphism.
That this function is a homomorphism is precisely the main technical hurdle in the
proof of [21, Theorem 2.1], which verifies the splitting of the natural homomorphism
πk(
∨̃

n∈NXn)→∏n∈N πk(Xn) for any shrinking wedge
∨̃

n∈NXn.

5. Infinitary abelianization

In light of Theorem 3.5, we are motivated to give the following definition.

DEFINITION 5.1. The infinitary commutator subgroup of π1(X, x) at a subset A ⊆ X is
the subgroup Cτ(A) of π1(X, x) generated by all homotopy classes of loops of the form
β · (∏τ αn) · (∏τ αφ(n))− · β−, where β : I → X is a path from x to a ∈ A, αn ∈ Ω(X, a) is
a null sequence, and φ : N→ N is a bijection. The infinitary abelianization of π1(X, x)
at A is the quotient group HA(X) = π1(X, x)/Cτ(A). We write 〈α〉 for the coset Cτ(A)[α],
where α ∈ Ω(X, x).

• In the case A = ∅, we take Cτ(A) to be the ordinary commutator subgroup.
• In the case A = X, we will refer to Cτ(X) and H(X) = HX(X) respectively as the

infinitary commutator and infinitary abelianization of π1(X, x).

REMARK 5.2. If x ∈ A, then by considering constant paths β and applying the
observations made in Remark 3.3, we see that Cτ(A) contains the ordinary commutator
subgroup of π1(X, x). Applying a basepoint-change isomorphism allows one to make
the same conclusion when x � A. Hence, Cτ(A) is a normal subgroup of π1(X, x) and
the quotient HA(X) is abelian in the usual sense. Since HA(X) is naturally a quotient of
H1(X), we choose to omit reference to the basepoint in our notation. Additionally, we
have that X is transfinitely π1-commutative at every point of A if and only if Cτ(A) = 1.

REMARK 5.3. Since any infinite concatenation is homotopic to a transfinite concatena-
tion by inserting constant subpaths (recall the argument (2)⇒ (3) in Theorem 3.5), it
follows that loops of the form β · (∏∞n=1 αn) · (∏∞n=1 αφ(n))− · β−, where β(1) ∈ A, always
represent elements of Cτ(A).

The next three statements lay out elementary properties of the infinitary commu-
tator and abelianization constructions. Since the proofs are short and straightforward,
we omit them.
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PROPOSITION 5.4. Let (X, x) and (Y , y) be based spaces.

(1) Every basepoint-change isomorphism π1(X, x)→ π1(X, x′) maps Cτ(A) ≤
π1(X, x) onto the corresponding subgroup Cτ(A) ≤ π1(X, x′).

(2) If A ⊆ B ⊆ X, then Cτ(A) ≤ Cτ(B) in π1(X, x).
(3) If X is transfinitely π1-commutative at all points in a subset B ⊆ X, then Cτ(A) =

Cτ(A ∪ B). In particular, Cτ(∅) = Cτ(tc(X)) and Cτ(X) = Cτ(ntc(X)).
(4) If f : (X, x)→ (Y , y) is a based map, then f#(Cτ(A)) ≤ Cτ( f (A)).
(5) If f : (X, x)→ (Y , y) is a based map, then there is an induced homomorphism

f∗ : HA(X)→ H f (A)(Y), f∗(〈α〉) = 〈 f ◦ α〉.

PROPOSITION 5.5. If f : (X, x)→ (Y , y) is a continuous map and Y is transfinitely
π1-commutative at each point in B ⊆ Y, then there exists a unique homomorphism
F : H f −1(B)(X)→ π1(Y , y) such that F ◦ p = f#, where p : π1(X, x)→ H f −1(B)(X) is the
projection.

The next lemma is a direct consequence of the proof of Lemma 3.8.

LEMMA 5.6. Suppose that α, β ∈ Ω(X, x) are nonconstant paths and C ⊆ α−1(x)
and D ⊆ β−1(x) are closed nowhere-dense sets each containing {0, 1}. If ψ :
I(C)→ I(D) is a bijection such that for every J ∈ I(C), we have α|J ≡ β|ψ(J), then
[α][β]−1 ∈ Cτ({x}).

We observe how the subgroup Cτ(X) refines previously defined notions of infinite
commutators appearing in the literature by showing that Cτ(X) lies in all alternative
notions of ‘infinite commutator’ subgroups.

REMARK 5.7 (Comparison to Eda’s σ-commutator). Recall Definition 3.1 and con-
sider a generator of Cτ(X), namely an element

g =
[
β ·
(∏

τ

αn

)
·
(∏

τ

αφ(n)

)−
· β−
]
,

where β(1) = a ∈ X. Define f : (H, b0)→ (X, a) by f ◦ 
n = αn and note that
[
∏

τ 
n · (
∏

τ 
φ(n))−] ∈ ker(η#). Let ϕβ : π1(X, a)→ π1(X, x), ϕβ([γ]) = [β][γ][β]−1

be the basepoint-change isomorphism. Now ϕβ ◦ f# : π1(H, b0)→ π1(X, x) is a
homomorphism such that g ∈ ϕβ ◦ f#(ker(η#)) ≤ π1(X, x)σ

′
. We conclude that Cτ(X)

is a subgroup of Eda’s σ-commutator subgroup π1(X, x)σ
′
. This argument also may

be extended to show that Cτ(A) is precisely the subgroup of π1(X, x) generated by
all subgroups of the form ϕβ( f#(ker(η#))), where β(1) ∈ A and f : (H, b0)→ (X, β(1))
is a map.

EXAMPLE 5.8. If tc(X) = X and π1(X, x) is not cotorsion-free, then Cτ(X) = 1
and π1(X, x)σ

′
� 1. For instance, it is well known that there exists a surjection

Z
N/ ⊕N Z→A onto any finite abelian group A. Since ker(η∗ :H1(H)→ZN)� ZN/ ⊕N Z
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and H1(H) � ZN ⊕ ker(η∗), composition with the Hurewicz map gives the existence
of a homomorphism g : π1(H, b0)→ A such that g(ker(η#)) = A. Thus, if X = RP2

or if X is any other CW-complex with a finite abelian fundamental group, then
π1(X, x)σ

′
= π1(X, x), giving a trivial σ-abelianization. However, X is transfinitely

π1-commutative at all of its points by Proposition 4.4. Thus, π1(X, x0) � H(X).

The next proposition identifies an important case where the σ-commutator sub-
group agrees with Cτ(X).

PROPOSITION 5.9. If X is a one-dimensional or planar Peano continuum, then
Cτ(X) = π1(X, x)σ

′
.

PROOF. In light of Remark 5.7, it suffices to show that π1(X, x)σ
′ ≤ Cτ(X). Sup-

pose that g : π1(H, b0)→ π1(X, x) is a homomorphism. It suffices to show that
g(ker(η#)) ≤ Cτ(X). It is known that there exist a path β : I → X with β(0) = x and
a map f : (H, b0)→ (X, β(1)) such that g = ϕβ ◦ f#, where, as before, ϕβ denotes the
path-conjugation isomorphism (see [10] for the one-dimensional case and [6] for the
planar case). Then g(ker(η#)) = ϕβ ◦ f#(ker(η#)). Let a ∈ ker(η#). By Lemma 3.4, we
may write a = [

∏∞
m=1 δm], where δm ∈ Ω(H, b0) is null, δ4k−3 ≡ δ−4k−1, and δ4k−2 ≡ δ−4k.

Define infinite concatenations α1 = δ1 · δ2 · δ5 · δ6 · δ9 · δ10 · · · and α2 = δ3 · δ4 · δ7 ·
δ8 · δ11 · δ12 · · · and note that [α1 · α2] ∈ Cτ({b0}) by Lemma 5.6. Another application
of Lemma 5.6 gives [

∏∞
m=1 δm][α1 · α2]−1 ∈ Cτ({b0}). Thus, a ∈ Cτ({b0}). We conclude

that

g(a) = ϕβ ◦ f#(a) ∈ [β] f#(Cτ({b0}))[β]−1 ≤ Cτ({ f (b0)}) ≤ Cτ(X)

in π1(X, x). �

In [8], Corson defined the ‘strong abelianization’ of a fundamental group G =
π1(X, x) to be the quotient group G/[G, G], where [G, G] denotes the closure of the
commutator subgroup in G equipped with the natural quotient topology inherited from
Ω(X, x). We refer to [3] for the basic theory of the quotient topology on π1.

REMARK 5.10 (Comparison to Corson’s strong abelianization). We observe that Cτ(X)
is contained in the closure [G, G] of the commutator subgroup. Consider a generator
g of Cτ(X), a map f, and a conjugation homomorphism ϕβ as described in Remark
5.7. Since h = [

∏
τ 
n · (

∏
τ 
φ(n))−] ∈ ker(η#), Lemma 3.4 permits us to write h =

[
∏∞

n=1 γn], where γn is a commutator in H≥n. If hn = [
∏n

i=1 γi], then {hn} → h in
π1(H, b0). Therefore, h ∈ [π1(H, b0), π1(H, b0)]. Note that f# is continuous by functo-
riality of the quotient topology and ϕβ is continuous since G is a quasitopological
group. Therefore, {ϕβ ◦ f#(hn)} → ϕβ ◦ f#(h) = g in π1(X, x). Since homomorphisms
send commutators to commutators, ϕβ ◦ f#(hn) ∈ [G, G] for all n ∈ N and thus g ∈
[G, G]. We conclude that Cτ(X) ≤ [G, G].
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EXAMPLE 5.11. We construct a space Y which is semilocally simply connected at all
of its points and thus Cτ(Y) = [π1(Y , x), π1(Y , x)]. However, the space Y is constructed
so that

[π1(Y , x), π1(Y , x)] � [π1(Y , x), π1(Y , x)].

Let Da ⊆ R2 denote the circle with diameter [0, a] × {0} and let μa : [0, 1]→ X be
the origin-based loop traversing Da once in the counterclockwise direction. Consider
the compact metric space X = D1 ∪

⋃{D(n+1)/n | n ∈ N} with basepoint x = (0, 0). Let
A = D2 ∪ D3/2 and note that H = π1(A, x) is the free group on two generators. It is
well known that the commutator subgroup [H, H] is an infinitely generated free group.
Let {[α1], [α2], [α3], . . .} be a set of free generators for [H, H]. Let Y be the space
obtained by attaching a 2-cell to X along the attaching loops μ(n+1)/n · α−n for n ∈ N.
If G = π1(Y , x), then [μ(n+1)/n] ∈ [G, G] for all n ∈ N. Since {μ(n+1)/n} → μ1 uniformly,
we have {[μ(n+1)/n]} → [μ1] in the quotient topology and thus [μ1] ∈ [G, G]. Hence,
[G, G] contains nontrivial elements of G, which are neither commutators nor infinite
products of commutators. One can construct a locally path-connected separable metric
space with the same phenomenon embedded in the fundamental group by attaching a
countable sequence of arcs to X whose closure includes D1 so that X becomes a Peano
continuum, and requiring Y to inherit the quotient metric topology.

LEMMA 5.12. For subsets A ⊆ H,

Cτ(A) =

⎧⎪⎪⎨⎪⎪⎩ker(η#) if b0 ∈ A,
[π1(H, b0), π1(H, b0)] if b0 � A.

PROOF. First, suppose that b0 ∈ A. The inclusion Cτ(A) ≤ ker(η#) holds since any
loop β · (∏τ αn) · (∏τ αφ(n))− · β− representing a generator of Cτ(A) must have winding
number 0 around each circle of H. Let 1 � [α] ∈ ker(η#). By Lemma 3.4, we may
assume that α ≡∏∞m=1 δm, where δm ∈ Ω(H, b0) is null, δ4k−3 ≡ δ−4k−1, and δ4k−2 ≡ δ−4k.
Note that there is a bijection φ such that [

∏∞
m=1 δφ(m)] = 1. Therefore, [α] may be

represented as
[ ∞∏

m=1

δm

]
=

[ ∞∏
m=1

δm

][ ∞∏
m=1

δφ(m)

]−1
=

[( ∞∏
m=1

δm

)
·
( ∞∏

m=1

δφ(m)

)−]
.

According to Remark 5.3, the right-most representation indicates that [α] is an element
of Cτ({b0}). Since Cτ({b0}) ≤ Cτ(A), it follows that [α] ∈ Cτ(A). This verifies the
inclusion ker(η#) ≤ Cτ(A).

When b0 � A, we first note that [π1(H, b0), π1(H, b0)] ≤ Cτ(A) always holds. Con-
sider any loop γ = β · (∏τ αn) · (∏τ αφ(n))− · β− representing a generator of Cτ(A) and
where αn ∈ Ω(H, a). Since H is locally contractible at a, this loop is homotopic to a
path of the form β · (∏m

i=1 δi) · (
∏m

i=1 δψ(i))− · β− for some bijection ψ : {1, 2, . . . , m} →
{1, 2, . . . , m}. Such a loop is clearly null-homologous in H. Therefore, [γ] lies in the
commutator subgroup of π1(H, b0). �
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COROLLARY 5.13. For subsets A ⊆ H, we have the natural isomorphism

HA(H) �

⎧⎪⎪⎨⎪⎪⎩Ȟ1(H) if b0 ∈ A,
H1(H) if b0 � A.

LEMMA 5.14. Given a based space X and a set A ⊆ X, let Y be the space obtained by
attaching 2-cells to X along all loops of the form

∏
τ αn · (

∏
τ αφ(n))−, where {αn} is

a null sequence of loops based at a point a ∈ A and φ : N→ N is a bijection. Then
Y is transfinitely π1-commutative at each point in A ⊆ Y and the inclusion i : X → Y
induces an isomorphism HA(X)→ π1(Y , x).

PROOF. Suppose that f : (H, b0)→ (Y , a) is a map based at a ∈ A. Employing
Theorem 3.5, we show that f# factors through η#. Since f (H) is compact, it may
intersect at most finitely many of the attached 2-cells. Call these cells e1, e2, . . . , em.
Let dj be a closed disk in int (ej) so that Uj = ej\dj deformation retracts onto ∂ej for
all j. Then X′ = X ∪ U1 ∪ U2 ∪ · · · ∪ Um is an open neighborhood of a in Y equipped
with a deformation retraction r : X′ × [0, 1]→ X′ with r(x′, 0) = x′, r(x, t) = x for
x ∈ X, and r(x′, 1) ∈ X for x′ ∈ X′. Find N ∈ N such that f (H≥N) ⊆ X′. Define
r1 : X′ → X by r1(x′) = r(x′, 1) and f ′ : H→ X so that f ′|H≥N = r1 ◦ f |H≥N and, if
n ∈ {1, 2, . . . , N − 1}, let f ′ ◦ 
n be any based loop in X that is homotopic to f ◦ 
n

in Y. We have f � i ◦ f ′ rel. basepoint and thus f# = i# ◦ ( f ′)# as homomorphisms
π1(H, b0)→ π1(Y , a). Recall from Lemma 5.12 that Cτ({b0}) = ker(η#) in π1(H, b0)
and note that, by construction, we have Cτ(A) = ker(i#) in π1(X, a). Thus, f#(ker(η#)) =
i# ◦ ( f ′)#(Cτ({b0})) ≤ i#(Cτ(A)) = 0. The last statement of the lemma follows from the
fact that ker(i#) = Cτ(A) in π1(X, x). �

EXAMPLE 5.15 (Harmonic archipelago). The harmonic archipelago is the space HA
obtained from H by attaching 2-cells along the loops 
n · 
−n+1, n ∈ N. Let i : H→ HA
denote the inclusion. Note that HA is locally contractible at all points except for b0.
Thus, if b0 � A, then HA(HA) � H1(HA) (see [20] for more on this homology group).
If b0 ∈ A, we have Cτ({b0}) = Cτ(A) and only need to consider the case A = {b0}.
Recall from Example 5.12 that we may identify H{b0}(H) with ZN and the projection
π1(H, b0)→ H{b0}(H) with η#. Let Y be the space obtained from H by attaching 2-cells
along all of the loops

∏
τ αn · (

∏
τ αφ(n))− in H, where αn ∈ Ω(H, b0) is a null sequence

and φ : N→ N is a bijection. By Lemma 5.14, Y is transfinitely π1-commutative at
b0. Applying Example 5.12 and the second statement of Lemma 5.14 gives that the
inclusion H→ Y induces an isomorphism H{b0}(H)→ H{b0}(Y).

Let Z be the space obtained from Y by attaching 2-cells along the same set of loops

n · 
−n+1 in H. Since every loop in Ω(HA, b0) is homotopic rel. basepoint to a loop in
H and every map (H, b0)→ (HA, b0) is homotopic rel. basepoint to a map (H, b0)→
(H, b0) (using the same deformation-retraction argument used to prove Lemma 5.14),
we may apply Lemma 5.14 to see that Z is transfinitely π1-commutative at b0 and that
the inclusion HA→ Z induces an isomorphism H{b0}(HA)→ H{b0}(Z). Consider the
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following diagram of surjective homomorphisms, where the top square and bottom
horizontal map are induced by the natural inclusions. The bottom pair of vertical maps
are the projections, which are isomorphisms since both Y and Z are transfinitely π1
commutative at b0.

H{b0}(H) = ZN

�

H{b0}(HA)

�

H{b0}(Y) H{b0}(Z)

π1(Y , b0)

�

π1(Z, b0)

�

Since we may identify the middle and bottom horizontal maps and Z is obtained from Y
by attaching 2-cells along the loops 
n · 
−n+1, we have that H{b0}(Z) � ZN/N, where N is
the subgroup generated by {en − en+1 | n ∈ N}. We conclude that H{b0}(HA) is naturally
isomorphic to ZN/N; it is a straightforward exercise to show that ZN/N is abstractly
isomorphic to ZN/ ⊕N Z.

EXAMPLE 5.16. In [19], Karimov constructed a space X̂ which is the one-point
compactification of a countable CW-complex and for which every loop at the canonical
basepoint x̂ is homotopic to an infinite concatenation of commutator loops. Hence, the
group G = π1(X̂, x̂) is perfect in an infinitary sense, namely G = Cτ(X̂) holds in a strong
way. We remark that the space X̂ is nicely described in [1], where it is also shown that
H1(X̂) is uncountable.

THEOREM 5.17. If U, V , U ∩ V are path-connected open sets with X = U ∪ V and x0 ∈
U ∩ V, and A ⊆ U, B ⊆ V, then the following diagram induced by the inclusion maps
is a pushout square in the category of abelian groups.

HA∩B(U ∩ V) HA(U)

HB(V) HA∪B(X)

PROOF. Let G be an abelian group and consider homomorphisms h1 : HA(U)→ G
and h2 : HB(V)→ G making the bottom portion of the diagram below commute.
The vertical morphisms are the natural projection maps. The top portion of the
diagram is a pushout diagram by the van Kampen theorem. Hence, there is a unique
homomorphism f : π1(X, x0)→ G making the diagram commute in the obvious way.
Since the vertical morphisms are surjective, in order to show that f induces the desired
homomorphism f ′ : HA∪B(X)→ G, it suffices to show that f (Cτ(A ∪ B)) = 0.
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π1(U ∩ V , x0) π1(U, x0)

π1(V , x0) π1(X, x0)

f
HA∩B(U ∩ V) HA(U)

h1

HB(V)

h2

HA∪B(X)

f ′

G

Consider a loop γ = β · (∏τ αn) · (∏τ αφ(n))− · β−, where β : I → X is a path from x0
to a ∈ A ∪ B, αn ∈ Ω(X, a) is a null sequence, and φ : N→ N is a bijection. We prove
that f ([γ]) = 0 when a ∈ A. The proof when a ∈ B is identical. Find N ∈ N such that
Im (αn) ⊆ U for all n ≥ N.

For any k < N, we may write
∏

τ αn ≡ δ1 · αk · δ2 and
∏

τ αφ(n) ≡ δ3 · αk · δ4 for
subloops δ1, δ2, δ3, δ4. Then we have that [γ] is equal to

[β · δ1 · β−][β · αk · β−][β · δ2 · β−][β · δ−4 · β
−][β · α−k · β−][β · δ−3 · β

−]

by inserting inverse pairs. Since G is abelian, we may apply f to this product and
rearrange the factors to see that

f ([γ]) = f ([β · (δ1 · δ2) · (δ3 · δ4)− · β−]),

where the loop on the right is obtained from γ by deleting the appearances of αk and
α−k . In other words, we may delete αk from the null sequence {αn} in the definition of γ.
Applying this deletion procedure for all k ∈ {1, 2, . . . , N − 1}, we may replace {αn}with
a null sequence for which Im(αn) ⊆ U for all n ∈ N. If β does not have image in U, we
may write β ≡ β1 · β2, where β1(1) ∈ U ∩ V and Im(β2) ⊆ U. Let β3 : I → U ∩ V be a
path from x0 to β1(1). Now

[γ] = [β1 · β−3 ]
[
(β3 · β2) ·

∏
τ

αn ·
(∏

τ

αφ(n)

)−
· (β3 · β2)−

]
[β1 · β−3 ]−1.

Once again applying the fact that G is abelian, we may delete the conjugating element
[β1 · β−3 ] ∈ π1(X, x0) without changing f ([γ]). Thus, by replacing β with β3 · β2, we
may assume that Im(β) ⊆ U.

Since we may assume that β and each αn lies in U, it is clear that [γ] ∈ Cτ(A) ≤
π1(U, x0). Therefore, 〈γ〉 = 0 ∈ HA(U). Using the above diagram, it now follows that
f ([γ]) = 0. �
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EXAMPLE 5.18 (Double Hawaiian earring). Consider the space X consisting of two
copies of the Hawaiian earring adjoined by an arc. More precisely, take H′ to be a
homeomorphic copy of H with x ∈ H corresponding to x′ ∈ H′ and let X = H ∪ I ∪
H
′, where 0 ∼ b0 and 1 ∼ b′0. Take U and V to be the images of H ∪ [0, 2/3) and

(1/3, 1] ∪ H′ respectively and x0 = 1/2 to be the basepoint. Applying Theorem 5.17
and Corollary 5.13, we have natural isomorphisms

HA(X) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȟ1(H) ⊕ Ȟ1(H′) if {b0, b′0} ⊆ A,
Ȟ1(H) ⊕ H1(H′) if {b0, b′0} ∩ A = {b0},
H1(H) ⊕ Ȟ1(H′) if {b0, b′0} ∩ A = {b′0},
H1(H) ⊕ H1(H′) if {b0, b′0} ∩ A = ∅.

According to Lemma 5.14, one may attach 2-cells to X to create a space Y with abelian
fundamental group, which is transfinitely π1-commutative at either b0, b′0 or at both b0
and b′0.

It is well known that when the basepoints of spaces X and Y lie in aw(X) and
aw(Y), respectively, it is not necessarily true that H1(X ∨ Y) is isomorphic to H1(X) ⊕
H1(Y). We show that such an isomorphism does hold for our notion of transfinite
abelianization.

THEOREM 5.19. Suppose that x0 ∈ A ⊆ X, y0 ∈ B ⊆ Y, and X ∨ Y = (X, x0) ∨ (Y , y0) is
the one-point union with canonical basepoint w0. If A ∨ B is the image of A ∪ B in the
quotient, then there is a canonical isomorphism Ψ : HA∨B(X ∨ Y)→ HA(X) ⊕ HB(Y).

PROOF. The natural retractions r1 : X ∨ Y → X and r2 : X ∨ Y → Y induce the hori-
zontal homomorphisms ψ([α]) = ([r1 ◦ α], [r2 ◦ α]) and ψ(〈α〉) = (〈r1 ◦ α〉, 〈r2 ◦ α〉) in
the diagram below (here we are invoking Proposition 5.4(5)). The vertical maps are the
canonical projections.

π1(X ∨ Y , w0)

g

ψ
π1(X, x0) × π1(Y , y0)

g1×g2

HA∨B(X ∨ Y)
Ψ

HA(X) ⊕ HB(Y)

Since the top and vertical maps are surjective, so is Ψ. For injectivity, suppose that
α ∈ Ω(X ∨ Y , w0) is nonconstant and such that Ψ(g([α])) = (〈r1 ◦ α〉, 〈r2 ◦ α〉) = (0, 0)
in HA(X) ⊕ HB(Y). Then [r1 ◦ α] ∈ Cτ(A) ≤ π1(X, x0) and [r2 ◦ α] ∈ Cτ(B) ≤ π1(Y , y0).
It suffices to show that [α] ∈ Cτ(A ∨ B). By collapsing constant subpaths if necessary,
we may assume that the closed set α−1(w0) containing {0, 1} is nowhere dense.
As previously defined, I(α−1(x0)) is the ordered set of components of I\α−1(x0).
Consider the suborders OX = {K ∈ I(α−1(x0)) | α(K) ⊆ X} and OY = {K ∈ I(α−1(x0)) |
α(K) ⊆ Y}. Find a closed nowhere-dense subset CX of [0, 1/2] containing {0, 1/2}
such that I(CX) has the order type of OX . Similarly, find a closed nowhere-dense
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subset CY of [1/2, 1] containing {1/2, 1} such that I(CY ) has the order type of
OY . Fix order-preserving bijections ΦX : I(CX)→ OX and ΦY : I(CY )→ OY and
define a bijection Φ : I(α−1(x0))→ I(CX ∪ CY ) so that Φ(K) = ΦX(K) if K ∈ OX and
Φ(K) = ΦY (K) if K ∈ OY . Define α′ : I → X to be a loop so that if K ∈ I(CX ∪ CY ),
then α′|K ≡ α|Φ−1(K). Note that α and α′ satisfy the hypotheses of Lemma 5.6 and
thus [α][α′]−1 ∈ Cτ({w0}) ≤ Cτ(A ∨ B) in π1(X ∨ Y , w0). Thus, it suffices to show that
[α′] ∈ Cτ(A ∨ B).

By construction, we have α′ = α′1 · α
′
2, where α′i = ri · α′ � ri ◦ α for i ∈ {1, 2}.

Thus, [α′1] ∈ Cτ(A) and [α′2] ∈ Cτ(B). Hence, α′1 is homotopic in X to a finite product
of loops of the form β · (∏τ γn) · (∏τ γφ(n)) · β−, where β : I → X is a path from x0
to a point a ∈ A, γn ∈ Ω(X, a) is null, and φ : N→ N is a bijection. Similarly, α′2
is homotopic in Y to a finite product of loops of the same form in Y but where
β(1) = b ∈ B and γn ∈ Ω(Y , b). By concatenating these two finite products, we see
that α′ = α′1 · α

′
2 is homotopic in X ∨ Y to a finite product of loops of the form

β ·∏τ γn · (
∏

τ γφ(n)) · β−, where β(1) ∈ A ∨ B, γn ∈ Ω(X ∨ Y , β(1)) is null, and φ :
N→ N is a bijection. Thus, [α′] ∈ Cτ(A ∨ B). �

Since a compact subset of an infinite one-point union
∨

j Xj (with the weak
topology) must lie in the union of finitely many Xj, we have the following consequence.

COROLLARY 5.20. If
∨

j Xj is the one-point union of a family of based path-connected
spaces {(Xj, xj) | j ∈ J}, xj ∈ Aj ⊆ Xj for all j ∈ J, and A =

∨
j Aj, then

HA

(∨
j∈J

Xj

)
�
⊕

j∈J
HAj (Xj).

REMARK 5.21. It is also true that infinitary abelianization preserves finite products
in the sense that if A ⊆ X and B ⊆ Y , then there is a canonical isomorphism HA(X) ⊕
HB(Y) � HA×B(X × Y). We do not have immediate need of this result and leave the
proof as an exercise.

In our final example, we observe a nontrivial application of Theorem 5.19.

EXAMPLE 5.22 (Griffiths twin cone). Let CH = H × I/H × {1} be the cone over the
Hawaiian earring. Let x0 be the image of (b0, 0) in the quotient and take this to be
the basepoint of CH. The Griffiths twin cone is the one-point union G = CH ∨ CH
[17]. Since CH is simply connected, we have HA(CH, x0) = 0 for all A ⊆ CH. Although
H1(G) is uncountable and abstractly isomorphic to ZN/ ⊕N Z (as shown in [12]), we
have the following description of HA(G) by Theorem 5.19 and the fact that aw(G) =
{x0} contains only the wedge point:

HA(G) =

⎧⎪⎪⎨⎪⎪⎩0 if x0 ∈ A,
H1(G) if x0 � A.

More generally, we may conclude that for any spaces X and Y, we have HA(CX ∨ CY) =
0 when A contains the wedge point. It is known that H1(HA) � H1(G) and it remains
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a difficult open problem if the groups π1(HA, b0) and π1(G, x0) are isomorphic [20,
Problem 1.1]. We have shown that Cτ({b0}) is nontrivial and proper in π1(HA, b0)
while Cτ({x0}) = π1(G, x0). This distinction identifies a fundamental difference in
the infinitary algebraic structure of their fundamental groups. However, it does not
immediately distinguish the group-isomorphism types of π1(HA, b0) and π1(G, x0)
since it remains unclear if π1(HA, b0)σ

′
= π1(HA, b0).

COROLLARY 5.23. π1(G, x0)σ
′
= π1(G, x0).

REMARK 5.24. We conclude this paper by reminding the reader that the transfinite
commutator group Cτ(A) is the smallest subgroup of π1(X, x0) generated by geo-
metrically represented infinite products of commutators (based at the points of A).
However, Cτ(A) might not be closed under homotopy classes of infinite concatenations
of loop generators of the form β · (∏τ αn) · (∏τ αφ(n))− · β−, nor infinite concatenations
of such infinite concatenations, etc. This is the reason why one should not expect
an isomorphism H(

∨̃
nXn) �

∏
n∈N H(Xn) for a shrinking wedge

∨̃
nXn of an arbitrary

sequence of based path-connected spaces {(Xn, xn)}n∈N unless aw(Xn) ⊆ {xn} for all
n ∈ N. By employing the closure-operator framework of [4], one may effectively
introduce larger infinitary commutator subgroups so that such an isomorphism does
hold. In particular, one may recursively construct a growing transfinite sequence of
infinitary commutator subgroups (all containing Cτ(A)) as well as other ‘uniform’
notions of commutator subgroup, more closely aligned with Corson’s definition. We
plan to consider and compare such constructions in future research that is beyond the
scope of the current paper.
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