
TLP 4 (3): 239–287, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S147106840300187X Printed in the United Kingdom

239

XPath-logic and XPathLog: A
logic-programming style XML data

manipulation language

WOLFGANG MAY

Institut für Informatik, Universität Göttingen, Göttingen, Germany

(e-mail: may@informatik.uni-goettingen.de)

Abstract

We define XPathLog as a Datalog-style extension of XPath. XPathLog provides a clear,

declarative language for querying and manipulating XML whose perspectives are especially

in XML data integration. In our characterization, the formal semantics is defined wrt. an

edge-labeled graph-based model, which covers the XML data model. We give a complete,

logic-based characterization of XML data and the main language concept for XML, XPath.

XPath-Logic extends the XPath language with variable bindings and embeds it into first-order

logic. XPathLog is then the Horn fragment of XPath-Logic, providing a Datalog-style, rule-

based language for querying and manipulating XML data. The model-theoretic semantics of

XPath-Logic serves as the base of XPathLog as a logic-programming language, whereas also

an equivalent answer-set semantics for evaluating XPathLog queries is given. In contrast to

other approaches, the XPath syntax and semantics is also used for a declarative specification

how the database should be updated : when used in rule heads, XPath filters are interpreted

as specifications of elements and properties which should be added to the database.

KEYWORDS: XML, XPath, Logic Programming, Information Integration.

1 Introduction

Logic-based languages have proven useful in many areas since they allow for

small, declarative, and extendible programs. For the database area, Datalog has

been investigated for querying and rule-based data manipulation. Extending the

Datalog idea, more complex logic-based frameworks like F-Logic (Kifer and Lausen,

1989; Kifer et al., 1995), or the languages of the Tsimmis project (Garcia-Molina

et al., 1997; Abiteboul et al., 1997) have been successfully applied for knowledge

representation and data integration. The experiences with a powerful language like

F-Logic were the motivation to have a similar “native” language for the XML world

that is much simpler than F-Logic, and that is based on the standard XPath language.

As a result, we present XPathLog as an XPath-based Datalog-style language for

querying and manipulating XML data. By extending XPath with variable bindings

and providing a constructive semantics for XPath in rule reads, a declarative

XML data manipulation language is obtained. Since both XPath and rule-based

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

240 W. May

programming by using variable bindings are well-known, intuitive concepts, the

“effect” of the language is easy to understand on an intuitive basis. Additionally, the

well-known logic programming semantics provide concise global semantics of such

programs which coincide with the intuitive ideas. Queries and rules for manipulating

and restructuring the internal XML database can be expressed much easier than e.g.

in XQuery (XQuery, 2001) (where update functionality is still in a prototypical state).

Semistructured Data and XML. XML has been designed and accepted as the frame-

work for semi-structured data where it plays the same role as the relational model

for classical databases. The XML data model applies both to documents and

to databases: The SGML language was originally defined for documents in the

publishing area. On the other hand, the interest in research on semistructured data

in the 1990s1 (e.g. F-Logic (Kifer and Lausen, 1989; Kifer et al., 1995), GraphLog

(Consens and Mendelzon, 1990), UnQL (Buneman et al., 1996; Buneman et al., 2000),

Tsimmis (Garcia-Molina et al., 1997; Abiteboul et al., 1997) with the OEM data

model and the MSL, WSL, and Lorel languages, Strudel/StruQL (Fernandez et al.,

1997; Fernandez et al., 1998), and YAT/YATL (Cluet et al., 1999)) was motivated

by the database community, searching for a data model for data integration and a

data format for electronic data interchange. Here, also the combination of document-

oriented aspects with database aspects was an important motivation to go beyond

classical data models which then resulted in the design of XML.

The XML data model is a hierarchical model which defines an ordered tree with

attributes that can easily be interpreted as a document. The natural relationships

in documents are either (i) substructures, or (ii) references to other parts of the

document (where the term reference here means simply a cross-reference in a

document). The nested elements define a document structure whose leaves are the

text contents. Elements (i.e. the structuring components) are annotated by attributes

which do not belong to the document contents. Inside the tree, cross-references

(IDREF attributes) are allowed.

In contrast, for databases, a hierarchical structure is in general not intuitive. Here,

several kinds of relationships have to be represented, between substructures and pure

references. When using XML for a database-like application, these relationships

have to be represented by reference attributes. On the other hand, order is often not

relevant in databases.

Mainstream XML Languages. Specialized languages have been defined for XML

querying, e.g. XQL (Robie, 1999), XML-QL (Deutsch et al., 1999), then XPath

(XPath, 1999) developed from the experiences with XQL and XSL Patterns (and

XPointer) as an addressing language. XQuery (XQuery, 2001) extends XPath

with SQL-like constructs. XSLT (XSLT, 1999) is an XPath-based language for

transforming XML data. A proposal for extending XQuery with update constructs

(XUpdate) has been published in Tatarinov et al. (2001); a more detailed proposal

is described in Lehti (2001).

1 We list the approaches in the temporal order of their presentation.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 241

Other Approaches to XML. XML-GL (Ceri et al., 1999; Comai et al., 2001) continued

the idea of GraphLog for XML. Elog (Baumgartner et al., 2001a) is based on

Datalog and classical first-order logic, flattening XML into predicates. It is used as

an internal language in Lixto (Baumgartner et al., 2001b). Bry and Schaffert (2002)

present the Xcerpt language which regards XML trees as terms, similar to UnQL.

1.1 Comparison of design concepts

Amongst the existing languages for handling semistructured data and XML, there

are several facets for distinguishing them in terms of the concepts they use. A more

detailed comparison with individual languages can be found in section 6.

Data model. Semistructured data can be regarded as a general graph (OEM, UnQL,

Strudel, GraphLog, and F-Logic) or as a tree (YATL and XML). Moreover, node-

labeled graphs/trees (XML) or edge-labeled graphs (as in Strudel, UnQL, GraphLog,

and F-Logic) can be distinguished; for OEM both representations can be found. It is

easy to represent a node-labeled instance in a labeled model, whereas the other way

requires node replication. Also, ordered (e.g. XML) and unordered (e.g. in OEM,

F-Logic, and UnQL) tree/graph models are distinguished.

Access mechanism. Generally, there are two approaches for selecting items in a

semistructured data tree or graph:

• by matching patterns and templates (GraphLog, MSL/WSL, UnQL, YATL,

and later for XML-QL and XML-GL). In UnQL and Xcerpt, (bi)simulation

between semistructured data trees is used. If a simulation of a match pattern

with variables by the underlying database is found, the appropriate variable

bindings are returned and used for generating an answer tree.

• navigational access, like in object-oriented database languages (OQL), as done

in Lorel, StruQL, and F-Logic, and later in XPath and also in our XPathLog

approach. UnQL provides both patterns and a navigational syntax.

Functionality. There are different approaches to either generating an answer by

instantiating a generating pattern in the rule head according to the variable bindings

(UnQL, StruQL, and later XML-QL, XQuery and XML-GL), or manipulating the

underlying structure by adding information to the underlying database (GraphLog,

F-Logic and XUpdate).

Note that this distinction did not exist when considering classical rule-based

languages, e.g. Datalog for predicate logic. The facts derived in the rule head were

added to the database – either extensionally, or intensionally as view definitions –

without directly interfering with the already stored facts. Other rules of the program

could easily use both the original data and the derived data. For XML, a semantics

where rules generate separate structures is easy to define. In contrast, a semantics

where the rule heads interfere with the database contents has to take into account

that the evaluation of rules may violate the tree structure.

Underlying framework. Some of the languages are based on a kind of model-theoretic

semantics: UnQL and Xcerpt directly operate on tree-term structures, employing

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

242 W. May

and defining mechanisms like tree matching, term unification and (bi)simulation

unification. Elog is based on Datalog and classical first-order logic, flattening XML

data into predicates. F-Logic defines F-Structures that extend classical first-order

logic, and then applies logic programming mechanisms to such models. For the

other languages (Tsimmis, Strudel, XML-QL, XQuery, XUpdate), the semantics is

directly defined in terms of data structures.

Rule-based vs. logic programming. All languages discussed above are rule-based and

declarative, generating variable bindings by a matching/selection part in the “rule

body” and then using these bindings in the “rule head” for generating output or

updating the database. This rule-based nature is more or less explicit: F-Logic,

MSL/WSL (Tsimmis), Elog, and Xcerpt use the “:-” Prolog syntax, whereas UnQL,

Lorel, StruQL, XML-QL and XQuery/XUpdate cover their rule-like structure in

an SQL-like clause syntax. These clausal languages allow for a straightforward

extension with update constructs (as it has been done for Lorel and proposed with

XUpdate for XQuery). GraphLog and XML-GL use a graphical representation.

The first, “pure” group separates strictly between the selection part in the rule

body and generation/update part in the rule head, whereas UnQL, StruQL, XML-

QL and XQuery allow for nested selection-generation parts in the rule bodies.

The global semantics of these languages is influenced by their functionality,

distinguishing between query/transformation and query/update languages: UnQL,

Xcerpt, XML-QL, and XQuery generate (output) structures in their head which are

not feeded back into the input or internal database.

Only MSL/WSL, Elog, and F-Logic allow to for additions to the database or view

definitions (depending whether bottom-up or top-down semantics is considered),

and to use the derived facts in the selection/matching part of other rules. StruQL,

XML-QL, and XQuery overcome this restriction by nesting selection-generation

parts in the rule bodies. The traverse construct of UnQL (applying a subquery by

structural recursion to arbitrary depth) also comes near to local view definitions.

Note that these languages require regular path expressions to compute the transitive

closure of a binary relation (see Fernandez et al. (1997)). We consider the ability to

compute a transitive closure as an important feature for a language for handling

semistructured data (especially, for a “logic-programming” language, since that is

what makes the distinction between Datalog and the relational algebra/calculus).

The difference between rule-based transformation languages and logic programming

languages is mirrored by the fact that the semantics of UnQL, Xcerpt, XML-QL,

and XQuery is completely given by he semantics of their rules (qualifying them as

rule-based languages). In contrast, the global semantics of F-Logic and Elog also

requires the notions of the TP operator and of minimal or well-founded models

(qualifying them as logic programming languages). As a consequence, they require

both a model-theoretic semantics, and an answer semantics for queries.

Design principles for XPathLog. XPathLog follows a logic-based approach which has

been motivated by the experiences with F-Logic: XML instances are mapped to a

semantical structure for interpreting XPath-Logic formulas. XPath-Logic is based on

(i) first-order logic, and (ii) XPath expressions extended with variable bindings. The

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 243

Horn fragment of XPath-Logic, called XPathLog, provides a declarative, Datalog-

style logic-programming language for manipulation of XML documents.

Regarding the above design principles, XPathLog is positioned as follows:

• XPathLog is completely XPath-based (i.e. navigational access). Matching and

generation/update part are strictly distinguished.

An extended XPath syntax is used for querying (rule bodies) and gener-

ating/manipulating data (rule heads). The rule body serves for generating

variable bindings which are then used in the head for extending the current

XML database, thereby defining an update semantics for XPath expressions.

• XPathLog uses an edge-labeled graph model, which is advantageous when

defining several tree views of the internal database. The data model is partly

ordered like in XML: subelements are ordered, attributes are unordered.

• XPathLog is a logic-programming language according to the above char-

acterization. It works on an abstract semantical model which represents

an XML database supporting multiple overlapping XML trees. These X-

Structures together with the logic, called XPath-Logic, provide for a logical

characterization of XML data. XPathLog combines the intuitive “local”

semantics of addressing XML data by XPath with the appeal of the “global”

semantics of logic programming. As an update language, it is based on a

bottom-up semantics.

• In contrast to XML-QL, XQuery, and XSLT, the language does not use

additional constructs whose semantics has to be defined separately: the only

semantic prerequisite is the bottom-up evaluation strategy of Datalog or any

other logic programming language.

In this paper, we describe the data model, its logical foundation, the internal

semantics of queries, rules, and programs of XPathLog as a true logic programming

language for XML. Some aspects have been published in May (2002); May and

Behrends (2001) and with the LoPiX prototype in May (2001c). Here, we focus on

the theoretical issues of modeling XML and the semantics of a language for queries

and basic, elementary updates. A full report on XPathLog can be found in May

(2001a).

A possible application area for XPathLog is, for instance, the integration of XML

data from several sources, as done in the case study by May (2001b). Here, the

power of the combination of XPath expressions with additional variable bindings

allows for short and concise declarative and flexible rules. Both, queries and rules

for manipulating and restructuring the internal XML database can be expressed

much easier than, for example, in XQuery (where update functionality is still in a

prototypical state).

Structure of the paper. Section 2 defines X-Structures as semantical structures which

represent XML documents and presents XPath-Logic. The answer semantics of

XPathLog as an XML query language is investigated in section 3. Section 4 defines

the semantics of rule heads for generating and modifying XML data, and the

semantics and evaluation of XPathLog programs. The implementation in the LoPiX

(Logic Programming in XML) system and a case study are described in section 5.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

244 W. May

An analysis, a general discussion of related work, and the conclusion can be found

in section 6. Additional proofs can be found in Appendix Appendix A.

2 XPath-Logic: The model-theoretic framework

XPath-Logic and its Horn fragment, XPathLog, extend XPath (XPath, 1999) with

Datalog-style variable bindings. XPath-Logic provides the model-theoretic frame-

work for defining a global, logic-programming style semantics for XPathLog.

XPath (XPath, 1999) is the common language for addressing node sets in XML

documents. It is based on navigation through the XML tree by path expressions

of the form root/axisStep/.../axisStep where root specifies a starting point of the

expression (the root of a document, or a variable that is bound to a node in an XML

instance). Every axisStep is of the form axis::nodetest [qualifier]*. The axes define

navigation directions in an XML tree: Given an element e, the child axis contains

all its children and the attribute axis contains all its attributes. Analogously, parent,

ancestor, descendant, preceding-sibling and following-sibling axes are defined.

They enumerate the respective nodes by traversing the document tree starting

from e.

First, along the chosen axis, all elements which satisfy the nodetest (which

specifies the nodetype or an elementtype which nodes should be considered) are

selected; the resulting list is called the context. Then, the given qualifier(s) (also

called filters) are applied to each of the nodes (as the context node) for finer

selection. Inside qualifiers, relative location paths are allowed that implicitly start

at the context node. Starting with this (local) result set, the next step expression is

applied (for details, see (XPath, 1999) or (XQFS, 2001)). The most frequently used

axes are abbreviated as path/nodetest for path/child::nodetest, path/@nodetest

for path/attribute::nodetest, and path//nodetest for path/descendant-or-self::*/

child::nodetest.

Example 1 (XML, XPath, Result Sets)

Consider the of the Mondial database (May, 2001e) for illustrations; the DTD is

given as follows:

<!ELEMENT mondial (country+, organization+, . . .)>
<!ELEMENT country (name, population, encompassed+, border*, city+, . . .)>

<!ATTLIST country car code ID #REQUIRED capital IDREFS #REQUIRED
memberships IDREFS #IMPLIED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT encompassed EMPTY>

<!ATTLIST encompassed continent CDATA #REQUIRED
percentage CDATA #REQUIRED>

<!ELEMENT border EMPTY>

<!ATTLIST border country IDREF #REQUIRED length CDATA #REQUIRED>

<!ELEMENT city (name, population*)> <!ATTLIST city country IDREF #REQUIRED>

<!ELEMENT population (#PCDATA)> <!ATTLIST population year CDATA #IMPLIED>

<!ELEMENT organization (name, abbrev, members+)>
<!ATTLIST organization id ID #REQUIRED headq IDREF #IMPLIED>

<!ELEMENT abbrev (#PCDATA)>

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 245

<!ELEMENT members EMPTY>

<!ATTLIST members type CDATA #REQUIRED country IDREFS #REQUIRED>

An excerpt of the instance is given below (and depicted as a graph can be found in

Figure 1 when X-Structures are considered).

<country car code=“B” capital=“cty-Brussels” memberships=“org-eu org-nato . . . ”>

<name>Belgium</name> <population>10170241</population>

<encompassed continent=“Europe” percentage=“100”/>

<border country=“NL” length=“450”/> <border country=“D” length=“167”/>

...
<city id=“cty-Brussels” country=“B”> <name>Brussels</name>

<population year=“95”>951580</population>

</city>

...
</country>

<country car code=“D” capital=“cty-Berlin” memberships=“org-eu org-nato . . . ”>

...
</country>

<organization id=“org-eu” headq=“cty-Brussels”>

<name>European Union</name> <abbrev>EU</abbrev>

<members type=“member” country=“GR F E A D I B L . . . ”/>

<members type=“membership applicant” country=“AL CZ . . . ”/>

</organization>

<organization id=“org-nato” headq=“cty-Brussels” . . . >

...
</organization>

The XPath expression

//country[name]/city[population/text()>100000 and @zipcode]/name/text()

returns all names of cities such that the city belongs (i.e. is a subelement) to a country

where a name subelement exists, the city’s population is higher than 100,000, and

its zipcode is known.

XPath is only an addressing mechanism, not a full query language. It provides the

base for most XML query languages, which extend it with their special constructs

(e.g. functional style in XSLT, and SQL/OQL style (e.g. joins) in XQuery). In the

case of XPath-Logic and XPathLog, the extension feature are Prolog/Datalog style

variable bindings, joins, and rules.

Remark 1 (Relationship to W3C Documents)

We restrict the considerations to the core concepts of XPath as an addressing and

navigation formalism for XML data, i.e. stepwise navigation along the axes and step

qualifiers/filters. For the XPath syntax and non-formal semantics, we always refer to

the W3C XPath 2.0 Working Draft (XPath, 1999). Note that the syntax and semantics

of the core concepts of XPath is the same as in XQL (Robie, 1999), XPointer, early

drafts of XPath, XPath 1.0 (XPath, 1999), although both the presentation and the

naming have been changed several times.

A formal semantics of XPath has been given as a denotational semantics in

Wadler (1999) that already covers these central notions of XPath. Later, it has been

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

246 W. May

re-formulated first in the W3C XML Query Algebra (XMQ-A, 2001) and then in

the W3C Query Formal Semantics (XQFS, 2001), where a description in terms of

type inference rules and value inference rules is given. Note that since the early

implementations (e.g. xt (Clark, 1998)), the actual semantics of XSL Patterns/XPath

as its “behavior” has not changed. For comparing our approach with the formal

semantics of XPath, we refer to Wadler (1999), which gives a short and concise

definition of the central concepts that is best suited as a reference.

2.1 Syntax of XPath-Logic

Inspired by the derivation of F-Logic from first-order logic as a logic for dealing

with structures containing complex objects, XPath-Logic is defined for expressing

properties of XML structures. The main difference between XPath-Logic and first-

order logic is that XPath-Logic has an additional type of atomic formulas: reference

expressions which turn out to be a special kind of predicates with a built-in semantics.

The “basic” components of the language are XPath-Logic PathExpressions which

are syntactically derived from XPath’s PathExpressions by extending Path with

Prolog/Datalog style variable bindings.

Definition 1 (XPath-Logic: Syntax)

The set of basic formulas of an XPath-Logic language is defined as follows:

• every language contains an infinite set Var of variables.

• a specific XPath-Logic language is given by its signature Σ of element names,

attribute names, function names, constant symbols, and predicate names.
• XPath-Logic reference expressions over the above names extend the XPath

path expressions: The syntax of AxisSteps, axis::name[stepQualifier]∗, may be
extended to bind the selected nodes to variables by “-> Var”:

Step ::= Axis "::" NodeTest StepQualifiers

| Axis "::" NodeTest StepQualifiers "->" Var StepQualifiers

| Axis "::" Var StepQualifiers

| Axis "::" Var StepQualifiers "->" Var StepQualifiers

For an XPath-Logic reference expression, the underlying XPath expression is

obtained by removing the inserted variable binding constructs.

• An XPath-Logic predicate is a predicate over reference expressions.

• terms and atomic formulas are defined analogously to first-order logic.

• XPath-Logic compound formulas are built over predicates and reference ex-

pressions, using ∧, ∨, ¬, ∃, and ∀.
• XPath-Logic allows to have formulas in step qualifiers.

Note that XPath-Logic does not use the explicit dereference operator⇒ from XPath

2.0; instead implicit dereferencing of attributes in paths is supported.2

The goal of this paper is to introduce the Horn fragment from XPath-Logic, called

XPathLog as a Datalog-style XML query and manipulation language. The following

2 XPath-Logic has been designed before XPath 2.0 replaced XPath’s id(.) function by the dereferencing
operator. Furthermore, we use a data model that directly incorporates references.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 247

example gives some XPathLog queries that review the basic XPath constructs, and

illustrate the use of the additional variable binding syntax.

Example 2 (XPathLog: Introductory Queries)

The following examples are evaluated against the Mondial database.

Pure XPath expressions: pure XPath expressions (i.e. without variables) are inter-

preted as existential queries which return true if the result set is non-empty:

?- //country[name/text() = “Belgium”]//city/name/text().

true

since the country element which has a name subelement with the text contents

“Belgium” contains at least one city descendant with a name subelement with

non-empty text contents.

Output Result Set: The query “?- xpath→N” for any XPath expression xpath binds

N to all nodes belonging to the result set of xpath:

?- //country[name/text() = “Belgium”]//city/name/text()→N.

N/“Brussels”

N/“Antwerp”
...

respectively, for a result set consisting of elements, logical ids are returned:

?- //country[name/text() = “Belgium”]//city→C.

C/brussels

C/antwerp
...

Additional Variables: XPathLog allows to bind all nodes which are traversed by an

expression: The following expression returns all tuples (N1, C,N2) such that the

city with name N2 belongs to the country with name N1 and car code C:

?- //country[name/text()→N1 and @car code→C]//city/name/text()→N2.

N2/“Brussels” C/“B” N1/“Belgium”

N2/“Antwerp” C/“B” N1/“Belgium”
...

N2/“Berlin” C/“D” N1/“Germany”
...

Dereferencing IDREF Attributes: For every organization, give the name of city

where the headquarter is located and all names and types of members:

?- //organization[name/text()→N and abbrev/text()→A and

@headq/name/text()→SN]

/members[@type→MT]/@country/name/text()→MN.

One element of the result set is, for example,

N/“. . . ” A/“EU” SN/“Brussels” MT/“member” MN/“Belgium”

Schema Querying: The use of variables at name positions allows for schema query-

ing, e.g. to give all names of subelements of elements of type city:

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

248 W. May

?- //city/ SubElName .

SubElName/name

SubElName/population
...

Navigation Variables: Search for all things that have the name “Monaco”. More

explicitly, give the element type of all elements that have a name subelement with

the text contents “Monaco”:

?- // Type →X[name/text()→“Monaco”].

Type/country X/country-monaco

Type/city X/city-monaco

Closed XPath-Logic formulas can e.g. be used for expressing integrity constraints.

Example 3 (Integrity Constraints)

There are some application-specific integrity constraints on the Mondial database:

Range restrictions: The text contents of population elements and the value of area

attributes must be a non-negative number:

∀ X: ((//population/text()→X or //@area→X) � X � 0).

The sum of percentages of ethnic groups in a country is at most 100%:

∀ C: (//country→C � sum{N [C]; C/ethnicgroups/@percentage→N} � 100).

Bidirectional relationships: The membership of countries in organizations is repres-

ented bidirectionally:

∀ C,O: (//country→C[@memberships→O] ↔
∃ T: //organization→O/members[@type→T and @country→C]).

Other conditions: The country attribute of border subelements of country elements

must reference a country which is encompassed by the same continent:

∀ C,C2: (//country→C/border[@country→C2] �

(//country→C2 and ∃ Cont: (C/encompassed/@continent→Cont and

C2/encompassed/@continent→Cont))).

2.2 XML instances as semantical structures

Next, we need a basis for a model-theoretic semantics of XPath-Logic. The informa-

tion that is carried by an XML instance is abstractly defined in the XML Information

Set specification (XMLInf, 1999). It can be represented in different ways (e.g. as

the human-readable ASCII-based notation, or by using the DOM (DOM-W3C,

1998) that provides an abstract datatype for implementations. There are approaches

that regard XML trees as database items where the languages operate on (UnQL,

Xcerpt). In our approach, the atomic items are the edges of a graph (than can be an

XML tree, but that can also represent overlapping tree views on an internal graph-

like database), called XTreeGraph. In contrast to the DOM model and the XML

Query Data Model (XMQ-D, 2001) which use a node-labeled tree (i.e. the element

and attribute names are associated with the nodes), the XTreeGraph is an edge-

labeled model. Using an edge-labeled model proves useful for data manipulation and

integration (see (May and Behrends, 2001)). Recall that XML-QL (Deutsch et al.,

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 249

1999) also uses an edge-labeled graph, which especially defines the same handling

of text contents as ours; influenced by the experiences with the Strudel/StruQL

(Fernandez et al., 1998) project for data integration.

Formally, the XTreeGraph is represented by an X-Structure (that interprets a

signature consisting of element and attribute names, similar to a first order structure).

The advantage of that approach is that it allows for manipulating an internal

database by adding edges to the graph. Thus, XPathLog is not only a query language,

but also a manipulation language. Its rule heads do not necessarily construct new

XML trees/terms, but can update the X-Structure. As a prerequisite for mapping

XML instances to X-Structures, some notation for handling lists is needed:

Notation 1 (Lists)

Throughout this work, the following usual notation is used:

• For two sets A and B, the set of mappings from A to B is denoted by BA.

• A list over a domain D is a mapping from IN to D. Thus, the set of lists over

D is denoted by DIN.

• the empty list is denoted by ε; a unary list containing only the element x is

denoted by (x); list concatenation as an operator is denoted by ◦.
• set(expr1(x1, . . . , xn) | expr2(x1, . . . , xn)) stands for

{expr1(x1, . . . , xn) | expr2(x1, . . . , xn)}

(i.e. the set of all expr1(x1, . . . , xn) such that the condition expr2(x1, . . . , xn)

holds). In the following, sets are sometimes used as lists exploiting the fact

that a set can be seen as a list by an arbitrary enumeration.

• In a similar way, a list can be constructed by enumerating its elements. For

a list � = (i1, i2, . . .), listi∈�(expr1(i) | expr2(i)) is the list of all expr1(ij) where

expr2(ij) holds. Similar to list, concati∈I (expr1(i) | expr2(i)) does the same if

expr1(i) is already a list.

• For a finite list � = (x1, . . . , xn), reverse(�) = (xn, . . . , x1).

• For a list �, �[i, j] denotes the sublist that consists of the ith to jth elements,

• For a list � of pairs i.e. � = ((x1, y1), (x2, y2), . . .), � ↓1 denotes the projection of

the list to the first component of the list elements, i.e. � ↓1:= (x1, x2, . . .).

X-Structures. When representing XML instances as X-Structures, (i) their ele-

ments/subelement structure, and (ii) the elements’ attributes have to be represented.

The universe consists of the element nodes of the XML instance and the literals

used as attribute values and text contents. Element nodes have properties, defined

by (i) subelements (which are ordered) and (ii) attributes (which are unordered).

Multivalued attributes (NMTOKENS and IDREFS) are silently split, and reference

attributes are silently resolved. Additionally, X-Structures support named constants

and predicates as known from first-order logic.

Each XML instance is represented as a structure with a universe U over a signature

Σ = (ΣN,ΣF ,ΣC,ΣP) which consists of

• ΣN: element names and attribute names,

• ΣF : names of XML-built-in functions,

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

250 W. May

• ΣC: constant symbols, denoting elements in the XML instance (e.g.

germany, interpreted as the element addressed by /mondial/country[name=

“Germany”]).

• ΣP : predicates (with arity).

• Additionally, a basic set of literal constants is assumed.

An X-Structure contains only the basic facts about the XML tree, i.e. the child

and attribute relationships (similar to the DOM). Note that our approach which

associates the order with the children of elements, differs from, for instance, the

DOM and XML-QL approaches where a global order of all elements is assumed.

Definition 2 (X-Structure)

An X-Structure over a given signature Σ is a tuple X = (V,L,N,I,E,A)where the

universe U consists of three setsV,L, andN:V is a set of nodes (from the graph

point of view, vertices), identified by internal names, L is a set of literals (integers,

floats, strings),N is the set of names (e.g. as occurring in node tests). Names may be

further distinguished intoNE, containing the element names (and a special element

text() for handling text children), and NA containing the attribute names.

• I is a (partial) mapping, which interprets the signature: IE : ΣN→NE and

IA : ΣN→NA interpret the names in ΣN by element and attribute names.

IC : ΣC→V interprets the constant symbols in ΣC by nodes in V, and

IF :V × ΣF × (V∪L∪N)∗ →V∪L∪N represents the interpretation of

built-in functions (as defined in XPQOF (2001)). Finally, IP : ΣP × (V∪L∪
N)∗ → {true, false} represents the interpretation of predicates.

• E is a (partial) mapping E :V× IN×NE→V∪L (subelement relationship

and text contents; from the graph point of view, an ordered set of edges).

• A is a (partial) mapping A :V×NA→ 2V ∪ 2L (attribute values). XML

attribute nodes do not belong to V, but their literal values belong to L. For

reference attributes (IDREF), the “results” are not the ID-strings, but the target

nodes in V themselves.

Note that E andA are not direct interpretations of Σ, but mappings that “interprete”

N. Σ is mapped toN before being interpreted by I, making attribute and element

names full citizens of the language (e.g. as in F-Logic).

There is a canonical mapping from the set of XML instances to the set of X-

Structures. The canonical X-Structure to an XML instance is a single XML tree

(cf. Figure 1), covering the DOM model.

Example 4

Figure 1 shows the X-Structure of the running example given in Example 1.

The elements of V (representing the element nodes) do not carry information in

themselves, they are only of interest as anonymous entities (similar to object ids)

which have certain properties that are given by E, A, and I. In the following,

mnemonic ids (e.g. germany) are used for elements ofV. Also, ΣN is identified with

NE and NA, omitting IE and IA.

In full generality, an X-Structure can also contain subelement edges and reference

edges which are not conforming with the XML tree model, but which are crucial

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 251

mondial

belgium
@car code=“B”
@memberships=•
@memberships=•
@capital=•

germany
@car code=“D”
@memberships=•
@memberships=•
@capital=...

b-name b-pop brussels @country=•
@id=“city-brussels”

“Belgium” 10170241 brus-name brus-pop @year=1995

“Brussels” 951580

country country

name population

text() text()

city

name
population

text() text()

eu @headq=•
@id=“org-eu”

nato @headq=•
@id=“org-nato”

eu-name eu-abbrev eu-mem1 @type=“member”

@country=•
@country=•

eu-mem2 @type=“mem.appl.”

@country=•

“Europ.Union” “EU”

organ
ization

organization

name

abbrev member member

text() text()

Fig. 1. Example X-Structure.

for data integration: An element may be a subelement of several other elements (as

we show in section 4.2 and Figure 3), even with different names of the subelement

relationship (“overlapping trees” – thus, the term XTreeGraph (May and Behrends,

2001) for the abstract data model).

In the following, X-Structures serve for defining a semantics for XPath-Logic,

using the same terms as for XPath.

Definition 3 (Basic Result Sets: Axes)

For every node x in an X-Structure X and every axis a as defined in XPath,

AX(a, x) ∈ ((V∪L)×N)IN

is the list of pairs (value, name) generated by axis a with x as context node (do not

confuse AX with A which denotes the interpretation of attributes in X).

AX(child, x) := listi∈IN((y, name) | E(x, i, name) = y)

AX(attribute, x) := list((y, name) | y ∈ A(x, name)) by some enumeration.

For the other axes, AX(a, x) is derived according to the XPath specification:

AX(parent, x) := set((p,I(p, name, ())) | x ∈ AX(child, p) ↓1)
AX(preceding-sibling, x) :=

concatp∈AX(parent,x)↓1 (reverse(AX(child, p)[1, i–1]) | x =AX(child, p)[i])

AX(following-sibling, x) :=

concatp∈AX(parent,x)↓1 (AX(child, p)[i+1, last()] | x =AX(child, p)[i])

AX(ancestor, x) := concat(p,n)∈AX(parent,x)(((p, n)) ◦ AX(ancestor, p))

AX(descendant, x) := concat(c,n)∈AX(child,x)((c, n) ◦ AX(descendant, c))

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

252 W. May

Remark 2

Recall that in the node-labeled XML/XPath data model, the semantics of expres-

sions is always a list or a set of labeled nodes. In contrast, AX does not return

a list of (labeled) nodes, but a list of pairs (node/literal, name), according to the

edge-labeled data model underlying our approach.

2.3 Semantics

The semantics of XPath-Logic is defined similar to that of first-order logic by

induction over the structure of expressions and formulas. The main task here is

to define the semantics of reference expressions, handling navigation, order, and

filtering. A reference expression simultaneously acts as a term (it has a result (list)

and can be compared to terms) and as a predicate (when used in a step qualifier).

The basic result lists are provided by AX(axis, v) for every node v of X; recall

thatAX(attribute, x) contains literals in case of non-reference attributes, and element

nodes in case of reference attributes.

2.3.1 Semantics of expressions

As for first-order logic, a variable assignment β : Var→U maps variables to elements

of the universe U (nodes, literals, and names) of the underlying X-Structure. For a

variable assignment β, a variable x, and d ∈ U, the modified variable assignment βd
x

is identical with β except that it assigns d to the variable x:

βd
x : Var→ U :

{
y �→ β(y) if y �= x,

x �→ d otherwise.

For β as above, and a variable x, β \ {x} denotes β without the mapping for x.

Expressions are decomposed into their axis steps. Every step consists of choosing

an axis, preselecting nodes by a node test, and filtering the result by (i) “normal”

predicates and (ii) XPath context functions (e.g. position() and last()) which use the

order of the intermediate result list for selecting a certain element by its index.

Definition 4 (Semantics of XPath-Logic expressions)

The semantics is defined by operators S and Q which are derived from the formal

semantics given in Wadler (1999).

• SX : Reference Expressions→ (V∪L∪N)IN, and

(Axes×Reference Expressions×V×Var Assignments)→ (V∪L∪N)IN

evaluates reference expressions wrt. an axis, a context node, and a variable

assignment and returns a result list. In the second case, we use any to denote

that the actual value of the node does not matter, and we use Sany to denote

that the actual value of axis does not matter.

• QX: (Predicate Expressions×V× Var Assignments)→ Boolean

evaluates step qualifiers wrt. a context node and a variable assignment.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 253

Reference expressions are evaluated by S:

1. For closed expressions, SX(refExpr) =Sany
X (refExpr , any, ∅).

2. Reference expressions are translated into path expressions wrt. a start node:

• rooted paths: Sany
X (/p, any, β) =Sany

X (p, root, β) where root is as follows:

∗ the unique root node if only one XML document is currently stored,

∗ the root node that has been used in the outer expression, if /p occurs

in an expression of the form path[/p].

• rooted paths in other documents:

Sany
X (document(“http://. . . ”)/p, any, β) =Sany

X (p, root, β)

where root is the root node of the document stored at http://. . . .

• entry points specified by a constant c: Sany
X (c/p, any, β) =Sany

X (p,IC (c), β)

(this is mainly of interest when multiple documents are used and constants

are associated with their roots or some nodes, see section 4.2).

• entry points specified by variables v∈Var:Sany
X (v/p, any, β)=Sany

X (p, β(v), β)

3. Axis steps: Sany
X (axis :: pattern, x, β) =Saxis

X (pattern, x, β)

where pattern is of the form nodetest remainder where remainder is a sequence

of step qualifiers and variable bindings. These are evaluated left to right, always

applying the rightmost “operation” (step qualifier or variable) to the result of

the left part:

4. Node test: Sa
X(name, x, β) = list(v,n)∈AX(a,x)(v | n = name)

Sa
X(node(), x, β) = list(v,n)∈AX(a,x)(v | v ∈ V)

Sa
X(text(), x, β) = list(v,n)∈AX(a,x)(v | v ∈ L)

Sa
X(N, x, β) = list(v,n)∈AX(a,x)(v | n = β(N))

5. Step with variable binding:

Sa
X(pattern→ V , x, β) =

{
(β(V)) if (β(V)) ∈ Sa

X(pattern, x, β)

ε otherwise.

6. Step qualifiers:

Sa
X(pattern[stepQ], x, β) = listy∈Sa

X(pattern,x,β)(y | QX(stepQ, y, β
k,n

Pos,Size))

where L1 :=Sa
X(pattern, x, β) and n := size(L1), and for every y, let j the index

of y in L1, k := j if a is a forward axis, and k := n+1– j if a is a backward axis

(cf. (Wadler, 1999)). Pos and Size are only used if the step qualifier contains a

context function.

7. Path: Sa
X(p1/p2, x, β) = concaty∈Sa

X(p1 ,x,β)(Sany
X (p2, y, β))

Step Qualifiers are evaluated by Q:

8. Reference expressions have an existential semantics in step qualifiers:

QX(refExpr , y, β) :⇔ Sany
X (refExpr , y, β) �= ∅

9. Predicates (including comparison predicates): The semantics of predicates in

XPath is element-oriented : p(refExpr,term) evaluates to true if at least one pair

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

254 W. May

taken from the result sets of refExpr and term satisfies the predicate p (either

defined in IP , or a built-in predicate of XPath (XPQOF, 2001)):

QX(pred(expr1, . . . , exprn), y, β) :⇔
there are x1 ∈ Sany

X (expr1, y, β), . . . , xn ∈ Sany
X (exprn, y, β)

such that (x1, . . . , xn) ∈ IP (pred)

10. Boolean Connectives and Quantification are defined as usual.

Evaluation of terms.

11. Constants c ∈ ΣC: Sa
X(c, x, β) = IC(c). For literals, Sa

X(lit, x, β) = lit.

12. Variables: Sa
X(var, x, β) = β(var).

13. Functions and arithmetics are also defined element-wise:

Sa
X(f(expr1, . . . , exprn), x, β) =

{IF (β(x), f, x1, . . . , xn) | x1 ∈ Sany
X (expr1, x, β), . . . , xn ∈ Sany

X (exprn, x, β)}
14. Context-related functions use the extension of variable bindings by pseudo-

variables Size and Pos in rule (6):

Sany
X (position(), x, β) = β(Pos) and Sany

X (last(), x, β) = β(Size) .

The following theorem states the equivalence of our semantics with that given in

Wadler (1999), which is in turn equivalent to the one defined by the W3C for XPath

in XQFS (2001).

Theorem 1 (Correctness of S and Q wrt. XPath)

For XPath reference expressions without splitting NMTOKENS attributes, the semantics

coincides with the one given in Wadler (1999) (which already covers all core

constructs of XPath as an addressing formalism): For every XPath expression

expr,

SX(expr) =S[[expr]](x)

(for arbitrary x) where S[[expr]] is as defined in (Wadler, 1999).

Note that S[[expr]] defines only a result set that is implicitly ordered wrt.

document order. Our semantics coincides with the document order as long as no

dereferencing is used.

The proof uses the following Lemma which contains the structural induction (for

proofs, see Appendix A).

Lemma 2 (Correctness of S and Q wrt. XPath: Structural Induction)

XPath-Logic reference expressions correspond to XPath as follows:

1. For absolute expressions (i.e. expr = /expr′, and no free variables):

Sany
X (expr, any, ∅) =S[[expr]](x) for arbitrary x.

2. For expressions, for all β: Sany
X (expr, v, β) =S[[expr]](v).

3. For step qualifiers, for all β: QX(stepQ , v, β
k,n
Pos,Size) ⇔ Q[[stepQ]](v, k, n).

4. For arithmetic expressions and built-in functions, for all β:

Sany
X

(
expr, v, β

k,n
Pos,Size

)
= E[[expr]](v, k, n).

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 255

where Q[[expr]], S[[expr]], and E[[expr]] are as defined in Wadler (1999). Since

XPath expressions are variable-free, β is empty except handling the pseudo variables

Size and Pos (which are often also empty).

The above behavior deviates from XPath for special kinds of attributes: When

navigating along reference attributes, the result is not in document order, but in

the same order as the referencing elements were. Additionally, NMTOKENS that are

considered as atomic in XPath, are split in XPath-Logic.

2.3.2 Semantics of formulas

Definition 5 (Semantics of XPath-Logic Formulas)

Formulas are interpreted according to the usual first-order semantics

|= ⊆ (X-Structures× Var Assignments× Formulas)

15. Reference Expressions: The semantics of reference expressions corresponds to

a predicate in first-order logic, defining a purely existential semantics:

(X, β) |= refExpr :⇔ (SX(refExpr , β)) �= ∅

16. predicates and boolean connectives: same as in first-order logic.

The above definitions associate a truth value semantics with XPath-Logic formulas.

The |= relationcan be used for expressing integrity constraints on XML documents

(see Example 3) and even sets of documents, and for reasoning on X-Structures.

In contrast, when defining XPathLog as a data manipulation language in the next

section, a completely different formalization of the semantics is given: there, as for

Datalog queries, the answer substitutions for a formula containing free variables

have to be computed.

2.4 Annotated literals

The XML data model distinguishes between elements and their text contents.

Nevertheless, in several situations, elements containing text contents are expected to

act as numbers or strings:

Example 5 (Annotated Literals)

Consider again the Mondial XML instance. The XPath queries

//country[population > 5000000]/name/text() and

//country[population/text() > 5000000]/name/text()

are equivalent and return “Belgium” in their result set. In the first query, the element
<population>10170241</population> is implicitly casted into its literal value.

What happens here is not evident in XML/DTD environments. A corresponding

XML Schema instance would show that the complexType population is derived from

a simple type for integers. The idea here is that an element with a text contents

adds structure to a simple type by allowing subelements and attributes. Thus, text

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

256 W. May

elements with attributes behave as annotated literals:

• comparisons, arithmetics, and (optionally) output use the literal value,

• navigation expressions use the element node, and

• in variable bindings, the variable is bound to the element, but it acts as

described above when the variable is used, for instance, in a comparison.

3 XPathLog: The Horn fragment of XPath-Logic

Similar to the case of Datalog which is the function-free Horn fragment of first-order

predicate logic, XPathLog is a logic programming language based on XPath-Logic.

The evaluation of a query ?- L1, . . . , Ln results in a set of variable bindings (of the

free variables of the query) to elements of the universe. The semantics of XPathLog

programs (i.e. the semantics of the evaluation of a set of XPathLog rules as a logic

program) is then defined in section 4 by combining the answer semantics with the

model-theoretic semantics defined in the preceding section.

Definition 6 (XPathLog)

Atoms are the basic components of XPathLog rules:

• an XPathLog atom is either an XPath-Logic reference expression which does

not contain quantifiers or disjunction in step qualifiers, or a predicate expres-

sion over such expressions.

• an XPathLog atom is definite if it uses only the child, sibling, and attribute axes

and the atom does not contain negation, disjunction, function applications,

and context functions. These atoms are allowed in rule heads (see section 4.2).

The excluded features would cause ambiguities what update is intended, e.g.

“insert x as a descendant” does not specify where the element should actually

be inserted.

Similar to Datalog, an XPathLog literal is an atom or a negated atom and an

XPathLog query is a list ?- L1, . . . , Ln of literals (in general, containing free variables).

An XPathLog rule is a formula of the form A1, . . . , Ak ← L1, . . . , Ln where Li are

literals and Ai are definite atoms. L1, . . . , Ln is the body of the rule, evaluated as a

conjunction. A1, . . . , Ak is the head of the rule, which may contain free variables that

must also occur free in the body. In contrast to usual logic programming, we allow

for lists of atoms in the rule head which are interpreted as conjunctions.

3.1 Queries in XPathLog

The semantics SB of XPathLog queries associates a result set and a set of answer

substitutions with every XPathLog query by extending the above definition ofS. The

semantics provides the formal base for the implementation of an algebraic evaluation

of XPathLog queries in LoPiX (cf. section 5).

3.1.1 Answers data model

Whereas in Datalog, the answer to a query ?- L1, . . . , Ln is a set of variable bindings,

the semantics of XPath-Logic reference expressions is defined wrt. an X-Structure

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 257

X as an annotated result list, i.e. the semantics of an expression is

(i) a result list (corresponding to the result list of the underlying XPath expression,

i.e. without the additional variable bindings), and

(ii) with every element of the result list, a list of variable bindings is associated.

The result list (i) is the same as defined by S in Definition 4, equivalent to the one

defined for XPath expressions in Wadler (1999), and by the W3C for XPath (XQFS,

2001). Whereas from the XPath point of view for “addressing” nodes, only the result

list is relevant, XPathLog queries are mapped to a set of variable bindings based on

the associated bindings lists.

Example 6 (Semantics)

First, the semantics is illustrated by an example. Let X be the XML structure given

in Example 4, and

expr := //organization→O

[member/@country[@car code→C and name/text()→N]

]/abbrev/text()→A.

The underlying XPath expression is

//organization[member/@country[@car code and name/text()]]/abbrev/text() .

with the result list (“UN”,“EU”, . . .). With each of the results, a list of bindings for

the variables O, C, N, and A is associated, yielding the annotated result list

SBX(expr) = list((“UN”, {(O/un, A/“UN”, C/“AL”, N/“Albania”),

(O/un, A/“UN”, C/“GR”, N/“Greece”),
... }),

(“EU”, {(O/eu, A/“EU”, C/“D”, N/“Germany”),

(O/eu, A/“EU”, C/“F”, N/“France”),
... }),

...)

Definition 7 (Semantics)

The domain of sets of variable bindings for V1, . . . , Vn (i.e. the domain of the second

component of our semantics – i.e. the possible answer sets for a query whose free

variables are V1, . . . , Vn) is

Var BindingsV1 ,...,Vn
:=

(
2((V∪L∪N)n)

){V1 ,...,Vn}
.

Thus, in the general case for a general set Var of variables where n is unknown,

Var Bindings :=
⋃

n∈IN0

(
2((V∪L∪N)n)

)(Varn)

is the set of sets of variable assignments. For an empty set of variables, {true} is the

only element in Var Bindings; in contrast, ∅ means that there is no variable binding

which satisfies a given requirement. We use β for denoting an individual variable

binding, and ξ ∈ Var Bindings for denoting a set of variable bindings.

AnnotatedResults := ((V∪L)× Var Bindings)

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

258 W. May

is the set of annotated results (i.e. an annotated result is a pair (v, ξ) where v is a

node or a literal and ξ is a set of variable bindings (for the set of variables occurring

free in a certain formula)).

Definition 8 (Operators on Annotated Result Lists)

From an annotated result list θ, the result list is obtained as Res(θ):

Res : AnnotatedResultsIN → (V∪L∪N)IN

((x1, ξ1), . . . , (xn, ξn)) �→ (x1, . . . , xn)

For an annotated result list θ and a given x ∈ Res(θ) contained in the result list, the

set of variable bindings associated with x is obtained by Bdgs(θ, x):

Bdgs : AnnotatedResultsIN × (V∪L∪N)→ Var Bindings

(((x1, ξ1), . . . , (x, ξ), . . . , (xn, ξn)), x) �→ ξ (let Bdgs(θ, x) = ∅ if x /∈ Res(θ))

Note that the joins (��) used in this section are always purely relational joins that

are applied to the bindings component.

Example 7 (Semantics (Cont’d))

Continuing Example 6, Res(SBX(expr)) = (“UN”,“EU”,. . .) is the result list of the

underlying XPath expression, and

Bdgs(SBX(expr), “EU”) = {(O/eu, A/“EU”, C/“D”, N/“Germany”),

(O/eu, A/“EU”, C/“F”, N/“France”),
... }

yields the variable bindings that are associated with the result value “EU”.

3.1.2 Safety

The semantics definition evaluates formulas and expressions wrt. a given set of

variable bindings which, for example, results from evaluating other subexpressions

of the same query. This approach allows for a more efficient evaluation of joins

(sideways information passing strategy), and is especially needed for evaluating

negated expressions (by defining negation as a relational “minus” operator). Negated

expressions which contain free variables are intended to exclude some bindings from

a given set of potential results. Thus, for variables occurring in the scope of a

negation, the input answer set to the negation must already provide potential

bindings. This leads to a safety requirement similar to Datalog.

Definition 9 (Safe Queries)

First, safety of variables is decided for each individual ocurrence. A variable

occurrence V is safe wrt. the query if at least one of the following holds:

• if the occurrence is in a literal L, and it is not inside the scope of a negation

and not in a comparison predicate other than equality (e.g. X < 3 is unsafe).

• if the occurrence is in a literal Li inside a step qualifier pattern[L1 and . . . and

Ln] and V has a safe occurrence in pattern or in some Lj such that j < i.

• if the occurrence is in a literal Li of the query ?–L1 and . . . and Ln, and V

has a safe occurrence in some Lj such that j < i.

A query ?- L1, . . . , Ln is safe if all variable occurrences in the query are safe.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 259

3.1.3 Semantics of expressions

In the following, the semantics of safe queries is defined. The basic (non-annotated)

result lists are again provided by AX(axis, v) for every node v of X.

Definition 10 (Answer Semantics of XPath-Logic Expressions)

The semantics is defined by operatorsSB and QB derived fromS and Q as defined

in Definition 4; the B stands for the extension with variable bindings:

• SBX : (Reference Expressions)→ AnnotatedResultsIN , and

(Axes×V×Reference Expressions× Var Bindings)

→ AnnotatedResultsIN

evaluates reference expressions wrt. an axis, an (optional) context node and a

given set of variable bindings and returns an annotated result list.

• QBX : (Predicate Expressions×V× Var Bindings)→ Var Bindings

evaluates step qualifiers wrt. a context node to sets of variable bindings.

Expressions are evaluated by SB:

1. If no input bindings are given, SBX(refExpr) =SBany
X (refExpr , any, ∅)

2. Reference expressions are translated into path expressions wrt. a start node:

• entry points: rooted path: SBany
X (/p, any, Bdgs) =SBany

X (p, root, Bdgs)

where root is the current root as in Definition 4 (2) for the same case.

• entry points: constants c ∈ ΣC: SBany
X (c/p, any, Bdgs) =SBany

X (p, c, Bdgs)

• rooted paths in other documents:

SBany
X (document(“http://. . . ”)/p, any, Bdgs) =Sany

X (p, root, β)

where root is the root node of the document stored at http://. . . .

• entry points: variables V ∈ Var:

SBany
X (V/p, any, Bdgs) = concatx∈Vactive

(
SBany

X (p, x, Bdgs �� {V/x})
)

where Vactive is the set of element nodes in the current database.

Remark: Here, the input bindings are used for optimization: if every β ∈
Bdgs provides already bindings for the variable V , the sideways information

passing strategy directly effects the join {V/x} �� Bdgs, restricting the

possible values for V which in fact results in

SBany
X (V/p, any, Bdgs) = concatβ∈Bdgs,x=β(V)

(
SBany

X (p, x, Bdgs �� {V/x})
)

Thus, the propagation of bindings is not only necessary for handling

negation but also provides a relevant optimization for positive literals.

Note that in the recursive call SBany
X (p, x, Bdgs �� {V/x}), the propagated

bindings are already augmented with the bindings for V .

3. Axis step: SBany
X (axis :: pattern, x, Bdgs) =SBaxis

X (pattern, x, Bdgs)

where pattern is of the form nodetest remainder where remainder is a sequence

of step qualifiers and variable bindings. These are evaluated from left to right,

always applying the rightmost “operation” (qualifier or variable) to the result

of the left part:

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

260 W. May

4. Node test:

SBa
X(name, x, Bdgs) = list(v,n)∈AX(a,x), n=name(v, {true} �� Bdgs)

SBa
X(node(), x, Bdgs) = list(v,n)∈AX(a,x), v∈V(v, {true} �� Bdgs)

SBa
X(text(), x, Bdgs) = list(v,n)∈AX(a,x), v∈L(v, {true} �� Bdgs)

SBa
X(N, x, Bdgs) = list(v,n)∈AX(a,x)(v, {N/v} �� Bdgs)

5. Step with variable binding:

SBa
X(pattern→ V , x, Bdgs) = list(y,ξ)∈SBa

X(pattern,x,Bdgs)(y, ξ �� {V/y})

6. Step qualifiers:

SBa
X(pattern[stepQ], x, Bdgs) =

list(y,ξ)∈SBa
X(pattern,x,Bdgs), QBX(stepQ ,y,ξ′)�=∅(y, QBX(stepQ , y, ξ′) \ {Pos, Size})

If the step qualifier does not contain context functions, then ξ′ := ξ, otherwise

let L :=SBa
X(pattern, x, Bdgs), and then for every (y, ξ) in L, ξ′ is obtained as

follows, extending ξ with bindings of the pseudo variables Size and Pos:

• start with ξ′ = ∅,
• for every β ∈ ξ, the list L′ = list(y,ξ)∈L s.t. β∈ξ(y) contains all nodes which

are selected for the variable assignment β.

• let size := size(L′), and for every y, let j the index of x1 in L′, pos := j if a

is a forward axis, and pos := size+1–j if a is a backward axis.

• add β
Size,Pos
size,pos to ξ′.

7. Path: SBa
X(p1/p2, x, Bdgs) = concat(y,ξ)∈SBany

X (p1 ,x,Bdgs)SB
a
X(p2, y, ξ)

Step Qualifiers are evaluated by QB:

8. Reference expressions (existential semantics) in step qualifiers:

QBX(refExpr , x, Bdgs) =
⋃

(y,ξ)∈SBany
X (refExpr ,x,Bdgs)

ξ

9. The built-in equality predicate “=” is not only a comparison if both sides

are bound, but also serves as an assignment if the left-hand side is a variable

V ∈ Var which is not bound in Bdgs:

QBX(V = expr, x, Bdgs) =
⋃

(y,ξ)∈SBany
X (expr,x,Bdgs)

ξ �� {V/y}

All other built-in comparisons require all variables to be bound:

QBX(expr1 op expr2, x, Bdgs) =
⋃

(xi,ξi)∈SBX(expri,x,Bdgs), x1 op x2

ξ1 �� ξ2.

10. Predicates except built-in comparisons:

QBX(pred(expr1, . . . , exprn), x, Bdgs) =
⋃

(xi,ξi)∈SBX(expri,x,Bdgs)

(x1 ,...,xn)∈I(pred)

ξ1 �� . . . �� ξn

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 261

11. Negated expressions which do not contain any free variable:

QBX(not A, x, Bdgs) =

{
Bdgs if QBX(A, x, ∅) = ∅,
∅ otherwise, i.e. if QBX(A, x, ∅) = {true}.

12. For negated expressions which contain free variables, negation is interpreted

as the “minus” operator (as known e.g. from the relational algebra) wrt. the

given input bindings. Thus, all variables which occur free in A must be safe,

i.e. every input variable binding has to provide a value for them.

For two variable bindings β1, β2, we write β1 � β2 if all variable bindings in β1

occur also in β2. Intuitively, in this case, if β1 is “abandoned”, β2 should also

be abandoned.

QBX(not expr, x, Bdgs) =

Bdgs – {β ∈ Bdgs | there is a β′ ∈ QBX(expr, x, Bdgs) s.t. β � β′}

13. Conjunction:

QBX(expr1 and expr2, x, Bdgs) =

QBX(expr1, x, Bdgs) �� QBX(expr2, x,QBX(expr1, x, Bdgs))

Here, in case of negated conjuncts in the step qualifier, the safety of variables

has to be considered. The above definition assumes that by a left-to-right

evaluation of conjuncts, the evaluation is safe.

Evaluation of terms

14. Constants: for literals, SBany
X (lit, x, Bdgs) = (lit, Bdgs). For constants c ∈ ΣC ,

SBany
X (c, x, Bdgs) = (IC (c), Bdgs).

15. Variables: the variable occurrence must be safe, then: SBany
X (var, x, Bdgs) =

listβ∈Bdgs(β(var), β).

16. Function terms and arithmetics:

SBany
X (f(arg1, . . . , argn)), x, Bdgs) =

list(xi,ξi)∈SBany
X (arg1 ,x,Bdgs),...,(f(x1, . . . , xn), ξ1 �� . . . �� ξn)

where f(x1, . . . , xn) results from the built-in evaluation of f.

17. Context-related functions use the extension of variable bindings by pseudo-

variables Size and Pos in rule (6):

SBany
X (position(), x, Bdgs) = listβ∈Bdgs(β(Pos), {β′ ∈Bdgs | β(Pos) = β′(Pos)})

SBany
X (last(), x, Bdgs) = listβ∈Bdgs(β(Pos), {β′ ∈ Bdgs | β(Size) = β′(Size)})

The above semantics is an algebraic characterization of the logical semantics of

XPath-Logic expressions which has been defined in section 4:

Theorem 3 (Correctness of SB and QB)

For every (in general, containing free variables) XPathLog expression expr,

Res(SBX(expr)) =
⋃

β∈(V∪L∪N)free(expr)

SX(expr, β).

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

262 W. May

More detailed, for all x ∈ V∪L∪N,

(x ∈ Res(SBX(expr)) and β ∈ Bdgs(SBX(expr), x)) ⇔ x ∈ SX(expr, β).

Again, the theorem uses a lemma which encapsulates the structural induction.

Lemma 4 (Correctness of SB and QB: Structural Induction)

The correctness of the answers semantics of XPathLog expressions mirrors the

generation of answer sets by the evaluation: The input set Bdgs may contain

bindings for the free variables of an expression. If for some variable var, no binding

is given, the result extends Bdgs with bindings of var. If bindings are given for var,

this specifies a constraint on the answers to be returned (expressed by joins).

• For every absolute expression expr, (i.e. expr = /expr′) and every set Bdgs of

variable bindings,

(x ∈ Res(SBX(expr, Bdgs)) and β ∈ Bdgs(SBX(expr, Bdgs), x)) ⇔
(x ∈ SX(expr, β) and β completes some β′ ∈ Bdgs with free(expr)).

• For every expression expr, node v, and every set Bdgs of variable bindings,

(x ∈ Res(SBX(expr, v, Bdgs)) and β ∈ Bdgs(SBX(expr, v, Bdgs), x)) ⇔
(x ∈ SX(expr, v, β) and β completes some β′ ∈ Bdgs with free(expr)).

• for every step qualifier stepQ, node v, and every set Bdgs of variable bindings,

β ∈ QBX(stepQ , v, Bdgs) ⇔
QX(stepQ , v, β) and β completes some β′ ∈ Bdgs with free(stepQ)).

The proof can be found in Appendix A.

3.1.4 Semantics of queries

According to Definition 6, XPathLog queries are conjunctions of XPathLog literals.

In the following, the evaluation of safe queries is defined. The definition of safety

guarantees that a left-to-right evaluation of the body is well-defined (i.e. all variable

evaluations in Definition 10(15) are safe). Definition 10(13) already applied left-to-

right propagation when evaluating step qualifiers.

Definition 11

The evaluation QB is extended to atoms by

QBX : (Atoms× Var Bindings)→ Var Bindings

(A,Bdgs) �→ QBX(A, root, Bdgs)

For safe queries ?- atom consisting of only one atom, QB yields the answer bindings:

(X, β) |= atom :⇔ β ∈ QBX(atom , ∅)).

Definition 12 (Evaluation of Negated Literals)

The evaluation of negated literals L is defined wrt. a set of input bindings

which must cover the free variables in L, similar to negation in step qualifiers in

Definition 10(12):

QBX(not A,Bdgs) :=

Bdgs – {β ∈ Bdgs | there is a β′ ∈ QBX(A,Bdgs) s.t. β � β′}.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 263

Definition 13 (Evaluation of Queries)

The evaluation of a safe query ?- L1, . . . , Ln is defined similar to the evaluation of

conjunctive step qualifiers in Definition 10(13):

QBX : Conj Literals→ Var Bindings

QBX(L1 ∧ . . . ∧ Li) := QBX(L1 ∧ . . . ∧ Li–1) ��

QBX(Li, (QBX(L1 ∧ . . . ∧ Li–1))|free(Li))

Given an X-Structure X, the answer to a query ?- L1, . . . ,Ln is the set

answersX(L1, . . . , Ln) := QBX(L1 ∧ . . . ∧ Ln) of variable bindings.

Theorem 5 (Correctness: Evaluation of Queries)

For all safe XPathLog queries Q, β ∈ QBX(Q) ⇔ (X, β) |= Q.

Note that the semantics of formulas is not based on a Herbrand structure

consisting of ground atoms (as “usual” Herbrand semantics are), but directly

on the interpretations AX of the axes in the X-Structure, and on an interpret-

ation of predicate symbols that can be represented as a finite set of tuples over

V∪L∪N.

4 XPathLog programs

In logic programming, rules are used for a declarative specification: if the body of

a clause evaluates to true for some assignment of its variables, the truth of the head

atom for the same variable assignment can be inferred. Depending on the intention,

this semantics can be used for (top-down) checking if something is derivable from a

given set of facts, or (bottom-up) extending a given set of facts by additional, derived

knowledge. In this work, we mainly investigate the bottom-up strategy, regarding

XPathLog as an update language for XML databases: the evaluation of the body

wrt. a given structure yields variable bindings which are propagated to the rule head

where facts are added to the model.

Positive XPathLog programs (i.e. the rules contain only positive literals; also

step qualifiers may only contain positive expressions) are evaluated bottom-up by a

TP -like operator over the X-Structure, providing a minimal model semantics. The

formal definition of a TP operator will be given in Definition 16 for XPathLog

programs after explaining the semantics of insertions and updates.

4.1 Atomization

In this section, an alternative semantics of conjunctions of definite XPathLog atoms

is defined which provides the base for the constructive semantics of reference

expressions in rule heads. The semantics is defined by resolving reference expressions

syntactically into their constituting atomic steps in the same way as in F-Logic

(Frohn et al., 1994). A similar strategy for resolving expressions into atomic steps

is followed by several approaches which store XML data in relational databases

(Deutsch et al., 2000; Shanmugasundaram et al.; Florescu and Kossmann, 1999), by

flattening the XML instance to one or more universal relations.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

264 W. May

Definition 14 (Atomization of Formulas)

The function atomize : XPathLogAtoms → 2XPathLogAtoms resolves a definite

XPathLog atom into atoms of the form node[axis::nodetest→result] and predicates

over variables and constants. It will be used in Definition 16 for specifying the

semantics of rule heads. atomize is defined by structural induction corresponding

to the induction steps when defining SX. In the following, path stands for a path

expression (or a variable), and name for a name (or a variable).

• the entry case: atomize(/remainder) := atomize(root/remainder)

• Paths are resolved into steps and step qualifiers are isolated (since context

functions are not allowed in definite atoms, it can be assumed that there is at

most one step qualifier, optionally preceded by a variable assignment):

atomize(path/axis :: nodetest→ var[stepQualifier] /remainder) :=

atomize(path[axis :: nodetest→ var]) ∪
atomize(var[stepQualifier]) ∪ atomize(var/remainder),

atomize(path/axis :: nodetest[stepQualifier] /remainder) :=

atomize(path[axis :: nodetest→ X]) ∪
atomize(X[stepQualifier]) ∪ atomize(X/remainder)

where X is a new don’t care variable.

• Conjunctions in step qualifiers are separated:

atomize(var[pred1and . . . and predn]) :=

atomize(var[pred1]) ∪ . . . ∪ atomize(var[predn])

• Predicates in step qualifiers:

atomize(var[pred(expr1, . . . , exprn)]) := atomize(equality(var, expr1, X1)) ∪ . . .

atomize(equality(var, exprn, Xn)) ∪
{pred(X1, . . . , Xn)}

where equality(var, expr, X) is defined as follows (if expri is a constant, it is

not replaced by a variable):

∗ equality(var, expr, X) = “expr → X” if expr is of the form //remainder,

∗ equality(var, expr, X) = “var/expr → X” if expr is of the form axis ::

nodetest remainder.

• Predicate atoms are handled in the same way. Note that here all arguments

are absolute expressions (rooted, or starting at a constant, or at a variable).

Example 8 (Atomization)

?- //organization→O[name/text()→ON and

@headq = members/@country[name/text()→CN]/@capital].
is atomized into

?- root[descendant::organization→O], O[name→ ON], ON[text()→ON],

O[@headq→ S], O[members→ M], M[@country→ C], C[@country→ Cap],

S = Cap, C[child::name→ CN], CN[text()→CN].

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 265

Theorem 6 (Correctness of atomize)

The above semantics is equivalent to the one presented in Definition 10 for all

definite XPathLog atoms A and every X-Structure X, i.e.

answersX(A) = answersX(atomize(A))

Again, the theorem uses a lemma which encapsulates the structural induction, using

the logical semantics for showing the correctness of atomize.

Lemma 7 (Correctness of atomize: Structural Induction)

For every X-Structure X and every definite XPath-Logic atom A,

• for every variable assignment β of free(A) such that (X, β) |= A, there

exists a variable assignment β′ ⊇ β of free(atomize(A)) such that (X, β′) |=
atomize(A), and

• for every variable assignment β′ of free(atomize(A)) such that (X, β′) |=
atomize(A), (X, β′|free(A)) |= A.

The proof can be found in Appendix A.

4.2 Left hand side

Using logical expressions for specifying an update is perhaps the most important

difference to approaches like XSLT, XML-QL, or XQuery where the structure to be

generated is always specified by XML patterns, or to the update proposal for XML

described in Tatarinov et al. (2001). In contrast, in XPathLog, existing nodes are

communicated via variables to the head, where they are modified when appearing

at host position of atoms. The semantics of the left hand side of XPathLog rules –

which is a list of definite XPathLog atoms – is now investigated based on the

atomization of expressions. When used in the head, the “/” operator and the

“[. . .]” construct specify which properties should be added (thus, “[. . .]” does not

act as a step qualifier, but as a constructor). When using the child or attribute axis

for updates, the host of the expression gives the element to be updated or extended;

when a sibling axis is used, effectively the parent of the host is extended with a new

subelement.

Note that the (pure) XPathLog language does not allow to delete or replace

existing elements or attributes3 – modifications are always monotonic in the sense

that existing “things” remain.

Generation or extension of attributes. A ground-instantiated atom of the form n[@

a→v] specifies that the attribute @a of the node n should be set or extended with

v. If v is not a literal value but a node, a reference to v is stored.

Example 9 (Adding Attributes)

We add the data code to Switzerland, and make it a member of the European

3 suitable extensions, e.g. of the form delete(elem,prop,val) can be defined. Such extensions which would
turn XPathLog into a rule-based imperative language are not investigated in this work.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

266 W. May

root

germany @name=“Germany”

@capital=•

berlin nurnberg munich

b-name b-pop n-name n-pop m-name m-pop

“Berlin” 3472009 “Nürnberg” 495845 “Munich” 1244676

country

city

city city

name population name populationname population

text() text() text() text() text() text()

Fig. 2. Linking – before.

root

germany @car code=“D”
@capital=•

bavaria @car code=“BAV”
@capital=•

berlin nurnberg munich

b-name b-pop n-name n-pop m-name m-pop

“Berlin” 3472009 “Nürnberg” 495845 “Munich” 1244676

country country

city
city

city

city city

name population name populationname population

text() text() text() text() text() text()

Fig. 3. Linking – after.

Union:

C[@datacode→“ch”], C[@memberships→O] :-

//country→C[@car code=“CH”], //organization→O[abbrev/text()→“EU”].

results in

<country datacode=“ch” car code=“CH” industry=“machinery chemicals watches”

memberships=“org-efta org-un org-eu . . . ”> . . . </country>

Creation of elements. Elements can be created as free elements by atoms of the form

/name[...] (meaning “some element of type name” – this is interpreted to create an

element which is not a subelement of any other element), or as subelements.

Example 10 (Creating Elements)

We create a new (free) country element with some properties (cf. Figures 2 and 3):

/country[@car code→“BAV” and @capital→X and city→X and city→Y] :-

//city→X[name/text()=“Munich”], //city→Y[name/text()=“Nurnberg”].

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 267

The two city elements are linked as subelements. This operation has no equivalent

in the “classical” XML model: these elements are now children of two country

elements. Thus, changing the elements effects both trees. Linking is a crucial feature

for efficient restructuring and integration of data (May and Behrends, 2001).

Insertion of subelements. Existing elements can be assigned as subelements to other

elements: a ground instantiated atom n[child :: s → m] makes m a subelement of

type s of n. In this case, m is linked as n/s at the end of n’s children list.

Example 11 (Inserting Subelements)

The following two rules are equivalent to the above ones:

/country[@car code→“BAV”].

C[@capital→X and city→X and city→Y] :- //country→C[@car code=“BAV”],

//city→X[name/text()→“Munich”], //city→Y[name/text()→“Nurnberg”].

Here, the first rule creates a free element, whereas the second rule uses the variable

binding of C to this element for inserting subelements and attributes.

In the above case, the position of the new subelement is not specified. If the

atom is of the form h[child(i)::s→v] or h[following/preceding-sibling(j)::s→v], this

means that the new element to be inserted should be made the ith subelement of h

or jth following/preceding sibling of h, respectively.

Generation of elements by path expressions. Additionally, subelements can be created

by reference expressions in the rule head which create nested elements that satisfy

the given reference expression. The atomization introduces local variables that occur

only in the head of the rule. Here, we follow the semantics of PathLog (Frohn et al.,

1994) which is implemented in Florid (Ludäscher et al., 1998) for object creation.

After the atomization, the resulting atoms are processed in an order such that the

local variables are bound to the nodes/objects which are generated.

Example 12 (Inserting Text Children)

Bavaria gets a text subelement name:

C/name[text()→“Bavaria”] :- //country→C[@car code=“BAV”].

Here, the atomized version of the rule is

C[name→ N], N[text()→“Bavaria”] :-

root[descendant::country→C], C[@car code=“BAV”].

The body produces the variable binding C/bavaria. When the head is evaluated,

first, the fact bavaria[child::name→x1] is inserted, adding an (empty) name subele-

ment x1 to bavaria and binding the local variable N to x1. Then, the second atom

is evaluated, generating the text contents to x1.

Once-for-each-binding. In contrast to classical logic programming where it does not

matter if a fact is “inserted” into the database several times (e.g. once in every TP

round), here subelements must be created exactly once for each instantiation of a

rule. We define a revised TP -operator in Definition 16.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

268 W. May

Using Navigation Variables for Restructuring. For data restructuring and integration,

the intuitiveness and declarativeness of a language gains much from variables

ranging not only over data, but also over schema concepts (e.g. as in SchemaSQL

(Lakshmanan et al., 1996)). Such features have already been used for HTML-based

Web data integration with F-Logic (Ludäscher et al., 1998).

Extending the XPath wildcard concept, XPathLog also allows to have variables

at name position. Thus, it allows for schema querying, and also for generating new

structures dependent on the data contents of the original one.

Example 13 (Restructuring, Name Variables)

Consider a data source which provides data about waters according to the DTD

<!ELEMENT terra (water+,. . .)>

<!ELEMENT water (...)> <!ATTLIST water name CDATA #REQUIRED . . . >

which contains, e.g. the following elements:

<water type=“river” name=“Mississippi”> ... </water>

<water type=“sea” name=“North Sea”> ... </water>.

This tree should be converted into the target DTD

<!ELEMENT geo ((river|lake|sea)*)>

<!ELEMENT river (. . .)> <!ATTLIST river name CDATA #REQUIRED . . . >

(analogously for lakes and seas)

The first rule, result/T[@name→N] :- //water[@type→T and @name→N]

creates <river name=“Mississippi”/> and <sea name=“North Sea”/>.

Attributes and contents are then transformed by separate rules which copy properties

by using variables at element name and attribute name position:

X[@A→V]:- //water[@type→T and @name→N and @A→V], //T→X[@name→N].

X[S→V] :- //water[@type→T and @name→N and S→V], //T→X[@name→N].

4.3 Global semantics of positive XPathLog programs

An XPathLog program is a declarative specification how to manipulate an XML

database, starting with one or more input documents. The semantics of XPathLog

programs is defined by bottom-up evaluation based on a TP operator. Thus, the

semantics coincides with the usual understanding of a stepwise process.

For implementing the once-for-each-binding approach, the TP operator has to be

extended with bookkeeping about the instances of inserted rule heads. Addition-

ally, the insertion of subelements adds some nonmonotonicity: adding an atom

n[child(i)::e→v] adds a new subelement at the ith position, making the original ith

child/sibling the i+1st, etc. In case of multiple extensions to the same element, the

positions are determined wrt. the original structure.

Definition 15 (Extension of X-structures)

Given an X-Structure X and a set I of ground-instantiated atoms as obtained from

atomize to be inserted, the new X-Structure X′ = X ≺ I is obtained as follows:

• initialize AX′(child, x) :=AX(child, x), AX′(attribute, x) :=AX(attribute, x),

preds(X′) := preds(X) ∪ {p | p ∈ I is a predicate atom}
for all node identifiers x.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 269

• for all elements of AX(child, x), let α(AX(child, x)[i]) :=AX′(child, x)[i]

(α maps the indexing from the old list to the new one).

• for all atoms x[child(i) :: e → y] ∈ I, insert (y, e) into AX′(child, x) immedi-

ately after α(AX(child, x)[i]).

• for all atoms x[child :: e→ y] ∈ I, append (y, e) at the end of AX′(child, x).

• analogously for sibling axes.

• for all atoms x[@a→ y] ∈ I, append (y, a) to AX′(attribute, x).

Proposition 8 (Extension of X-Structures)

The extension operation is correct: X ≺ I |= I, i.e. when querying the inserted

atoms, the query evaluates to true.

With the correctness of atomize, the insertion of rule heads performs correctly:

Corollary 9 (Correctness of Insertions)

For inserting the ground-instantiated head of a rule, it is correct to insert the

atomized head: For all ground XPathLog atoms A, X ≺ atomize(A) |= A.

Definition 16 (TXP -Operator for XPath-Logic Programs)

The TX-operator works on pairs (X, Dic) where X is an X-Structure, and Dic is

a dictionary which associates to every rule a set ξ of bindings which have been

instantiated in the current iteration:

(X, Dic) + ({(r1, β1), . . . , (rn, βn)}) := (X ≺ {βi(atomize(head(ri))) | 1 � i � n},
Dic.insert({(r1, β1), . . . , (rn, βn)})),

(X, Dic) ↓1 := X.

For an XPathLog program P and an X-Structure X,

TXP (X, B) := (X, B)+{(r, β) | r = (h← b) ∈ P and X |= β(b), and (r, β) /∈ B},
TX0

P (X) := (X, ∅),
TXi+1

P (X) := TXP (TXi
P (X)),

TXω
P (X) :=

{
(limi→∞ TXi

P (X)) ↓1 if TX0
P (X), TX1

P (X), . . . converges,

⊥ otherwise.

Remark 3

Note that for pure Datalog programs P (i.e. only predicates over first-order terms),

the evaluation wrt. TXP does not change the semantics, i.e. TXω
P (X) = Tω

P (X).

Proposition 10 (Properties of the TXP operator)

The TXP operator extends the well-known TP operator. For all positive XPathLog

programs P , the following holds:

• without considering context functions, the TXP operator is monotonous (which

guarantees that a minimal fixpoint TXω
P (X) exists),

• TXω
P (X) |= P ,

• TXP is order-preserving: for all XPathLog reference expressions expr which do

not use negation or context functions, SX(expr) is a sublist of STXP (X)(expr),

• for all atoms A that do not contain aggregations or function applications, if A

holds inX, then it also holds after application of TXP :X |= A⇒ TXP (X) |= A.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

270 W. May

Proof Both properties follow immediately from the definition. The child and attribute

axes are extended solely by appending and inserting new “facts”.

4.4 Semantics of general XPathLog programs

For logic programs which use negation (or similar nonmonotonic features, such as

aggregation), there is no minimal model semantics. Instead, their semantics is defined

wrt. perfect models, well-founded models, or stable models. For practical use –

especially when considering bottom-up evaluation – the notion of perfect models

and stratification (Przymusinski, 1988) provides a solution to the problems raised

by negation and other nonmonotonic features. Stratification expresses the intuitive

notion of process which executes as a sequence of steps.

Note that already not all Datalog programs are stratifiable. For logics over

complex structures such as F-Logic, a reasonable notion of stratification can be

defined based on the names occurring at property position – as long as variables are

not allowed at the property position. With variables allowed at property position,

it has been showed for F-Logic in Frohn (1998) that programs are in general not

stratifiable. Since (i) even without variables at property position, there are many

programs which are not syntactically stratifiable, and (ii) variables at the property

position prove to be very useful for data integration (cf. Example 13), syntax-based

stratification is not suitable for our approach. Since the intention of XPathLog

programs is in general to implement a stepwise process by bottom-up evaluation,

often there is a natural, user-defined stratification. User defined stratification is

supported in the LoPiX system May (2001d) (cf. section 5). The semantics is

computed in the same way as for positive programs by iterating the TXP operator

for each stratum.

Language extensions. In addition to the pure language as described above, XPathLog

supports several extensions. A detailed description of, for example, aggregation (as

known, e.g. from SQL) and a class hierarchy and signatures (taken from F-Logic),

and data-driven Web access can be found in May (2001a).

5 Implementation and application

5.1 Implementation: The LoPiX system

XPathLog has been implemented in the LoPiX system May (2001d) which extends

the pure XPathLog language with a Web-aware environment and additional func-

tionality for data integration. LoPiX has been developed using major components

from the Florid system (FLORID, 1998; Ludäscher et al., 1998), an implementation

(in C++) of F-Logic. Due to the similarities between the F-Logic data model and

the XML data model in general, and XPathLogic’s multi-overlapping-tree model in

particular, the Florid modules provided a solid base for an XPathLog implement-

ation. Especially the functionality of the complete module for the evaluation of a

deductive language over a data model with complex objects could be reused. The

system architecture of LoPiX is depicted in Figure 4.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 271

Object
Manager

St
or

ag
e

OM Access
WebAccess
DTD
Parser

XML
Parser

E
va

lu
at

io
n

Algebraic
Evaluation (S)

Algebraic
Insertion

Logic Evaluation
(Bottom-up) TXP

E
xe

cu
ti

on

System
Commands

XPathLog Parser
(Programs and Queries)

User Interface
Pretty Printer
Bindings/XML

In
te

rn
et

XML
url1

DTD
url2

interactive
Output

XML
output

Internet in- and output
inserts to internal storage
internal information flow
querying internal storage

Fig. 4. Architecture of the LoPiX system.

Storage. The (extensional) database, is stored in the ObjectManager. Here, two

variants have been developed: the first one uses a proprietary integrated, frame-

based model (from Florid) that is equipped with indexes for optimized access,

whereas the second one is based on a standard DOM implementation.

The ObjectManagerAccess encapsulates the storage by implementing the abstract

XTreeGraph data model based on the contents of the ObjectManager. This abstrac-

tion level also adds intensional properties including derived axes, transitivity of class

hierarchy, downwards closure of signatures, inheritance, object fusion, synonyms,

built-in functionality for data conversion, string handling including matching regular

expressions, arithmetics, and aggregation operators.

The WebAccess functionality is closely intertwined with the OMAccess module:

XML sources are mapped to trees in the internal database. Additionally, a method

for mapping a DTD to XPathLog signature atoms is provided.

Evaluation. The central Evaluation module (LogicEvaluation, AlgebraicEvaluation,

and AlgebraicInsert) is taken nearly unchanged from Florid and provides in

fact a generic implementation of a deductive language over a data model with

complex objects. LogicEvaluation implements a seminaive bottom-up evaluation

of rules. AlgebraicEvaluation translates rule bodies and heads into the underlying

object algebra and evaluates the generated algebraic expressions using the query

interface of OMAccess. The object algebra implements the semantics of XPathLog

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

272 W. May

queries described in section 3.1, generating sets of tuples of variable bindings.

AlgebraicInsert instantiates the rule heads with the generated variable bindings and

adds the corresponding facts into the database using again the OMAccess interface,

implementing the TXP -semantics defined in section 4. The evaluation of algebraic

expressions does not materialize any intermediate result, but is purely based on

nested iterators.

Execution and UserInterface. The execution module provides the infrastructure for

the system, consisting of a Parser (lex/yacc-based) and a SystemCommands module

that implements (partially) non-logical commands for controlling the evaluation

process. The UserInterface module allows to use LoPiX from the command shell

by invoking system commands and stating interactive queries. The PrettyPrinter

outputs answers in the variable bindings format known from Datalog; additionally,

the result of queries that bind only a single variable can be output as a result set in

XML ASCII representation. Additionally, result views, i.e. the projections of trees

rooted in a given node to a given signature can be exported.

5.2 Case study: Mondial

XPathLog/LoPiX has successfully been applied in the Mondial case study (May,

2001e; May 2001b). There, the practicability of the approach for data integration is

illustrated by integrating a geographical database from the XML representations of

its sources (which have been created by Florid wrappers in May (1999)).

The CIA World Factbook: The CIA World Factbook Country Listing (cia:, http://

www.odci.gov/cia/publications/pubs.html) provides political, economic, and

social and some geographical information about the countries. A separate part

of the CIA World Factbook provides information about political and economical

organizations (orgs:). Here, the data sources overlap by the membership relation:

with every organization, the member countries are stored in orgs by name (using

the same names as in the cia part).

Global Statistics: Cities and Provinces: The Global Statistics data (gs:, http://www.

stats.demon.nl) provides information (grouped by countries) about administrat-

ive divisions (area and population, sometimes capital) and main cities (population

with year, and province). Whereas the country names are the same as in CIA, the

names of cities, that are for example capitals of countries or where the headquarter

of a political organization is located, may differ.

The case-study showed that XPathLog allows for an effective, and elegant program-

ming of the integration process. The nature of an XPathLog program as a list of

rules allows for grouping rules which together handle a certain task. The programs

are modular which also allows for adapting them to potential changes in the source

structure and ontology.

For data integration in general, not only “simple” updates are desired, but also

specialized operations on tree fragments. The result is constructed using subtrees,

elements, and literals of the input sources by the integration operations that extend

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 273

cia gs

cia-germany
@cia:name=“Germany”
@cia:area=356910
@cia:population=83536115
@cia:capital=“Berlin”

gs-germany @gs:name=“Germany”

berlin @gs:name=“Berlin”
@gs:pop=3472009

hamburg @gs:name=“Hamburg”
@gs:pop=1705872

cia:country gs:country

gs:city
gs:city

(a) Element fusion – before

cia result gs

cia-germany
@name=“Germany”

@area=356910
@population=83536115

@cia:capital=“Berlin”
@capital=•

berlin @name=“Berlin”
@population=3472009

hamburg @name=“Hamburg”
@population=1705872

cia:country country gs:country

city
city

Fig. 5. (b) Element fusion – after.

the basic XPathLog in LoPiX. These operations heavily depend on the use of the

XTreeGraph data model (May and Behrends, 2001).

Fusing elements and subtrees. Fusing elements that represent the same real-world

entity from different data sources into a unified element is an important task in

information integration. The result is still an element of both source trees, and

collects the attributes and subelements of both original elements.

Example 14 (Object Fusion)

Consider two data sources as shown below and in Figure 5(a). Both describe
countries, where cia contains information about name, area, population, and capital,
and gs contains information about cities.

<!ELEMENT cia (country+)>

<!ELEMENT country (border*)>

<!ATTLIST country name CDATA #REQUIRED car code ID #REQUIRED

area CDATA #IMPLIED population CDATA #IMPLIED

capital CDATA #REQUIRED>

<!ELEMENT border (#PCDATA)> <!ATTLIST border country IDREF #REQUIRED>

<!ELEMENT gs (country+)>

<!ELEMENT country (city+)> <!ATTLIST country name CDATA #REQUIRED>

<!ELEMENT city EMPTY>

<!ATTLIST city name CDATA #REQUIRED pop CDATA #REQUIRED>

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

274 W. May

Excerpts of the instances:
<cia>

<country car code=’D’ capital=’Berlin’

name=’Germany’ area=’356910’

population=’83536115’>

<border country=’F’>451</border>

<border country=’A’>784</border>

:
</country>

:
</cia>

<gs>

<country name=’Germany’>

<city name=“Berlin” pop=“3472009”/>

<city name=“Hamburg” pop=“1705872”/>

:
</country>

:
</gs>

An obvious and typical integration step is to unify the countries in the cia tree with

the countries in the gs tree. In XPathLog, this is done by the rule

C1 = C2 :- cia/cia:country→C1[@cia:name→N], gs/gs:country→C2[@gs:name→N].

The example is continued below – Figure 5(b) depicts the final result.

Synonyms. Names are also subject of operations, for example, the integrated database

uses a unified terminology that differs from the source terminologies. Instead of

generating new relationships between nodes, target terminology is introduced by

synonyms for already existing relationships.

Example 15 (Integration: Synonyms)

Especially, synonyms are an efficient means for taking a whole property from a

source tree (and namespace) to the result tree: Consider the situation obtained in

Example 14 where the following synonyms are defined:

cia:name = name. gs:city = city. gs:text() = text().

cia:area = area. gs:name = name.

cia:population = population. gs:pop = population.

Adding Links. The integrated database often contains additional links (by subele-

ment or reference attribute relationships) between elements that originally belong

to different sources.

Example 16 (Integration: Additional Links)

The integration is completed by linking the country subtrees to a result tree and

adding the capital reference attributes, here, using germany[@cia:capital=“Berlin”]

and berlin[name=“Berlin”]. The resulting tree fragment is given in Figure 5(b).

In XPathLog, this is done by the rules

result[country→C] :- cia[cia:country→C].

C[@capital→City] :-

result/country→C[@cia:capital→Name and city→City[@name=Name]].

Projection. When the integration and restructuring process is completed, projections

are used to define result views of the internal database. A result view is an XML

tree, e.g. specified by a root node and a DTD.

The complete case study in May (2001b) describes the process of data integration,

data cleaning, data restructuring and distinguishing result tree views. The program

is easily extendible by additional rules for adding another data source.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 275

6 Analysis, related work, and conclusion

6.1 Comparison with other XML languages

XPathLog vs. requirements. In Fernandez et al. (1999), XQL, XML-QL, and the

languages YATL Cluet et al. (1999) and Lorel Abiteboul et al. (1997); Goldman

et al. (1999) are compared and essential features of an XML query language have

been identified. XPathLog relates to their requirements as follows:

• existence of some kind of pattern clause, step qualifier clause, and constructor

clause: pattern and step qualifier clause are the same as in XPath, extended

with variable bindings. The path patterns are superior to XML patterns (e.g.

as used in XML-QL) since they allow for dereferencing and navigation along

different axes. The constructor clause uses the same XPath-based syntax.

• constructs for imposing nesting and order: nested elements in the result tree

are generated by subsequent rules which stepwise generate the result. Grouping

(via stepwise generation) and order (via child(i)::name) is supported.

• combining data from different sources is supported.

• tag variables or regular path expressions: tag variables are supported, regular

path expressions are not included in the basic XPathLog language (also not

in XPath). They are definable as derived relations.

• alternatives are expressible using a separate rule for each alternative.

• checking for absence of information: existence or non-existence of properties

can be tested using negation, e.g. //country[not @indep date].

• external functions: aggregation, string functions and some data conversion is

built-in; the set of functions is extensible.

• navigation along references: implicit dereferencing is supported.

Semistructured data languages. We have already mentioned the use of logic pro-

gramming style languages in pre-XML projects on semistructured data in section 1.

GraphLog (Consens and Mendelzon, 1990) and F-Logic/Florid (Kifer and

Lausen, 1989; Kifer et al., 1995) presented logic-programming languages over graph

data models that cover the semistructured data model, but did not yet use that

notion.

In GraphLog, graphical queries are defined as patterns that are matched with an

underlying graph database. The matched vertices are bound to variables that are

then used for generating an output instance or for adding edges to the input graph

in the rule head. In the graphical representation, the “rule head” is represented as

a distinguished edge in the graphical pattern (to be added to the input graph). The

language can be seen as a graphical representation of Datalog over binary relations.

Thus, according to our criteria stated in section 1.1, GraphLog qualifies as a logic-

programming language. GraphLog excludes recursive rules, but allows for closure

literals that represent the closure of a binary predicate; thus the expressiveness of

the language is the same as for stratified linear Datalog.

F-Logic (Kifer and Lausen, 1989; Kifer et al., 1995) is a deductive object-oriented

database language that can be seen as an early concept of a semistructured, self-

describing data model. F-Logic defines a data model, a logic, and a database query

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

276 W. May

and programming language (similar to the relationship between the X-Structures,

XPath-Logic and XPathLog). The experiences with F-Logic as a formal framework

and as a language for data extraction and integration from the Web (Ludäscher

et al., 1998; May, 1999) provided the background for the design of XPath-Logic and

XPathLog as a crossbreed between XPath and F-Logic, combining the experiences

with F-Logic as a successful (but “proprietary”) language for data integration with

the standards of XML and XPath was a well-grounded evolution step. Especially,

the power of the graph-based F-Logic data model compared with the restricted tree

model of XML made up a central requirement in the design of XPathLog, leading to

the XTreeGraph data model for virtual trees in a graph database. Another important

aspect taken from F-Logic is to have names as first-order citizens of the language

for a seamless incorporation of metadata information. Due to these similarities, it

was possible to base the implementation of XPathLog in the LoPiX system on the

F-Logic system Florid.

The OEM (Object Exchange Model) of the Tsimmis project (Garcia-Molina et al.,

1997; Abiteboul et al., 1997) was the first data model that was dedicated explicitly

to the notion of semistructured data. OEM is a graph based model, for which

node-labeled and edge-labeled presentations have been given. With WSL and MSL

(Wrapper/Mediator Specification Language), Datalog-style programming languages

have been presented. The Lorel language (McHugh et al., 1997) is similar to OQL,

combining navigational access (extended with regular path expressions) with clauses.

Lorel supports SQL-like, procedural update constructs. Lorel has been migrated to

XML in Goldman et al. (1999). In contrast to the XPathLog/LoPiX migration,

Lorel does not support the XML axes.

UnQL (Buneman et al., 1996, 2000) operates on rooted, edge-labeled graphs. It

embeds graph schemata that are matched as patterns with the underlying database,

combined with navigational access into SQL-like clauses. UnQL’s semantics is based

on structural recursion – similar to the later XSL.

Strudel/StruQL (Fernandez et al., 1997, 1998) also uses an edge-labeled graph

model. Its syntax embeds query patterns that are matched with the underlying

database into SQL-like clauses. StruQL rules specify what new elementary structures

are created, and what links between them are created. The Strudel project has been

continued for XML with XML-QL.

The YATL language of the YAT system (Cluet et al., 1999) is a pre-XML proposal,

already using SGML and DTDs. Its trees provide a unified model for relational,

object-oriented (ODMG), and semistructured/document data (SGML). The YATL

language follows a rule-based design for complex objects in the style of MSL or

F-Logic; it supports regular path expressions and tree algebraic operations. In

Christophides et al. (2000), the YAT system is turned into an XML system for

data integration, which still does not use any XML/XPath language constructs.

After mapping an XML instance to a YAT tree, there is no notion of attributes.

Dereferencing is not explicitly supported, and it has no notion of the XML axes

(similar to the same issue for XML-QL).

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 277

XML languages. XML-QL and XQuery embed XML patterns and XPath expres-

sions, respectively, into SQL-style clauses. Expressions can be nested.

XML-QL (Deutsch et al., 1999) uses XML patterns in the head (CONSTRUCT) and

body (WHERE) clause. In that aspect, it is the XML-pattern-counterpart to the XPath-

based XPathLog. The XML-QL patterns for selecting elements do not support the

XML axes except the child axis, and indirectly the descendant by regular path

expressions. XML-QL does not support updates; a potential combination of XML

patterns and updates is not obvious.

XQuery (XQuery, 2001) embeds XPath expressions in SQL-style FOR - LET -

WHERE - RETURN clauses, where the RETURN clause specifies the result as an XML

pattern. A proposal for specifying updates in XQuery has been published in Tatarinov

et al. (2001). A more detailed proposal is described in Lehti (2001) and implemented

in (Software AG, 2001).

XML-GL (Ceri et al., 1999; Comai et al., 2001) continued the idea of GraphLog

for XML. In contrast to GraphLog, the rule body and the rule head are repres-

ented by separate graphs, called extract-match-construct-clip-queries. The rule heads

generate separate XML structures. Recursion is excluded. The MIX (Mediation in

XML) system (Baru et al., 1999) uses the Xmas (XML Matching and Structuring)

language, derived from XML-QL for data integration; a graphical user interface

similar to XML-GL is provided. XDuce (Hosoya and Pierce, 2000) is a functional-

style tree transformation language which uses regular expression pattern matching of

(originally, SGML) DTDs for formulating queries against XML instances.

Xcerpt (Bry and Schaffert, 2002) is a pattern-based language for querying and

transforming XML data. It follows a clean, rule-based design where the query

(matching) part in the body is separated from the generation part in the rule head.

XML instances are regarded as terms that are matched by a term pattern in the

rule body, generating variable bindings. The semantics and the implementation is

given by simulation unification that computes answer substitutions for the variables

in the match pattern against the underlying XML term (similar to UnQL). Then, the

term in the rule head is instantiated with these variable bindings. Since rule heads

have only a generating semantics, but not an update semantics, Xcerpt can only be

used for querying and transforming XML data, but not for updating/extending an

existing internal XML database. It has a rule-based semantics, but there is no global

logic programming semantics for the evaluation of programs.

Elog (Baumgartner et al., 2001a) is a logic programming language for XML

which is used as internal language for XML data extraction in the Lixto project

(Baumgartner et al., 2001b). It is based on flattening XML data into Datalog with

specialized Web Access predicates.

Table 1 gives a comparison of some of the above-mentioned languages. The

“paradigm” column indicates the underlying semantics of the languages: the se-

mantics of SQL-like languages is best given as an algebraic semantics that specifies

the type and value of expression, allowing for nested expressions. For rule-based

languages, a denotational specification of the outcome of the right-hand side (query)

and of the result of the left-hand side is required. Logic programming languages

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

278 W. May

Table 1. Comparison

SSD GraphLog WSL/MSL Lorel UnQL StruQL F-Logic

DataModel graph graph/atoms graph graph graph graph

Access patterns patterns pat/nav term unif. patterns navigation

Views y y y y y y

Interfering

additions y n y n n y

Paradigm LP rules SQL SQL SQL LP

XML XML-QL XQuery XML-GL Xcerpt Elog XPathLog

DataModel XML XML XML tree XML tree atoms XTreeGraph

Access patterns navigation patterns term unif. (atoms) navigation

Views y y y y y y

Interf. add. n (XUpdate) n n (+) y

standard-

based no is standard no no (no) yes: Xpath

Paradigm SQL SQL rules rules LP LP

require both a model-theoretic semantics (to specify the outcome of rule heads, and

for the global semantics), and an answer semantics for the querying part.

6.2 Contributions

We have described XPath-Logic as a logic-based framework for handling XML

data, together with an extended XML data model that is suitable for XML

querying, manipulation, and integration. XPathLog combines the intuitive “local”

semantics of addressing XML data by XPath with the appeal of the “global” logic

programming semantics: it is completely XPath-based, i.e. both the rule bodies

and the rule heads use an extended XPath syntax, thereby defining a constructive

semantics for XPath expressions. Although the syntactic difference between XPath

and XPathLog is small, the extension adds much to the language by turning it

into a data manipulation language. The close relationship with XPath ensures that

its declarative semantics is well understood from the XML perspective. Since both

XPath and rule-based programming by using variable bindings are well-known,

intuitive concepts, the “effect” of the language is easy to understand on an intuitive

basis, making programming easy. The logic programming background provides a

strong theoretical foundation of the language concept.

The data model and the language are implemented in the LoPiX system. Its

practicability has been demonstrated by the Mondial case study.

Appendix A Proofs

Proof of Theorem 1 and Lemma 2: The proof is done by structural induction. The

enumeration is the same as in Definition 4. Below, β is an assignment of the pseudo

variables Size and Pos (often even empty). We write
∗∗
= for “equals by definition

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 279

in (Wadler, 1999)”. The individual items of the theorem are referred to below by

IH1, . . . , IH4 (induction hypotheses).

1. For closed, absolute expressions (i.e. without free variables),

SX(/expr)
Def
= Sany

X (/expr, any, ∅) IH1
= S[[/expr]](x) for arbitrary x.

2. Reference expressions ((Wadler, 1999): only absolute expressions):

Sany
X (/p, any, β)

Def
= Sany

X (p, root, β)
IH2
= Sany[[/expr]](root).

3. Axis step:

Sany
X (axis :: pattern, x, β)

Def
= Saxis

X (pattern, x, β)
IH2
= Saxis[[/pattern]](x).

4. The node test is the base case which is directly mapped to the axes:

Sa
X(name, x, β)

Def
= list(v,n)∈AX(a,x)(v | n = name)

which is characterized in Wadler (1999) (A[[a]] enumerates the axes, P(a)

gives the axes’ principal nodetype) by

{x1 | x1 ∈ A[[a]]x, nodetype(x1) = P(a), name(x1) = name}
which is the definition of Sa[[name]](x). Note that dereferencing IDREF(S) and

splitting NMTOKENS has been excluded, thus, the result list is still in document

order. Similar (note that node() is not defined in Wadler (1999), we extend the

definition according to the XPath specification)

Sa
X(node(), x, β)

Def
= list(v,n)∈AX(a,x)(v | v ∈ V)

= {x1 | x1 ∈ A[[a]]x, nodetype(x1) = element} = Sa[[node()]](x)

Sa
X(text(), x, β)

Def
= list(v,n)∈AX(a,x)(v | v ∈ V)

= {x1 | x1 ∈ A[[a]]x, nodetype(x1) = Text} = Sa[[text()]](x).

5. Step with variable binding: obvious

6. Step qualifiers:

Sa
X(pattern[stepQ], x, β)

Def
= listy∈Sa

X(pattern,x,β)

(
y | QX

(
stepQ, y, β

k,n
Pos,Size

))

where L1
Def
= Sa

X(pattern, x, β) which equals Sa[[pattern]](x, k, n) by induction

hypothesis IH3 and n := size(L1), and for every y, let j the index of y in

L1 (which equals size({x1 | x1 ∈ L1, x1 �doc y})), k := j if a is a forward

axis, and k := n+1–j if a is a backward axis. This is the same as defined for

Sa[[pattern[stepQualifier]]](x) and, by induction hypothesis IH3, the same as

IH3
= listy∈Sa

X(pattern,x,β)(y | Q[[stepQ]](, y, k, n))
∗∗
= Sa[[pattern[stepQ]]](x).

7. Path: Sa
X(p1/p2, x, β)

Def
= concaty∈Sa

X(p1 ,x,β)

(
Sany
X (p2, y, β)

)
IH2
= concaty∈Sa[[p1]](x)(Sa[[p2]](y))

∗∗
= Sa[[p1/p2]](x).

8. Reference expressions (existential semantics) in step qualifiers:

QX(refExpr , x, β)
Def⇔ Sany

X (refExpr , x, β) �= ∅
IH3⇔ Schild[[refExpr]](x) �= ∅ ∗∗⇔ Q[[refExpr]](x, k, n).

(for all k, n since these are not used in refExpr).

9. Predicates: Wadler (1999) knows only the “=” comparison. The definition is

although not complete: e.g. for step qualifiers of the form [a/b/c = “foo”]

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

280 W. May

which are allowed in XPath, there is no semantics defined. We extend the

semantics according to the XPath specification, applying either S or E.

QX(pred(expr1, . . . , exprn), x, β)
Def⇔ there are x1 ∈ Sany

X (expr1, x, β), . . . , xn ∈ Sany
X (exprn, x, β)

such that (x1, . . . , xn) ∈ IP (pred)

IH2/4
⇔ there are x1∈Schild[[expr1]](x) or x1∈E[[expr1]](x, β(Pos), β(Size)), . . . ,

xn ∈ Schild[[exprn]](x) or xn ∈ E[[exprn]](x, β(Pos), β(Size))

such that (x1, . . . , xn) ∈ I(pred).

10. – 13. Boolean connectives and quantification, constants, and variables: obvious.

Functions are not defined in Wadler (1999), but the extension is obvious.

14. Context-related functions use the extension of variable bindings by pseudo-

variables Size and Pos in rule (6):

Sany
X (position(), x, β)

Def⇔ β(Pos)
∗∗
= E[[position()]](x, β(Pos), β(Size))

Sany
X (last(), x, β)

Def⇔ β(Size)
∗∗
= E[[last()]](x, β(Pos), β(Size)).

Proof of Lemma 4:

Note: A bit sloppy, we write (x, β) ∈ SBX(expr) for “x ∈ Res(SBX(expr))

and β ∈ Bdgs(SBX(expr), x)”.

1. For closed expressions, x ∈ Res(SBX(refExpr))
Def⇔

x ∈ Res(SBX(refExpr , ∅)) IH⇔ x ∈ SX(refExpr , ∅) Def .4⇔ x ∈ SX(refExpr).

2. Reference expressions are translated into path expressions wrt. a start node:

• entry points: rooted path

(x, β) ∈ SBX(/p, Bdgs)
Def⇔ (x, β) ∈ SBany

X (p, root, Bdgs)
IH⇔ x∈Sany

X (p, root, β) and β completes some β′ ∈Bdgs with free(/p))
Def .4⇔ x ∈ Sany

X (/p, β) and β completes some β′ ∈ Bdgs with free(/p)).

• entry points: constants c ∈ V analogously (set c instead of root above).

• entry points: variables V ∈ Var. By definition,

(x, β) ∈ SBX(V/p, Bdgs)
Def⇔

(x, β) ∈ concatx∈AX(descendants,root)↓1
(
SBany

X
(
p, x, Bdgs �� {V/x}

))
which is exactly the case if there is an x ∈ AX(descendants, root)↓1 such

that (x, β) ∈ (SBany
X (p, x, Bdgs �� {V/x})).

By induction hypothesis, this is equivalent with

x ∈ Sany
X (p, x, β) and β completes some β′ ∈ Bdgs �� {V/x} with free(p)

which is exactly the case if x = β(V) and β completes some β′ ∈ Bdgs with

free(V/p). By Def. 4, this again is equivalent with

x ∈ Sany
X (V/p, β) and β completes some β′ ∈ Bdgs with free(V/p).

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 281

3. Axis step: (x, β) ∈ SBany
X (axis :: pattern, z, Bdgs)

Def⇔ (x, β) ∈ SBaxis
X (pattern, z, Bdgs)

IH⇔ x ∈ Saxis
X (pattern, z, β)

and β completes some β′ ∈ Bdgs with free(pattern)
Def .4⇔ x ∈ Sany

X (axis :: pattern, z, β)

and β completes some β′ ∈ Bdgs with free(axis :: pattern).

4. Node test: (x, β) ∈ SBa
X(name, z, Bdgs)

Def⇔
(x, β) ∈ list(v,n)∈AX(a,z), n=name(v, {true} �� Bdgs)

which is exactly the case if x ∈ list(v,n)∈AX(a,z), n=name(v) and β ∈ Bdgs which, by

Def. 4 is equivalent with x ∈ Sa
X(name, z, β) and β completes some β′ ∈ Bdgs

with free(name) = ∅. Analogously for node() and text().

Variables at nodetest position:

(x, β) ∈ SBa
X(N, z, Bdgs)

Def⇔ (x, β) ∈ list(v,n)∈AX(a,z)(v, {N/n} �� Bdgs)

which is exactly the case if x ∈ list(v,n)∈AX(a,z)(v) and β ∈ {N/n} �� Bdgs which,

by Def. 4 is equivalent with x ∈ Sa
X(N, z, β) and β completes some β′ ∈ Bdgs

with free(N) = {N}.
5. Step with variable binding:

(x, β) ∈ SBa
X(pattern→ V , z, Bdgs)

Def⇔ (x, β) ∈ list(y,ξ)∈SBa
X(pattern,z,Bdgs)(y, ξ �� {V/y})

⇔ there is a β′′ s.t. (x, β′′) ∈ SBa
X(pattern, z, Bdgs) and β = β′′ �� {V/x}.

By induction hypothesis, this is exactly the case if there is a β′′ such that x ∈
Sa
X(pattern, z, β′′) and β′′ completes some β′ ∈ Bdgs with free(pattern), and β =

β′′ �� {V/x}. Exactly then, since x = β(V), by Definition 4, x ∈ Sa
X(pattern→

V , z, β) and β completes β′ with free(pattern→ V) = free(pattern) ∪ {V }.
6. Step Qualifier(s): (x, β) ∈ SBa

X(pattern[stepQualifier], z, Bdgs)

Def⇔ (x, β) ∈ list
(y,ξ)∈SBa

X(pattern,z,Bdgs),

QBX(stepQualifier,y,ξ′)�=∅

(y, QBX(stepQualifier, y, ξ′) \ {Pos, Size})

for ξ as defined in Definition 10(6). This is exactly the case if (i) there

is a β′′ s.t. β′′ ∈ QBX(stepQualifier, x, ξ′) and β = β′′ \ {Pos, Size}, and

(ii) (x, ξ) ∈ SBa
X(pattern, z, Bdgs) i.e. ξ is the corresponding set of variable

bindings, and (iii) QBX(stepQualifier, x, ξ′) �= ∅.
The first item is by induction hypothesis equivalent to QX(stepQualifier , x, β′′)

and β′′ completes some β′ ∈ ξ′ with free(stepQualifier) (*).

The third item is redundant here (it avoids the addition of elements with

empty bindings list to the result). Since β′′ completes some β′ ∈ ξ′ with

free(stepQualifier), we know that γ := β′ \ {Pos, Size} is an element of ξ.

Specializing the second item to γ yields (x, γ) ∈ SBa
X(pattern, z, Bdgs).

By induction hypothesis, x ∈ Sa
X(pattern, z, γ) (**) and γ completes some

γ′ ∈ Bdgs with free(pattern). Above, we derived γ = β′ \ {Pos, Size}. Using (∗),

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

282 W. May

since β′′ is a completion of β′ with free(stepQualifier), completing γ′ ∈ Bdgs

first to γ (binding free(pattern)), then to β′ (binding Size and Pos), then to β′′

(binding free(stepQualifier)), we have QX(stepQualifier , y, β′′).

From (∗∗), since β′′ completes γ, x ∈ Sa
X(pattern, z, β′′) thus by Def. 4, the

desired result x ∈ Sa
X(pattern[stepQualifier], z, Bdgs) for β′′ which completes

γ′ ∈ Bdgs with free(pattern[stepQualifier]).

The argumentation showed the “⇒” direction (which is the more difficult

direction since γ must be guessed). “⇐” uses the same relationships and

variable bindings.

7. Path: (x, β) ∈ SBa
X(p1/p2, z, Bdgs)

Def⇔ (x, β) ∈ concat(y,ξ)∈SBany
X (p1 ,z,Bdgs)SB

a
X(p2, y, ξ)

⇔ there is an (y, ξ) ∈ SBany
X (p1, z, Bdgs) s.t. (x, β) ∈ SBa

X(p2, y, ξ)
IH⇔ there is a γ ∈ ξ s.t. there is a γ′ s.t. x ∈ Sa

X(p2, y, γ
′) and

γ′ completes γ with free(p2).

For this γ, (y, γ) ∈ SBany
X (p1, z, Bdgs) and by induction hypothesis again y ∈

Sa
X(p1, z, γ) and γ completes some β′ ∈ Bdgs with free(p1). Thus, also x ∈
Sa
X(p2, y, γ

′) and y ∈ Sa
X(p1, z, γ

′) and by Def. 4, x ∈ Sa
X(p1/p2, z, γ

′). γ′

completes some β′ ∈ Bdgs with free(p1) ∪ free(p2).

8. Reference expressions (existential semantics) in step qualifiers:

β ∈ QBX(refExpr , z, Bdgs)
Def⇔ β ∈

⋃
(y,ξ)∈SBany

X (refExpr ,z,Bdgs) ξ

⇔ there is a y s.t. (y, β) ∈ SBany
X (refExpr , z, Bdgs)

IH⇔ y ∈ Sany
X (refExpr , z, β)

and β completes some β′ ∈ Bdgs with free(refExpr)
Def .4⇔ QX(refExpr , z, β) and β completes some β′ ∈Bdgs with free(refExpr).

9. Built-in equality predicate “=”: similar to predicates and variable assigments

by → V . All other predicates: β ∈ QBX(pred(arg1, . . . , argn), z, Bdgs)

Def⇔ β ∈
⋃

(xi,ξi)∈SBany
X (arg1 ,z,Bdgs), (x1 ,...,xn)∈I(pred)

ξ1 �� . . . �� ξn

⇔ there are (x1, ξ1), . . . , (xn, ξn) s.t. (xi, ξi) ∈ SBany
X (argi, z, Bdgs)

and (x1, . . . , xn) ∈ I(pred) and β ∈ ξ1 �� . . . �� ξn
⇔ (take the right βi ∈ ξi)

there are (x1, β1), . . . , (xn, βn) s.t. (xi, βi) ∈ SBany
X (argi, z, Bdgs)

and (x1, . . . , xn) ∈ I(pred) and β = β1 �� . . . �� βn
IH⇔ there are (x1, β1), . . . , (xn, βn) s.t. xi ∈ Sany

X (argi, z, βi)

and βi extends some β′i ∈ Bdgs with free(argi)

and (x1, . . . , xn) ∈ I(pred) and β = β1 �� . . . �� βn
⇔ (the join guarantees that β′ := β′1 = . . . = β′n holds)

there are x1, . . . , xn s.t. xi ∈ Sany
X (argi, z, βi)

and β extends some β′ ∈ Bdgs with free(arg1) ∪ . . . ∪ free(argn)
Def .4⇔ QX(pred(arg1, . . . , argn), z, β)

and β completes some β′ ∈ Bdgs with free(pred(arg1, . . . , argn)).

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 283

10. Negated expressions which do not contain any free variable: trivial.

For negated expressions which contain free variables: note that all variables in

free(not expr) are required to be bound by Bdgs (safety).

β ∈ QBX(not expr, z, Bdgs)
Def⇔ β ∈ Bdgs and there is no β′ ∈ QBX(expr, z, Bdgs) s.t. β � β′

IH⇔ β ∈ Bdgs and there is no β′′ such that

QX(expr, z, β′′) and β′′ extends β′ with free(expr) and β � β′

Safety
⇔ β ∈ Bdgs and not QX(expr, z, β)

Def .4⇔ β ∈ Bdgs and QX(not expr, z, β).

Conjunction: β ∈ QBX(expr1 and expr2, z, Bdgs)

Def⇔ β ∈ QBX(expr1, z, Bdgs) �� QBX(expr2, z,QBX(expr1, z, Bdgs))
IH⇔ there are γ1 ∈ QBX(expr1, z, Bdgs)

and γ2 ∈ QBX(expr1, z,QBX(expr1, z, Bdgs)) s.t. QX(expr1, z, γ1)

and γ1 completes some β′ ∈ Bdgs with free(expr1) and

QX(expr2, z, γ2) and γ1 completes some γ′′ ∈ QBX(expr1, z, Bdgs)

with free(expr2) and β = γ1 �� γ2.

⇔ (join condition: γ1 = γ′′ � γ2) QX(expr1, z, γ2) and QX(expr2, z, γ2)

and γ2 completes some β′ ∈ Bdgs with free(expr1) ∪ free(expr2)

⇔ QX(expr1and expr2, z, γ2)

and γ2 completes some β′ ∈ Bdgs with free(expr1) ∪ free(expr2).

11. – 13.: trivial. (safety for variables; functions similar to predicates).

14. Context-related functions use the extension of variable bindings by pseudo-

variables Size and Pos in rule (6):

(x, β) ∈ SBany
X (position(), z, Bdgs)

Def⇔ (x, β) ∈ listβ∈Bdgs(β(Pos), {β′ ∈ Bdgs | β(Pos) = β′(Pos)})
⇔ β(Pos) = x for some β ∈ Bdgs

⇔ x ∈ Sany
X (position(), z, β) for some β ∈ Bdgs

⇔ x ∈ Sany
X (position(), z, β)

and β completes some β′ ∈Bdgs by free(position()) (which is empty).

Analogously for last().

Proof of Lemma 7: Structural induction.

• entry case (using β = β′): (X, β) |= /p
Def .5⇔ (SX(/p, β)) �= ∅

Def .4⇔ (SX(p, root, β)) �= ∅ Def .4⇔ (SX(root/p, β)) �= ∅ Def .5⇔ (X, β) |= root/p

IH⇔ (X, β) |= atomize(root/p)
Def⇔ (X, β) |= atomize(/p).

• Paths are resolved into steps and step qualifiers are isolated (the case where

a don’t care variable is introduced is shown; w.l.o.g., path is an absolute path

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

284 W. May

expression)

(X, β) |= path/axis :: nodetest[stepQualifier] /remainder

⇔ SX(path/axis :: nodetest[stepQualifier] /remainder, β) �= ∅
⇔ SX(path/axis :: nodetest[stepQualifier] /remainder, root, β) �= ∅
⇔ concat

y∈Sa
X(path/axis::nodetest[stepQualifier],root,β)

(Sany
X (remainder, y, β)) �= ∅

⇔ there is a node v ∈ Sa
X(path/axis :: nodetest[stepQualifier], root, β)

s.t. Sany
X (remainder, v, β) �= ∅

⇔ there is a node v ∈ listy∈Sa
X(path/axis::nodetest,x,β)(y | QX(stepQualifier, y, β))

s.t. Sany
X (remainder, v, β) �= ∅

⇔ there is a node v s.t. v ∈ Sa
X(path/axis :: nodetest, x, β)

and QX(stepQualifier, v, β) and Sany
X (remainder, v, β) �= ∅

⇔ there is a node v s.t. v ∈ Sa
X(path/axis :: nodetest→ X, x, βv

X)

and QX(V[stepQualifier], v, βv
X) and Sany

X (V/remainder, v, βv
X) �= ∅

⇔ there is a node v s.t. v ∈ Sa
X(path[axis :: nodetest→ X], x, βv

X)

and QX(V[stepQualifier], v, βv
X) and Sany

X (V/remainder, v, βv
X) �= ∅

⇔ there is a node v s.t. Sa
X(path[axis :: nodetest→ X], x, βv

X) �= ∅
and QX(V[stepQualifier], v, βv

X) and Sany
X (V/remainder, x, βv

X) �= ∅
⇔ there is a node v s.t. QX(path[axis :: nodetest→ X], βv

X)

and QX(V[stepQualifier], βv
X) and QX(V/remainder, βv

X)

IH⇔ there is a node v s.t. QX(atomize(path[axis :: nodetest→ X]), βv
X)

and QX(atomize(V[stepQualifier]), βv
X)and QX(atomize(V/remainder),

βv
X)

⇔ there is a node v s.t. QX(atomize(. . .), βv
X).

• Conjunctions in step qualifiers: obvious.

• Predicates in step qualifiers: W.l.o.g., consider a unary predicate with a relative

argument expression:

(X, β) |= V [pred(expr)]

⇔ SX(V [pred(expr)], β(V), β) �= ∅
⇔ listy∈Sa

X(V ,β(V),β)(y | QX(pred(expr), y, β)) �= ∅
⇔ (β(V) is the only element in Sa

X(V , β(V), β)) s.t. QX(pred(expr), β(V), β)

⇔ there is an x ∈ SX(expr, β(V), β) such that pred(x) ∈ X
⇔ there is an x s.t. x ∈ SX(V/expr → X, root, βx

X) and (X, βx
X)

|= pred(X)

⇔ there is an x s.t. (X, βx
X) |= V/expr → X and (X, βx

X) |= pred(X)
IH⇔ there is an x s.t. (X, βx

X) |= atomize(V/expr → X)

and (X, βx
X) |= pred(X)

⇔ there is an x s.t. (X, βx
X) |= atomize(V [pred(expr)]).

• Predicate atoms: analogous.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 285

Acknowledgments

Most of this work has been done when I was a member of the database group at

Freiburg University. I want to thank my former colleagues during that time: Lule

Ahmedi, Matthias Ihle, Georg Lausen, Pedro Marrón, Martin Weber, and Fang Wei.

References

Abiteboul, S., Quass, D., McHugh, J., Widom, J. and Wiener, J. 1997. The Lorel query

language for semistructured data. Journal on Digital Libraries (JODL) 1, 1, 68–88.

Baru, C., Gupta, A., Ludäscher, B., Marciano, R., Papakonstantinou, Y., Velikhov, P.

and Chu, V. 1999. XML-based information mediation with MIX. ACM Intl. Conference

on Management of Data (SIGMOD), pp. 597–599.

Baumgartner, R., Flesca, S. and Gottlob, G. 2001a. The Elog web extraction language. Intl.

Conference on Logic Programming and Automated Reasoning (LPNMR): Lecture Notes in

Computer Science 2250, pp. 548–560. Springer.

Baumgartner, R., Flesca, S. and Gottlob, G. 2001b. Visual web information extraction

with Lixto. Intl. Conference on Very Large Data Bases (VLDB), pp. 119–128.

Bry, F. and Schaffert, S. 2002. Towards a declarative query and transformation language

for XML and semistructured data: Simulation unification. Intl. Conference on Logic

Programming (ICLP), pp. 255–270.

Buneman, P., Davidson, S., Hillebrandt, G. and Suciu, D. 1996. A query language and

optimization techniques for unstructured data. ACM Intl. Conference on Management of

Data (SIGMOD), pp. 505–516. Montreal, Canada.

Buneman, P., Fernandez, M. and Suciu, D. 2000. UnQL: A query language and algebra for

semistructured data based on structural recursion. VLDB Journal 9, 76–110.

Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S. and Tanca, L. 1999. XML-

GL: a graphical language for querying and restructuring XML documents. Proceedings 8th

International World Wide Web Conference (WWW 8), pp. 1171–1187.

Christophides, V., Cluet, S. and Siméon, J. 2000. On wrapping query languages and efficient

XML integration. ACM Intl. Conference on Management of Data (SIGMOD), pp. 141–152.

Clark, J. 1998. XT: an implementation of XSL Transformations. http://www.jclark.

com/xml/xt.html.

Cluet, S., Delobel, C., Siméon, J. and Smaga, K. 1999. Your mediators need data conversion.

ACM Intl. Conference on Management of Data (SIGMOD), pp. 177–188.

Comai, S., Damiani, E. and Fraternali, P. 2001. Computing graphical queries over XML

data. ACM Transactions on Information Systems (TOIS) 19, 4, 371–430.

Consens, M. and Mendelzon, A. 1990. GraphLog: a visual formalism for real life recursion.

ACM Symposium on Principles of Database Systems (PODS), pp. 404–416.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A. and Suciu, D. 1999. XML-QL: A

Query Language for XML. 8th. WWW Conference. W3C. World Wide Web Consortium

Technical Report, NOTE-xml-ql-19980819, www.w3.org/TR/NOTE-xml-ql.

Deutsch, A., Fernandez, M. and Suciu, D. 2000. Storing semistructured data with STORED.

ACM Intl. Conference on Management of Data (SIGMOD), pp. 431–442.

DOM-W3C. 1998. Document object model (DOM). http://www.w3.org/DOM/.

Fernandez, M., Florescu, D., Levy, A. and Suciu, D. 1997. A query language for a web-site

management system. SIGMOD Record 26, 3, 4–11.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

286 W. May

Fernandez, M., Siméon, J. and Wadler, P. 1999. XML query languages: Experiences and

exemplars. draft manuscript, communication to the XML Query W3C Working Group.

http://www-db.research.bell-labs.com/user/simeon/xquery.ps.

Fernandez, M. F., Florescu, D., Kang, J., Levy, A. Y. and Suciu, D. 1998. Catching the

boat with Strudel: Experiences with a web-site management system. ACM Intl. Conference

on Management of Data (SIGMOD), pp. 414–425.

Florescu, D. and Kossmann, D. 1999. A performance evaluation of alternative mapping

schemes for storing XML data in a relational database. Technical Report 3684, INRIA.

Florid. 1998. Florid homepage. http://www.informatik.uni-freiburg.de/˜dbis/

florid/.

Frohn, J. 1998. Magic-Set Transformation in deduktiven, objektorientierten Datenbank-

sprachen. PhD thesis, Institut für Informatik, Universität Freiburg.

Frohn, J., Lausen, G. and Uphoff, H. 1994. Access to objects by path expressions and rules.

Intl. Conference on Very Large Data Bases (VLDB), pp. 273–284.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman,

J., Vassalos, V. and Widom, J. 1997. The TSIMMIS approach to mediation: Data models

and languages. Journal of Intelligent Information Systems 8, 2, 117–132.

Goldman, R., McHugh, J. and Widom, J. 1999. From semistructured data to XML:

Migrating the Lore data model and query language. WebDB 1999, pp. 25–30.

Hosoya, H. and Pierce, B. C. 2000. Xduce: A typed XML processing language. WebDB 2000,

pp. 111–116.

Kifer, M. and Lausen, G. 1989. F-Logic: A higher-order language for reasoning about

objects, inheritance and scheme. ACM Intl. Conference on Management of Data (SIGMOD),

pp. 134–146.

Kifer, M., Lausen, G. and Wu, J. 1995. Logical foundations of object-oriented and frame-

based languages. Journal of the ACM 42, 4, 741–843.

Lakshmanan, L. V. S., Sadri, F. and Subramanian, I. N. 1996. SchemaSQL – a language for

interoperability in relational multi-database systems. Intl. Conference on Very Large Data

Bases (VLDB), pp. 239–250.

Lehti, P. 2001. Design and implementation of a data manipulation processor for an XML

query language. MS thesis, Technische Universität Darmstadt.

Ludäscher, B., Himmeröder, R., Lausen, G., May, W. and Schlepphorst, C. 1998.

Managing semistructured data with Florid: A deductive object-oriented perspective.

Information Systems 23, 8, 589–612.

May, W. 1999. Information extraction and integration with Florid: The Mondial case

study. Technical Report 131, Universität Freiburg, Institut für Informatik. Available from

http://www.dbis.informatik.uni-goettingen.de/Mondial/.

May, W. 2001a. Habilitation thesis. PhD thesis, Universität Freiburg. Available from

http://www.dbis.informatik.uni-goettingen.de/lopix/.

May, W. 2001b. Information integration in XML: The Mondial case study. Technical

Report. Available from http://www.dbis.informatik.uni-goettingen.de/lopix/

lopix-mondial.html.

May, W. 2001c. LoPiX: A system for XML data integration and manipulation. Intl. Conference

on Very Large Data Bases (VLDB), Demonstration Track, pp. 707–708.

May, W. 2001d. The lopix system. http://www.dbis.informatik.uni-goettingen.de/

lopix/.

May, W. 2001e. The Mondial database. http://www.dbis.informatik.uni-goettingen.

de/Mondial/.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

A logic-programming style XML data manipulation language 287

May, W. 2002. A rule-based querying and updating language for XML. Workshop on Databases

and Programming Languages (DBPL 2001): Lecture Notes in Computer Science 2397,

pp. 165–181.

May, W. and Behrends, E. 2001. On an XML data model for data integration. In Intl.

Workshop on Foundations of Models and Languages for Data and Objects (FMLDO 2001).

McHugh, J., Abiteboul, S., Goldman, R., Quass, D. and Widom, J. 1997. Lore: A database

management system for semistructured data. SIGMOD Record 26, 3, 54–66.

Przymusinski, T. C. 1988. On the declarative semantics of deductive databases and logic

programs. In: J. Minker, Ed. Foundations of Deductive Databases and Logic Programming,

pp. 191–216. Morgan Kaufmann.

Robie, J. 1999. XQL (XML Query Language). http://www.metalab.unc.edu/xql/xql-

proposal.html.

Shanmugasundaram, J., Gang, H., Tufte, K., Zhang, C., Witt, D. J. D. and Naughton,

J. Relational databases for querying XML documents: Limitations and opportunities. Intl.

Conference on Very Large Data Bases (VLDB), pp. 302–314.

Software AG. 2001. Quip: An xquery implementation. http://www.softwareag.com/

developer/quip/.

Tatarinov, I., Ives, Z. G., Halevy, A., and Weld, D. 2001. Updating xml. ACM Intl.

Conference on Management of Data (SIGMOD), pp. 133–154.

Wadler, P. 1999. Two semantics for XPath. http://www.cs.bell-labs.com/who/wadler/

topics/xml.html.

XMLInf. 1999. XML information set. http://www.w3.org/TR/XML-infoset.

XMQ-A. 2001. XML Query Algebra. http://www.w3.org/TR/query-algebra.

XMQ-D. 2001. XML Query Data Model. http://www.w3.org/TR/query-datamodel.

XPath. 1999. XML Path Language (XPath) version 1.0: 1999. http://www.w3.org/TR/xpath.

XPQOF. 2001. XQuery 1.0 and XPath 2.0 Functions and Operators. http://www.w3.org/

TR/xquery-operators.

XQFS. 2001. XQuery 1.0 Formal Semantics. http://www.w3.org/TR/query-semantics.

XQuery. 2001. XQuery: A Query Language for XML. http://www.w3.org/TR/xquery.

XSLT. 1999. XSL Transformations (XSLT). http://www.w3.org/TR/xslt.

https://doi.org/10.1017/S147106840300187X Published online by Cambridge University Press

https://doi.org/10.1017/S147106840300187X

