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ABSTRACT
The problem of the magnetic attitude tracking control is studied for a gravity gradient
microsatellite in orbital transfer. The contributions of the work are mainly shown in two
aspects: (1) the design of an expected attitude trajectory; (2) a method of the magnetic atti-
tude tracking control. In orbital transfer, the gravity gradient microsatellite under a constant
thrust shows complicated dynamic behaviours. In order to damp out the pendular motion, the
gravity gradient microsatellite is subject to the the attitude tracking problem. An expected
attitude trajectory is designed based on dynamic characteristics revealed in the paper, which
not only ensures the flight safety of the system, but also reduces the energy consumption of
the controller. Besides, the control torque produced by a magnetorquer is constrained to lie
in a two-dimensional plane orthogonal to the magnetic field, so an auxiliary compensator is
proposed to improve the control performance, which is different from existing magnetic con-
trol methods. In addition, a sliding mode control based on the compensator is presented, and
the Lyapunov stability analysis is performed to show the global convergence of the tracking
error. Finally, a numerical case of the gravity gradient microsatellite is studied to demonstrate
the effectiveness of the proposed tracking control.
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1.0 INTRODUCTION
Gravity gradient satellites have long been a practical solution for Earth observation and Earth
science missions. The gravity gradient satellite is generally formed by a main-sat and a
sub-sat (detector) joined by a coilable mast, the length of which is within the range of 2–
5m. In order to explore the global distribution of spatial physical parameters, the gravity
gradient microsatellite is subject to the problem of the orbital transfer. Normally, conven-
tional orbital transfers can be utilised, such as the Hohmann orbital transfer or the bielliptical
orbital transfer. Whereas, impulse orbital transfers have several limitations; for example, the
impulse thruster may lead to the vibration of the coilable mast, which is adverse to the attitude
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control of the gravity gradient microsatellite. With the progress of the micro-thrust technol-
ogy, a small, continuous and constant thrust becomes a practical and effective method, which
possesses merits such as low control requirements, high safety, and repeatability.

In orbital transfer, in order to save on the cost, power, weight and complexity of the
system, a magnetorquer is normally adopted to provide the control torque. Several control
methods have been developed for the attitude acquisition, manoeuvre and stabilisation of
magnetic actuated satellites during the last decades(1–5). The well-known B-dot control law
was proposed early in 1972(6). In addition, because the magnetic control torque lies in a two-
dimensional plane orthogonal to the magnetic field, the relevant research is mainly focused
on the stability analysis of magnetic control laws. The local asymptotic stability is easily
addressed(7–9), and the global asymptotic stability is proved to be possible when the magnetic
field variation is sufficient along a complete orbit(10–12).

In spite of a number of studies in the aforementioned literature, the control performance
is still greatly influenced by the magnetic constraint. In this article, the unique features of
the proposed tracking control are mainly shown in two aspects: (1) According to the analysis
of the combined forcing action of the gravity and the constant thrust, an expected attitude
trajectory is proposed. Based on the expected trajectory, the torque produced by the thrust
can be compensated by the torque produced by the gravity; hence, the trajectory is stable
and reduces the energy consumption of the controller. (2) An auxiliary compensator is pro-
posed, and a sliding mode control method, based on the compensator, is presented. Due to the
boundedness of the control error, the magnetic constraint compensator is dissipative; as the
sliding surface maintains at zero, attitude angles realise the tracking of the expected attitude
trajectory, and the system is asymptotically stable.

In this paper, in Section 2.0, the problem is formulated; in Section 3.0, the dynamic model
is established; in Section 4.0, an expected attitude trajectory is derived, and a method of the
magnetic sliding mode control is presented; in Section 5.0, a numerical case is studied to
demonstrate the effectiveness of the proposed control.

2.0 PROBLEM FORMULATION
The study on the magnetic attitude tracking control is mainly applied to a gravity gradient
microsatellite in orbital transfer, which can be adopted for the environment exploration of the
atmosphere or the ionised layer. In order to obtain the large-scale three-dimensional spatial
environment data, the gravity gradient microsatellite is subjected to the problem of the orbital
transfer.

In orbital transfer, a continuous thrust is imposed on the gravity gradient microsatellite
(Figure 1), which is completely different from the traditional gravity gradient microsatellite
in a Keplerian orbit. When the torque generated by the thrust is close to the gravity gradient
torque, the equilibrium positions of attitude angles will be decided by the geocentric distance,
the thrust, and the length of the coilable mast. Besides, as the thrust is positioned along a
settled direction, the bifurcation and resonance phenomena may occur. It might arouse not
only the attitude disorder, but also the strong vibration of the coilable mast.

In order to inhibit the pendular motion of the gravity gradient microsatellite in orbital
transfer, an effective attitude tracking controller should be implemented. Besides, in order
to reduce cost, power, weight and system complexity, a magnetorquer can be installed in the
main-sat. Considering that a constant thrust along the transversal direction can be applied to
the orbital transfer between two circular low Earth orbits (LEOs)(13), a case of the transversal
orbital transfer is mainly studied in the paper.

https://doi.org/10.1017/aer.2019.112 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2019.112


SUN ET AL MAGNETIC ATTITUDE TRACKING CONTROL OF GRAVITY GRADIENT MICROSATELLITE 1883

Figure 1. The description of the gravity gradient microsatellite.

3.0 DYNAMIC MODEL

3.1 Coordinate frames
Let Ex′y′z′ be the geocentric inertial frame. Its origin E is the mass center of the Earth. The
axis Ex′ points to the first Aries point, the axis Ey′ is in the equatorial plane and the coordinate
system is right-hand oriented.

Subsequently, let Oxyz be the orbital frame with the origin at the mass center of the
microsatellite O. The Oz axis points to the mass center of the Earth E, the Ox axis is nor-
mal to the Oz axis in the orbital plane and points along the direction of increasing polar angle
u and the coordinate system is right-hand oriented.

Afterwards, let Oxoyozo be the original frame with the origin at the mass center O. The axes
are assumed to coincide with the microsatellite’s principal inertia axes.

3.2 Attitude dynamics
Because the gravity gradient microsatellite is regarded as a rigid body, the attitude dynamic
equation can be expressed as

Iω̇ = f (ω, t)+�f (ω, t)+�d (t)+ MC (1)

where f (ω, t)= −ω×Iω + MG + MF , I is the inertial matrix and ω = [ωx,ωy,ωz]T is the
angular velocity vector. The notation ω× for the vector ω is used to denote the following
skew-symmetric matrix:

ω× =
⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦ (2)
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Besides, MG and MF are the torques produced by the gravity and the thrust, respectively. MC

is the control torque produced by the magnetorquer. �f (x, t) represents the system uncer-
tainty and ‖�f (ω, t)‖∞ =�fmax (ω, t). �d is the external torque vector, which involves the
atmosphere drag torque and the solar pressure torque, and ‖�d (t)‖∞ =�dmax (t).

The attitude kinematic equation can be described as

�̇ = R (�)ωr (3)

where � = [ψ , θ , φ]T is the attitude angle vector. ψ , θ and φ are the yaw angle, the pitch
angle and the roll angle, respectively. The definition of attitude angles satisfies 3 − 2 − 1
rotation(14). ωr = ω − ωo = [

ωrx,ωry,ωry

]T
is the relative angular velocity with respect to the

orbital frame, and ωo is the angular velocity of the orbital frame. R (�) can be expressed as

R (�)=
⎡
⎣ 0 sec θ sin ϕ sec θ cos ϕ

0 cos ϕ sin ϕ
1 tan θ sin ϕ tan θ cos ϕ

⎤
⎦ (4)

The control torque MC produced by the interaction of the geomagnetic field and the
magnetic dipole moment is determined by

MC = U × B (5)

where U is the magnetic dipole moment generated by the magnetorquer, and B represents the
time-varying geomagnetic field vector.

3.3 Motion of the center of mass
According to Ref. [13], if a small, continuous, constant thrust imposed on the mass center is
along the transversal direction, the time t and the geocentric distance r can be expressed as

t ≈ 1

ωo

[
u + fu

2ω2
or0

(
3u2 + 8 cos u − 8

)]
(6)

r ≈ r0

[
1 + 2fu

ω2
or0

(u − sin u)

]
(7)

where ωo =
√
μr−3

0 , r0 represents the initial value of the geocentric distance. The value of the

transversal thrust acceleration fu = F(M + m)−1 and F is the value of the electric thrust F.

Remark 1 In Ref. [13], the motion equation in the polar coordinate system is adopted to
derive the time t and the geocentric distance r as functions of the polar angle u, which is
helpful for the orbit trajectory design, but cannot be directly used for analytical solutions of
attitude angles. Thus, in order to obtain the motion of the center of mass, the polar angle u
and the geocentric distance r, as functions of the time t, should be derived.

By performing some cumbersome algebraic work, the polar angle u and the geocentric
distance r can be expressed as
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u ≈ u0 +ωot − 3fu
2r0

t2 − 4fu
ω2

or0
cosωot + 4fu

ω2
or0

(8)

r ≈ r0 + 2fu
ωo

t − 2fu
ω2

o

sinωot (9)

where u0 represents the initial value of the polar angle.
When u − u0 = 2nπ , the orbital trajectory of the mass center returns to a circular orbit. The

transfer time T and the transversal thrust acceleration fu can be derived as

T ≈ 2nπ

ωu
(10)

fu ≈ ω2
u

(
rf − r0

)
4nπ

(11)

where r0 and rf are geocentric distances of initial and final circular orbits, respectively.

4.0 SLIDING MODE ATTITUDE TRACKING CONTROL

4.1 Expected attitude trajectory
With respect to the rotation around the axis of the coilable mast, the effect of the combined
action of two forcing terms (the gravity gradient torque and the thrust torque) on the pendular
motion of the gravity gradient microsatellite behaves more obvious and significant. Besides,
the effect of the rotation about the axis of the coilable mast on the pendular motion is very
small. Thus, a dumbbell model is adopted to underline physical effects in the problem and to
design an expected attitude trajectory (Fig. 3).

Compared with the main-sat and the sub-sat, the mass of the coilable mast is very small and
the length of the coilable mast is very long; hence, the mass of the coilable mast is neglected.
The gravity gradient microsatellite is formed by two end masses joined by a rigid rod ignoring
mass, elastic strain and damping. Attitude angles θ (pitch angle) and φ (roll angle) can be
defined by the projection of the unit vector l in the orbital frame (Fig. 2). The unit vector l is
expressed as

l = i cos φ cos θ − j sin φ + k cos φ sin θ (12)

According to the momentum theorem, without attitude control, the attitude dynamic
equation can be expressed as

dH

dt
= MG + MF (13)

where MG and MF are the torques produced by the gravity gradient and the thrust, respec-
tively. In the angular momentum H = I × ω, I is the central inertia tensor and the angular
velocity vector ω = l × l̇.

The torque MG is written as

MG ≈ 3μr−3k × (I · k)= 3μr−3I (l × k) (l · k) (14)
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Figure 2. Co-ordinate frames.

Figure 3. The dumbbell model of the gravity gradient microsatellite.

where r is the geocentric distance, μ= 3.986 × 105km3/s2 is the gravitational constant of the
Earth and I = Mm(M + m)−1l2.

The torque MF is written as

MF = −lm(M + m)−1F × l (15)

By performing some cumbersome algebraic work, dynamic equations can be obtained as

θ̈ = −ful̃−1 cos θ(cos φ)−1 − 3μr−3 cos θ sin θ − 2
(
u̇ − θ̇

)
φ̇ tan φ + ü (16)

φ̈ =
[
ful̃−1 sin θ − 3μr−3cos2θ cos φ − (

u̇ − θ̇
)2

cos φ
]

sin φ (17)

where l̃ = lM(M + m)−1.
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Table 1
Properties of equilibrium positions of the pitch angle θ

|fu| Equilibrium postion Property
(

0, 3μr−3 l̃
] ±π/2 Saddle point

− arcsin ku, π + arcsin ku Stable center(
3μr−3 l̃, +∞

) fu|fu|−1π/2 Saddle point
−fu|fu|−1π/2 Stable center

In the dynamic model, the equilibrium position of φ ≡ 0 exists; besides, as the initial value
of the roll angle is very small, the coupling of the pitch angle θ and the roll angle φ is not
obvious in orbital transfer. Hence, the properties of equilibrium positions of the pitch angle θ

can be obtained in Table 1, where ku = fur3
(

3μl̃
)−1

.

In this paper, it is assumed that at any certain moment, the parameter ku is constant, and the
equilibrium position derived for this condition is defined as the expected attitude angle at this
moment.

Definition 1 Considering the time-varying geocentric distance r (t) and the thrust acceler-
ation component fu, at the moment of t = τ , the value of r (t) is r|t=τ . In the orbital transfer
between two co-planar orbits, the expected pitch angle θc (t) and the roll angle φc (t) (the
expected attitude trajectory) are defined as

θc (t)|t=τ =
{
θ̃e ∈ θe : ku = fu

(
r|t=τ

)3
(

3μl̃
)−1

}

φc (t)|t=τ ≡ 0
(18)

where θ̃e is a stable center of the equilibrium position θe.

Remark 2 The designed trajectory helps avoid the attitude disorder of the gravity gradient
microsatellite. Besides, as the pitch angle θ approaches to the expected attitude trajectory,
the torque MF can be compensated by the torque MG; thus, it effectively reduces the energy
consumption of the attitude controller.

4.2 Magnetic attitude tracking control
In engineering, the control torque MC generated by the magnetorquer is constrained in the
plane, which is perpendicular to the local geomagnetic field vector, so it is impossible to
obtain an arbitrary ideal magnetic control torque M̃C .

To address the problem, the magnetic dipole moment U can be applied as

U = −M̃C × B

‖B‖2
(19)

Thereby, the actual magnetic control torque acting on the gravity gradient microsatellite is
given as

MC = −M̃C × B

‖B‖2
× B (20)
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Figure 4. The geometric relation among B, U, M̃C and MC .

Figure 5. The principle of closed-loop control.

MC is a component of M̃C and is perpendicular to B. The geometric relation among B, U ,
M̃C and MC is illustrated in Fig. 4. The control torque is expressed as MC = �BM̃C , where
�B is a singular matrix.

Remark 3 The control torque generated by the magnetorquer is constrained by the magnetic
field, so the controllability of the designed controller cannot be guaranteed in the global field;
however, if the value of the angular velocity ω is small and 0< lim

T→∞
1
T

∫ T
0 �Bdt< I3, the

attitude of the gravity gradient microsatellite can be controlled(11).

Obviously, the global stability of the system in existing control methods depends on ω

and �B to a large extent, and the control performance is greatly influenced by the magnetic
constraint. In order to solve the problem, an auxiliary compensator is designed in this paper,
and a compensator-based sliding mode control is presented.

The basic idea of the auxiliary compensator is to introduce control modifications in order
to recover, as much as possible, the performance induced by a previous design carried out
on the basis of the unconstrained (without magnetic constraint) system. Thus, the general
principle of the control scheme is depicted in Fig. 5. The auxiliary compensator is driven by
the difference�MC between the constrained and unconstrained control signals (MC and M̃C).
The auxiliary compensator itself emits one signal λ, which is directly fed into the improved
controller. It is not easy to realise the attitude tracking (� − �c → 0) directly in the presence
of the magnetic constraint, but a controller can be designed to make � − �c + λ approach
zero. Besides, the designed auxiliary compensator can realise λ → 0 if �MC is bounded.
Then, the stability of the system can be ensured.
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The adaptive auxiliary compensator is designed as

λ̇ = Aλ + C�MC (21)

where λ = [λ1, λ2, λ3, λ4, λ5, λ6]T , A and C are written as

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a1 1 0 0 0 0
0 −a2 0 0 0 0
0 0 −a3 1 0 0
0 0 0 −a4 0 0
0 0 0 0 −a5 1
0 0 0 0 0 −a6

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
c1 0 0
0 0 0
0 c2 0
0 0 0
0 0 c3

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

Remark 4 To ensure that λi → 0 (i = 1, 2, · · · , 6), A should be Hurwitz; in other words,
ai > 0 (i = 1, 2, · · · , 6). Besides, in order to avoid the instability aroused by �MC that is too
large, ai needs to be large enough(15).

Lemma 1(16) The sliding surface is designed as

s = (ωr − ωrc)+ kq

(
qr − qrc

)
(23)

where ωrc = [0, 0, 0]T is the expected angular velocity, and Qc = [
q1c, qrc

]T
is the expected

unit attitude quaternion. If s ≡ [0, 0, 0]T , the attitude quaternion Q exponentially converges
to Qc.

Based on Lemma 1, the improved sliding surface s̃ is designed as

s̃ = s + sλ (24)

where sλ = [
λ̇1, λ̇3, λ̇5

]T + kq[λ1, λ3, λ5]T .

Theorem 1 Considering the system described by Equation (1) and Definition 1, if a sliding
mode controller is designed as

M̃C = −f (ω, t)− Iξ − Iṡλ − kss̃ − ηsgn (s̃) (25)

MC = −
(

M̃C × B
/

‖B‖2
)

× B (26)

where η >�fmax (ω, t)+�dmax (t) and ξ = −ω̇o + 1
2 kq

(
q1ωr − ω×

r qr

)
, then attitude angles

will track the expected attitude trajectory �c = [ψc (t) , θc (t) , φc (t)]
T .

Proof The Lyapunov function is designed as

V = 1

2
s̃T Is̃ (27)
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Considering the designed controller, the derivative of the Lyapunov function can be
obtained as

V̇ = s̃T I ˙̃s = s̃T
(Iω̇ + Iξ + Iṡλ)

= s̃T [�f (ω, t)+�d (t)− kss̃ − ηsgn (s̃)]

= −kss̃
T s̃ + s̃T [�f (ω, t)+�d (t)] − η‖s̃‖1

(28)

As η >�fmax (ω, t)+�dmax (t), V̇ ≤ 0. If and only if s̃ = [0, 0, 0]T , V̇ = 0.

Remark 5 Initially, the Lyapunov function V is bounded. In light of Equations (27) and
(28), �MC can be bounded when t → ∞. By setting A, λi → 0 (i = 1, 2, · · · , 6) can be
realised(15); thus, as s̃ → 0, � → �c.

Remark 6 It should be noted that as the pitch angle θ approaches the expected attitude trajec-
tory, the torque MF can be compensated by the torque MG. At this moment, M̃C approaches
zero and �MC → 0.

5.0 CASE STUDY
In engineering, the gravity gradient microsatellite is mainly utilised to explore the space envi-
ronment in a LEO. The orbit altitude is within the range of 400–800km. In order to obtain
global spatial data, it is requested to increase the orbit altitude by at least 0.1–1km in orbital
transfer. The electric thrust imposed on the main-sat is within the range of 0.1–100mN;
accordingly, the torque produced by the thrust varies within the range of 10−5–10−2N · m. The
torque produced by the gravity approaches to 10−5N · m. The external torques (the atmosphere
drag torque and the solar pressure torque) are within the range of 10−7–10−6N · m.

Without loss of generality, the geocentric distance of the initial circular orbit is 7000km.
The thrust F is 0.1mN and always along the transversal direction of the mass center. The
masses of the main-sat and the sub-sat are 30 and 5kg, respectively. The length of the coilable
mast is 2m. Based on the dumbbell model, the momentum of inertia I = 17.14kg · m2; mean-
while, the inertial matrix I ≈ diag{18.141, 18.141, 0.458} kg · m2 in the rigid body model.
Initially, attitude angles ψ , θ and φ are 1◦, 1◦ and 1◦, respectively. Controller parameters
are selected as kq = 1.25 × 10−3, ks = 7.5 × 10−2, η= 1 × 10−6, ai = 1 (i = 1, 2, · · · , 6) and
cj = 1 (j = 1, 2, 3).

As shown in Fig. 6, when the thrust imposed on the gravity gradient microsatellite is along
the transversal direction, the geocentric distance will be increased by 31m per orbit period. If
the controller is not adopted, ψ and φ will dramatically change within the range of −60◦ ∼
180◦ and −180◦ ∼ 60◦ in the first ten orbit periods, respectively; meanwhile, θ maintains the
periodical motion within a large range of −90◦ ∼ 0◦, which goes against the flight safety
of the gravity gradient microsatellite. In order to inhibit the serious pendular motion, the
designed magnetic attitude tracking control is implemented in orbital transfer. ψ and φ vary
in a small range and approach 0◦; in the meantime, θ gradually converges to the expected
attitude trajectory.

Remark 7 According to Definition 1, the expected pitch angle θc is time varying, because
the geocentric distance r is increased in orbital transfer. Initially, θc ≈ −28.5589◦. In the 10th
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(b)(a)

(d)(c)

Figure 6. The comparison between the controlled and uncontrolled systems.

orbit period, θc approaches −28.5629◦. The change of θc is not obvious in the figure, which
is conducive for the flight safety.

To demonstrate the improvement in performance from the auxiliary compensator, both
cases, with and without the compensator, are studied in Fig. 7. In the case without the com-
pensator, the auxiliary compensator is not adopted, and sλ is not considered in Theorem 1.
Meanwhile, other control parameters remain unchanged. Obviously, with respect to the case
with the compensator, attitude angles vary within a larger range; in addition, in the last four
orbit periods, the attitude tracking speed is slow, and the control performance is not good.

As shown in Fig. 8, with the compensator, MC and �MC gradually tend to 0N · m. After
the 8th orbit period, torque components MFx ≈ 0N · m, MFz ≈ 0N · m, MGx ≈ 0N · m and
MGz ≈ 0N · m; meanwhile, MFy and MGy approach −2.51 × 10−5N · m and 2.58 × 10−5N · m,
respectively. It is clear that the torque MF can be compensated by the torque MG, and the error
0.07 × 10−5N · m is caused by the the momentum of inertia difference between the dumbbell
model and the rigid body model.

6.0 CONCLUSIONS
Based on a series of analyses and simulations, the following conclusions can be drawn:
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(a) (b)

(c)

Figure 7. Control results with and without compensator.

(1) If a transversal electric thrust is applied to the gravity gradient microsatellite in an
orbital transfer, the equilibrium position of the pitch angle θ exists; besides, the number and
stability of the equilibrium position are closely related to r, M, m, l and F;

(2) As the pitch angle approaches the proposed expected attitude trajectory, the torque MF

can be compensated by the torque MG, which can help reduce the energy consumption and
avoid the attitude disorder;

(3) The method of the magnetic control presented in this paper can address the attitude
tracking control problem subject to the magnetic constraint. The proposed sliding mode
control based on the auxiliary compensator is conducive for enhancing the robustness and
stability of the system.

In general, the proposed magnetic attitude tracking control scheme is beneficial for avoid-
ing the attitude disorder and to reduce the energy consumption of the magnetorquer, which
can provide a reference for research on the gravity gradient microsatellite in orbital transfer.
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(a) (b)

(c) (d)

Figure 8. The time responses of torques MG, MF , MC and �MC .
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