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[0, n] ∪ {�} IS A SPECTRUM OF A NON-DISINTEGRATED
FLAT STRONGLY MINIMAL MODEL COMPLETE THEORY

IN A LANGUAGE WITH FINITE SIGNATURE

URI ANDREWS AND OMER MERMELSTEIN

Abstract. We build a new spectrum of recursive models (SRM(T )) of a strongly minimal theory. This
theory is non-disintegrated, flat, model complete, and in a language with a finite signature.

§1. Introduction. The countable models of uncountably categorical theories were
characterized by Baldwin and Lachlan [7] as being completely determined by a
single dimension. Thus these models are very well understood model-theoretically.
We seek to also understand them recursion-theoretically. A fundamental question
is which of these models have recursive presentations.

From Baldwin and Lachlan’s characterization in terms of dimensions, the
countable models of any uncountably categorical but not countably categorical
theory form an elementary chainM0 ≺M1 ≺M2 ≺ ··· ≺M� . For such a theory T,
the Spectrum of Recursive Models of T (SRM(T )) is the set of i so thatMi has a
recursive presentation. The spectrum problem asks which subsets of � + 1 appear
as SRM(T ) for some theory T.

The following theorem summarizes all the positive results currently known about
the existence of spectra.

Theorem 1.1. The following are spectra of recursive models of strongly minimal
theories:

• ∅,
• [0, �], i.e., � + 1,
• {0} (Goncharov [8]),
• [0, n], i.e., {0, ... n}, for any n ∈ � (Kudaibergenov [17]),
• [0, �), i.e., � (Khoussainov/Nies/Shore [15]),
• [1, �], i.e., (� + 1) \ {0} (Khoussainov/Nies/Shore [15], see also [16]),
• {1} (Nies [18]),
• [1, α) for any α ∈ [2, �] (Nies/Hirschfeldt, see Nies [18, p. 314]),
• {�} (Hirschfeldt/Khoussainov/Semukhin [10]),
• {0, �} (Andrews [6]).
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[0, n] ∪ {�} IS A SPECTRUM 1633

While relatively few sets are known to be spectra, the only known upper bound
on all spectra is that every spectrum must be Σ0

�+3, and for a model complete theory,
SRM(T ) is Σ0

4 [18].
In the hopes of coming to a better understanding of possible spectra, a few

approaches have been taken, including: Focusing on the strongly minimal theories,
focusing on theories with particular geometric properties, and focusing on theories
in languages with finite signatures. In these cases, we have better characterizations
of the possible spectra.

By “particular geometric properties,” we refer to the Zilber trichotomy: Zilber
conjectured that every strongly minimal theory is either disintegrated (acl(A) =⋃
a∈A acl(a)) or locally modular (after adding one constant, we get dim(A ∪ B) =

dim(A) + dim(B) – dim(A ∩ B) for any finite-dimensional closed sets A and B) or
is field-like (there is an interpretable an infinite field with no definable sets on it aside
from the ones definable in the field itself).

Under such assumptions, we can completely characterize the possible spectra:

Theorem 1.2 (Andrews–Medvedev [3]). If T is disintegrated strongly minimal and
the language has a finite signature, then SRM(T ) = ∅, {0}, or [0, �].

By Herwig–Lempp–Ziegler [11], all three of these cases are in fact spectra of
disintegrated theories in languages with finite signature.

Theorem 1.3 (Andrews–Medvedev [3]). If T is a modular strongly minimal theory
expanding a group in a language with finite signature, then SRM(T ) = ∅, {0}, or [0, �].

If T is a field-like strongly minimal theory expanding a field in a language with finite
signature, then SRM(T ) = [0, �].

Thus, in each prototypical case of the Zilber trichotomy, if the language has a
finite signature, then there are very few possible spectra. In particular, either all or
no models of positive dimension have recursive presentations.

Hrushovski [13] showed that the Zilber conjecture is false and produced a new
class of strongly minimal sets, all of which have a geometric property called flatness.
Formally, flatness is defined below, but intuitively it describes dimension as being
purely combinatorial in a way that allows for no algebraic rules (such as associativity
of a group operation) to hold:

Definition 1.4. A theory is flat if whenever {Ei | i ∈ I } is a finite collection
of finite-dimensional closed sets, and s ranges over the subsets of I, we have
Σs(– 1)|s| dim(Es) ≤ 0.

Andrews [5, 6] showed that [0, n], [0, �), and {�} are spectra of recursive models
of flat strongly minimal theories in languages with finite signature. Thus, it is possible
for a strongly minimal theory in a finite language to have some positive-dimensional
models be recursive and others not.

In this paper, we present another schema of spectra of a flat strongly minimal
theory in a language with finite signature: [0, n] ∪ {�}

We also point out the most important technical innovation in this paper. For
the general technique, we code extra relations in a structure by the number of
extensions of a certain type over a base. That is, in the amalgamation, we allow
more or fewer occurrences of a certain extension in order to code information. This
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only successfully codes that information if a tuple will have the maximal number of
extensions allowed. In condition (3”) on page 32, we see that if the base is strong
enough, then it has the maximal number of realizations, but there is much room
for exceptions. In the previous uses of this technique [5, 6], there were two different
tricks used to avoid these exceptions, but one only works if the size of the base of the
extension is at most one more than the dimension of the prime model and the other
only works if we have a bound on the size of the extensions that we will need. Neither
can work in our current setting, and they are both fragile methods. In §3 we present
the correct solution for this problem: We present a collection of “unblockable”
extensions which for any base whatsoever in any Hrushovski construction must have
the maximal possible number of extensions. This tool should make any combination
of recursion theory with Hrushovski constructions far easier in the future.

A different approach to recursion-theoretically understanding strongly minimal
theories is to consider the relative complexity of models. That is, if one model of a
theory T is recursive, how difficult can it be to compute the other models of T? In
the case of a disintegrated theory, every other model must be recursive in 0′′ [9] and
there is a theory where 0′′ is needed to compute the other models [14]. In general, the
degrees which compute every countable model of a strongly minimal theory which
has a recursive model are exactly the degrees which are high over 0′′ [1, 2]. That is,
exactly the degrees d so that d > 0′′ and d′ ≥ 0(4).

§2. Background.

2.1. Notation. We write ∃kx̄φ(x̄) to mean that there are at least k disjoint tuples
x̄ which satisfy φ.

2.2. Hrushovski constructions in infinite languages where � depends on the self-
sufficient closure. Fix L a relational language with the relations indexed by a (finite
or not) initial segment of�. We will enforce in our construction that each relation is
symmetric (if we do not do this, the same construction works with no changes—this
is purely a stylistic choice).

The following definitions and lemmas are standard to all Hrushovski construc-
tions.

Definition 2.1. The pre-dimension function on L-structures is the function
� from finite L-structures to Z ∪ {– ∞} so that �(A) = |A| – ΣR∈L#R(A). Here
#R(A) counts the number of occurrences of the relations on A (counting R(ā)
together with R(�(ā)) as a single relation for all permutations �).

For A,B ⊆ C with A,B finite:

• We write �(B/A) = �(A ∪ B) – �(A).
• We define �(A,C ) = inf{�(D) | A ⊆ D ⊆ C,D finite}.
• We say A is strong (also called self-sufficient) in C, written A ≤ C , if �(A) =
�(A,C ).

• We say B is simply algebraic over A ifA ∩ B = ∅,A ≤ A ∪ B , �(B/A) = 0, and
there is no proper non-empty subset B ′ of B so that �(B ′/A) = 0.

• We say B is minimally simply algebraic over A if B is simply algebraic over A
and A is minimal so that B is simply algebraic over A.
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• IfA ⊆ B and B \A is (minimally) simply algebraic over A, then we sayA ⊆ B
(or B/A) is a (minimally) simply algebraic extension.

Let C0 be the collection of L-structures C so that �(A) ≥ 0 for every finiteA ⊆ C .

Observation 2.2. For A,B finite subsets of an L-structure C,

�(A ∪ B) ≤ �(A) + �(B) – �(A ∩ B)

with equality if and only if there are no relations holding between A and B other than
those inside A or those inside B. In this case, we say A and B are freely joined over
A ∩ B and we write A ∪ B = A⊕A∩B B .

Proof. This is just inclusion–exclusion on the number of relations holding in
A ∪ B . 


The following two lemmas capture some basic facts about the notion of strong
substructure.

Lemma 2.3. If A ≤ B , then for any X ⊆ B , �(X ∩ A) ≤ �(X ).
If A ≤ B ≤ C , then A ≤ C .

Proof. Suppose A ≤ B . Then �(A) ≤ �(X ∪ A) ≤ �(X ) + �(A) – �(X ∩ A).
Thus, �(X ∩ A) ≤ �(X ).

Now suppose A ≤ B ≤ C . Let A ⊆ X ⊆ C . Then �(X ∩ B) ≤ �(X ) since B ≤
C , and �(A) = �(X ∩ B ∩ A) ≤ �(X ∩ B) since A ≤ B . So, �(A) ≤ �(X ). 


Lemma 2.4. Suppose X ≤ C and Y,Z ⊆ C are distinct, simply algebraic over X.
Then Y and Z are disjoint.

Proof. Since �(X ∪ Y ∪ Z) ≤ �(X ∪ Y ) + �(X ∪ Z) – �(X ∪ (Y ∩ Z)), we
can subtract �(X ) from both sides and see that �(Y ∪ Z/X ) ≤ �(Y/X ) + �(Z/X ) –
�(Y ∩ Z/X ) =– �(Y ∩ Z/X ). Since Y and Z are simply algebraic over X,
either Y ∩ Z = ∅ or �(Y ∩ Z/X ) > 0. But since X ≤ C , 0 ≤ �(Y ∪ Z/X ) =–
�(Y ∩ Z/X ). So Y and Z are disjoint. 


Definition 2.5. For C ∈ C0 and A ⊆ C finite, the self-sufficient closure of A is
the smallest set X so that A ⊆ X ≤ C .

Lemma 2.6. For any finite A ⊆ C ∈ C0, the self-sufficient closure exists, is unique,
and is finite.

Proof. Take X ⊇ A with minimal �(X ) and take X minimal as such (i.e., it
has no proper subset containing A with the same value of �). The minimality of
�(X ) implies thatX ≤ C . Suppose X were not unique, then there would be another
such set Y ⊇ A with �(Y ) = �(X ). Then �(X ∪ Y ) ≤ �(X ) + �(Y ) – �(X ∩ Y ) <
�(Y ) = �(X ) by minimality of the set X. But this would contradict the minimality
of �(X ). 


The following definitions are necessary to do the Hrushovski construction with
an infinite signature. We will build our theory by using an infinite signature and then
taking a reduct to a finite sub-signature.

Definition 2.7. For any L-structures ā, b̄ ⊆ C , the relative quantifier-free type
of b̄ over ā, written tpr.q.f.(b̄/ā), is the set of formulas {R(x̄i , ȳi) | (b̄i āi) ⊆
(b̄ ∪ ā)arity(R) \ āarity(R), R ∈ L, C |= R(b̄i , āi)}.
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Fix �(A,B,m) to be a function that takes in pairs of L-structures so thatA ⊂ B is
a minimally simply algebraic extension, and a numberm ∈ � ∪ {∞}, and � outputs
a number in � so that �(A,B,m) ≥ �(A).

We also require � to satisfy: For every relative quantifier-free type Ψ of
a minimally simply algebraic extension, there is a finite sublanguage L′ ⊆
L so that tpq.f.(A)|L′ = tpq.f.(A

′)|L′ and tpr.q.f.(B/A) = tpr.q.f.(B ′/A′) = Ψ
implies �(A,B,m) = �(A′, B ′, m). Further, for every A,B , we must have
limm→∞ �(A,B,m) = �(A,B,∞).

For any A ⊆ C , we let gC (A) be the least m so that there exists an X ⊆ C so that
A �≤ X which is witnessed by using only the first m relations in the language L and
|X | ≤ |A| +m. If there is no such m, then A ≤ C and we let gC (A) = ∞.

We have chosen to present the definition of � in terms of an extensionA ⊆ B . For
A,B ⊆ C with A,B finite, if B is minimally simply algebraic over A (in particular,
B is disjoint from A), then we also write �(A,B,m) for �(A,A ∪ B,m).

The following observation is a critical fact about how the function g behaves.

Observation 2.8. If A ⊆ B ≤ C , then gB(A) = gC (A).

Proof. That gC (A) ≤ gB(A) is immediate since any X ⊆ B so that A ⊆ X and
�(X ) < �(A) is also a subset of C. Suppose X ⊆ C is so that A ⊆ X and L0 ⊆ L
is a sublanguage so that restricting to this sublanguage, �(X |L0) < �(A|L0). Then
�(X ∩ B) ≤ �(X ) < �(A), so in the same sublanguage, B contains a set no larger
than X witnessing that A is not strong. So gB(A) ≤ gC (A). 


Definition 2.9. Let Y and X be finite L-structures so that Y is minimally simply
algebraic over X.

We define LY/X to be the finite collection of symbols occurring in tpr.q.f.(Y/X ).
Suppose B and A are finite L-structures such that tpr.q.f.(B/A) ⊇ tpr.q.f.(Y/X )

and tpq.f.(X ) = tpq.f.(A), then we say the extension B over A is of the form of Y
over X.

Definition 2.10. LetC� be the collection of finiteL-structuresC ∈ C0 that satisfy:
Suppose A,B1, ... , Br are disjoint subsets of C so that each Bi/A is of the form

of Y/X , then r ≤ �(X,Y, gC (A)).
For any ∀-axiomatizable elementary property � which is preserved by free joins,

let C�� be the collection of C ∈ C� so that C |= � .
Note that for trivial � , C�� = C�.

In most uses of the amalgamation method, we use the class C�, but it requires very
little extra work to include the generality of working with C�� and it will make our
construction of a strongly minimal theory T with SRM(T ) = [0, n] ∪ {�} slightly
cleaner.

Observation 2.11. Fix Y/X a minimally simply algebraic extension. There is a
first-order formula which is true in any C ∈ C�� and implies that C does not contain
disjoint subsets A,B1, ... , Br of the form of Y/X with r > �(X,Y, gC (A)).

Proof. Let L′ be the finite sublanguage of L guaranteed in Definition 2.7, and
let m be an integer so that �(X,Y, k) = �(X,Y,∞) for any k ≥ m.
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Let 	(A) say that A|L′ ∼= X |L′. For each k ∈ �, let 
k(A,C 1, ... C k) say that the
sets are disjoint, and that tpr.q.f.(Cj/A) ⊇ tpr.q.f.(Y/X ) for each j. For each l ≤ m,
let φl say that gC (A) = l . Finally, let � be the formula which says ∀A, if 	(A) holds,
then

∨
l<m

(
φl (A) ∧ ¬∃Z
�(X,Y,l)+1(A,Z)

)
∨

(∧
l<m

¬φl (A) ∧ ¬∃Z
�(X,Y,∞)+1(A,Z)

)
.

Let Ω be the collection of all the extensions Y ′/X ′ so that tpr.q.f.(Y ′/X ′) =
tpr.q.f.(Y/X ) and X ′|L′ ∼= X |L′. Then � says that the �-bound is obeyed for each
extension in Ω. Thus � is true in every C ∈ C�� and implies that C respects the
�-bound for Y/X . 


The following observation follows directly from the definition of being of the form
of Y/X .

Observation 2.12. Let A ⊆ B be finite L-structures. Let A′ ⊆ B ′ be formed by
removing some occurrence R(b̄) of some relation R from B. If B ′/A′ is of the form of
Y/X , then either B/A is of the form of Y/X or b̄ ⊆ A.

The following three Lemmas allow us to perform “strong amalgamation” on the
class C��, which will lead to a generic structure. The theory of this generic will be our
strongly minimal theory.

Lemma 2.13. Suppose A,B1, B2 ∈ C0, A = B1 ∩ B2, and A ≤ B1. Let E = B1 ⊕A
B2. SupposeF,C 1, ... , C r are disjoint substructures of E such that eachC i is minimally
simply algebraic over F. Then one of the following holds:

• One of the C i is contained in B1 \ A and F ⊆ A.
• F ∪

⋃
i≤r C

i is contained either entirely in B1 or entirely in B2.
• r ≤ �(F ).
• For one C i , setting Z = (F ∩ A) ∪ (C i ∩ B2), �(Z/Z ∩ A) < 0. Further, one of

the Cj is entirely contained in B1 \A. (Note that this cannot happen if A ≤ B2.)

Proof. A careful reading of Lemma 3 of [13] will show that this is what is proved
there. The full proof appears as Lemma 42 in [4]. 


Lemma 2.14 (Algebraic Amalgamation Lemma). Suppose A = B1 ∩ B2,
A,B1, B2 ∈ C��, and B1 \ A is simply algebraic over A. Let E be the free-join of
B1 with B2 over A. Then E ∈ C�� unless one of the following holds:

(1) B1 \ A is minimally simply algebraic over F ⊆ A and there are
�(F,B1 \ A, gB2(F )) disjoint extensions over F of the form of B1 \ A over F.

(2) There is a set Y ⊆ B2 with |Y | ≤ |B1 \ A| so that �(Y |LB1/A
/A|LB1/A

) < 0.
(3) There is a minimally simply algebraic extension Y/X and a set F ⊆ B1 and
C ⊆ B1 of the form of Y/X so that �(X,Y, gE(F )) < �(X,Y, gB1 (F )).

Proof. It is immediate that E |= � because � is preserved under free joins. Let
X ⊆ E. Then �(X ) = �(X ∩ B1) + �(X ∩ B2) – �(X ∩ A) ≥ �(X ∩ B2) ≥ 0, since
X is the free-join of X ∩ B1 with X ∩ B2 over X ∩ A and A ≤ B1. Thus E ∈ C0.

Suppose that Y/X is a minimally simply algebraic extension, and F,C 1, ... , C r

are disjoint subsets of E so that each C i/F is of the form of Y/X . We restrict E to
LY/X for all tuples outside of F.
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By Lemma 2.13, there are four cases to consider:

• One of the C i is contained in B1 \A and F ⊆ A. Since B1 \ A is simply
algebraic over A, we have that C i = B1 \A. In this case, we have that r is at
most one more than the number of disjoint extensions over F of the form of
Y/X in B2. Since B2 ≤ E, Observation 2.8 shows that gB2(F ) = gE(F ). So,
if r > �(X,Y, gE(F )), then in B2 we already have gB2(F ) disjoint extensions
over F of the form of Y/X . Since B1 \ A/F is minimally simply algebraic and
of the form of Y/X , each of these extensions is of the form of B1 \ A/F . Thus
we have (2.14) above.

• F ∪
⋃
i≤r C

i is entirely contained in B1 or B2. If it’s contained in B2, then
since B2 ∈ C� and B2 ≤ E, we see that r ≤ �(X,Y, gB2 (F )) = �(X,Y, gE(F )).
If it’s contained in B1, then since B1 ∈ C�, we have that r ≤ �(X,Y, gB1 (F )).
Either r ≤ �(X,Y, gB1 (F )) ≤ �(X,Y, gE(F )) or we are in case (2.14) above.

• r ≤ �(F ). Then it’s automatic that r ≤ �(X,Y, gE(F )) as �(X,Y,m) is always
≥ �(X ) = �(F ).

• For one C i , setting Z = (F ∩ A) ∪ (C i ∩ B2), we see �(Z/Z ∩ A) < 0. Let
Y = Z \ A. Then �(Y/A) < 0. Further, one of the Cj is contained in B1 \A,
so |Y | ≤ |C i ∩ B2| ≤ |B1 \ A|. Since one of the Cj is contained in B1 \ A, all
of the relations between the set Y and A which were retained when we took
the reduct above are in LB1/A, so �(Y |LB1/A/A|LB1/A) < 0. Thus, case (2.14)
holds. 


Lemma 2.15 (Strong Amalgamation Lemma). Suppose A,B1, B2 ∈ C�� and A ≤
Bi for i = 1, 2. Then there exists a D ∈ C�� so that B2 ≤ D and a g : B1 → D so that
g is the identity map on A and g(B1) ≤ D.

Proof. We may assume that there is no B ′ so that A ≤ B ′ ≤ B1 as otherwise we
can first amalgamate this B ′ with B2 over A. Thus, either B1 is A ∪ {x} where x is
unrelated to any element in A or B1 is simply algebraic over A, say minimally simply
algebraic over F ⊆ A. In the first case, the free-join suffices. In the second case,
the free-join works unless one of the three conditions enumerated in the Algebraic
Amalgamation Lemma holds. The second and third cannot hold, because A ≤ B2.
Thus we can assume that B1 \ A is minimally simply algebraic over F ⊆ A and that
in B2 there are C 1, ... C r which are �(F,B1 \ A, gB2(F )) disjoint extensions of the
form of B1 \ A/F . Since A ≤ B1 and A ≤ B2, we have gA(F ) = gB1(F ) = gB2(F ).
Thus, it cannot be that all of these Cj are contained in A, since then B1 would have
violated the �-bound. Without loss of generality, C 1 �⊆ A. C 1 cannot be partially
in A since A ≤ B2. Thus C 1 ⊆ B2 \ A. Since A ≤ B2, there are no extra relations
in tpr.q.f.(C 1/A) other than those in tpr.q.f.(B1 \ A/F ), and A ∪ C 1 ≤ B2. Thus, we
can form g by sending B1 \ A to C 1 over A. 


Using the Strong Amalgamation Lemma, we build a generic modelM. We discuss
its theory in the next subsection.

2.3. The theory of the generic. Using the Strong Amalgamation Lemma, via
a Fraı̈ssé-style construction, we get a model M := M�

� (if � is trivial, we write
M = M�) which satisfies the following three properties:

(1) M is countable.
(2) If A ≤ M is finite, then A ∈ C��.

https://doi.org/10.1017/jsl.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.11


[0, n] ∪ {�} IS A SPECTRUM 1639

(3) Suppose B ≤ M, B ≤ C , and C ∈ C��. Then there exists an embedding
f : C → M which is the identity on B and f(C ) ≤ M.

By a standard back-and-forth on strong substructures, these three properties
characterize M up to isomorphism. We want to show that M is saturated by
showing that any countable elementary extension of M is isomorphic to M. To do
so, we must check that these properties are elementary. We consider the properties:

(2’) This is broken down into three statements:
a) M |= � .
b) �(A) ≥ 0 for every finite A ⊆ M.
c) If F,C 1, ... C r are disjoint subsets of M and each C i/F is of the form of
Y/X . Then r ≤ �(X,Y, gM(F )).

(3’) There is an infinite set I ⊆ M on which no relation holds and every finite
A ⊂ I is strong in M.

(3”) Suppose B ⊆ M, B ≤ C ,C ∈ C��, andC \ B is simply algebraic over B, say
minimally simply algebraic over F ⊆ B . Suppose that there is no Y ⊆ M
such that �(Y |LC/B/B |LC/B) < 0 and |Y | ≤ |C \ B |. Further suppose that
there is no minimally simply algebraic extension H/G and sets H ′, G ′ ⊆ C
of the form of H/G so that �(G,H, gC (G)) �= �(G,H, gM⊕BC (G)). Then
there are�(F,C \ B, gM(F )) disjoint extensions over F of the form ofC \ B
over F in M.

Lemma 2.16. (1)–(3) are equivalent to (1), (2’), (3’), (3”).

Proof. Suppose (1)–(3) are true. To see (2’)(a) holds, since � is universal it
suffices to check that � holds on every finite substructure of M. Every finiteA ⊆ M
is contained in its finite self-sufficient closure C, which is strong in M. AsC ∈ C�� by
(2), we haveC |= � and thusA |= � . Similarly byC ∈ C��, (2’)(b) holds on A. Finally,
to see (2’)(c), letA = F ∪

⋃
i≤r C

i and again consider the self-sufficient closure C of

A. Then sinceC ∈ C�� by (2), we have that r ≤ �(X,Y, gC (F )), but gC (F ) = gM(F )
becauseC ≤ M. This shows that (2’) holds. (3’) and (3”) hold similarly by applying
the algebraic amalgamation lemma, i.e., the algebraic amalgamation lemma shows
that it would keep us in C�� to have these sets, and property (3) then gives us the
needed sets inside M.

Now we suppose (1),(2’),(3’),(3”). Suppose C ≤ M. Then for any set A ⊆ C ,
we have gC (A) = gM(A). Thus condition (2’) ensures that C ∈ C��, so (2) holds.
Property (3) follows from (3’) and (3”) exactly as the strong amalgamation lemma
follows from the algebraic amalgamation lemma. 


Lemma 2.17. Conditions (2’),(3”) are elementary schemata, i.e., there is a set of
sentences Ψ so thatM |= Ψ if and only if M satisfies the conditions. Furthermore, Ψ
can be chosen to be a set of ∀∃-sentences.

Condition (3’) is preserved in elementary extensions or substructures containing I.
That is, if I ⊆M � N , then I satisfies the condition in M if and only if it satisfies the
condition in N.

Proof. The first two conditions in (2’) are easy to see are elementary. For the
third, we use the formulas from Observation 2.11. Carefully examining the formula
� produced in Observation 2.11, one can see they are equivalent to ∀∃ formulas.
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Alternatively, to see that (2’) is equivalent to a collection of ∀∃-sentences, it suffices
to see that it is preserved in unions of chains. SupposeM0 ⊆M1 ⊆ ··· ⊆

⋃
i Mi = N

are so that eachMi satisfies (2’). Note that limi gMi (A) = gN (A) for every A ⊆ N .
Suppose there are F,C 1, ... , C r disjoint subsets of N and each extension Cj/F is
of the form of Y/X . Then take i large enough that Mi contains F ∪

⋃
i C
i and

gMi (A) = gN (A). Then since Mi satisfies (2’), we see that r ≤ �(X,Y, gMi (A)) =
�(X,Y, gN (A)).

For (3’), it suffices to note that a finite set being strong in the structure is defined
by an infinite schema of universal sentences.

For (3”), the fact that it is first-order to determine the value of �(X,Y,m)
(as in Observation 2.11) and that it is first-order to be strong enough so that
�(G,H, gC (G)) = �(G,H, gM⊕BC (G)) suffices to make this first order. Let us
see that it is preserved in unions of chains. Again suppose that M0 ⊆M1 ⊆
··· ⊆

⋃
i Mi = N and each Mi satisfies (3”). Let B ⊆ N , B,C ∈ C�� be as in the

hypothesis of (3”). If B is strong enough in N that there is no Y with |Y | < |C \ B |
and �(Y |LC/B/B |LC/B) < 0, then this is true in every Mi which contains B as
the non-existence of this Y is a universal condition. Similarly, since for every
A ⊆ N , we have that limi gMi (A) = gN (A), andMi ≤Mi ⊕B C andN ≤ N ⊕B C ,
we also have that limi gMi⊕BC (A) = gN⊕BC (A). Thus if there is no H/G an
extension in C so that �(G,H, gC (G)) �= �(G,H, gN⊕BC (G)), then the same is
true in Mi for any large enough Mi . Thus, in a large enough Mi , we must have
�(F,C \ B, gMi (F )) = �(F,C \ B, gN (F )) disjoint extensions over F of the form of
C \ B over F. Thus, we have these extensions in N as well. 


Lemma 2.18. M is saturated.

Proof. Since any countable elementary extension of M is isomorphic with M,
we see that there are only countably many m-types in Th(M) for each m. Thus, there
is some countable saturated model of the theory of M. But this, being an elementary
extension of M, is isomorphic with M. 


Next we want to describe algebraicity inside M.

Definition 2.19. For any finite set A ⊂ M, we define d (A) = �(A,M). Recall,
�(A,M) = min{�(C ) | A ⊆ C ⊂ M, Cfinite}.

Lemma 2.20. If d ({x} ∪ A) = d (A) + 1 = d ({y} ∪ A), then (M, Ax) ∼=A
(M, Ay).

Proof. Let B be the self-sufficient closure of A, so �(B) = d (A). Then B ≤ M.
Thus {x} ∪ B ≤ M and {y} ∪ B ≤ M. Using property (3) and a back-and-forth
along strong substructures, we see that (M, Bx) ∼=B (M, By), which implies the
needed isomorphism. 


Lemma 2.21. If d ({x} ∪ A) = d (A), then x ∈ acl(A).

Proof. Suppose d ({x} ∪ A) = d (A). Let B be the self-sufficient closure of A, so
�(B) = d (A). Lemma 2.6 shows that B is algebraic over A.

Now we show that x ∈ acl(B), which suffices since B ⊆ acl(A). Fix E to be a set
so that �(E) = d ({x} ∪ A) = d (A) and {x} ∪ A ⊆ E. Then �(E ∪ B) ≤ �(E) +
�(B) – �(E ∩ B). If E does not contain B, then �(E ∩ B) > �(B) by minimality of
B. Then �(E ∪ B) < �(E) = d (A), a contradiction. So E contains B.
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Take a sequence of extensions B = B0 ⊂ B1 ⊂ ···Bn = E with each Bi+1 chosen
to be minimal containing Bi contained in E with �(Bi+1) = d (A). It follows from
�(Bi) = d (A) that each Bi ≤ M. Then Bi+1 is a simply algebraic extension over
Bi . Thus, the �-bound ensures that there are not infinitely many extensions over Bi
which are disjoint and of the form of Bi+1/Bi , and Lemma 2.4 shows that any two
extensions of the form of Bi+1/Bi must be disjoint. Thus Bi+1 is algebraic over Bi .
Conclude that E is algebraic over B. 


Corollary 2.22. Th(M) is strongly minimal.

Proof. In the previous two lemmas, we saw that over any set there is a unique
non-algebraic type realized in M. Since M is saturated, this implies that Th(M) is
strongly minimal. 


Lemma 2.23. The axioms stating the model is infinite, (2’) and (3”) axiomatize
Th(M�

�). Thus, Th(M�
�) is model complete.

Proof. Observe that Lemma 2.21 holds for any model satisfying (2’). Let N
be infinite and satisfy (2’) and (3”). Let N ′ � N contain a countable indiscernible
sequence I = (xi)i∈� . We observe that d ({xi | i < k}) = k. Were this not the case,
then we would have some xi ∈ acl({xj | j < i}) by Lemma 2.21, which cannot
happen by indiscernibility. Thus every finite initial subsequence of I, and thus every
finite subsequence of I is strong in N ′. Let M � N ′ be countable and contain I.
Then M satisfies (1), (2’), (3’), and (3”), with (3’) witnessed by I. ThusM ∼= M�

�

by Lemma 2.16. So N |= Th(M�
�).

By Lindström’s test [12, 8.3.4] and Lemmas 2.17 and 2.22, Th(M�
�) is model

complete. 


Corollary 2.24. T is flat and non-disintegrated.

Proof. As in [13, Lemma 15], the geometry associated to any hypergraph via the
d function is flat. Lemmas 2.20 and 2.21 show that d is the dimension function of
the acl-geometry in M. 


§3. Technical amalgamation facts. In this section, we gather some facts about
amalgamation that will be important in our particular construction of the theory
whose spectrum of recursive models is [0, n] ∪ {�}. In our language, we will have
a ternary relation symbol. Thus below we will discuss hypergraphs with a ternary
edge.

In the course of our construction, we will need two facts that this section will
provide. Firstly, we will need, at one point in the construction of the recursive
saturated model, to cause the dimension of a tuple to decrease while staying in the
amalgamation class. In Corollary 3.9, we will do this by extending a finite structure in
a non-strong way. Usually, Hrushovski amalgamation constructions only allow for
strong amalgamations at any stage in the construction, so this requires some separate
considerations, which we do in this section. Secondly, we will need a collection of
extensions that are guaranteed to have the maximal possible number of occurrences
over any base. We will call these unblockable extensions, and we show they exist in
Corollary 3.18.
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For the remainder of this section, we will work with C�. While it will be true that
all of the particular structures that we mention in this section will satisfy the formula
� that we use in our construction, we focus on only C� in this section for the sake
of generality and re-usability of these results. It is immediate that if the particular
structures mentioned in this section satisfy � , then our results in this section about
C� also hold for C��.

We implicitly assume that L has a ternary relation symbol R, and that the
isomorphism type of three elements with a unique ternary edge is an element
of C�.

Remark. In this section we do not use that �(A,B,m) ≥ �(A). Rather, we only
use that � is such that C� satisfies the Strong Amalgamation Lemma.

3.1. Dropping dimensions. We introduce a particular type of extension B over A
with �(B/A) =– 1. We will use this below to decrease dimension by adding extensions
of this type over particular tuples in our constructed structure.

Definition 3.1. For t > k ≥ 2, letA = {a1, ... , ak, g, h}. For every l > k, byal we
mean ai where i ≡k l and 1 ≤ i ≤ k. LetB = B1 ∪ B2 whereB1 = {b1, ... , bt , bt+1},
B2 = {bt+1, ... , b2t , b1} and let R = R1 ∪R2 ∪R3 where

R1 = {(bi , ai , bi+1) | 0 < i ≤ t},
R2 = {(bi , ai , bi+1) | t < i < 2t} ∪ {(b2t , g, b1)},
R3 = {(b1, h, bt+1)}.

Let Dt be the hypergraph with vertex set A ∪ B and edge set R.

Here we classify the extensions B0 over A0 with �(B0/A0) ≤ 0 where B0 ⊆ B and
A0 ⊆ A.

Lemma 3.2. If A0 ⊆ A, ∅ �= B0 ⊆ B are such that �(B0/A0) ≤ 0, then at least one
of the following holds:

(1) A0 ⊇ A \ {h} and B0 = B ,
(2) A0 ⊇ A \ {g} and B0 ⊇ B1,
(3) A0 = A and B0 ⊇ B2.

Moreover, if �(B0/A0) < 0, then A0 = A and B0 = B .

Proof. Since we are trying to show that B0 is large (i.e., contains either B, B1 or
B2, depending on the case), we can assume that there is no proper subset B ′

0 ⊂ B0

which has �(B ′
0/A0) ≤ 0. For every bi ∈ B clearly �(bi/A0) = 1, so |B0| > 1. Then for

every bi ∈ B0, the element bi must appear in at least two relations in A0 ∪ B0 or else
B0 \ {bi} contradicts the minimality of B0. Now, for every i /∈ {1, t + 1}, if bi ∈ B0,
then (bi–1, ai–1, bi), (bi , ai , bi+1) are edges inA0 ∪ B0 (if i = 2t, then take ai = g and
bi+1 = b1). For i ∈ {1, t + 1}, if bi ∈ B0, then at least one of bi–1, bi+1 (for i = 1,
take bi–1 to be b2t) must be an element of B0. Hence, R[A0 ∪ B0], the restriction of
R to A0 ∪ B0, must contain at least one of R1, R2. In particular, b1, b2t ∈ B0. Since
t ≥ k + 1, also in any case A \ {g, h} ⊆ A0. Furthermore, if R2 ⊆ R[A0 ∪ B0], then
also g ∈ A0. I.e., if g /∈ A0, then R1 ⊆ R[A0 ∪ B0].

If h /∈ A0, then as b1 ∈ B0 and b1 must appear in two relation, we have b2, b2t ∈ B0,
and consequently R1, R2 ⊆ R[A0 ∪ B0]. This is case (1), so we may assume h ∈ A0.
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Now, if g /∈ A0, then as we’ve seen we must be in case (2). Finally, assume we are
not in cases (1) or (2), in particular A = A0. Since B1 � B0, also R1 � R[A0 ∪ B0].
Then R2 ⊆ R[A0 ∪ B0] and we are in case (3).

Now for the additional part, assume instead that B0 is minimal such that
�(B0/A0) < 0. Again, if bi ∈ B0 then it must appear in at least two relations in
R[A0 ∪ B0]. By what we’ve shown, for some i ∈ {1, 2}, Bi ⊆ B0. Observe that
�(Bi/A0) ≥ �(Bi/A) = 0, so there exists bj ∈ B0 \ Bi . As before, this implies that
also B3–i ⊆ B0, i.e., B0 = B . A short check yields that for any A \ {g, h} ⊆ X ⊂ A,
we have �(B/X ) ≥ 0. So A0 = A and indeed �(B/A) < 0. 


Now we show thatDt is in C�. All we are assuming about� is that the isomorphism
type of three elements with a unique ternary edge is an element of C�.

Lemma 3.3. Dt ∈ C�.

Proof. First we show that no subset ofDt has �(X ) < 2 unless |X | ≤ 1. Assume
to the contrary that |X | ≥ 2, �(X ) < 2. Then there must be edges in X, hence
X ∩ A and X ∩ B are non-empty. �(Dt) > 1, so X �= Dt . Then by Lemma 3.2,
�(X ∩ B/X ∩ A) ≥ 0. So, 1 – �(X ∩ A) ≥ �(X ) – �(X ∩ A) ≥ 0 which means we
must have 1 ≥ �(X ∩ A) = |X ∩ A| ≥ 1 since there are no relations holding in the
set A. But then again by Lemma 3.2, �(X ) > �(X ∩ A) = 1 in contradiction to
�(X ) < 2.

We show Dt embeds strongly into M�. Embed {a1, ... , ak, b1} onto an
independent subset of M�. Because the isomorphism type of a ternary edge is
in C�, by genericity of M�, any two independent points extend to an edge. Embed
b2 onto an extension of b1, a1 to an edge. Now embed b3 onto an extension of b2, a2

to an edge. Continue in this manner until b2t has been embedded. Now embed g
onto an extension of b2t , b1 to an edge and h onto an extension of b1, bt+1 to an
edge. Observe that each embedded point must be new. Now, since Dt ≤ M�, we
have Dt ∈ C� by property (2) of M�. 


Observation 3.4. Let C be minimally simply algebraic over F. From the definition
of a minimally simply algebraic extension, it follows that every element of F appears
in at least one edge in F ∪ C that is not an edge of F, and every element of C appears
in at least two edges in F ∪ C (unless |C | = 1).

Observation 3.5. Suppose E = B1 ⊕A B2 where every point in B1 \ A appears
in at most k edges in B1. Let F,C 1, ... , C r ⊆ E be disjoint such that each C i/F is a
minimally simply algebraic extension. IfF � B2, then it is immediate from Observation
3.4 that r ≤ k.

Definition 3.6. Say that � is k-permissive if �(A,B,m) ≥ k whenever B is
minimally simply algebraic over A and m ∈ � ∪ {∞}.

Lemma 3.7. Suppose � is 3-permissive and M ∈ C�. Fix c̄ ∈Mk+2 with k ≥ 2,
�(c̄,M ) > 0. Label c̄ = (a1, ... , ak, g, h). For each t, let Et be the free join of M and
Dt over c̄. Then Et ∈ C� for all large enough t.

Proof. We start with the following claim:

Claim. If A ⊆M and Z ⊆ Et contains A such that �(Z/A) < 0, then either
�(Z ∩M/A) < 0 or |Z ∩ (Dt \ c̄)| ≥ t.
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Proof. Using �(Z) = �(Z ∩M ) + �(Z ∩Dt) – �(Z ∩ c̄), we subtract �(A)
from both sides and combine with �(Z ∩Dt) – �(Z ∩ c̄) = �(Z ∩Dt/Z ∩ c̄) to see
0 > �(Z/A) = �(Z ∩M/A) + �(Z ∩Dt/Z ∩ c̄). Thus, either �(Z ∩M/A) <
0 or �(Z ∩Dt/Z ∩ c̄) < 0. In the latter case, Lemma 3.2 shows that
|Z ∩ (Dt \ c̄)| ≥ t. 


Choose t > |M | greater than the index of any relation symbol appearing in M,
in particular greater than max{gM (A) | A �≤M}, and also large enough so that for
every A,B ⊆M such that B/A is of the form of an extension Y/X , �(X,Y,m) =
�(X,Y,∞) for every m ≥ t. Denote E := Et . By the claim, this guarantees that for
any A ⊆M , if A �≤M , then gE(A) = gM (A). If A ≤M , then �(A,B, gE(A)) =
�(A,B,∞) whenever B ⊆M is minimally simply algebraic over A. In any case,
whenever A,B ⊆M are such that A/B is of the form of an extension Y/X , then
�(X,Y, gE(A)) = �(X,Y, gM (A)).

Now assume for a contradiction that F,C 1, ... , C r ⊆ E are disjoint such that
each C i/F is of the form of a minimally simply algebraic extension Y/X , and r >
�(X,Y, gE(F )). By construction, every point inDt \ X is in at most three relations in
Et , so 3-permissiveness and Observation 3.5 imply F ⊆M . By what we’ve shown, at
most �(X,Y, gE(F )) = �(X,Y, gM (F )) of the C i are contained in M. Without loss
of generality assumeC 1 �M . Then by �(C 1 ∩Dt/F ∪ (C 1 ∩M )) ≤ 0, Lemma 3.2
implies |C 1| > t > |M | and so none of the C i can be fully contained in M. Using
the same reasoning for �(C 2/F ∪ (C 2 ∩M )) ≤ 0, again by Lemma 3.2, we see that
C1 and C2 intersect inside Dt , in contradiction. 


Lemma 3.8. Let M, c̄ and Et be as in the lemma above and let X ⊆M . Then
�(X,Et) = �(X,M ), unless there is some Y ⊆M containing c̄ ∪ X with �(Y ) =
�(X,M ), in which case �(X,Et) = �(X,M ) – 1.

Proof. Clearly �(X,Et) ≤ �(X,M ). Let X ⊆ Z ⊆ Et , then

�(Z) = �(Z ∩M ) + �(Z ∩Dt/Z ∩ c̄).
The first summand is at least �(X,M ) and the second summand is at least – 1.
Thus, to witness �(X,Et) < �(X,M ), we must have that �(Z ∩M ) = �(X,M ) and
�(Z ∩Dt/Z ∩ F ) = –1. By Lemma 3.2, this means Dt ⊆ Z, and in particular c̄ ⊆
Z ∩M . Conversely, if Y such as in the statement exists then Y ∪Dt witnesses
�(X,Et) ≤ �(X,M ) – 1. 


Corollary 3.9. Let � be 3-permissive, and A ∈ C�, b̄ ∈ A so that �(b̄, A) > 0.
Then there exists B ∈ C� containing A so that for every X ⊆ A, �(X,B) = �(X,A)
unless there is Y ⊇ X so that �(Y ) = �(X,A) and b̄ ∈ Y , in which case �(X,B) =
�(X,A) – 1.

Proof. If |b̄| ≥ 4, then by labeling b̄ = (a1, ... , a|b̄|–2, g, h) Lemma 3.7 and
Lemma 3.8 give us the desired B.

Otherwise, construct M ′ by adding new points p1, ... , p4–|b| to M and no new
edges. Let b̄′ be the concatenation of b̄ with (p1, ... , p4–|b̄|). Now apply the above

to M and b̄′ consecutively 5 – |b| times. To use Lemma 3.8 note that after the
penultimate application, every set containing b̄ can be extended to a set containing
b̄′ without changing its � value. 
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3.2. Unblockability.

Definition 3.10. We say that a minimally simply algebraic extension X ⊆ Y is
k-unblockable if for any k-permissive �, if Y ∈ C� then for any X ⊆ Z ∈ C�, either
Y ⊕X Z ∈ C� or Z already contains �(X,Y, gZ(X )) disjoint extensions of the form
of Y/X over X.

Observation 3.11. A minimally simply algebraic extension X ⊆ Y is k-
unblockable if and only if for any k-permissive �, ifY ∈ C� andM ≡ M� then for any
Z ∼= X in M, M contains �(X,Y, gM (Z)) disjoint extensions over Z each of the form
of Y/X .

We now endeavor to show that over any size of a base, there is an infinite
recursive sequence of 3-unblockable extensions. Further, under the assumption of
3-permissiveness, each of these extensions is in C�.

Lemma 3.12. If A ⊆ B is a minimally simply algebraic extension such that each
element in B \ A appears in at most k edges in B, then A ⊆ B is k-unblockable.

Proof. Let�be k-permissive such thatB ∈ C�, letZ ∈ C� contain A, and letE =
B ⊕A Z. Suppose F,C 1, ... , C r are disjoint extensions of the form of a minimally
simply algebraic extension Y/X with r > �(X,Y, gE(F )). By k-permissiveness of
�, we have r > k. Thus, by Observation 3.5 it must be that F ⊆ Z. Now we
observe that every C i is either contained in B \ A or is contained in Z, for if it
were partially but not totally in B \ A, then we would have �(C i/Z) < 0 showing
that Z �≤ E, which is a contradiction. So, either F ∪

⋃
i≤r C

i ⊆ Z or one of the
C i is contained in B \ A, which implies that F ⊆ A. Since B is minimally simply
algebraic over A, this impliesC i = B \ A and F = A. So, we conclude that there are
already �(X,Y, gE(F )) = �(X,Y, gM (F )) disjoint extensions of the form Y/X over
F in M. 


Lemma 3.13. There are infinitely many 2-unblockable minimally simply algebraic
extensions over a set of size at least 3. Moreover, these extensions are in C�.

Proof. We define a sequence of 2-unblockables over Â = {a1, ... , ak, g}, where
k ≥ 2 and all the elements of Â are distinct. For every l > k, by al we mean ai
where i ≡k l , 1 ≤ i ≤ k. Let B = {b1, ... , b2t} be new elements, where t > k + 1 is
arbitrary. Define D̂t to be the hypergraph whose set of edges is

R = {(bi , ai , bi+1) | 1 ≤ i < 2t} ∪ {(b2t , g, b1}).

Observe that D̂t is in fact Dt \ {h}, so D̂t ≤ Dt . Lemma 3.3 says that Dt ∈ C�, thus
D̂t ∈ C� as well.

There is a clear bijection between elements of B and edges in R, so �(B/A) = 0.
By Lemma 3.2, there are no A0 ⊆ Â, ∅ �= B0 ⊂ B such that �(B0/A0) ≤ 0, so B is
minimally simply algebraic over A. Finally, 2-unblockability is immediate by Lemma
3.12. 


Next, we will give constructions for infinitely many 3-unblockable extensions over
sets of size 0, 1, or 2.
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Definition 3.14. For k ≥ 3 define on the set of vertices {a1, ... , ak} the following
isomorphism types of minimal simple algebraicities:

• the ternary k-path Pk whose set of edges is

{{ai , ai+1, ai+2} | 1 ≤ i ≤ k – 2}
and whose base is {a1, ak}

• the ternary closed- k-pathHk whose set of edges is

{{ai , ai+1, ai+2} | 1 ≤ i ≤ k – 2} ∪ {{ak–1, ak, a1}}
and whose base is the singleton {a1}

• the ternary k-loop Lk whose set of edges is

{{ai , ai+1, ai+2} | 1 ≤ i ≤ k – 2} ∪ {{ak–1, ak, a1}, {ak, a1, a2}}
and whose base is ∅

Call any of these hypergraphs a generalized path.

Lemma 3.15. Every generalized path B over its base A is 3-unblockable.

Proof. By Lemma 3.12 we only need to show that B is minimally simply algebraic
over A. To see this, let ∅ �= X ⊂ B and observe that there are strictly more elements
in X \ A than there are edges in X. 


Lemma 3.16. If A is a generalized path of size k and F ∪ C ⊂ A are such that C
is minimally simply algebraic over F, then C ∪ F ∼= Pl for some l ≤ k, where F is the
pair of end-points of the path.

Consequently, ifC/F is of the form of a minimally simply algebraic extensionY/X ,
then there can be at most one other extension in A of the form of Y/X , and that is only
in the cases that A = L2l–2, or F ∪ C is an edge, i.e., F ∪ C ∼= P3.

Proof. If |C | = 1, then C ∪ F is an edge, i.e., isomorphic to P3. Otherwise,
each ai ∈ C must appear in at least two edges in C ∪ F , hence ai–1, ai+1 ∈ C ∪ F .
Proceeding this way in both directions, since by assumption F ∪ C �= A, we find
am, aM ∈ F distinct such that aj ∈ C for every m < j < M (where if j > k we
replace it with j – k). By definition of minimal simple algebraicity, these are exactly
the points in F ∪ C , with F = {am, aM}. 


Corollary 3.17. If � is 2-permissive, then C� contains all generalized paths.

Now Lemma 3.13, Lemma 3.15, and Corollary 3.17 together yield:

Corollary 3.18. There exists a recursive sequence of 3-unblockable extensions
Xk,l ⊆ Yk,l with each Xk,l having size k. Further, if � is 3-permissive, then Yk,l ∈ C�
for every k, l .

§4. Constructing T . In this section, we construct a theory T := TS1 which is
determined by a given r.e. set S1. For any A ⊆ �, we denote by A[i ] the ith column
of A, i.e., A[i ] = {j | 〈i, j〉 ∈ A}. For the sake of uniformity of notation below, we
assume that for every i, there are at least two numbers in S [i ]

1 . For any r.e. set S1, this
construction will produce a strongly minimal theory T. In the next section, we will
show that this theory T (for any r.e. set S1) is so that SRM(T ) ⊇ [0, n] ∪ {�}.
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Given the r.e. set S1, we define S0 to the be the r.e. set which in each column S [i ]
0

contains all elements of S [i ]
1 except the last two enumerated into S [i ]

1 . We assume
that for each i, S [i ]

1 contains at least two elements (and the particular choice of S1 we
make below will have this property), so if S [i ]

1 is not infinite, then S1 contains exactly
two elements in the ith column which are not in S0, which we call 〈i, j0〉, 〈i, j1〉,
where 〈i, j0〉 enters S1 first. Otherwise, S [i ]

1 is infinite and S [i ]
1 = S [i ]

0 . In this case,
the first two cases of the definition of � below simply cannot hold since 〈i, j0〉 and
〈i, j1〉 are not defined.

Let L = {R} and L′ = {R} ∪ {Rm | m ∈ �} where R is a ternary relation symbol
and each Rm is n + 2-ary (the same n as in [0, n] ∪ {�}).

The outline of our construction is as follows: We first construct a theory T̂ in
the language L̂ = {R} ∪ {Ri | S [i ]

1 �= S [i ]
0 } via an amalgamation construction. We

will then let T be the reduct to the language L. We will choose � so that T̂ is a
definitional expansion of T. In particular, if Ri holds on a tuple ā, then � will allow
extra extensions of some form over ā.

In building the recursive model M of dimension ≤ n or �, we work with the
language L′ and construct a model M′ so that M = M′|L. This is necessary since
L̂ is not recursive, so we don’t know which relations are the important ones to
consider. When we see a relation Ri holding on a tuple, we are unsure if Ri ∈ L̂,
so the �-function might give a smaller value in M′ than the correct dimension
of the set in M. Thus the dimension of M could be larger than the dimension
of M′. This poses no problem for the construction of the saturated model, since
dim(M) ≥ dim(M′) = � ensures that M is saturated. But this poses a problem for
constructing the recursive finite-dimensional models.

This is precisely the difficulty which we will use to ensure that SRM(T ) ∩
[n + 1, �) = ∅. In particular, if the enemy attempts to construct a model of
dimension k > n with basis b̄, we will find some element c so that c /∈ acl(b̄). In
particular, this c will be some element which appears to satisfy a relation Ri(b̄0, c)
for b̄0 ⊆ b̄ of length n + 1 and Ri /∈ L̂.

We choose� to specifically help the recursive construction of models of dimension
≤ n in a way that does not help finite-dimensional models of larger dimension. In
particular, we need a way to remove Ri(ā) from a tuple ā if we suspect that Ri /∈ L̂.
We will do this by defining � so that having gC (ā) small enough will allow an extra
extension of some form over ā in C. So there are two reasons a tuple might get
an extra extension of this form: Either Ri(ā) holds or gC (ā) is small enough. So
if gC (ā) is small enough we can remove the relation Ri(ā). We will ensure models
of dimension ≤ n always have the opportunity to remove relations Ri for Ri /∈ L̂,
which we will be able to do since every n + 2-tuple on which Ri holds will have a
finite g-value, but models of higher dimension will not have this opportunity.

Definition 4.1. We say that a relation symbol Ri is “limited away” if S [i ]
0 = S [i ]

1 .
Let L̂ = {R} ∪ {Ri | Ri is not limited away}.

We fix � to say that no relation holds on a subtuple of one where another relation
holds (i.e., for eachU �= V ∈ L̂, ifU (x̄) and ȳ ⊆ x̄, then ¬V (ȳ) holds). Note that �
holds on each of the particular structures mentioned in §3, as each of those use only
the single ternary relation symbol R, thus the results about C� in §3 hold for C�� as
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well. Enumerate the relative quantifier-free types of infinitely many 3-unblockable
extensions as built in §3.2 over a set of size n + 2: 〈Ωi | i ∈ �〉. Note that these use
only the relation symbol R.

We fix the function � defined as follows:

�(A,B,m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|A| + 4 if B/A is an Ω〈i,j0〉-extension and Ri(A),
|A| + 4 if B/A is an Ω〈i,j1〉-extension, Ri(A),

and m ≥ 〈i, j1〉,
|A| + 4 if B/A is an Ω〈i,j〉-extension, 〈i, j〉 ∈ S0,

|A| + 3 otherwise.

Observation 4.2. � is 3-permissive, so each Ω-extension occurs the �-maximal
number of times over any subset of a model of Th(M�

�).

Let Ĉ be the class of L̂-structures C��, and let M be the generic built from Ĉ. Let
T̂ be the theory of M̂. Let M be the reduct of M̂ to the language L, and let T be
the theory of M. It follows from the general construction that both T̂ and T are
strongly minimal theories.

Lemma 4.3. Let Ri be a relation symbol which is not limited away, i.e., Ri ∈ L̂.
Then T̂ |= Ri(x̄) ↔ ∃n+6ȳ Ω〈i,j0〉(x̄, ȳ).

Thus M̂ is a definitional expansion of M.

Proof. We first verify the leftward direction. In the definition of �, we see that

�(A,B,m) =

{
|A| + 4 = n + 6 if Ri(A),
|A| + 3 = n + 5 otherwise,

where tpr.q.f.(B/A) = Ω〈i,j0〉. Thus, if ¬Ri(A), then � enforces that ¬∃n+6ȳ Ω〈i,j0〉
(x̄, ȳ).

If Ri(x̄) holds, then since Ω〈i,j0〉 is a 3-unblockable extension, in any model of T̂ ,
we have the maximal number of allowed extensions over any set, so we must have
∃n+6ȳ Ω〈i,j0〉(x̄, ȳ). 


Lemma 4.4. Let Ri ∈ L̂. For every x̄ of size n + 1 containing no tuple on which R
holds, there are exactly n + 4 elements y so that M̂ |= Ri(x̄, y).

Proof. We apply property (3”) of any model of T̂ . Let B = x̄ and C = x̄y with
the relative quantifier-free type consisting of the single relationRi(x̄, y). This is easily
seen to be in C��. Clearly, sinceRi is a symmetric n + 2-ary relation, there is no set Y
with |Y | ≤ |C \ B | = 1 so that �(Y |{Ri}/A|{Ri}) < 0. Let H ′, G ′ ⊆ C be of the
form of a minimally simply algebraicH/G . Since the only relation that holds on C is
the single relationRi(x̄y), we must haveH ′ is a singleton andG ′ is the remainder. So,
H/G is not an Ωi -extension for any i and �(G,H, gC (G)) = �(G,H, gM⊕BC (G)) =
|G | + 3. So (3”) guarantees that there are �(x̄, x̄y, gM(x̄)) = n + 4 realizations of
this relative quantifier-free type over x̄.
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Corollary 4.5. Each relation Ri is both existentially and universally definable
in M.

Proof. That Ri is existentially definable in M follows from Lemma 4.3. Also,
¬Ri(x̄, y) ↔ ∃n+4z(Ri(x̄, z) ∧ z �= y) ∨

∨
u,v,w∈x̄ R(u, v, w) gives an existential def-

inition of ¬Ri . 


Corollary 4.6. T is model complete.

Proof. Let φ be an existential formula in L̂ written in prenex normal form. Then
φ = ∃z̄

∨ ∧
Q(x̄) whereQ(x̄) is one ofR(x̄),¬R(x̄), Ri(x̄),¬Ri(x̄). IfQ = Ri(x̄),

then we replaceRi by the existential formula in the language L = {R} which defines
Ri . If Q = ¬Ri(x̄), we replace Ri by the universal formula in the language L which
defines Ri . As such, we see that every existential L̂-formula is equivalent in T̂ to
an existential L-formula. Model-completeness of T̂ follows from Lemma 2.23 and
shows that every L̂-formula is equivalent over T̂ to an existential L̂-formula, thus
every formula is equivalent over T̂ to an existential L-formula. So every L-formula
is equivalent over T to an existential L-formula. 


Lemma 4.7. T is flat and not disintegrated.

Proof. T̂ is a definitional expansion of T, thus M and M̂ have the same acl-
geometry. By Corollary 2.24, the acl-geometry of T is flat. To see that this geometry
is non-disintegrated, consider {a, b, c} ≤ M such that M |= R(a, b, c) and R is the
only relation holding on {a, b, c}. Then c ∈ acl(ab) but c /∈ acl(a) ∪ acl(b). 


§5. Building the recursive models of T. In this section, we construct a recursive
copy ofM, the saturated model of T. We will show that the l-dimensional submodels
of M for l ≤ n are r.e. subsets, thus SRM(T ) ⊇ [0, n] ∪ {�}. In the next section,
we will choose S1 to ensure that there are no other recursive models. We will have
S1 be the increasing union of the sets {S1,s | s ∈ �}. In our enumeration of S, we
take |S1,s+1 \ S1,s | = 1, so for each column i and s ∈ �, the set S [i ]

1,s is finite.
We will construct a copy of M where we also give uniformly Π0

1 sets which are
to represent the relations Ri . Thus, we may say we remove a relation Ri from a
tuple ā.

We construct the model in stages as usual by amalgamation: N0 ⊆ N1 ⊆ N2 ⊆
··· ⊆

⋃
i Ni = N . Note that Ns–1 may have a relation Ri hold on a tuple whereas

Ns removes that relation, but in the relation R, they are substructures. As usual,
we say that a relation Ri(ā) holds in N if it holds on every structure in the chain
where ā ⊆ Ni . We will ensure that for any tuple ā in Nk , �(ā, Nk) = �(ā, Nk+1).
Furthermore, we will ensure that for every tuple ā, there is some k so that the self-
sufficient closure of ā is the same (both in set and isomorphism-type) in every Nl
for l ≥ k.

At stage s, we consider the language Ls = {R} ∪ {Ri | i < s}. For every i ≤ s ,
we let 〈i, js0 〉, 〈i, js1 〉 be the unique elements in the ith column of S1,s \ S0,s where
〈i, js0 〉 entered S1 first, and we let
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�s(A,B,m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|A| + 4 if B/A is an Ω〈i,js0 〉-extension and Ri(A),

|A| + 4 if B/A is an Ω〈i,js1 〉-extension, Ri(A),

and m ≥ 〈i, js1 〉,
|A| + 4 if B/A is an Ω〈i,j〉-extension, 〈i, j〉 ∈ S0,s

|A| + 3 otherwise.

Let Cs be the amalgamation class defined by this function �s and � (as defined
below 4.1). We enumerate the amalgamation requirements for Cs . A requirement
is of the form: If A ≤ N and A ≤ B ∈ Cs , then there is an f : B → N which is
the identity on A so that f(B) ≤ N . We do this so that the order between two
requirements which exist in Cs is preserved when considered in Cs+1 and all new
requirements from Cs+1 appear after all requirements for amalgamations from Cs of
sets of size ≤ s on the first ≤ s elements (i.e., the base is among the first s elements
of � and the extension over the base is by at most s new elements.). This ensures
that every requirement in the full language is considered from some stage onward.

Now we describe the times when we might remove an occurrence of a relation.

Definition 5.1. In a structure C, we say an occurrence of a relation Ri(ā) is
defunct at stage s if gC (ā) < 〈i, js1 〉.

In the definition of �s above, note that defunct relations are precisely the
occurrences ofRi(ā) which do not allow |ā| + 4Ω〈i,js1 〉-extensions over ā. IfRi(ā) is

defunct at stage s and then another number gets enumerated into S [i ]
1 , then nothing

will prevent us from removing the relationRi from the tuple ā, with respect to future
� values, as seen in Lemma 5.3.

The following will be useful in the construction as we move from one stage to the
next:

Lemma 5.2. Cs–1 ⊆ Cs .

Proof. By inspecting the definitions of �s , we see that �s–1 ≤ �s . This is because
〈i, js–1

1 〉 is either 〈i, js1 〉 or 〈i, js0 〉 and �s can only increase by this. Similarly, 〈i, js–1
0 〉

is either 〈i, js0 〉 or this number enters S0. Thus Cs–1 ⊆ Cs . 


Construction. At stage s of the construction, we have built Ns–1 ∈ Cs–1 and we
will construct Ns ∈ Cs :

We first do the clean-up phase: Let i be the unique number so that something is
enumerated into S [i ]

1 at stage s. Let ā be the smallest tuple (under a fixed ordering
of �n+2 of order type �) on which Ns–1 has a defunct relation Ri(ā) at stage s – 1.
We will now remove Ri from the tuple ā and replace it with an extension involving
only R so that we maintain dimensions:

Lemma 5.3. If A ∈ Cs–1 and Ri(ā) is a defunct relation at stage s – 1, then let A0

be the result of removingRi(ā) from A. Then there is anA′ ∈ Cs containingA0 so that
for every X ⊆ A, �(X,A) = �(X,A′) and the only relation occurring on A′ outside of
A0 is the relation R.

Proof. We first observe that A0 ∈ Cs . Removing relations certainly does not
cause the �-value of any set to drop below 0 or make the structure fail to satisfy � .
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So, we need only check that A0 satisfies the �s -bound. Suppose F,C 1, ... C r are
disjoint subsets of A0 and each C i/F is of the form of Y/X . Then by Observation
2.12, either these sets are each of the form of Y/X in A or else the relation removed
is in F. In the former case, using Lemma 5.2 we know that r ≤ �s(X,Y, gA(F )),
and gA0(F ) ≥ gA(F ). Since our �s is non-decreasing in the last coordinate, we see
r ≤ �s(X,Y, gA0 (F )).

Now we suppose the removed relation is in F. Let Y ′/X ′ be the minimally simply
algebraic extension we get by adding the removed relation in F to X (so each Cr/F
is of the form of Y ′/X ′ in A). We have gA(F ) = gA0(F ) since no relations outside
of F have been removed. Unless Y ′/X ′ is an Ω〈i,js0 〉- or Ω〈i,js1 〉-extension, we have
r ≤ �s(X ′, Y ′, gA(F )) = �s(X,Y, gA0 (F )).

So, now we consider the critical case where Ri(ā) is the removed relation and
the extensions C 1, ... , C r are Ω〈i,js0 〉- or Ω〈i,js1 〉-extensions over the base ā. For
Ω〈i,js0 〉, since Ri(ā) is defunct, there can only be n + 5 Ω〈i,js–1

1 〉 = Ω〈i,js0 〉-extensions

in A, thus in A0. Thus, there are ≤ �s -many even without Ri(ā). For Ω〈i,js1 〉, since
�s–1 allowed only n + 5 Ω〈i,js1 〉-extensions over any base (in the fourth case of the
definition of�s–1), the�s -bound is satisfied. In any case,F,C 1, ... C r does not violate
the �s -bound.

Now, we apply Corollary 3.9 to add an extension to A0 to see that there
is an A′ as needed: Corollary 3.9 guarantees that, for an arbitrary Z0 ⊆ A0,
�(Z0, A

′) = �(Z0, A0) unless there is a Y0 ⊇ Z0 witnessing �(Z0, A0) with ā ∈ Y , in
which case �(Z0, A

′) = �(Z0, A0) – 1. Letting Z represent the set Z0 in A, obtained
by adding the removed relation Ri(ā), we wish to show that �(Z0, A

′) = �(Z,A).
If there is a Y0 ⊇ Z0 as described above, letting Y ⊇ Z be obtained from Y be
adding the removed relation, we have �(Y ) = �(Y0) – 1, so �(Z,A) = �(Z0, A0) –
1 = �(Z0, A

′). If no such Y0 exists, then clearly �(Z,A) = �(Z0, A0) = �(Z0, A
′).

Putting these facts together, we see that in each case, �(Z,A) = �(Z0, A
′). 


By applying this Lemma to the defunct relation Ri(ā) we produce a structure
N ′
s–1 which is in Cs . Then, we satisfy the first s amalgamation requirements. To do

this, we use the strong amalgamation lemma for the class Cs to construct Ns ∈ Cs
which satisfies the first s amalgamation requirements. This defines Ns and the stage
is done.

Observation 5.4. Ns ∈ Cs , thus we have maintained the inductive hypothesis for
the next stage.

Thus we have described the construction of a structure N . We will show below
that N|L is a recursive presentation of the saturated model of T. From this, we will
also produce recursive presentations of the models of dimension ≤ n.

Verification. We now show that N|L ∼= M.

Lemma 5.5. For Ri ∈ L̂, N |= Ri(x̄) ↔ ∃n+6ȳ Ω〈i,j0〉(x̄, ȳ)

Proof. Since Ri is a Π0
1 predicate on N , if N |= Ri(x̄), then it does so from

the first stage that x̄ is first constructed. Thus, at every stage s once 〈i, js0 〉 =
〈i, j0〉, we have �s(x̄, Y, gNs (x̄)) = n + 6 where tpr.q.f.(Y/x̄) = Ω〈i,j0〉. Since Ω〈i,j0〉 is
3-unblockable, we know that at some stage, when all the appropriate amalgamation
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requirements have been taken care of, we get n + 6 many disjoint extensions of
this form. But this is realized by the relation R alone, so once it is satisfied, it is
permanently satisfied inside N .

Suppose ¬Ri(x̄) holds in N . Then this is seen from some s onward since Ri is
a Π0

1 relation in N . Since each Ns ∈ Cs , we see that at no stage ≥ s can we have
n + 6-many Ω〈i,j0〉-extensions over x̄, thus in the limit we do not have n + 6-many
Ω〈i,j0〉-extensions over x̄. 


We define N̂ to be the definitional expansion of N|L to the language L̂ given by
Lemma 5.5. It now suffices to show that N̂ satisfies the properties of the generic of
the class Ĉ defined above. This proves that N̂ ∼= M̂, so N|L = N̂ |L ∼= M̂|L = M.

Note that forRi /∈ L̂, we may very well haveRi(ā) holding in N , but this will not
be seen in N|L or in N̂ .

Lemma 5.6. For every ā ∈ N , there is some k so that the self-sufficient closure of
ā is the same in every Nl with l ≥ k.

Proof. The self-sufficient closure of āmay change because some defunct relation
Ri in the self-sufficient closure is removed. At that point, we add more elements and
occurrences of the relation R so that the predimension of ā is made the same in
Ns as in Ns–1. In doing so, the self-sufficient closure may have grown, but the total
number of occurrences of relations other than R on the self-sufficient closure has
decreased. This can happen only finitely often. 


Lemma 5.7. Let A be an L̂-structure. Then A ∈ Ĉ if and only if A ∈ Cs for all
sufficiently large s.

Proof. Let s be any stage large enough that for every relation Ri ∈ L̂ which
occurs in A, S [i ]

1 is enumerated by stage s. It suffices to show that A ∈ Ĉ if and only
if A ∈ Cs . Suppose A /∈ Ĉ. This could happen if some set has �(X ) < 0 or violates
� , which certainly ensures that A /∈ Cs , or if A violates the �-bound. But � = �s for
any extension involving only the relations that occur in A, so this implies A /∈ Cs .
The same argument shows the implication the other way. 


Lemma 5.8. N̂ is a generic model for the class Ĉ.

Proof. We need to verify the three facts:

(1) N̂ is countable.
(2) If A ≤ N̂ is finite, then A ∈ Ĉ.
(3) Suppose A ≤ N̂ and A ≤ B ∈ Ĉ, then there is an embedding f : B → N̂ so

that f(B) ≤ N̂ and f is the identity on A.

The first here is trivial, since N̂ is a definitional expansion of a countable structure
N|L, so it is countable. Given A ≤ N̂ , A ≤ Ns and thus is in Cs for all sufficiently
large s, by Lemma 5.6. Thus by Lemma 5.7, A ∈ Ĉ.

Lastly, consider A ≤ N̂ and A ≤ B ∈ Ĉ. Let s be large enough that A,B ∈ Ct for
every t ≥ s . Further, let s be large enough that A ≤ Nt for all t ≥ s . Further, let
s be large enough that we consider the amalgamation requirement to build this B.
Further, let s be large enough that S [i ]

1,s = S [i ]
1 for every Ri ∈ L̂ occurring inside B.

Then in Ns , we have the embedding f : B → Ns so that f(B) ≤ Ns and f is the
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identity on A. Further, since no element is ever enumerated into S [i ]
1 , we cannot ever

remove any Ri -relations occurring in B. It suffices to see that f(B) ≤ Nt for every
t > s . This follows from the following claim:

Claim. If X ≤ Ns and no relation inside X is ever removed, then X ≤ Nt for every
t > s .

Proof. We proceed by induction. This is true for t = s . For every t ≥ s , the
�-value of X as a substructure of Nt is the same, since no relation is ever removed
from X. Thus, we will unambiguously write �(X ) which does not depend on stage.

When we pass from Nt–1 to N ′
t–1 we ensured by adding elements and occurrences

of R that we have maintained dimension (i.e., �(A,Nt–1) = �(A,N ′
t–1) for every

A ⊆ Nt–1), so �(X ) = �(X,Nt–1) = �(X,N ′
t–1) and thusX ≤ N ′

t–1. Lastly, to go from
N ′
t–1 to Nt , we use strong amalgamation, so X ≤ N ′

t–1 ≤ Nt . 

Thus, N|L is a recursive copy of the saturated model of T. 


Lemma 5.9. If ā is an independent set in N̂ of size ≤ n, then acl(ā) is a Σ0
1 subset

of N̂ .

Proof. Let X be the set of elements which ever appear to be in acl(ā). That is, we
say x is enumerated into X at stage s if there is some Y ⊆ Ns so that ā ≤ Y , b ∈ Y ,
and �(Y/ā) = 0. It is clear that acl(ā) ⊆ X since for any x ∈ acl(ā), such a Y must
exist in N , thus in every large enough Ns . Also, X is Σ0

1. The fear is that since some
relations Ri get removed either due to being limited away (i.e., Ri /∈ L̂) or in the
clean-up phase, X may contain some elements that are not actually algebraic over
ā.

Fix b ∈ X . It enters X because we see some Y in Ns containing ā ∪ {b} so that
�(Y/ā) = 0. Any removed relation in the clean-up phase is immediately replaced by
an R-witnessed dimension drop which maintains �. Thus, for every t > s , �(Y,Nt) =
�(Y,Ns), thus there is always some Y ′ ⊆ Nt containing Y with �(Y ′) ≤ |ā|. Let Z
be the self-sufficient closure of āb in Nt for all sufficiently large t. We must have
�(Z) = |ā|, since �(Z) = �(āb,Nt) = |ā|. To see that b ∈ acl(ā) witnessed by Z, we
need only argue that each relation appearing in Z is in L̂. Were it true thatRi(z̄) holds
in Z and Ri /∈ L̂, then from some stage onwards the relation Ri(z̄) would become
defunct. This is becauseRi(z̄) implies �(z̄) = |z̄| – 1 = n + 1 yet �(Z) = |ā| ≤ n, so
gNt (z̄) is finite. But ifRi(z̄) were to become defunct from some stage onwards, then it
would eventually be removed.1 But removing Ri(z̄) would change the self-sufficient
closure of āb, contrary to the definition of Z. Thus, b ∈ acl(ā) in N̂ . 


Corollary 5.10. We conclude that SRM(T ) ⊇ [0, n] ∪ {�}.

Proof. It is a standard fact that if B is any recursive structure and A is a
recursively enumerable subset of B, then A has a recursive presentation.

Since the k-dimensional model of T is acl(ā) for an independent tuple in N̂ of
size k and N is recursive and infinite-dimensional, we conclude that SRM(T ) ⊇
[0, n] ∪ {�}. 


1Note that this is precisely the advantage that the models of dimension ≤ n have over models of finite
dimension > n.
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§6. Defeating other models. Next we ensure that [n + 1, �) ∩ SRM(T ) = ∅. We
do this by enumeratingS1 appropriately. We will describe how numbers enterS [i ]

1 and
we will note that we enumerate this column in order. In particular, at stage s, if we put
anything into this column, we will put s into S [i ]

1 , and thus this is the largest number
to enter this column. Even though in the construction of the recursive models, we
assumed that |S1,s+1 \ S1,s | = 1 for all s, we will not be careful in this below, as any
enumeration of an infinite Σ0

1-set can be altered to give one enumerating the set in
the same order and enumerating exactly one element per stage.

Let Bi , b̄i be the ith pair consisting of a partial recursive atomic diagram of an
L-structure along with a finite tuple of size at least n + 1 given by canonical index.
We next describe a strategy to enumerate the ith column of S1 so that either Bi �|= T
or b̄i is not a basis for Bi . These strategies are put together into a construction by
running the first s of these strategies in order at each stage s. At stage s, for c̄ ∈ Bi we
say that Ri(c̄) holds if there is some 〈i, j〉 ∈ S1,s \ S0,s so that ∃n+6Ω〈i,j〉-extensions
over c̄.

We do this as follows:
Step 0: Let b̄ consist of the first n + 1 elements of b̄i . Enumerate 〈i, 0〉, 〈i, 1〉 into

S1. Wait until a stage where we see some element c so that Ri(b̄, c) holds.
Step 1: Let js0 < j

s
1 and {js0 , js1} = (S [i ]

1,s \ S
[i ]
0,s) at stage s. When we first come to

this step, we define the set of obstructions to moving to the next step. If we see a set
Y ⊆ Bi and enough relations hold on Y so that �(Y ) < |b̄i | and b̄i ⊆ Y , then we
call Y an obstruction to moving to the next step.

If S [i′]
1 enumerates a number after the stage when we entered this step, we call the

relation symbol Ri′ suspicious (i.e., we suspect it might limit away). At each stage
t, we let Lt be the set of non-suspicious relation symbols. We define (Y ) for any
Y to be |Y | – ΣQ∈Lt#Q(Y ). If at some stage t we see (Y ) ≥ |b̄i |, then we say the
obstruction Y has been removed.

We say that the requirement is ready for the next step if b̄c has n + 6-many Ω〈i,js0 〉
and n + 6-many Ω〈i,js1 〉-extensions and all obstructions have been removed. Wait
until the requirement is ready for the next step. At that point, go to step 2.

Step 2: Put 〈i, s〉 (s is the current stage) intoS1,s . Note that this enumerates 〈i, js–1
0 〉

into S0,s . Return to Step 1.

Lemma 6.1. [n + 1, �) ∩ SRM(T ) = ∅.

Proof. We check that no Bi , b̄i can be a recursive model of T with basis b̄i .
If we never leave step 0, then S [i ]

1 is finite, hence Ri ∈ L̂. By Lemma 4.4, clearly
Bi �|= T . So we may assume we have reached step 1 at some stage. Observe that in
every subsequent stage, we have Ri(b̄c) holding. This is because we only enumerate
a number into S [i ]

1,s if we have both n + 6-many Ω〈i,js–1
0 〉 and n + 6-many Ω〈i,js–1

1 〉-

extensions over b̄c. Recall that Ω〈i,js–1
1 〉 only uses R, thus even after enumerating

〈i, js–1
0 〉 into S0, we still have n + 6-many Ω〈i,js–1

1 〉 = Ω〈i,js0 〉-extensions over b̄c, so

Ri(b̄c) still holds.
There are two possible outcomes to the strategy to defeat Bi , b̄i : Either we go

through step 2 finitely or infinitely often.
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If we go through step 2 finitely often, thenRi ∈ L̂ and we must get stuck in step 1.
This is either because of a non-removed obstruction, in which case �(b̄, Bi) < |b̄|
or we never have both n + 6-many Ω〈i,j0〉 and n + 6-many Ω〈i,j1〉-extensions over
b̄c. The first option means B̄i is not a basis, so we may assume it is false, implying
b̄c ≤ Bi . By (3”) and choice of �, since b̄c ≤ Bi , all of these n + 6-many Ω〈i,j0〉 and
n + 6-many Ω〈i,j1〉-extensions over b̄c should exist. Thus, Bi cannot model T.

In the infinite outcome, we argue that if Bi |= T and b̄i is independent in Bi , then
c /∈ acl(b̄i). Suppose otherwise that Bi |= T and b̄i is independent and there is some
Y containing b̄i c and �(Y ) = |b̄i |. Recall � is calculated in the language L̂, which
in this case does not include Ri . Thus, when we also consider the relation Ri(b̄c),
from some stage onward this Y forms an obstruction that is never removed. So, we
get stuck in step 1 contradicting that we are in the infinite outcome. Thus, under the
infinite outcome, if Bi |= T and b̄i is independent, then c /∈ acl(b̄i), contradicting
that b̄ is a basis for Bi . 


Theorem 6.2. T is a strongly minimal, flat, non-disintegrated, model complete
theory in a language with finite signature, and SRM(T ) = [0, n] ∪ {�}.

Proof. The theory T is in the language L which has the finite signature {R}.
In the previous lemma, we showed that [n + 1, �) ∩ SRM(T ) = ∅. In Corollary
5.10, we showed that [0, n] ∪ {�} ⊆ SRM(T ). Thus SRM(T ) = [0, n] ∪ {�}. In
Corollary 2.22, we showed T̂ is strongly minimal, which implies T is strongly
minimal. In Corollary 4.6 we showed T is model complete. In Lemma 4.7 we showed
that T is flat and non-disintegrated. 
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