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Using theory and experiments, we investigate granular surface avalanching due
to material outflow from a narrow silo. The assumed silo geometry is a deep
rectangular box, of moderate spanwise width and small gap thickness between
smooth front and back walls. A small orifice deep below the free surface lets grains
drain out at a constant rate. The resulting granular flows can therefore be assumed
quasi-two-dimensional and quasi-steady over most of the surface descent history.
To model these flows, we couple a kinematic model of deep granular flow with a
dynamic model of shallow surface avalanching. We then compare the calculated flow
fields with detailed particle tracking measurements, letting the silo ascend relative
to the high-speed camera to increase spatial resolution. The results show that the
avalanching surface shape and near-surface flow are controlled by the spanwise
gradient in subsidence velocity, and how this gradient is in turn controlled by the
height above orifice and the gap thickness. Whereas the deep flow pattern is rate
independent, shallow avalanching is paced by the granular rheology.
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1. Introduction

In various environmental and industrial contexts, the removal of material beneath
the surface of a granular substrate can cause the surface above the withdrawal
zone to subside and steepen. Examples include mining-induced ground subsidence
(Vivanco & Melo 2013), and material drainage from granular hoppers or pebble
bed reactors (Cleary & Sawley 2002; Rycroft et al. 2006). If steepening causes
the surface inclination to exceed the angle of repose, avalanching will occur.
One common example occurs in the upper chamber of an hour glass, where a
funnel-shaped avalanching surface forms due to drainage through the underlying
narrow throat. In the present work, we examine these phenomena in a simplified
geometry: rectangular silos holding grains between two closely spaced smooth walls,
making the flows quasi-two-dimensional. Such flows have earlier been investigated
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using laboratory experiments (Gray & Hutter 1997; Samadani, Mahadevan & Kudrolli
2002; Benyamine et al. 2014; Maiti, Das & Das 2016), continuum models (Staron,
Lagrée & Popinet 2014; Dunatunga & Kamrin 2015; Daviet & Bertails-Descoubes
2016) and discrete element simulations (Cleary & Sawley 2002; Staron et al. 2014;
Zhou, Ruyer & Aussillous 2015).

To simplify the problem further, we consider silos of small width to depth ratios,
restricting the span of the avalanching layer (figure 1). Experimental observations
then suggest that the following simplifications can be made. When drainage at depth
through a bottom or side orifice occurs at a constant rate, first, the resulting granular
surface flow can be considered quasi-steady. After a starting transient, during which
the granular free surface deforms from its initial shape to its avalanching shape, the
surface flow becomes nearly steady in a frame of reference descending at constant
speed with the free surface. Avalanching thus takes the form of a travelling wave.
Because it is driven by a deep subsidence flow that varies spatially with height,
the avalanching flow is not perfectly steady. Except for low submergence above
the orifice, however, the spatial evolution of this deep flow is gradual, hence the
descending avalanching flow experiences forcing changes that are slow with respect
to its adaptation time. At any given time over most of its descent history, therefore,
the avalanching flow can be approximated as a steadily flowing layer that continually
exchanges grains with the substrate through entrainment and detrainment. This makes
avalanching flows in narrow silos analogous to other steady granular layer flows
subject to erosion and deposition, like flows in rotating drums (Gray 2001; Hung,
Stark & Capart 2016) and bounded heaps (Khakhar et al. 2001; Fan et al. 2013).

In the present paper, we investigate quasi-steady, quasi-two-dimensional silo
avalanching flows using a combination of theory and experiment. Using either
continuum or discrete models, one could attempt to model together both the deep
flow and surface avalanching regions of the phenomenon (see e.g. Staron et al. 2014).
This is however made difficult by the highly different scales that govern the two
regions. Whereas the deep flow is steady, slow, and gradually varying in space, the
avalanching flow is confined to a thin surface layer featuring faster velocities and
steeper velocity gradients. Analogous to the boundary layer approach for viscous
and turbulent flows, therefore, we adopt a modelling strategy that couples different
equations for different zones of the flow. For the deep flow, we adopt the kinematic
model proposed by Nedderman & Tiiziin (1979), which reduces the problem to the
solution of a diffusion equation.

To describe surface avalanching, on the other hand, we adopt the model proposed
by Capart, Hung & Stark (2015) and recently applied by Hung et al. (2016) to
granular flows in rotating drums. Instead of solving local partial differential equations
(Jop, Forterre & Pouliquen 2007; Lusso et al. 2017; Ferndndez-Nieto et al. 2018),
the model uses depth-integrated equations for the balance of mass, momentum and
kinetic energy of the shallow avalanching layer. This model applies to dry, dense,
two-dimensional granular flows in narrow channels, over deep erodible deposits,
when the flow and bed are composed of the same mono-disperse grains. The model
further assumes that the flow is subject to friction along the walls and governed by a
linearized form of the viscoplastic w(I) rheology (da Cruz et al. 2005; Jop, Forterre
& Pouliquen 2005), such that the base of the flow coincides with the yield locus.
As a result, it cannot describe flows over non-erodible beds (Parez, Aharonov &
Toussaint 2016; Sarno et al. 2018) or the transitions between flow and rest observed
for shallow granular layers in wide channels (Pouliquen & Forterre 2002; Edwards &
Gray 2015).
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FIGURE 1. Sketch of the assumed silo configurations: (a) symmetric silo with a centred
bottom orifice; (b) asymmetric silo with a side orifice.

For the experiments, we adopt a configuration aimed at maximizing the resolution
at which the deep and surface flows can be recorded by a high-speed camera. A half-
silo geometry is adopted, and the silo is mounted on a motorized traverse to make it
rise steadily relative to the camera, keeping the avalanching flow stationary relative to
the observation window. Particle tracking velocimetry is then applied to the footage.
Averaging of the deep flow and avalanching layer velocity fields is performed in the
separate frames of reference in which they can be considered steady.

The paper is structured as follows. In § 2, we describe the theories adopted to model
deep flow and surface avalanching, and how they are coupled together. In §3, we
present the experimental set-up, conditions and imaging analysis. In § 4, we compare
and discuss results, before drawing conclusions in §5.

2. Theory

The geometrical conditions considered in the present work are defined in figure 1.
We assume silos of rectangular shape, with smooth front and back walls separated
by a small gap thickness B equal to some multiple (of the order of 10) of the
grain diameter D. We therefore consider three-dimensional grain configurations, not
monolayers. Because the gap is narrow and the walls smooth, however, we can
assume that the flow field will be effectively two-dimensional. For simplicity, we
consider either the symmetric geometry of figure 1(a), of spanwise width 2L on
either side of a centred bottom orifice, or the asymmetric geometry of figure 1(b)
having width L and a side orifice at X = 0. For the near field around the orifice,
differences between bottom and side outlets are expected, leading to different variants
of the Beverloo relation expressing the rate of outflow in terms of grain diameter, gap
thickness and orifice opening (Zhou et al. 2017). Regardless of the case, however, a
constant flow rate is obtained when the orifice opening is large enough to prevent
jamming, and when the silo free surface is sufficiently high above the orifice. Both
conditions will be assumed, hence we consider the outflow rate known and constant.
Throughout the silo, only a single type of grains is considered.


https://doi.org/10.1017/jfm.2018.650

https://doi.org/10.1017/jfm.2018.650 Published online by Cambridge University Press

Granular surface avalanching in narrow silos 447

Upon starting the silo discharge, grains will descend and converge towards the
orifice, drawing down the free surface. Avalanching will then occur once uneven
subsidence has steepened the granular free surface beyond its angle of repose. After
this initial transient, we consider separately the shallow avalanching layer and the
deep flow region comprised between this layer and the orifice near field. Since the
outflow rate is constant, flow in the deep region will be assumed steady in the silo
frame of reference defined by axes (X, Z). For sufficiently small silo widths L, the
span of the avalanching flow will be bounded by the side walls. We therefore expect
the avalanching layer to attain and maintain a quasi-steady flow state in a frame of
reference descending with the surface at the constant mean rate H, where H(t) is
the time-varying mean height of the free surface above the orifice. After formulating
the theory, we will be able to define more clearly the range of conditions for which
this assumption is reasonable. In the following two sub-sections, we describe the
distinct models adopted for the deep flow and avalanching layers, respectively. In
both zones, variations in solid fraction are neglected, hence incompressible flow is
assumed. In earlier work (da Cruz et al. 2005; Jop et al. 2005), incompressibility
was found to be a good approximation for dense, slow flows characterized by low
inertia numbers. These are the conditions encountered in the experiments described
below. Our objective is to predict the gradually evolving granular velocity field

(U, W)(X, Z, t) (averaged over the gap width) and shape of the free surface Z(X, 1).

2.1. Deep flow kinematics

To describe the steady deep flow (Uy, Wy)(X, Z), we adopt the kinematic model of
Nedderman & Tiiziin (1979). In this model, vertical shear is assumed to cause grains
to drift laterally at velocity
Uy=—-K——, 2.1

0 e (2.1
where Uy(X, Z), Wy(X, Z) are respectively the horizontal and vertical components
of the mean granular velocity in the deep flow region, and K is a coefficient with
dimensions of length called the kinematic constant by Nedderman & Tiiziin (1979).
Substitution of (2.1) into the continuity equation

U, oWy

=0, 22
oX 0Z 22)

then yields the diffusion equation with diffusivity K

oW, 3° Wy
— —K—=0, (2.3)
0Z X?

where diffusion proceeds upwards along the time-like Z axis to even out horizontal
variations in W,. The micro-mechanical basis of (2.1) and (2.3) remains to be clarified,
but a simple physical explanation is as follows (Litwiniszyn 1963; Caram & Hong
1991). At the discrete level, the downward motion of individual grains is associated
with the upward migration of void spaces, or holes, into which individual grains
fall. At each fall, the hole can move either right or left with equal probability. The
resulting upward random walk of individual void spaces yields a diffusion process in
the continuum limit. The opposite granular flux W, is then governed by the diffusion
equation (2.3). Although the equation lacks a rigorous mechanical basis, it describes
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a physically plausible deep flow velocity field that can be used to drive surface
avalanching. Upon calibrating the diffusivity K, equation (2.3) has been found to
yield good agreement with silo experiments (Tiiziin er al. 1982; Choi, Kudrolli &
Bazant 2005) and discrete element simulations (Rycroft et al. 2006; BaleviCius et al.
2011).

For the silos we consider, the diffusion equation must be solved subject to the
lateral boundary conditions

W,

0, atX=-L and X=0, 2.4)
0X

imposing no flux across the left wall and symmetry plane (for the symmetric silo), or
across the left and right walls (for the asymmetric silo). At the outlet level Z =0, on
the other hand, a bottom boundary condition can be written

Wy =—-206(X), (2.5)

where Q is either half the rate of outflow (for the symmetric case), or the full outflow
(for the asymmetric case), divided by the gap width B (see figure 1). Disregarding the
details of the flow near the orifice, a delta function is used to represent the outflow
as a point sink. Since the diffusion equation features a first derivative in Z and a
second derivative in X (see e.g. Kevorkian 1990), no condition is required or can be
applied along the granular free surface, nor can additional conditions restraining slip
be applied along the side walls. The deep flow is driven by drainage from the orifice,
and is not affected by avalanching at the free surface. In addition to the velocity field,
we will also be interested in the streamfunction ¥y(X, Z) defined by

I, I,
0 _y,, 0, 2.6a.b
az " ax 0 (2.6a,5)

the contours of which give the granular streamlines. For definiteness, we associate
¥, =0 with the vertical streamline through the origin X = 0.

The above mathematical problem can be made dimensionless by defining variables
X=X/L, Z=7K/12, Wy=W,L/Q, Uy=U,L*/(KQ) and ¥, = ¥,/Q. As detailed in
Kevorkian (1990), the solution can be obtained using either Fourier series, advisable
for Z moderate to large, or mirrored Green functions, advisable for Z small to
moderate. Since the latter case better fits the conditions of our experiments, we will
calculate the solution using the Green function

G(X, 2) ! X 2.7)
5 = ——€X — = N .
(R2)\? P\7az

which solves (2.3) subject to bottom boundary condition (2.5) on a laterally
unbounded domain. To enforce lateral boundary conditions (2.4), mirrored Green
functions must be added to obtain

n

WoX,Z2)=-GX, Z) — Z(G(X — 2k, 7) + G(X + 2k, 7)), (2.8)

k=1
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FIGURE 2. (Colour online) Solutions to the kinematic deep flow model: (a) spanwise
profiles of horizontal velocity; (b) spanwise profiles of vertical velocity; (c) streamlines.

which is an infinite sum truncated at n terms that converges to the solution for n large
(Kevorkian 1990). The solution for the streamfunction, likewise, can be obtained by
integration of (2.8) along X as

WX =X, 2)+) (PX~2k2) +dX +2k 2)), (2.9)
k=1
where .
oK. ) —erf [ (2.10)
= —_— . .
’ 27172

The resulting dimensionless solutions are illustrated in figure 2. Figure 2(a) shows
spanwise profiles of horizontal velocity at different heights above the orifice.
Figure 2(b) shows the corresponding profiles of vertical velocity. Finally figure 2(c)
shows the streamlines ¥ = constant for equally spaced values of the streamfunction.
Near the orifice, flow is apparent only in the central region, but there is no sharp
boundary between flowing and stationary regions. The diffusion solutions feature
small non-zero motions even away from the central zone. Using the kinematic model,
similar deep flow fields in silos have earlier been calculated by Nedderman & Tiiziin
(1979), using Fourier series, and by Choi et al. (2005) using numerical computations.

2.2. Shallow layer governing equations
To model surface avalanching (figure 3), we consider a distinct coordinate system
(x, z) tilted at the angle of repose «, with origin at (X, Z) = (—L/2, H(t)) and
descending with the granular free surface at speed H = —Q/L. The x-axis of the
coordinate system therefore coincides with the inclined profile (figure 3a)

ZX,H=H({#) — (X+L/2)tana. (2.11)


https://doi.org/10.1017/jfm.2018.650

https://doi.org/10.1017/jfm.2018.650 Published online by Cambridge University Press

450 C.-Y. Hung, P. Aussillous and H. Capart

(a) b)
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FIGURE 3. Definition sketch of surface flow model: (a) overview; (b) local cutaway. The
surface flow is depicted in a frame of reference descending with the free surface, in which
the flow is approximately steady. In this frame of reference, the erosion flux across the
basal interface exhibits a change of sign, from positive upstream to negative downstream,
hence the apparent kink in (a).

Throughout this section, we assume the restricted domain —L < X < 0, with mirror
symmetry implied in case of a symmetric silo. In the inclined coordinate system, we
define Z(x, t) and z(x, 1) to be the free surface and basal boundary of the avalanching
layer. The depth of the avalanching layer is then given by h(x, ) =7 —z. We assume
shallow flow, h <« L, and small relief 7 <« L relative to profile z = 0 inclined at
the angle of repose. Consistent with these approximations, flow acceleration in the
z-direction will be neglected relative to acceleration in the downslope x-direction.
However both velocity components, u(x, z, ¢), in the x-direction and w(x, z, t) in the
z-direction, will intervene in the flow kinematics. Inspired from Liggett (1994), and
following Capart et al. (2015) and Hung et al. (2016), we use different lines above
and below variables to denote values sampled at different locations: - denotes a
variable sampled along the basal boundary, - a variable sampled along the free
surface and _- a variable sampled along the angle of repose profile (2.11). The
overbar ~- is reserved for quantities averaged over the depth A.

Following Capart et al. (2015), we start from local equations and integrate them
from z to 7 to obtain depth-integrated equations governing the avalanching layer. As
for the deep flow, we assume incompressibility of the granular medium, hence the
local continuity equation

ou  ow

0x * dz
Variations of # and w in the transverse y-direction are neglected, hence u and w
coincide with the corresponding velocity components averaged over the gap thickness.
Local balance of momentum in the x-direction, on the other hand, yields the width-
averaged equation of motion (Jop et al. 2007)

du n ou n du ap n ot 2ty 2.13)
—tu—+w— | = -t ———, .
PR\ Tx T az ) TP T 9 T 9z T B

0. (2.12)
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where p = csps is the mean density of the bulk phase, and p = pg (7 — z) is
the granular pressure, assumed lithostatic. Following Jop et al. (2005), the normal
stresses are assumed to reduce to an isotropic pressure. For shallow flow (Liggett
1994), granular accelerations in the z direction normal to the slope can be neglected,
hence a lithostatic pressure balancing the weight of the grains above. In the same
equation, g, =gsina and g, =gcosa are the parallel and perpendicular components
of the gravitational acceleration, ty = uwp is the shear stress along the side walls
(with wy the wall friction coefficient) and t is the internal shear stress. For the latter,
we assume the viscoplastic, dense granular flow rheology (da Cruz et al. 2005)

T = pop + xD(pp)"*y, (2.14)

expressed as the sum of two components. The first, rate independent, is a plastic yield
stress proportional to p, with coefficient uy = tan «. The second, rate dependent, is
a viscous stress that varies linearly with the shear rate y = du/dz, with effective
viscosity xD(pp)'/? dependent on grain diameter D, granular pressure p and
dimensionless rheological coefficient x. This is a linearized version of the w([)
rheology proposed by Jop et al. (2005) and applied earlier to liquid—granular flows
by Berzi & Jenkins (2008). The nonlinear w(/) rheology has earlier been applied
to shallow granular flows over rigid beds by Gray & Edwards (2014). The two
rheological coefficient ©y and x will be determined in the next section by linearizing
the nonlinear ©(/) rheology calibrated earlier by Jop et al. (2005) for the same
granular material. Note that the constitutive relations for wall friction and internal
shear stress are written assuming u > uy, and y > 0. For steady uniform flow over a
loose deposit of velocity (u, w), these equations are satisfied by the velocity profile
(figure 3b)

u( =u+@—wQG - 207+ 1777, (2.15)

where 7 = (7 — z)/h and @ is the depth-averaged velocity (for a derivation, see
Berzi & Jenkins (2008)). As discussed in Capart et al. (2015), experiments exhibit
some deviations from the profile (2.15) even for equilibrium flows. For unsteady,
non-uniform flows, moreover, the velocity profile is expected to deviate from its
equilibrium shape. As long as such deviations are small, however, integrals over
depth based on the profile (2.15) should furnish a good approximation, and provide a
simple way to close depth-integrated equations. Because the corresponding shear rate
at the base y =0du/9z(z) is equal to zero, note that this profile is appropriate only for

flows over erodible beds, when the basal interface can be assumed to coincide with
the yield locus. For flows over rigid beds, say over rock, a finite shear rate at the
base would be expected, and the base elevation prescribed, instead of the present case
with zero basal shear rate and a basal elevation set by the flow itself. Likewise, the
description would not apply for granular flows over deposits composed of a different
type of grains. When assumptions are met, the velocity profile u(x, z, f) at a given
coordinate x and time ¢ can be calculated using (2.15) from Z(x, ¢), h(x, t), u(x, 1)
and u(x, t). The corresponding streamfunction, likewise, can be calculated from

V(@A) =¥ — hui) — h@ — w3 — 1577 + 77, (2.16)

where i satisfies 9y /dz=u, 0y /dx = —w, and such that

v — ¢ =hu (2.17)
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To obtain unsteady, non-uniform governing equations for the avalanching layer, we
first integrate (2.12) and apply the Leibniz integral rule to get

/Z ou ow\ g _B0m oz 02 o 0 (2.18)
—+— = —u—+u—4+w—w=0, :
z \0x 0z ‘ ox ox Tox ~

where g = hu = f; udz. This can be further worked out using the kinematic boundary

condition along the free surface,

9z 97
=w, 2.19
» +u8x w ( )

and the definition 7 =7 — z to obtain the depth-integrated continuity equation

oh  d(hu) dz 0z
— =e=w—u— — —, (2.20)
at ox ~ o TYox 0t

where e(x, t) is the erosion or entrainment rate, or rate of granular volume transfer
across the basal interface z(x, r) and into the avalanching layer. This rate is defined
as the deviation from volume conservation of the layer, expressed by the left-hand
side. Likewise, the local equation of motion (2.13) can be integrated over depth to
obtain the depth-integrated momentum equation

h% — lr — ih?W. (2.21)

9 9 —
7h* 7]1 2y — h_
at( ”)+ax( w)=eu+gh—g, ox ot 0B

Assuming u(x, t), w(x, ) to be otherwise given, we must solve for three evolving
profiles h(x, 1), Z(x, t) and u(x, t). We therefore supplement (2.20) and (2.21) with an
additional equation expressing the balance of depth-integrated kinetic energy (Capart
et al. 2015; Hung et al. 2016). This is obtained by integrating over depth the product
of (2.13) with velocity u(x, z, t), yielding

d [(hu? 3 (hu? eu’ 9z 1 — 2
s ) == hu—g hui— —tu— —hty — —h . (222
8t(2>+3x<2> o Tl g =T = Sty = phtvi (2.22)

In this equation, the next-to-last and last terms represent dissipation by granular
contacts inside the avalanching layer and dissipation by friction along the walls,
respectively. Equations (2.20)-(2.22) represent a generalization of the equations
derived in Capart et al. (2015) for the case of stationary deposits (x =w=0). We now
specialize them to the problem of avalanching flows over loose deposits undergoing
uneven subsidence due to silo discharge. Ideally, we would wish to match the velocity
at the base of the avalanching layer with the deep flow velocity along the same curve,
ie. let (u, w) = (go, KVO)~ The precise shape of the basal interface z(x, z, r), however,
is not known in advance. As in linearized groundwater seepage problems (see e.g.
Ni & Capart 2006), therefore, we choose instead to apply kinematic matching to the
approximate basal interface given by Z(X, t). This corresponds to the linear profile
(2.11), inclined at the angle of repose. We therefore approximate

~uy=U,cosa — (W, — H) sina, (2.23)
~w,=U,sina + (W, — H) cosa, (2.24)

&

=
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where velocities in the upright, stationary silo frame of reference are converted to the
tilted frame of reference descending at constant speed H. Likewise we approximate

0z 0z
ox ox
In terms of the streamfunction, equivalently, we let
Y~y =¥, + HX, (2.26)

where ¥, is the streamfunction (2.9) sampled along (X, Z)(x, t) = (—L/2 +
x cos o, H(t) — x sin ). The solutions presented below are obtained by applying
the matching condition at this known, but approximate interface position Z(X, r). We
could instead proceed by iterations, applying the matching condition again at each
step to the interface location calculated from the previous step. Because the deep
flow varies gradually with height above orifice, however, the error of the approximate
solution with respect to the converged iterative solution is small, hence we prefer the
simpler approach. With this approximation, the depth-integrated continuity equation
becomes _

daz  d(hu)

< = w,.

at ox

For quasi-steady flow, the dominant balance is between the second and third terms,
hence w, ~ hu/L. For shallow flow the ratio 4/L = € is small, thus the deep flow
velocity components u, ~ wy ~ €u are one order of magnitude smaller than the
depth-averaged avalanche velocity #. Terms associated with the basal velocity u = u,
can therefore be neglected in the momentum and kinetic energy equations (2.21) and
(2.22). Likewise we can set y = 0 in (2.15). With these simplifications, equations
(2.21)—(2.22) governing the dynamics of the avalanching layer become

2.27)

N 7 uw
—(h — | —h#* ) =—g h— — g I, 2.28
TR (48 ”) 8 T B 8- (2.28)

8 (77 5 0z 35 Z Suy
hii? W)= —g hii— — —yDg'/*— — % p2u (229
8t<96u)+8x(Ku) gy — g APl — g g s (229)

where x = 342853/233376 ~ 1.469, and where the depth-integrated terms u?> and
u? were integrated using profile (2.15) with u = 0. The last two terms of (2.29),
representing energy dissipation, are obtained by integration of the corresponding terms
Ty and Tyu in (2.22), using profile (2.15) and the rheology (2.14). The next-to-last
term of (2.29) is thus controlled by the rheology coefficient x that determines the
effective viscosity. After simplification, equations (2.28) and (2.29) are identical to
the momentum and kinetic energy equations derived earlier in Capart et al. (2015).
Together with (2.27) they form a closed set of governing equations for profiles z(x, 1),
h(x, t) and u(x, t), driven by the deep flow velocities U,(x, f) and W(x, ¢). These in
turn can be estimated using the kinematic model described in the previous section.
While these unsteady equations could in principle be solved numerically to describe
the transient response, here we consider only the quasi-steady response obtained by
neglecting the time derivatives in (2.27)—(2.29). The semi-analytical approach used to
construct solutions for this case is described in the next sub-section.
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2.3. Quasi-steady avalanching solutions

For quasi-steady flow, the continuity equation (2.27) reduces to

ag Y,

— =Wy =——, 2.30

ax Yo dax ( )
where g = hu is the depth-integrated granular discharge of the avalanching layer.
Integration with boundary conditions ¢ =0, ¥ =0 at x=L/(2cosa) then yields

Q(x» t) = _yo(-)g t)v (231)

such that ¢ = 0 is also automatically satisfied at x = —L/(2 cos o). As expected, it
follows from (2.17) and (2.31) that J =0, i.e. the quasi-steady free surface coincides
with the zero streamline. For quasi-steady flow, the downslope distribution of the
avalanching discharge ¢g(x, f) is therefore fully known, including its maximum value
qmax(t) at any given time ¢ during the descent. An example is illustrated in figure 4(a).
Hereafter, we drop the explicit time dependence, but note that the evolving height
H(t) of the avalanching layer during its descent will affect its discharge profile g(x).

To solve the momentum and kinetic energy equations (2.28) and (2.29) subject
to the known discharge profile g(x), we substitute u = g/h and introduce the

dimensionless variables % = x/(L/ cos &), § = q/Q, h = h/h,, S = (—37/0x)/S,,

where 2
D
hy = (1/)§Q> and S, ="Yp, (2.32a.b)
8/ nuw/B B

are the characteristic depth and excess surface inclination associated with equilibrium
avalanching flow (Hung et al. 2016). At equilibrium, the flow is paced (via the
rheological coefficient x) by the rate-dependent term of the dense granular flow
rheology (2.14). Translated to dimensionless form, (2.28) and (2.29) become

o 0 [(778% “n A
Q8/78A (48 qh) =hS— 2, (2.33)
X
nern 0 (KGN .n 353 54,
T | =) =48 — = 2— — ~hg, 2.34
0 85c<h2) 4 9 n52 9q ( )

where Q is the dimensionless silo discharge

0
(w /B3¢ (xD)Y*(L/ cos a) /8

An equivalent dimensionless number, found to control avalanching behaviour in
rotating drums, was given the name entrainment number by Hung et al. (2016). It
can be seen from (2.33) and (2.34) that this number controls the strength of the
left-hand side flux divergence terms associated with convective inertia. For low 0,
the avalanching layer is locally in equilibrium and its behaviour is dominated by the
dense granular flow rheology. In the inertialess limit 0 — 0, in particular, the flux
divergence terms disappear, and the solution is simply

0= (2.35)

h® = (2§3)Y77,  SG) =h@). (2.36a,b)
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FIGURE 4. (Colour online) Dynamic model solution for the avalanching layer: (a)
imposed spanwise profile of normal to slope velocity wo = dg/dx (dashed line) and the
resulting avalanching discharge g(x) (continuous line); (b) dimensionless phase diagram
(x, iz) with the solution curve iz(fc) in black; (c) basal interface (dashed line) and
streamlines (continuous lines) in the frame of reference descending with the free surface.

For high Q in contrast, inertia effects dominate and take the flow far from local

equilibrium (Hung et al. 2016). For intermediate @, both inertia and rheology

intervene. The equations in that case can be solved by eliminating S between (2.33)

and (2.34), yielding for & the ordinary differential equation of the first order
2357125 _ 474 F TINDA A5 /4%

dh  $h'?q—5h* 4+ 0% (3K — I)hq dg/dx

(2.37)

ds 01 (26 —

Starting from iz(—l/Z) = 0 at the upstream boundary, this nonlinear equation can
be integrated numerically in the phase plane (X, &) to obtain the solution curve
h(x) (figure 4b). Because the solution has vertical tangents at end points X = +1/2,
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FIGURE 5. (Colour online) Experimental set-up: (a) schematic; (b) overview; (c) close-up
showing the side orifice of the adjustable opening.

we integrate using discrete steps of constant distance d&é = (di* + dh?)"/? rather
than constant intervals dx. Next, we deduce the excess inclination profile S by
substituting the solution to (2.37) back into (2.33). Finally, the free surface profile
%(56) =7/(S,L/ cos @) is determined by integrating d%/d?c: -8 numerically subject to
the integral condition f_lﬁz Zd2=0. Results are plotted in figure 4(c), together with the
streamlines calculated from (2.16). For the experiments below, the dimensionless silo
discharge O takes relatively low values, hence the inertialess solution (2.36) provides
a good approximation to the full solution of (2.37). Because the basal forcing term
and discharge distribution g(x) gradually evolve as the avalanching layer descends
down the silo, note that solutions must be calculated anew for each time at which a
snapshot of the flow is desired.

3. Experiments

The experiments were performed at the granular flow laboratory of IUSTI,
Aix-Marseille University, using the set-up shown in figure 5. The rectangular
silo is composed of parallel glass walls separated by wooden strips, planed to
uniform thickness and sandwiched between the glass plates along the perimeter. By
switching between different sets of wooden strips, three gap thicknesses B; =3.5 mm,
B, =5 mm and B; =7 mm were investigated. To one side, wood pieces with mitred
edges were used to control the orifice opening in the range 6 mm to 11 mm, yielding
mass flowrates in the range m = 3-12 g s~!, as measured using a scale collecting
the silo efflux. The lower edge of the orifice was set at a fixed height of 20 mm
above the silo floor, and taken as origin (X, Z) = (0, 0) of the coordinate system.
The internal silo chamber had spanwise width L = 60 mm and maximum depth
H,.x =600 mm.

Slightly polydisperse glass spheres were used as granular material. Two different
sphere sizes were tested, having diameters D; = 0.5 mm and D, = 0.76 mm. The
D, spheres were drawn from a batch used in previous experiments, for which the
following properties were determined in earlier work (Jop et al. 2005, 2007): density
ps = 2450 kg m™3, sphere—wall friction coefficient py = tan(13.1°) and parameters
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Run Gap Grain  Orifice Mass flow Silo Dimensionless Maximum

no. thickness size  opening rate discharge  silo discharge inertia number
B (mm) D (mm) b (mm) s(gs™) Q(mm)* s 0(-) Lax (=)

1 35 0.5 11 4.7 780 0.44 0.23

2 3.5 0.5 8 3.1 460 0.26 0.20

3 3.5 0.5 9 3.8 680 0.38 0.22

4 5 0.5 7 3.7 395 0.23 0.15

5 5 0.5 9 6.0 660 0.39 0.17

6 5 0.5 11 8.2 900 0.52 0.18

7 7 0.5 8 8.3 720 0.44 0.14

8 7 0.5 10 11.6 1000 0.61 0.15

9 7 0.5 6 5.1 420 0.26 0.12

10 5 0.76 7 3.0 300 0.13 0.15

11 5 0.76 11 6.7 840 0.36 0.20

12 5 0.76 9 4.8 600 0.26 0.19

13 7 0.76 6 39 360 0.16 0.13

14 7 0.76 8 55 480 0.21 0.14

15 7 0.76 10 8.9 840 0.37 0.16

TABLE 1. Experimental conditions for the different runs.

ws = tan(20.9°), u, =tan(32.76°) and Iy =0.279 in the nonlinear w(I) rheology

T M2 — MUs
h=—=p+

, 3.1
o Io/1+1 G-

where I = yD/(p/ps)'/* is the inertia number. Provided that I is not too large,
this nonlinear relation between p an I can be linearized by Taylor expansion around
I=0. This yields for the coefficients of our assumed linear rheology (2.14) the values
o = s = 0.38 and x = (ur — /LS)/(IOC(])/Z) = 1.2, where ¢y = 0.6 is the estimated
granular volume fraction. These values of uy and x are used without adjustment for
all the comparisons between theory and experiment presented below. Based on the
theory described in the previous section, we can estimate as follows the range of
inertia numbers encountered in the present experiments. Using the theoretical velocity
profile (2.15), first, the inertia number averaged over the depth of the avalanching
layer is given by

35 uD

8 (cog, h)1’

Using the approximation (2.36) and adopting the silo discharge Q as an upper bound
on the avalanching discharge ¢, next, a maximum depth-averaged inertia number for
each experiment can be obtained from

;o _1(3 T oD .
"2\ 4 (cog, B)'* '

The different conditions tested are listed in table 1.

Measurements were acquired using a Photron high-speed camera of resolution
640 by 640 pixels operated at frame rates in the range 250-500 frames per second.
To maximize both the resolution and coverage of the footage acquired for each

1= (3.2)
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experiment, the silo was mounted on a motorized track allowing it to rise at constant
speed V = Q/L relative to the camera. In this fashion, the camera could zoom in
on an observation window of width L, within which the descending avalanching
layer was nearly stationary. The lower part of the window, moreover, could scan the
undisturbed deep flow, travelling past different regions of the deep flow as the silo
moved relative to the camera. In one single experiment, therefore, the camera can
record the deep flow over a height greater than the observation window, and capture
the avalanching layer at different stages of its descent relative to the silo. Lighting
was provided by a high-intensity LED, giving a point-like source of illumination that
produced sharp highlights near the centres of the spheres, facilitating their capture
and tracking.

Experiments were started with the silo filled up almost to maximum depth, with
a level free surface. An initial transient was therefore needed to deform the free
surface from its horizontal initial state to its tilted avalanching state. The time needed
for a discharge ¢ ~ Q to resorb the corresponding triangular area A = tan oL?/2
is approximately 7= A/Q ~ L?/Q. Over this time, the surface has descended by
AH=—HT ~ QT/L=L. To avoid this initial transient, measurements were therefore
acquired only after an initial drawdown AH of at least 8 times the silo width L.
For this reason, the silo was designed to be twice as high as the target observation
domain.

Particle tracking velocimetry was performed using the methods of Capart, Young &
Zech (2002), upgraded to take into account path regularity when matching particles
from one frame to the next. For each experiment, of the order of 10® velocity vectors
were acquired. Averaging over multiple frames was conducted by binning vectors into
non-overlapping Cartesian mesh cells, using distinct frames of reference for the deep
flow and for the avalanching layer. For the deep flow, stationarity in the silo frame of
reference was assumed to average vectors from the lower part of the window using
a mesh of coordinates (X, Z). For the avalanching layer, averaging was performed in
the descending frame of reference (X, Z — Hr), over time intervals of shorter duration
to capture different stages of the layer evolution during its descent. During each
experiment, an electronic scale was also used to monitor the mass outflow from the
silo. Flow fields acquired in this fashion are illustrated in figure 6, and compared to
long exposure images acquired with the silo moving or held stationary with respect
to the camera.

As a check on the PTV measurements and some of the assumptions of the theory,
the mass flow rates 7 estimated by weighting the collected efflux can be compared
with mass flow rates copsBQ estimated from particle tracking velocimetry, where
Q = —LW, is the volume flow rate per unit width and W, is the mean downward
velocity of the grains averaged from 12 cross-sections at different heights of the
measured deep flow field. Values of both iz and Q are listed in table 1. The PTV
values underestimate the collected efflux by up to 20 %, for the smaller grains, and
by up to 10% for the larger grains. This discrepancy indicates that the granular
velocities measured by PTV along the tank front wall are somewhat slower than
the granular velocities averaged over the gap thickness and associated with the bulk
efflux. Since the discrepancy is not large, however, it appears reasonable to assume
for simplicity that the flow is two-dimensional in character.

Reflecting the crucial role of wall friction (Jop et al. 2005), the silo gap thickness
was found to exert a significant influence on the observed avalanching flow patterns.
For small to medium gap thickness (B =3.5 and 5 mm), shallow avalanching layers
are obtained, with lenticular shapes that span the entire silo width L (figure 6).


https://doi.org/10.1017/jfm.2018.650

https://doi.org/10.1017/jfm.2018.650 Published online by Cambridge University Press

Granular surface avalanching in narrow silos 459

0.250

0.125 =

FIGURE 6. Particle tracking velocimetry (PTV) process applied to run 3: (a) long
exposure image for silo moving relative to the camera; (b) colour map of the measured
magnitude of the granular velocity, averaged over 250 images; (c) reconstructed colour
map of the deep granular velocity field, in the silo frame of reference; (d) composite
long exposure image of the deep silo flow, with the silo held stationary with respect to
the camera. In (a), the coloured lines illustrate the control volumes used to derive (4.2).
In (), the region below the dashed line was assumed unaffected by surface avalanching,
yielding the measurements used to produce the deep flow map (c).
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FIGURE 7. Qualitatively different avalanching flow pattern observed in silo of large gap
thickness (B = 7 mm, run 7): (a) long exposure image; (b) colour map of velocity
magnitude.

The resulting flow pattern (figure 6b) is qualitatively similar to the flow field expected
from the theory (see figure 4¢). The largest gap thickness tested, however (B=7 mm),
produces deep avalanching layers with slow velocity dead zones upstream and
downstream (figure 7). This pattern no longer matches that expected from our
shallow avalanching theory. Judging from the comparison between outflow rates
measured by the scale and by PTV, respectively, the flows in that case remain roughly
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two-dimensional, hence the change of character does not seem due to a breakdown
of this assumption. Instead, we suspect that for these flows there is no longer a
sufficient separation of scales between the deep flow and surface avalanching. For the
avalanching layer, quantitative comparisons with the dynamic theory will therefore be
restricted to experimental runs conducted with small to medium gap thickness. For
the deep flow, by contrast, the kinematic theory will be compared with data from all
runs. These comparisons are described in the next section.

4. Comparison and discussion
4.1. Deep flow comparison

Prior to comparing theory with experiments for the deep flow region, the kinematic
constant or diffusivity K must be calibrated. This is done for each experiment using
the following approach. Consider the rate of material transfer (per unit interface area)
across an imaginary horizontal interface Z(X, f) = H(f) descending at speed H =—Q/L
down the silo, and given by

W) (X, Z) =Wy(X, Z) — H, (4.1)

where only the deep flow is considered. Assuming that the flow above this interface
is steady in the descending frame of reference, this influx must be balanced by a
horizontal granular current J(X, Z) (per unit gap width) given by

>'¢
JX,Z)= —/ Wy(X', Z)dX'. 4.2)
0

The control volumes associated with this balance are illustrated in figure 6(a).
Let J,.(Z) denote the maximum value of the granular current J(X, Z). Taken
along horizontal interface Z = H instead of the tilted interface Z(X), it provides
an approximation to the maximum avalanching discharge g¢,... Here we use
measurements of J,,, for different elevations Z to calibrate the diffusivity K for
each experiment. Using the deep flow theory of sub-section 2.1, the current J is
given by

J(X,Z) =W (X, Z) + HX, 4.3)
or in dimensionless form
~ J A~ A A ~
J=é:%azyw, (4.4)

where, like before, X = X /L and Z=7K /L*. Let f,nax =F (Z) denote the maximum
dimensionless current for a given dimensionless elevation Z. This relation can be
inverted (numerically) to obtain for Z as a function of J,,, the relation

Z L (Jnax

—=—F , (4.5)
L K 0

where we have reverted to dimensional variables. This provides a simple linear relation

in coefficient L/K that can be fitted to measurements of J,,./Q for different relative

elevations Z/L.

Results obtained via this calibration procedure are presented in figure 8 for one of
the experimental runs. In figure 8(a), relation (4.5) is compared with the measured
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FIGURE 8. (Colour online) Comparison of the kinematic theory (blue curves) with
experimental measurements (black symbols) for the deep flow region (run 2): (a)
dependence of maximum horizontal current J,,, on elevation above orifice Z, used to
calibrate the diffusivity K; (b) vertical velocity profiles W(X, Z); (c¢) horizontal current
profiles J(X, Z), with locus of maximum values indicated by dashed line (theory) and
circles (experiment). The error bars indicate 4+ one standard deviation, estimated from
measurements of three repeat experiments for the same conditions, and multiplied for
clarity by factors 20, 40 and 3 for panels (a), (b) and (c) respectively.

data for the K value yielding the best fit. In figure 8(b), we then compare the
theoretical profiles Wy(X, Z) obtained with this K value with the measured vertical
velocity profiles. Finally, in figure 8(c), we compare the theoretical profiles J(X, Z)
with the corresponding experimental profiles. In addition to matching well the values
of maximum current J,,.(Z), on which the fitting was performed (figure 8a), the
results show good agreement for other features of the deep flow, including the
detailed velocity profiles (figure 8b) and the locus X, (Z) where the maximum
current J,,,, is attained (figure 8c).

Considering that the diffusivity K is the only parameter requiring calibration,
agreement is good overall. Nevertheless, there are some significant differences
between the predicted and measured velocity profiles. Most conspicuously (figure 8b),
the experiments feature a zone of low velocity near the side wall above the orifice,
the thickness of which grows with height. This departure from our assumed condition
of perfect slip may be partly due to the use of wood strips for the sides. The same
behaviour, however, was also observed by Maiti er al. (2016) in their experiments
conducted in an eccentric silo made entirely from acrylic (polymethyl methacrylate)
plates. Regardless of the side wall material, it is likely that grain mobility near
the sides is reduced due to corner effects (grains in contact with both the front
and side walls). This vertical boundary layer is not modelled by the theory, which
instead assumes perfect slip along the side walls. Fortunately (figure 8c), this local
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FIGURE 9. (Colour online) Variation of the dimensionless diffusivity with the
dimensionless gap thickness for all experimental runs.

discrepancy exerts a limited influence on the integrated granular current profiles
J(X, Z), hence its effect on the dynamics of the avalanching layer is expected to be
small.

Using the larger set of experiments, in which we varied the outflow discharge, silo
gap thickness and grain diameter (see table 1), we can further investigate the influence
of these parameters on the calibrated diffusivity K. The results, plotted in figure 9, are
unexpectedly simple. For the range of conditions examined, K is simply proportional
to the gap thickness B, satisfying to a close approximation the linear relation K = AB,
where A = 0.26. When the gap thickness is held constant, K is independent of the
discharge Q, consistent with the rate-independent character of the kinematic model.
Likewise, K is found to be independent of the grain diameter D.

As a consequence of this simple dependence, the fmax and )A(max data for all the
experimental runs should collapse together when plotted against dimensionless number
H=HB/L*. This is checked in figure 10. Upon substituting Z = AH in (4.4), the data
collapse and agree closely with the theoretical curve fmax(l:l) (figure 10a). Agreement
for the locus }A(,,m(ﬁ) is also good (figure 10b). The two-dimensional deep flow
pattern above the orifice, therefore, is effectively the same for all cases when plotted
in the dimensionless variables (X, H). To test whether this holds more generally, one
would need to vary parameters over a broader range. For instance, it is unclear if
the same reduction would hold for grains and walls of materials different from glass,
which would affect their frictional properties. For the present experimental conditions,
however, this reduction to a single dimensionless flow pattern accounts well for the
deep flow observations.

4.2. Surface flow comparison

Once the basal forcing is known from the kinematic model, the dynamic model
can be used to predict the surface avalanching flow. For this purpose, we estimate
the basal normal velocity w, or equivalently the basal streamfunction i from the
analytical solutions (2.8) and (2.9). For the diffusivity, we adopt the values K = AB
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FIGURE 10. (Colour online) Comparison of the deep flow theory (blue line) with all
experimental measurements (black dots): (a) maximum current J,,; (b) location X,
where the maximum current occurs.

estimated from the gap thickness B using the linear relation calibrated in the previous
section. For the rheological coefficients wo and x, we adopt the values determined in
§ 3 from previous experiments by Jop et al. (2005) using the same granular material.
Detailed comparisons will be presented for two runs, corresponding respectively
to gap thicknesses B = 3.5 and 5 mm. In figure 11, we first compare predicted
and measured streamfunctions for the entire flow field, at three successive times.
The streamlines shown represent equally spaced streamfunction contours, hence the
distance between contours is inversely proportional to the discharge through the
corresponding streamtube. For the theory, the streamfunction is obtained from

W=+ -y, (4.6)

where the first term represents the deep flow, the second term surface avalanching
and the third their common part that must be subtracted in order not to be counted
twice. This approach is used in boundary layer problems to match inner and outer
solutions (Kevorkian 1990). By analogy, the same approach can be used here to
bridge between the avalanching and deep flow models. In our case, however, a more
formal boundary layer analysis is not feasible because we do not know the more
general equations that would reduce to the avalanching and deep flow models in
the appropriate limits. For the experiments, the streamfunction is obtained from the
measured velocity field (U, W)(X, Z) by integrating U column-wise from the bottom
and W row-wise from the far side wall, then averaging the two results. Side by
side comparisons between the theoretical and experimental streamlines obtained in
this fashion are shown in figure 11. Going from top to bottom, the streamlines are
first evenly spaced across the silo width, due the quasi-steady drawdown of the
free surface. They then get focused by the avalanching layer, where the streamlines
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FIGURE 11. (Colour online) Comparison of predicted and measured streamlines for two
different gap thicknesses, at three successive times: (a) prediction, and (b) measurements,
for gap thickness B = 3.5 mm (run 3); (¢) prediction, and (d) measurements for gap
thickness B=5 mm (run 5). Streamlines are plotted at equal streamfunction increments,
each corresponding to 1/8 of the total outflow discharge.

become very closely spaced, to connect with the uneven deep flow streamlines at
their base. Thereafter, the streamlines gradually converge toward the orifice where
they again become closely spaced. Theory and experiment are seen to be in good
agreement regarding this overall pattern.

In figure 12, we compare predictions and measurements for the granular velocity
fields. At five equally spaced times during the descent, we compare calculated results
for the downslope velocity u(x, z, t) (figure 12a,c) with measured results for the
magnitude of the velocity norm (U — Uy)* + (W — Wy)?)V/2, from which the deep
flow was subtracted (figure 12b,d). On all panels, the last, lowermost snapshot shows
the magnitude of the total velocity when the avalanching layer approaches the orifice
level. In both theory and experiment, the avalanching layers exhibit lenticular depth
profiles, with vanishing depths at both side walls and maximum depths h,,, that
occur towards the orifice side of the silo. This asymmetry and the steepness of
the avalanching layer become stronger as the surface descends closer to the orifice,
becoming more strongly influenced by its localized pull. Surface velocities likewise
accelerate as the avalanching layer drops.

Comparison of the left and right panels of figure 12 further shows the influence
of gap thickness B on the avalanching flows. The maps of figure 12(a,b) correspond
to gap thickness B = 3.5 mm, whereas those of figure 12(c,d) correspond to gap
thickness B =35 mm. For the larger gap thickness (figure 12c¢,d), kinematic diffusion
is stronger, hence a less localized surface drawdown by the deep flow. The maximum
discharge ¢,... that the avalanching layer must transfer to even out the drawdown
is therefore reduced, hence weaker avalanching flows. The larger gap thickness,
moreover, reduces the relative magnitude of wall friction, leading to deeper and
slower avalanching layers for the same discharge. Note that this does not imply any
change in the magnitude of the wall friction coefficient, assumed constant in the
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FIGURE 12. Comparison of predicted and measured granular velocity fields for two
different gap thicknesses, at six successive times: (a) prediction, and (b) measurements, for
gap thickness B=23.5 mm (run 3); (c) prediction, and (d) measurements for gap thickness
B=5 mm (run 5). Colours from blue to red indicate increasing velocity magnitude.

theory. For increasing gap width, the magnitude of the wall friction force relative
to the other terms decreases because, in the width-averaged equation (2.13) and the
ensuing depth-integrated equations, the wall friction force per unit width —2ty /B
is the only term that gets divided by the width B. For the smaller gap thickness
(figure 12a,b), kinematic diffusion is weaker hence the deep flow drawdown is
more concentrated above the orifice. The induced maximum avalanching discharge
Gmax 18 therefore greater. Due to the smaller gap thickness, wall friction causes the
avalanching layers to reduce their depth and steepen their inclination. As a result
of these different effects, surface velocities are significantly increased compared to
figure 12(c,d), even though the discharge Q through the orifice is nearly the same.

Although the free surface is nearly linear for the wider gap (figure 12¢,d), for the
thinner gap the surface curvature is more pronounced, transitioning from concave
downward to concave upward going from upstream to downstream (figure 12a,b). As
it nears the orifice wall, the avalanching layer cusps upwards as it thins to a sharp
tip. Similar behaviour was earlier described for symmetric silos, with avalanching
layers that cusp upwards as they reach the silo axis of symmetry (Samadani et al.
2002). Although this behaviour was interpreted as resulting from shock formation,
our shallow flow theory captures this phenomenon without a shock. Similar behaviour
can be observed for flows in rotating drums, where the granular free surface goes
from straight to curved as the rotation rate increases (Rajchenbach 1990).

To make comparisons more precise, figure 13 plots together theoretical and
experimental profiles for two depth-integrated quantities associated with the
avalanching layers: the depth-integrated discharge ¢ = [udz, and the depth-integrated
kinetic energy, k= [ (u*dz)/2, both varying with height above orifice H and with the
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FIGURE 13. (Colour online) Comparison of theory (blue lines) and experiment (black
lines) for profiles of discharge and kinetic energy, at six successive times during the
descent of the avalanching layers, for two different gap thicknesses: (a) discharge profiles
q(x), and (b) kinetic energy profiles k(x), for gap thickness B = 3.5 mm (run 3); (c)
discharge profiles g(x), and (d) kinetic energy profiles k(x), for gap thickness B=35 mm
(run 5). Circles indicate peaks in the predicted profiles. The error bars in (a,b) indicate +
one standard deviation, estimated from three repeat experiments for the same conditions.

downslope coordinate x. Since the discharge profile is controlled by the deep flow,
the comparisons for g represent a test of the kinematic model (figure 13a,c). For a
given discharge profile, on the other hand, the kinetic energy profile is controlled
by the avalanche dynamics, hence comparisons for k represent a test of the dynamic
model (figure 13b,d). In both the theory and experiments, peaks in g and k occur
further downstream as the granular surface drops and approaches the orifice. Also,
profiles for the smaller gap thickness (figure 13a,b) are more asymmetric than
profiles for the larger gap thickness (figure 13c,d). Finally, the profiles for k are more
strongly peaked than the profiles for g. For all these features, fairly good agreement
is registered between theory and experiment. Although the measured signal for the
kinetic energy is noisier, the level of agreement obtained for ¢ and k indicates that
both the kinematic and dynamic models perform reasonably well.

5. Conclusion

In the present work, theory and experiment were used to investigate granular surface
avalanching in narrow silos. Provided that the deep and shallow flows exhibit a clear
separation of scales, it was shown that narrow silo avalanching can be described
well by combining kinematic and dynamic models, matched along an approximate
basal interface. The resulting theory captures both the rate-independent character of
the deep flow and the rate-dependent behaviour of the avalanching layer, each in
the frame of reference where they can be considered steady. For the deep flow, the
measured velocities and the induced forcing at the base of the avalanching layer are
described fairly well by the kinematic model, subject to a linear relation between the
kinematic diffusivity and the silo gap thickness. For the surface flow, on the other
hand, the shape of the avalanching layer and longitudinal profile of depth-integrated
kinetic energy are well predicted by the dynamic model. Combined together, the
two models also produce velocity fields and streamlines that agree fairly well with
experiments over the entire domain.
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More general continuum formulations have been proposed (Staron et al. 2014;
Dunatunga & Kamrin 2015; Lee, Huang & Chiew 2015; Daviet & Bertails-Descoubes
2016), and may be able to model subsidence-driven granular avalanching under less
restrictive assumptions. Nevertheless, the simple approach proposed in the present
work presents various advantages. First, it applies to precisely the conditions likely
to tax the capabilities of modelling approaches like discrete element simulations or
Navier—Stokes solvers. The number of grains contained in the present experimental
silos, for instance, would require very large computational resources to be modelled
by discrete particles. Resolving the steep gradients and large convective inertia of
the present avalanching layers, likewise, would require very small mesh cells and
small time steps for Navier—Stokes-type computations. Another advantage of our
semi-analytical approach is to clarify the physical role played by different parameters.

Nevertheless, the approach of the present paper is currently subject to various
limitations. In particular, it is restricted to two-dimensional, quasi-steady flows of
mono-disperse grains over deep erodible beds of the same composition, assumed
governed by wall friction and by the linearized w(I) rheology. Further research will
be needed to overcome these limitations and possibly address other applications like
flows partly controlled by non-erodible beds (Parez et al. 2016; Fernidndez-Nieto
et al. 2018; Sarno et al. 2018), and unsteady non-uniform flows like granular column
collapse (Chou et al. 2012; Ionescu et al. 2015; Lee et al. 2015).

Acknowledgements

A post-doctoral stay by C.-Y.H. and a sabbatical visit by H.C. at IUSTI,
Aix-Marseille Univ., provided the opportunity for the present research. In Marseille,
the hospitality of O. Pouliquen and E. Guazzelli is gratefully acknowledged. We
also thank Y. Forterre for providing materials and advice. Some of the theoretical
ideas were earlier explored with C. Stark. This work was undertaken under the
auspices of the Labex MEC (ANR-10-LABX-0092) and of the A*MIDEX project
(ANR-11-IDEX-0001-02), funded by the Investissements d’Avenir program managed
by the French National Research Agency (ANR). Additional financial support was
provided by the Ministry of Science and Technology, Taiwan, and the program for
research excellence of National Taiwan University.

REFERENCES

BALEVICIUS, R., KACIANAUSKAS, R., MROZ, Z. & SIELAMOWICZ, 1.2011 Analysis and DEM
simulation of granular material flow patterns in hopper models of different shapes. Adv. Powder
Technol. 22, 226-235.

BENYAMINE, M., DIERMANE, M., DALLOZ-DUBRUJEAUD, B. & AUSSILLOUS, P.2014 Discharge
flow of a bidisperse granular media from a silo. Phys. Rev. E 90, 032201.

BERZI, D. & JENKINS, J. T.2008 A theoretical analysis of free-surface flows of saturated granular-
liquid mixtures. J. Fluid Mech. 608, 393-410.

CAPART, H., HUNG, C.-Y. & STARK, C. P. 2015 Depth-integrated equations for entraining granular
flows in narrow channels. J. Fluid Mech. 765, R4.

CAPART, H., YOUNG, D. L. & ZEcH, Y. 2002 Voronoi imaging methods for the measurement of
granular flows. Exp. Fluids 32, 121-135.

CARAM, H. & HONG, D. C. 1991 Random-walk approach to granular flows. Phys. Rev. Lett. 67,
828-831.

CHoI, J., KUDROLLI, A. & BAZANT, M. Z.2005 Velocity profile of granular flows inside silos and
hoppers. J. Phys.: Condens. Matter 17, S2533-S2548.


https://doi.org/10.1017/jfm.2018.650

https://doi.org/10.1017/jfm.2018.650 Published online by Cambridge University Press

468 C.-Y. Hung, P. Aussillous and H. Capart

CHou, H. T, LEE, C. F.,, CHUNG, Y. C. & Hs1au, S. S.2012 Discrete element modelling and
experimental validation for the falling process of dry granular steps. Powder Technol. 231,
122-134.

CLEARY, P. W. & SAWLEY, M. L. 2002 DEM modelling of industrial granular flows: 3D case
studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 89-111.

DA Cruz, F., EMAM, S., PROCHNOW, M., Roux, J. N. & CHEVOIR, F. 2005 Rheophysics of dense
granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.

DAVIET, G. & BERTAILS-DESCOUBES, F. 2016 Nonsmooth simulation of dense granular flows with
pressure-dependent yield stress. J. Non-Newtonian Fluid Mech. 234, 15-35.

DUNATUNGA, S. & KAMRIN, K. 2015 Continuum modelling and simulation of granular flows through
their many phases. J. Fluid Mech. 779, 483-513.

EDWARDS, A. N. & GRAY, J. M. N. T. 2015 Erosion-deposition waves in shallow granular free-
surface flows. J. Fluid Mech. 762, 35-67.

FAN, Y., UMBANHOWAR, P. B., OTTINO, J. M. & LUEPTOW, R. M. 2013 Kinematics of monodisperse
and bidisperse granular flows in quasi-two-dimensional bounded heaps. Proc. R. Soc. Lond. A
469, 20130235.

FERNANDEZ-NIETO, E. D., GARRES-DiAZ, J., MANGENEY, A. & NARBONA-REINA, G. 2018 2D
granular flows with the w(f) rheology and side walls friction: a well-balanced multilayer
discretization. J. Comput. Phys. 356, 192-219.

GRAY, J. M. N. T. 2001 Granular flow in partially filled slowly rotating drums. J. Fluid Mech.
441, 1-29.

GRAY, J. M. N. T. & EDWARDS, A. N. 2014 A depth-averaged p(I)-rheology for shallow granular
free-surface flows. J. Fluid Mech. 755, 503-534.

GRAY, J. M. N. T. & HUTTER, K. 1997 Pattern formation in granular avalanches. Contin. Mech.
Thermodyn. 9, 341-345.

HUNG, C.-Y., STARK, C. P. & CAPART, H. 2016 Granular flow regimes in rotating drums from
depth-integrated theory. Phys. Rev. E 93, 030902(R).

IoNEscuU, I., MANGENEY, A., BOUCHUT, F. & ROCHE, O. 2015 Viscoplastic modelling of granular
column collapse with pressure-dependent rheology. J. Non-Newtonian Fluid Mech. 219, 1-18.

Jopr, P., FORTERRE, Y. & POULIQUEN, O. 2005 Crucial role of sidewalls in granular surface flows:
consequences for the rheology. J. Fluid Mech. 541, 167-192.

Jop, P., FORTERRE, Y. & POULIQUEN, O. 2007 Initiation of granular surface flows in a narrow
channel. Phys. Fluids 19, 088102.

KEVORKIAN, J. 1990 Partial Differential Equations. Analytical Solutions Techniques. Wadsworth and
Brooks/Cole.

KHAKHAR, D. V., ORPE, A. V., ANDRESEN, P. & OTTINO, J. M. 2001 Surface flow of granular
materials: model and experiments in heap formation. J. Fluid Mech. 441, 225-264.

LEE, C.-H., HUANG, Z. & CHIEW, Y.-M. 2015 A three-dimensional continuum model incorporating
static and kinetic effects for granular flows with applications to collapse of a two-dimensional
granular column. Phys. Fluids 27, 113303.

LIGGETT, J. A. 1994 Fluid Mechanics. McGraw-Hill.

LITWINISZYN, J. 1963 The model of a random walk of particles adapted to researches on problems
of mechanics of loose media. Bull. Acad. Pol. Sc. Ser. Tech. 11, 61-70.

Lusso, C.,BoucHUT, F., ERN, A. & MANGENEY, A. 2017 A free interface model for static/flowing
dynamics in thin-layer flows of granular materials with yield: simple shear simulations and
comparison with experiments. Appl. Sci. 7, 386.

MAITI, R., DAS, G. & DAS, P. K. 2016 Experiments on eccentric granular discharge from a quasi-
two-dimensional silo. Powder Technol. 301, 1054-1066.

NEDDERMAN, R. M. & TUzZUN, U. 1979 A kinematic model for the flow of granular materials.
Powder Technol. 22, 243-253.

NI, W.-J. & CAPART, H. 2006 Groundwater drainage and recharge by networks of irregular channels.
J. Geophys. Res. 111, F02014.

PAREZ, S., AHARONOV, E. & TOUSSAINT, R. 2016 Unsteady granular flows down an inclined plane.
Phys. Rev. E 93, 042902.


https://doi.org/10.1017/jfm.2018.650

https://doi.org/10.1017/jfm.2018.650 Published online by Cambridge University Press

Granular surface avalanching in narrow silos 469

POULIQUEN, O. & FORTERRE, Y. 2002 Friction law for dense granular flows: application to the
motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133-151.

RAJCHENBACH, J. 1990 Flow in powders: from discrete avalanches to continuous regime. Phys. Rev.
Lett. 65, 2221-2224.

RYCROFT, C. H., GREST, G. S., LANDRY, J. W. & BAZANT, M. Z. 2006 Analysis of granular flow
in a pebble-bed nuclear reactor. Phys. Rev. E 74, 021306.

SAMADANI, A., MAHADEVAN, L. & KUDROLLI, A. 2002 Shocks in sand flowing in a silo. J. Fluid
Mech. 452, 293-301.

SARNO, L., CARLEO, L., PAPA, M. N. & VILLANI, P. 2018 Experimental investigation on the
effects of the fixed boundaries in channelized dry granular flows. Rock Mech. Rock Engng
51, 203-225.

STARON, L., LAGREE, P.-Y. & POPINET, S. 2014 Continuum simulation of the discharge of the
granular silo. A validation test for the w(/) visco-plastic flow law. Eur. Phys. J. E 37, 5.

TUzUON, U., HOuLSBY, G. T., NEDDERMAN, R. M. & SAVAGE, S. B. 1982 The flow of granular
materials-II. velocity distributions in slow flow. Chem. Engng Sci. 37, 1691-1709.

VIVANCO, F. & MELO, F. 2013 The effect of rock decompaction on the interaction of movement
zones in underground mining. Intl J. Rock Mech. Mining Sci. 60, 381-388.

ZHOU, Y., LAGREE, P.-Y, POPINET, S., RUYER, P. & AUSSILLOUS, P.2017 Experiments on, and
discrete and continuous simulations of, the discharge of granular media from silos with a
lateral orifice. J. Fluid Mech. 829, 459-485.

ZHOU, Y., RUYER, P. & AUSSILLOUS, P.2015 Discharge flow of a bidisperse granular media from
a silo: discrete particle simulations. Phys. Rev. E 92, 062204.


https://doi.org/10.1017/jfm.2018.650

	Granular surface avalanching induced by drainage from a narrow silo
	Introduction
	Theory
	Deep flow kinematics
	Shallow layer governing equations
	Quasi-steady avalanching solutions

	Experiments
	Comparison and discussion
	Deep flow comparison
	Surface flow comparison

	Conclusion
	Acknowledgements
	References


