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 SUMMARY
 In this paper ,  we will present a new 6-DOF parallel robot
 using a set of two Delta structures .  An ef fective method
 is proposed to establish explicit relationships between the
 end ef fector co-ordinates and the active and passive joint
 variables .  A simulation of the 2-Delta robot on a C . A . D .
 Robotics system will also be presented .  This simulation
 will allow us to validate the cohesion of our calculations ,
 and to show the workspace depending on the mechanical
 limits on passive joints variables .  Finally ,  an approach is
 proposed to study the influence of small clearances of the
 passive joint on the precision of the position and rotation
 of the ef fector .  This approach is based on a concept
 similar to that of Yoshikawa’s manipulability .

 KEYWORDS :  Parallel robot ;  Uncoupled ;  Modelization ;
 Workspace ;  Ellipsoid of clearance .

 1 .  INTRODUCTION
 Parallel robots have been the subject of several studies
 due to the considerable interest they have demonstrated
 through their lightness ,  rigidity and rapidity .  These
 particular properties open the door to all spatial
 applications where mass problems are particularly
 crucial .  They are also used as robot end ef fector .  The
 first parallel robot structure dates from 1939 when
 Pollard 1  proposed a parallel structure to paint cars .  In
 1949 ,  Gough proposed an articulated machine to test
 tires .  Next Stewart 2  suggested the utilisation of this
 structure as a movement generator for flight simulators .
 It was also used by Reboulet , 3  and by Merlet 4  as a
 compliant wrist of a robot .  Amongst spatial operators of
 3 d . o . f .,  the Delta structure designed by Clavel 5

 constitutes technological innovation .  Other 3 d . o . f .
 parallel structures have been developed .  Three of these
 are the parallel robot H-Star developed by Herve ́  , 6  the
 robot Speed R-Man developed by Reboulet 7  and the
 structure proposed by Jacquet . 8

 We will put forward the 2-Delta robot which in
 principle ,  constitutes a new and original structure .  This
 robot is entirely parallel and possesses 6 d . o . f .  Its
 features lie in mechanical uncoupling of translation and
 orientation motions .  This property is what dif ferentiates
 it from other traditional 6 d . o . f parallel robots or from
 the one issued from the Delta structure .  This paper
 partially treats the dif ferent studies that have been
 carried out on the 2-Delta robot and which have been
 presented in reference 9 .

 2 .  PRINCIPLE OF THE 2-DELTA STRUCTURE
 In Figure 1(a) we can see the well known Delta
 architecture proposed by Clavel .  It is a 3 d . o . f .
 mechanism for which the moving platform remains
 parallel to the base platform .

 It is easy to see that Delta mechanism is equivalent to
 an open loop kinematic chain composed of 3 orthogonal
 prismatic joints as shown in Figure 1(b) .  This observation
 will be used later .

 Starting from Clavel’s discovery ,  many authors have
 proposed translation devices shown ,  for example ,  in
 Figure 2 and Figure 3 .  The H-star robot by Herve which
 allows for a very large displacement in X-direction is
 depicted in Figure 2 .  And in Figure 3 the translation
 device by Jacquet in which the authors put double
 universal joints in the place of double parallel rods is
 shown .

 Many robotic tasks need the end ef fector rotates in
 addition to the 3 d . o . f .  in translation .  The 4 d . o . f .  Delta
 Robot in which the gripper is connected to the moving
 platform by a revolute joint and to the actuator by means
 of telescopic arm is seen in Figure 4 .  If 6 d . o . f .  are
 needed we will use the Hexa Robot proposed by
 Pierrot 1 0  represented in Figure 5 .

 In the case presented in Figure 4 ,  we notice that the
 rotation of the end ef fector does not depend on its
 translation ,  which is a good result that does not exist in
 the Hexa Robot ,  unfortunately the end ef fector has only
 one d . o . f .  in rotation .

 The problem that we seek to resolve may be
 formulated in the following way .  How to find a
 mechanism on Delta architecture that would allow us to
 obtain 3 d . o . f .  rotation for the end ef fector not
 depending on its translation and actuated by motors fixed
 on the base of the Delta .

 One solution has been studied using the following idea
 that is illustrated in Figure 6(a) .

 Here ,  the gripper is connected to moving platform by a
 spherical joint  R n .  An ‘‘input rod’’ is also connected to
 the fixed base by spherical joint  R b .  The question is :  what
 kind of links joined together between gripper and ‘‘input
 rod’’ must we use so that the rotation of the gripper will
 be independent from the translation of the moving
 platform .  And so ,  this kinematic chain must allow free
 translations and forbid rotations between ‘‘input rod’’
 and gripper .  Such a kinematic chain could be constituted ,
 as shown in Figure 6(b) ,  by a set of 3 links connected
 together by 3 orthogonal prismatic joints .  As it has been
 mentioned previously ,  this kinematic chain represents
 the equivalent open loop kinematic chain for the Delta
 mechanism shown in Figure 1(b) .  Therefore ,  as shown in
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 Fig .  1 .  (a) Three d . o . f .  Delta architecture (b) Equivalent open loop kinematic chain .

 Figure 7 ,  we can use a Delta mechanism whose moving
 platform and base platform are rigidly connected to the
 end ef fector and to the ‘‘input rod’’ ,  respectively .  Thus ,
 we obtain the 6 d . o . f .  Delta decoupled parallel robot .
 The external Delta controls the translation movement of
 the end ef fector ,  whereas the internal Delta controls its
 rotation movement .

 Actually ,  in order to obtain the rotation movement of
 the orientable base ,  we could put a spherical 3 d . o . f .
 parallel manipulator proposed by Gosselin 1 1  in the place
 of the input rod .

 In Figure 8 is shown a prototype without actuators of
 the 2-Delta robot .  This device allows us to verify that the
 rotation and translation motions of the gripper are
 independent .  The device is composed of 21 bodies
 connected together by 26 spherical joints and 6 revolute
 joints .  Due to the great number of bodies and joints we
 had to verify that the 2-Delta robot is not an
 overconstraint mechanism .  The device we developed is
 actually a non-overconstraint mechanism .

 3 .  KINEMATICS MODELING OF THE 2-DELTA
 STRUCTURE
 The modelization of parallel robots is quite specific .
 There is no existing systematic and simple model ,
 therefore it is necessary to find the well adapted methods
 of each structure .  In the case of the 2-Delta robot ,  we

 Fig .  2 .  H-Star robot .

 propose an analytic modelization of the direct kinematic
 problem as well as of the inverse kinematic problem .

 3 . 1 .  Notations and mechanical limits on joints  y  ariables
 In Figure 9 we show how to define joint variables .  Here ,
 B i  C i   is a virtual rod which represents the double parallel
 rods .   θ  i

 1 ,  θ  i
 2 ,  θ  i

 3 ,  b  i
 2 ,  b  i

 3  are the joint angles for the
 kinematic chain numbered  i  for the external Delta ,  while
 c  i

 1 ,  c  i
 2 ,  c  i

 3 ,  d  i
 2 ,  d  i

 3  are the joint angles for the kinematic
 chain numbered  i  for the internal Delta .

 The  b  i
 j   angles depend on  θ  i

 j   angles through very simple
 relations (1) ,  soon ,  we will no longer consider them .

 b  i
 3  5  2 θ  i

 3 ;  b  i
 2  5  θ  i

 2  1  θ  i
 1  (1)

 In Figure 10 we can see how  θ  i
 2  an  θ  i

 3  spherical joint
 variables are depicted .

 θ  i
 2  is the angle between the arm  A i B i   and the plane

 called ( P ) defined by the double parallel rods .
 θ  i

 3  is the rotation angle of the double parallel rods in
 the ( P ) plane .

 It is important to focus on the fact that the spherical
 joints lead to mechanical limits on  θ  i

 3 ( c  i
 3 ) given by

 relations (2) :

 u θ  i
 3 u  #  θ  i

 3max ,  i  5  1 ,  2 ,  3  u c  i
 3 u  #  c  i

 3max ,  i  5  1 ,  2 ,  3  (2)

 There is no limit on  θ  i
 2 ( c  i

 2 ) but we consider them to be

 Fig .  3 .  Translation device with double universal joints .
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 Fig .  4 .  Four d . o . f .  Delta robot .

 dif ferent from zero in order to avoid singular
 configurations .

 θ  i
 2  ?  0 ,  i  5  1 ,  2 ,  3  c  i

 2  ?  0 ,  i  5  1 ,  2 ,  3  (3)

 Finally ,  there are also mechanical limits on  θ  i
 1 ( c  i

 1 ) so
 that :

 θ  i
 1  min  #  θ  i

 1  #  θ  i
 1  max ,  i  5  1 ,  2 ,  3

 c  i
 1  min  #  c  i

 1  #  c  i
 1  max ,  i  5  1 ,  2 ,  3

 (4)

 The end ef fector coordinates or task coordinates are :
 —the position vector of the point  V  referred to the fixed
 frame  R 0  .  It is written as  OV  0  5  ( X y  ,  Y y  ,  Z y  ) T ,  the index
 0 recalls the reference frame .
 —the Bryant angles  g  5  ( g  1  ,  g  2  ,  g  3 )

 T   of the frame  R y

 attached to the end ef fector with respect to fixed frame .
 The control variables are  θ  i

 1  for  i  equals 1 to 3 noted as
 θ  1  vector  θ  1  5  ( θ  1

 1 ,  θ  2
 1 ,  θ  3

 1 )
 T .  The three other active joint

 variables are the Bryant angles of the frame attached to
 the orientable base with respect to the fixed frame .  These
 angles are written as  f  5  ( f  1  ,  f  2  ,  f  3 )

 T .  Similar notations
 are used for passive joint variables as follows :

 θ  2  5  ( θ  1
 2 ,  θ  2

 2 ,  θ  3
 2 )

 T ,  θ  3  5  ( θ  1
 3 ,  θ  2

 3 ,  θ  3
 3 )

 T ,  c  1  5  ( c  1
 1 ,  c  2

 1 ,  c  3
 1 )

 T ,
 c  2  5  ( c  1

 2 ,  c  2
 2 ,  c  3

 2 )
 T ,  c  3  5  ( c  1

 3 ,  c  2
 3 ,  c  3

 3 )
 T .

 Due to the property of the Delta mechanism it is
 obvious that  g   equals  f .  Because of the mechanical limit
 of the spherical joint located at  D ,  the angle between  Z 0

 and  Z y   axis is lower than  a  max .  Thus ,  the active joint
 variables  f  1  and  f  2  are subject to the following

 Fig .  5 .  The six d . o . f .  Hexa robot .

 Fig .  6 .  Principle of uncoupling movement between orientation
 and translation of the gripper .

 Fig .  7 .  The 6 d . o . f .  2-Delta robot .
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 Fig .  8 .  Prototype of the 2-Delta architecture .

 constraint :

 cos  f  1  ?  cos  f  2  $  cos  a  max  (5)

 In order to obtain relationships between geometrical
 terms previously described we must use some results
 found by Clavel for the Delta architecture .  Clavel gave
 closed-form relationships connecting cartesian coordin-
 ates of the point  D  to the control variables  θ  1  and
 vice-versa .  These relationships we will use are presented
 in the following way :

 Direct  kinematics  é  OD 0  5  f  ( θ  1 )  (6)

 Inverse kinematics  é  θ  1  5  f  2 1 ( OD 0 )  (7)

 3 . 2  Solution to the direct kinematic problem for the
 2 - Delta robot
 The solution to the direct kinematic problem gives the
 position and the orientation of the gripper as well as
 passive joint variables of the external and the internal
 structure when control joint variables are known .  Given
 terms are  θ  1  and  f  ,  unknowns are  OV  0 ,  g  ,  θ  2  ,  θ  3  ,  c  1  ,
 c  2  ,  c  3  .

 Steps of the calculation are as follows :
 — Step 1 .  The location of point  D  is calculated by means
 of Clavel’s relation (6)

 — Step 2 .  Calculation of the location of point  V  given by
 the following relation :

 OV  0  5  OD 0  1  R ( f  ) DV  0 9  (8)

 where  R ( f  ) is the matrix transformation in Bryant
 angles from frame  R 0 9  with respect to frame  R 0  and
 DV  0 9  5  (0 ,  0 ,  DV  ) T .
 — Step 3 .  Determination of the gripper orientation  g .  It
 is obvious that :

 g  5  f  (9)

 — Step 4 .  Calculation of passive joint variables  θ  2  and  θ  3

 (external Delta) .
 Considering the kinematic chain numbered  i ,  we write
 the vector  A i C i   in two dif ferent ways :

 A i C
 0
 i  5  A i O

 0  1  OD 0  1  DC  0
 i  (10)

 A i C
 0
 i  5  R ( Z 0  ,  a i ) R ( Y A i  ,  θ  i

 1 )

 3  [ A i B
 i
 i  1  R ( Y i  ,  θ  i

 2 ) R ( Z π  ,  θ  i
 3 ) B i C

 ri
 i  ]  (11)

 Relation (10) involves points  A i  , O , D  and  C i  ,  in which
 each term is known .  Relation (11) involves points  A i  , B i

 and  C i   and rotation matrices between body frames
 depending on unknowns  θ  i

 2  and  θ  i
 3 .  These relations lead

 to both of the following equations

 sin  θ  i
 3  5  k 1

 cos  θ  i
 3 ( k 2  cos  θ  i

 3  1  k 3  sin  θ  i
 2 )  5  k 4

 whose solution results in  θ  i
 2  and  θ  i

 3 .  We complete this
 computation three times since  i  equals 1 to 3 .
 — Step 5 .  Calculation of  c  1  (internal Delta) .
 Firstly ,  we determine the position vector of point  E
 referred to the orientable base frame  R 0 9  by the following
 relation :

 O 9 E 0 9  5  O 9 O 0 9  1  R T  ( f  ) OD 0  1  DE 0 9  (13)

 where  O 9 O 0 9  5  (0 ,  0 ,  2  OO 9 ) T , DE 0 9  5  (0 ,  0 ,  DE ) T .  Then ,
 c  1  is a given according to Clavel’s relation (7) :

 c  1  5  f  2 1 ( O 9 E 0 9 )  (14)

 — Step 6 .  Calculation of  c  2  and  c  3  (internal Delta) .
 We use the same procedure as in step 4 after having
 expressed vector  H i F i   referred to orientable base frame
 R 0 9   instead of vector  A i C i   referred to fixed base frame
 R 0  .

 3 . 3 .  Solution to the in y  erse kinematic problem for the
 2 - Delta robot
 In order to obtain the closed-form solution to the inverse
 kinematic we will use the following procedure .

 Known terms are  OV  0 ,  the position vector point  V ,
 and the gripper orientation  g .  Unknowns are the control
 joint variables  θ  1  and  f  ,  and the passive joint variables
 θ  2  ,  θ  3  ,  c  1  ,  c  2  ,  c  3  .
 — Step 1  gives  f   by

 f  5  g  (15)
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 Fig .  9 .  Definition of joints parameters .

 — Step 2 .  Calculation of position vector of point  D
 referred to frame  R 0 :

 OD 0  5  OV  0  2  R ( f  ) DV  0 9  (16)

 where  R ( f  ) and  DV  0 9  are previously defined .
 — Step 3 .  Calculation of  θ  1  from the Clavel’s relation
 (7) .

 Fig .  10 .  Definition of angles  θ  i
 2 ,  θ  i

 3 .
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 Finally ,  the passive joint variables  θ  2  ,  θ  3  ,  c  1  ,  c  2  ,  c  3

 are obtained from the procedure ( steps 4 , 5 , 6 ) described
 in the direct kinematic problem .

 3 . 4 .  ‘ ‘ Checking ’ ’   of the modeling
 Due to the complexity of kinematic modeling ,  many
 miscalculations were likely to appear .  Thus it was
 necessary to check all the relationships .  To this end ,  we
 built the 2-Delta architecture on a C . A . D .  Robotic
 Simulator developed in our Laboratory 1 2  as it is shown in
 Figure 11 .  If the kinematic relationships are correct we
 will see that bodies remain connected together at joints
 when the mechanical structure is actuated .  These figures
 allow us to check that the kinematic modeling is right .

 4 .  GENERATION OF POSITION WORKSPACE
 AND ORIENTATION WORKSPACE
 Starting from the knowledge of kinematic modeling we
 may obtain the workspace of the 2-Delta robot which
 depends on the mechanical limits of both active and
 passive joint variables .

 To determine the position or the orientation
 workspace of the 2-Delta robot ,  we will use the
 technique of discretization 1 3  which consists ,  in this case ,
 of the definition of the position workspace ,  of fixing the
 orientation of the end ef fector and finally seeking all
 positions that can be reached by the end ef fector ,
 regardless of the cross section chosen .  In the case of the
 generation of workspace orientation ,  we will consider the
 end ef fector position will be fixed .  Then ,  we will seek all
 possible orientations .  We have separated this space into
 two distinct subspaces :

 Workspace without joint limits or theoretic space .
 workspace with joint limits or space with constraints .

 4 . 1 .  Relationship between space of theoretical position
 and space with constraints
 The introduction of limits (relation (2) to (5)) on the
 passive and active joint variables reduces the workspace
 of the 2-Delta structure in comparison to the theoretical
 space .  We have attempted to investigate the proportion
 that represents space with constraints in comparison to
 theoretical space .  These two spaces in a cross section
 defined by plane  X y  5  0 and plane  Z y  5  450  mm are
 illustrated in Figure 12 .

 For a given cross section of the workspace (for
 example  Z y  5  constant) ,  we can evaluate the reachable
 surface by defining a workspace position factor  d z   as :

 d z  5
 S p ,c

 S p ,t
 (17)

 where ,   S p ,t   is the surface of theoretical space in the plane
 Z y  5  constant and  S p ,c   is the surface of space with
 constraints in the same plane .  It is obvious that  d z

 depends on  Z y   and orientation  g .  For example ,  in Figure
 13 ,   d z   versus  Z y   for dif ferent orientations of the end
 ef fector are shown .

 4 . 2 .  Cross section of theoretical orientation space
 In order to obtain a representation in the plane ,  we will
 fix one of the three orientation angles of the gripper
 ( g  3  5  0) ,  then will seek all possible orientations for a
 given position of point  V  for both cases ,  without and with
 mechanical limits on joints .  In Figure 14 ,  (a) and (b)
 show two examples of two dif ferent cartesian coordinates
 of point  V .

 As we defined in (17) the position factor we could
 define the orientation factor  h  0  as :

 h  0  5
 S o ,c

 S o ,t
 (18)

 where ,   S o ,t   is the surface of the theoretical orientation
 space and  S o ,c   is the surface of the orientation space with
 constraints .  It is obvious that  h  0  depends on the position
 chosen for the point  V .  In Figure 15 ,   h  0  versus  Z y   when
 the point  V  belongs to  Z 0  axis is shown .

 5 .  MODELIZATION OF THE CLEARANCES IN
 POSITION AND IN ORIENTATION
 In this section ,  we will consider the influence of the small
 variations of the rod lengths of the 2-Delta around their
 face values on translation and rotation vectors of the end
 ef fector .  We will assume that these variations express the
 existence of localized clearance in the passive joints of
 the rods .  Afterwards we will define the ellipsoı ̈ des of
 clearance based on the concept of the manipulability
 ellipsoı ̈ ds . 1 3

 Fig .  11 .  Simulation of the 2-Delta robot .
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 Fig .  12 .  Superposition of the theoretical space and the space with constraints (a) cross section for plane  X V  5  0 (b) cross section for
 plane  Z V  5  450  mm .

 5 . 1 .  Problem statement and simplifying hypotheses
 In order to reduce the problem complexity ,  it seems
 useful to propose some simplifying hypotheses concern-
 ing the geometry of the robot ,  as well as its physical
 parameters .  We suppose that :

 – each parallelogram is made of one rod .
 – all simulations are carried out taking into considera-

 tion that active joints are without clearances in each
 chosen configuration ,  and that the variation of the
 position and the orientation of the ef fector are due solely
 to variations of rod lengths which act as linear actuators .

 We will separate the modelization of clearance into
 two parts :

 – position clearance model which gives position
 variation of the ef fector solely for clearance at the
 passive joint of each rod of the external structure .

 – orientation clearance model which gives orientation
 variation of the ef fector solely for clearance at the
 passive joint of the internal structure .

 5 . 2 .  Position clearance model
 We define the position clearance model as ,

 d X V  5  J p d L 1  (19)

 where :
 d X y  5  ( d x V  ,  d y V  ,  d z V  ) T   represents the variations of the
 position of the end ef fector .
 d L 1  5  ( d L 1

 1 ,  d L 2
 1 ,  d L 3

 1 )
 T   represents the elementary length

 variations of the rods found in the external structure .
 J p   is the Jacobian matrix of partial derivatives of  X V   with
 respect to  L 1  ,  of dimension 3  3  3 .

 Terms of  J p   have complex expressions ,  thus we must

 Fig .  13 .  Position factor on the axis  Z 0  .
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 Fig .  14 .  Superposition of the orientation and with stops theoretical space for two sets of coordinates of point  V .

 use the symbolic calculation software (Maplle  V  ) to
 obtain these expressions .

 In Figure 16 there is a representation of the ellipsoid
 of clearance defined by  d X T

 y  ( JJ T  ) 2 1 d X y  #  1 .  When the
 ef fector moves along the  Z 0  axis ,  we see that this axis
 constitutes an axis of revolution for these ellipsoı ̈ ds the
 first two eigenvalues of each matrix ( JJ T  ) 2 1  always
 remain equal ( l 1  5  l 2 ) whatever the position may be .
 This leads to an equitable distribution of the clearance in
 the plane [ x 0  ,  y 0 ] .  Similarly ,  we observe that the volume
 of the ellipsoı ̈ ds of clearance increases considerably as
 the position of the ef fector moves along the axis  z 0  .  This
 is due to the vicinity of the singular configurations .  On
 the other hand ,  for postures of the wrist following the
 axis  x 0  or the axis  y 0  (that is not shown here) ,  the
 ellipsoids change in dimension and in form depending on
 their relation to the robot configuration .  In fact ,  the
 clearance in these postures does not have the same ef fect
 in all directions .

 The exploitation and the application of these results

 Fig .  15 .  Orientation factor on the axis  Z 0  .

 are very extensive .  They allow ,  for example ,  a designer
 to know in advance the value of error in a position of the
 end ef fector according to the structure configuration .
 They also allow us to select the best configurations to
 execute a task inside the workspace .

 5 . 3 .  Orientation clearance model
 In this section ,  we will deal with the clearance at the
 passive joint of the internal structure on the gripper
 orientation .  To obtain this model ,  we deduce it from the
 direct kinematic model which gives orientation coordin-
 ates of the gripper in relation to the rod lengths of the
 internal structure .  Therefore we obtain :

 d g  5  J 0 d L 2  (20)

 where :
 d g  5  ( d g  1  ,  d g  2 )

 T   represents the variation of the orienta-
 tion of the ef fector with  g  3  5  0 .
 d L 2  5  ( d L 1

 2 ,  d L 2
 2 ,  d L 3

 2 )
 T   represents elementary length

 variations of the rod for internal Delta .
 J 0  is the Jacobian matrix of partial derivatives of  g   with
 respect to  L 2  ,  of dimension 2  3  3 .

 We have studied ellipses of clearance in dif ferent
 positions .  Presently ,  in Figure 17 ,  we show the results of
 two ellipses obtained for two extreme positions on the
 axis  Z 0  .

 We notice in general that eigenvalues which represent
 dimensions of clearance ellipse are roughly equal
 whatever the configuration .  This shows that the
 uncertainty in orientation is almost the same in all
 postures (except postures close to single configuration) .
 If we consider the obtained ellipses along the axis  z 0  for
 orientation to be zero ,  we will observe that the surface of
 orientation uncertainty is represented by a circle since
 the two eigenvalues are equal ,  which shows that no
 direction is penalized .  On the other hand ,  for
 configurations away from the axis  z 0  ,  we notice a
 dissymmetry represented by a change of ellipse
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 Fig .  16 .  Dimensions and morphology of the ellipsoids of position clearance on the axis  Z 0  .

 Fig .  17 .  Dimensions and morphology of clearance ellipses in orientation on the axis  Z 0  .

 morphology ,  which explains the uncertainty dif ference
 due to the clearance that is not the same in all directions .

 This study shows that the existence of passive joints ,
 which in general characterize parallel robots ,  can be a
 source of error and perturbation and susceptible to
 producing position and orientation imprecisions of the
 ef fector .  In the case of the 2-Delta robot ,  we have shown
 for distanced postures of singular configurations that the
 clearance has more influence on the position of the
 ef fector than on its orientation .  In this section we have
 presented a methodology that allows one to identify and
 select configurations so that the ef fect of the clearance is
 minimized .  Similarly the introduction of the ellipsoı ̈ des
 of clearance (or ellipses of clearance) allows for a
 complete understanding of the general volume of the
 uncertainty in function of the configuration .

 6 .  CONCLUSION
 The main objective of this study consisted of examining a
 new parallel robot family ,  characterized by the
 uncoupled mechanics between the translation and
 rotation of the wrist ,  and proposing approaches to solve
 problems in design ,  modelization ,  joint limits and
 influence of the clearance .  The study that we expect to
 do in the future will deal with the possible collisions

 between the internal and external Delta .  With this aim in
 mind ,  we will use our CAD Robotic Simulator which
 contains a software especially designed for collision
 avoidance .
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