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SUMMARY
This paper presents analysis of the dynamics and vibration of an orientation motion platform utilizing
a sphere actuated by omnidirectional wheels. The purpose of the analysis is to serve as a design tool
for the construction of a six-degree-of-freedom motion platform with unlimited rotational motion.
The equations of motion are presented taking flexibility of the system into account. The behaviour
of the system is illustrated by sample configurations with a range of omnidirectional wheel types
and geometries. Vibration analysis follows, and sensitivity to various parameters is investigated. It is
determined that the geometry of omnidirectional wheels has a significant effect on the behaviour of
the system.
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1. Introduction
Conventional training simulator motion platforms commonly use a Gough–Stewart platform,1, 2

otherwise known as a hexapod, to provide motion cues. A hexapod is a mechanical system with
six extensible legs arranged in a parallel configuration connecting a moving platform (flying frame)
to a fixed base. Positions and orientations of the moving platform are manipulated with six degrees
of freedom (6 DOF) by changing the lengths of six prismatic legs. Figure 1 shows a typical example.
Various configurations based on this architecture exist. Variation often attempt to expand the work-
space of the manipulator and reduce issues related to singularities within the workspace. The reason
for the limits and some singularities of the workspace of parallel manipulators lies in the hardware
limits of this type of motion platform; however, there are other areas that are suboptimal. These areas
have to do mostly with the complicated kinematics of such platforms. The kinematic expressions are
mathematically complex, and in many cases, require numerical solutions. In addition, the translational
and rotational degrees of freedom are heavily coupled, a fact that further increases the complexity of
equations, and consequently increases the computational resources required to evaluate them.

The design of the innovative Atlas motion platform aims to resolve the aforementioned issues,
namely, remove singularities from the interior of the reachable workspace, remove the rotational
limits, decouple the rotational and translational degrees of freedom, and have a simple kinematic
model. Few kinematic architectures addressing some of the aforementioned problems are in
development, such as the Eclipse II3 and the Desdemona.4 The new platform suggested here is
broken down into two different mechanisms sitting one on top of the other: a translational platform
and a rotational platform, as shown in Fig. 2. The first is a simple, well-known, XYZ platform
that can be implemented in any number of established ways. The latter is a novel design, where
a sphere rests on three wheels, and motion is provided with friction at the sphere–wheel interface.
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Fig. 1. CAE’s version of the Gough–Stewart motion platform for a flight simulator.

Fig. 2. The Atlas demonstrator.

Different linear combinations of angular speeds of the wheels yield different angular velocity vectors
for the sphere. This suggested new platform has the potential, under certain conditions that need
to be precisely defined, to open the workspace to become rotationally unlimited while eliminating
interior singularities. Other benefits that can be derived from this design are the decoupling of the
rotational degrees of freedom from the translational ones, and the compact analytical expressions
resulting for the kinematics of the system. This system, however, is not without potential problems.
Friction wheels, while offering unlimited range of motion, resist motion in the direction normal to
their rotation axis. Instead, omnidirectional wheels with free spinning passive castor rollers on their
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periphery, which minimize the resisting friction in the directions normal to their rotation, are used.
Various omnidirectional wheel designs exist, each with its respective pros and cons.

Driving a sphere using a combination of magnets and electromagnets was presented in ref. [5], but
in a form of a spherical stepper motor which does not allow for continuous smooth motion. Utilizing
friction wheels to drive a sphere is also presented by Lauwers et al.6 with simple friction wheels,
and by Ferrier and Raucent,7 where a sphere is actuated for a single degree of freedom by means
of a single omnidirectional wheel. The work of West and Asada8 shows how to use a ball wheel for
single degree of freedom actuation with the remaining degrees of freedom passive such that there is
no slip. Three such ball wheels may be utilized similarly with omnidirectional wheels with rollers
on their periphery to drive a wheeled mobile robot on a plane. Similarly, Williams et al.9 and Saha
et al.10 utilize three omnidirectional wheels to drive a mobile robot or vehicle on a plane. Most of the
research involving omnidirectional wheels concentrate on wheeled mobile robots, assume perfectly
shaped omnidirectional wheels, and discuss the kinematics and dynamics of the platform utilizing
‘geometrically perfect’ wheels.

The kinematics of the Atlas parallel motion platform, described in ref. [11], was discussed in depth
in ref. [12]. In order to utilize the advantageous kinematics of the system, though, attention must be
paid to the kinetics of the system. While idealization of the system makes the dynamics appear to be
appealing, the inherent flaws of omnidirectional wheels must be overcome so that the Atlas concept
can be realized. Thus, attention must be paid to the geometric imperfections of the omnidirectional
wheel–sphere interface as well as to the fact that the two bodies involved are not necessarily rigid.
The resulting motion involves some level of vibration overlaid on top of the idealized behaviour
of the system. An investigation of important parameters and their effect on the resulting vibration
follows. These parameters are affected by the contact scheme between the sphere and omnidirectional
wheels. For this purpose, a Hertzian contact model13, 14 is used for representing the omnidirectional
wheel–sphere elastic interface.

2. System Model
Obtaining general equations of motion for a platform comprising a sphere actuated by omnidirectional
wheels, assuming all components are rigid, is the first step towards understanding the dynamics of the
system. However, as mentioned earlier, omnidirectional wheels are not ideal by design; that is, they
are never exactly round. Other issues that may arise are the rigidity of their mounts and the contact
rigidity. Moreover, various types of omnidirectional wheels exist comprising various materials, and
having various geometric shapes. All these need to be taken into consideration when constructing
the dynamic model and deriving the equations of motion for the system. The model developed in
this work takes into account the effects of the shape of omnidirectional wheels, the stiffness of their
mounting, and the deflection of the sphere at the contact point. The overall mechanical system is
analysed as a combination of a completely rigid system, with a subsystem of springs and dampers to
represent the non-rigid elements, while the shape of the wheel is treated as positional input.

This section presents the model and the corresponding equations of motion for the system. A
Matlab program was written to integrate the equations numerically. Sample results will be presented
and discussed to show the basic dynamic behaviour of the system for the purpose of verification and
validation. The program was developed as a simulation tool that is suitable for allowing more thorough
research and analysis of the effects of various design parameters on the system’s performance. The
analysis of all possible design parameters and their effects on all performance indicators is a vast
undertaking; thus, a representative analysis will be presented. The purpose of the analysis is to yield
understanding of the different effects of the evaluated parameters on the resulting motion of the
system, and not to validate a specific designed and built system, since the motion platform may be
used for various applications, and thus, while maintaining the same geometry and architecture, have
very different parameters such as weight, centre of mass position, stiffness, etc. For example, for a
flight simulator application, the physique of the pilot affects the weight and position of the centre
of mass of the sphere; a change in the equipment of the airplane simulated may change the weight,
centre of mass position, and even the stiffness of the spherical shell between two different runs of the
same application. It is for this reason that specific experiments are of little value to the designer of
such a system.
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Fig. 3. Dual row omnidirectional wheel.

2.1. Omnidirectional wheel shape
In the suggested platform, omnidirectional wheels act as friction wheels to transmit the motion to the
sphere while not resisting motion in the direction orthogonal to the actuation direction. The kinematics
of an idealized platform have been derived by the authors for the case where omnidirectional wheels are
idealized to a single point of continuous contact with the sphere.15 In reality, practical omnidirectional
wheel design do not support such convenient assumptions. The nature of omnidirectional wheels
necessitates discontinuities between the rollers that allow for the extra degree of freedom, leading
essentially to the following two alternatives:

1. The first consists of a single row of rollers with some space between the rollers. This results in
vibration during actuation due to changes in the local diameter of omnidirectional wheel in gaps
where no roller is present. However, the contact point, when present, remains at a single place. This
type of wheel is commonly used in mobile robots.9, 16 Some attempts to solve the vibration issue
have been made through either redesigning the omnidirectional wheels to minimize the gaps17 or
going through another level of smooth interface between the omnidirectional wheel and the point
of contact by means of a smooth sphere between each actuating omnidirectional wheel and the
other surface.7 An alternative is the Mecanum wheel, where the rollers are at a 45◦ angle with
respect to the main actuation axis of the wheel instead of the more common 90◦ arrangement.18, 19

2. The second alternative consists of two rows of rollers arranged such that a roller is always in
contact with the sphere. Designs range from the more commonly available ones, such as shown
in Fig. 3, to more sophisticated ones as in ref. [20]. In the dual-row case the point of contact on
the sphere varies in time as the contact point switches from one roller to the other and back. This
introduces a stepwise oscillation in the instantaneous contact point position vector, thereby altering
the kinematics, as presented in detail in ref. [21].

Since kinematic considerations are essential to the core functionality of the motion platform, the
omnidirectional wheels modelled in this paper are of the first type, that is, single row omnidirectional
wheels. Since one cannot arrange rollers on the periphery of a wheel without having gaps between
them, a fairly general description of the wheel and rollers geometry may be seen in Fig. 4. Due to
the gap between the rollers, the sphere does not experience smooth motion, but ‘falls’ into the gaps
between rollers. This, in turn, causes the distance between the centre of the sphere and the centre
of the omnidirectional wheel to vary as the omnidirectional wheel rotates. In ref. [15], kinematic
relationships were developed for the ideal case where omnidirectional wheels were assumed to be
perfectly round and there was no relative motion between sphere’s and omnidirectional wheels’
geometric centres. In addition to the assumption that the omnidirectional wheels and the sphere are
rigid, it had also been assumed that the rotational platform is rigidly attached to the translational
platform. In order to obtain the equations of motion for a more realistic platform, the kinematics must
first be modified to include these departures from the ideal case. First, removing the assumption of a
perfectly round omnidirectional wheel means:

rwi
= rwi

(θi), (1)
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Fig. 4. Contact area between omnidirectional wheel and sphere.

thus,

ṙwi
= θ̇ir

′
wi

, (2)

r̈wi
= θ̇2

i r ′′
wi

+ θ̈ir
′
wi

, (3)

where rwi
is the distance from the centre of omnidirectional wheel i to its contact point with the

sphere, and θi is a cyclical coordinate of the orientation of omnidirectional wheel i, r ′
wi

= drwi

dθi
, and

r ′′
wi

= d2rwi

dθ2
i

. The actual shape of the omnidirectional wheel has a significant effect on the effective

contact radius; however, the radius of the sphere itself also affects the effective contact radius rwi
.

Figure 4 shows the contact area between an omnidirectional wheel and the sphere, illustrating
the gaps between the rollers. In this paper, single-race omnidirectional wheels were used to eliminate
the step-wise moments injected into the sphere caused by dual-race wheels and instead focus on the
effects on the dynamics caused by the geometry of a single race. Here rb is the maximal radius of the
omnidirectional wheel, θb is the angular distance between two consecutive rollers, θs is the angular
size of the gap between two consecutive rollers, both measured about the centre of the omnidirectional
wheel, and θR is the same gap measured about the centre of the sphere. From geometric considerations,
it is apparent that:

sin
θRi

2
= rbi

Ri

sin
θsi

2
. (4)

The difference between the maximal and minimal distances between the centres of the sphere and
the omnidirectional wheel is

�rwi
= (R + rbi

) −
[(

R cos
θRi

2

)
+

(
rbi

cos
θsi

2

)]
. (5)

Thus,

�rwi
= R

(
1 − cos

θRi

2

)
+ rbi

(
1 − cos

θsi

2

)
, (6)

where �rwi
is defined by the relation

rwi
= rbi

− �rwi
. (7)
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Finally, combining with the constant radius rbi
of the roller area:

0 < θi < θsi
rwi

= rbi
− �rwi

sin

(
2π

θi

θsi

)
,

θsi
≤ θi ≤ θsi

+ θbi
rwi

= rbi
, (8)

where for ni rollers,

θsi
+ θbi

= 2π

ni

. (9)

Defining the roundness ratio ηi as

ηi = θsi

θsi
+ θbi

(10)

provides a means to classify omnidirectional wheels as follows:

• η = 0 – perfectly round wheel;
• η = 1 – wheel with continuous contact, such as Mecanum wheels; and
• 0 < η < 1 – omnidirectional wheel with gaps between the rollers where smaller η means smaller

gaps.

Thus, Eq. (8) becomes

ηi = 0; rwi
= rbi

,

ηi �= 0; rwi
= rbi

− �rwi
sin

(
niθi

ηi

)
. (11)

This model essentially presents the main cause for vibration in the system. It should be noted
that the effects of omnidirectional wheel’s radius changes are small compared with the radius itself
(less than 0.5% for typical envisioned implementations), and thus the impact on the Jacobian and
the angular motion resulting is negligible. However, its impact on the translational vibratory motion
is potentially significant. This model is therefore used in determining the translational motion of the
sphere centre.

2.2. Sphere–omnidirectional wheel interface
The interface between omnidirectional wheels and the sphere is treated here as non-rigid. Thus,
each contact point is modelled as a combination of a spring and a viscous damper. The non-rigid
assumption, in turn, results in each contact point becoming a contact patch that is spread over more
than a single point. The implications are that, in addition to radial deflection, there may be two
additional resisting moments occurring: rolling resistance and spin resistance. Rolling resistance may
be caused due to shifts in the position of the equivalent normal force over a contact patch from the
line connecting the centres of the sphere and omnidirectional wheel involved. Spin resistance is due
to friction.

2.2.1. Radial deflection. The radial deflection is modelled as a combination of a spring with linear
stiffness Ki and viscous damping Ci . The importance of these coefficients is their contribution to
isolation of internal parts of the sphere from vibration. The main source of vibration in the system
is the imperfect shape of omnidirectional wheels as they roll in contact with the sphere. Since each
contact point is not really connected to others, its effect on the position of the effective centre of the
deformed sphere is assumed independent of other contact point deflections. Thus, the radial motion
of each contact point is analysed independent of other contact points, and their contributions to the
overall translation of the centre of sphere is then vectorially summed to obtain the overall translation
of the centre of sphere.
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Hertzian Contact Model. Since radial deflection depends on what happens at the contact point,
a contact model must be considered. A widely accepted model for this purpose is the Hertzian
model.13, 14 The following analysis for the resisting moments is independent of the model of choice,
yet an implementation of the Hertzian model is shown as an example. The Hertzian model assumes
that the contact patch is circular. In this case, for a normal force Ni at contact point i, the pressure
distribution pi is:

pi = p0i

√
1 −

(
r

ai

)2

, (12)

where r is a local coordinate representing the distance of the point in the contact patch from the centre
of contact patch, a is the radius of contact patch and is a function of the equivalent radius R

′
i and the

equivalent modulus of elasticity E
′
i
14 detailed below such that

ai =
(

3NiR
′
i

4E
′
i

) 1
3

, (13)

and p0i
is the maximal pressure at the centre of the patch,

p0i
= 3Ni

2πa2
i

. (14)

For this case, the deflection at contact point i is

δi =
(

9N2
i

16R
′
iE

′
i

2

) 1
3

. (15)

The values of E
′
i and R

′
i are:

E
′
i = EsEwi

Es(1 − ν2
wi

) + Ewi
(1 − ν2

s )
(16)

and

R
′
i = Rri

R + ri

, (17)

where Es and Ewi
are Young’s moduli of the sphere and omnidirectional wheel i respectively, and νs

and νwi
are the corresponding Poisson ratios.

2.2.2. Rolling resistance. If the equivalent normal force corresponding to the pressure distribution
within a contact patch is not located at the corresponding theoretically ideal rigid body contact point,
then the normal force would not pass through the geometric centre of the sphere, and therefore create
a moment resisting the rolling motion. This, in turn, will affect moment equations, for both sphere and
omnidirectional wheels. Various models exist to evaluate the length of the moment arm lri

. However,
it must be included as a contribution to the moment equations of the sphere and omnidirectional
wheels:

�Tri
= �lri

× �Ni i = 1, 2, 3, (18)

where �Tri
is the rolling resistance moment at contact point i and �lri

is the position of the equivalent
normal force with respect to the rigid body contact point.
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Thus, the magnitude of the rolling resistance moment for a single contact point i is:

Tri
= −Nilri

i = 1, 2, 3 (19)

where lri
is the effective roll moment arm of contact point i, and may be evaluated using either

theoretical or experimental models.
The full vector expression of the rolling resistance moment is therefore:

�Tri
= −Nilri

�� · �̂i

| �� · �̂i |
�̂i i = 1, 2, 3. (20)

As an illustrative example, the Hertzian model will be used to obtain lri
. Since the Hertzian model

calls for a symmetric distribution of the normal force, the equivalent contact point is at the rigid body
contact point; therefore, the normal force passes through the geometric centre of the sphere, and so
we obtain:

Tri
= 0 i = 1, 2, 3 (21)

and clearly,

lri
= 0 i = 1, 2, 3. (22)

This result is due to the fact that the Hertzian model is completely symmetrical. This may not
necessarily be the realistic case, where possibly lri

�= 0. However, the moment arm length is limited
by the radius of the contact patch. Since lri

is essentially the centre of pressure offset, it depends on
the viscoelastic properties of the interface between the sphere and the omnidirectional wheel, and
varies with material properties, speed of rotation, temperature, and other parameters. Practically, this
moment arm can be obtained by rolling resistance tests. For demonstration, lri

will be taken to be
lri

= ai as long as the angular velocity is non-zero.

2.2.3. Spin resistance. Omnidirectional wheels allow actuation about one axis while providing
practically no resistance in a direction perpendicular to the actuation direction. However, they have no
mechanism that eliminates resistance in the spin direction. This is due to the assumption that contact
occurs at a point. Once the contact point becomes a contact patch, this assumption is no longer valid,
and some spin resistance must exist. While specific models for evaluating this component may be
considered, it can be modelled as a contribution to the moment equation:

Tsi
=

∫∫
Si

μiNi(r, θ) dSi i = 1, 2, 3, (23)

where Tsi
is the spin resistance moment at contact point i, and the normal force at the contact point Ni

becomes a distributed pressure Ni(r, θ) over the contact patch Si , where r and θ are local coordinates
at the contact patch surface. The coefficients of dry friction at the contact points are μi . As mentioned
earlier, various models exist for the evaluation of the distributed normal pressure Ni(r, θ) and the
contact patch shape Si .

As far as the higher level dynamic model of the platform is concerned, the magnitude of the spin
resistance when the angular velocity is non-zero may be modelled as:

Tsi
= μiNilsi

i = 1, 2, 3, (24)

where lsi
is the effective spin lever of contact point i, and also may be evaluated using either theoretical

or experimental models.
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The full vector expression of the spin resistance would therefore be:

�Tsi
= μiNilsi

�� · �Ri

| �� · �Ri |
R̂i i = 1, 2, 3. (25)

Note that due to this definition of the resisting components

�Tsi
· �Tri

= 0 i = 1, 2, 3. (26)

Once more, the Hertzian model will be used to obtain lsi
. Spin is the rotation about the axis

that connects the geometric centres of the sphere and an omnidirectional wheel through the contact
point. When the contact point becomes a contact patch, spin is accompanied by friction, which is
proportional to the normal force at the point. Although the resultant friction force may be zero, the
friction produces a moment resisting the spin motion:

Tsi
=

∫∫
c.p.

μipirdS =
∫ 2π

0

∫ ai

0
μipir

2drdθ. (27)

Using Eq. (12) and applying the integral limits, results in:

Tsi
= 3π

16
μiNi

(
3NiR

′
i

4E
′
i

) 1
3

. (28)

The direction of the spin resistance is opposite to that of the spin direction at the contact point, thus

�Tsi
= −3π

16
μiNi

(
3NiR

′
i

4E
′
i

) 1
3 �� · �Ri

| �� · �Ri |
R̂i, (29)

therefore

lsi
= 3π

16

(
3NiR

′
i

4E
′
i

) 1
3

i = 1, 2, 3. (30)

The total spin resistance is therefore:

�Ts =
3∑

i=1

�Tsi
. (31)

2.3. Omnidirectional wheel–translational platform interface
Another important interface is the one between the translational platform and omnidirectional wheels.
The reaction forces between omnidirectional wheels and the sphere affect the mounting point of the
omnidirectional wheel onto the translational platform. The mounting point, which is attached to the
omnidirectional wheel’s centre, is modelled as non-rigid. Each mounting point is modelled as having
stiffness coefficient ki , and viscous damping coefficient ci .

Combining the effects of the shape of omnidirectional wheels, the sphere–omnidirectional wheel
contact interface, and the omnidirectional wheel–translational platform interface, with the rigid body
dynamics makes up the model of the system that allows investigation of the dynamics of the system
as well as vibration issues.
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Fig. 5. Model for contact point.

The model for the contact point area is illustrated in Fig. 5. This figure depicts the sphere
(disproportionally small) in contact with an omnidirectional wheel (magnified to enhance details
at the contact area). The sphere’s contact with the omnidirectional wheel is represented as a mass Ms

on a spring and damper in parallel, thus the entire sphere is represented by the massless spherical shape
marked as ‘sphere’, the spring–damper combination to model the elastic features of the sphere, and the
mass Ms . On top of the sphere there is a spring that ensures contact at all times. The omnidirectional
wheel is assumed to be attached to the translational platform through a similar mechanism of spring
and damper in parallel. It takes the translational platform’s motion (Sci

in the illustration) as a motion
input into the sphere. The motion input into the sphere is a combination of the translational motion
of the centre of the omnidirectional wheel and the distance to the effective contact point between
the sphere and the omnidirectional wheel. All contact points are treated using the same model.
Next, the parameters Sai

, Sbi
, Sci

need to be mapped into the parameters in the context of the Atlas
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platform,

Sai
= �Rs · r̂wi

,

Sbi
= �Rl · r̂wi

+ �i,

Sci
= �Rl · r̂wi

,

Sdi
= constant, (32)

where �Rs is the position of the centre of the sphere, �Rl is the position of the translational platform,
�i is the local deflection of the attachment point of the omnidirectional wheel to the translational
platform, and Sdi

is a constant distance definition of the kinematic closure of the system, Sdi
> 2R.

The exact magnitude is determined by the geometric details and design of the system, and does not
impact the results. To obtain vibration information, we observe

� �R = �Rs − �Rl, (33)

where � �R is the displacement of the effective centre of the sphere from the geometric centre of a
perfect sphere. One can observe that

�Rl · r̂wi
+ �i + rwi

+ δi = �Rs · r̂wi
(34)

and kinematic closure equations maintain:

�i + rwi
+ δi + δci

= Zc, and (35)

�̇i + ṙwi
+ δ̇i + δ̇ci

= 0. (36)

3. Equations of Motion
Utilizing the assumptions and relations described in the previous sections, combined with the
kinematic relations, Eqs. (37)–(44) below are obtained using the Newton–Euler dynamic formulation.
In order to maintain the model as general and application-independent as much as possible,
application-dependent details are generalized. Specifically, the translational motion implementation
is treated as a black box controlled by three independent forces along its main axes. In addition, form
closure is assumed without detail, and the internal structure of the sphere is also generalized into an
arbitrary inertia tensor.

Equations of motion were derived using the Newtonian approach. The system is broken down
into two subsystems: the sphere and the translational platform (which includes everything except the
sphere).

First, the force equation for the sphere is:

�Fext +
3∑

i=1

�Ni +
3∑

i=1

�fi = Ms( �̈Rs), (37)

where Ms is the mass of the sphere, �Fext is an external compressive force applied to the sphere to
ensure zero slip, and �Ni and �fi are the normal and frictional forces at contact point i respectively.

The force equation for the translational platform is:

�P −
3∑

i=1

�Ni −
3∑

i=1

�fi =
(

Ml +
3∑

i=1

mi

)
�̈Rl, (38)

https://doi.org/10.1017/S0263574714001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001088


Dynamics analysis of sphere–omnidirectional wheels interface 1861

where Ml is the mass of the translational platform, mi is the mass of omnidirectional wheel i, �P is
the force applied to the translational platform, and Rl is the position vector of the mass centre of
translational platform. The moment equation of each omnidirectional wheel i about its geometric
centre is:

Ti − firwi
− Tri

= Iwi
ω̇i , (39)

where Ti is the actuation moment of omnidirectional wheel i. This equation is a scalar equation,
and is valid for each of the omnidirectional wheels in the system. In the case where there are three
omnidirectional wheels, there are three equations involved. The moment equation of the sphere about
its geometric centre is:

3∑
i=1

�fi × �Ri −
3∑

i=1

�Tri
−

3∑
i=1

�Tsi
= [Is] �̇� + �� × [Is] ��. (40)

Equations for elastic effects at contact points, derived using the model presented in Fig. 5, are:

Ms( �̈Rl · r̂wi
+ �̈i + δ̈i) + Ciδ̇i + Kiδi − K ′

i (�i + δi) = K ′
i (rwi

− Zc) − Msr̈wi
, (41)

and

mi�̈i − Ciδ̇i + ci�̇i − Kiδi + ki�i = 0. (42)

Finally, from the kinematics,

�̇� = J {ω̇} , (43)

and the quaternionic differential equation,

q̇ = 1

2
� ◦ q. (44)

It is essential to understand that deviation of the centre of mass from the geometric centre will
not result in the coupling of translational and rotational motions due to the fact that the motion of
omnidirectional wheels is controlled, and setting the moment applied to them is the only means to
cause rotational motion in the system. Thus, as long as the friction limit at contact points is not
exceeded, the only effect would be that of increasing reaction forces at contact points. Since it is
desired to obtain a slip-free system, the required external force �Fext that would yield zero kinetic slip
needs to be determined. This is achieved by assuming that the friction limit is exactly reached while

still maintaining the kinematic no-slip condition, that is, fi = μiNi and �̇� = J {ω̇}. The result is the
minimum required external force to assure no-slip condition. In this case,

�Fext = Ms

MT − Ms

(
Ms

MT

�P − R2
(
[v] − [μ]−1 [Ri]

) (
[Iw] [rw]−1 [Is]

−1 [�]T [�] + [rw]
)−1 {T }

)
,

(45)

and

{N} = (
[Iw] R2 [rw]−1 [Is]

−1 [�]T [�] [μ] + [rw] [μ]
)−1 {T } , (46)

where [Iw] is a diagonal matrix containing the moments of inertia of omnidirectional wheels, [Is] is
the inertia tensor of the sphere, and [μ] is the diagonal matrix with μi as its elements. In addition, [Ri]
is a matrix with R̂i as its columns, [v] is a matrix with v̂i as its columns, and [rw] is a matrix with rwi

as its columns. This set of equations is a combination of differential and algebraic equations. Thus,
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Fig. 6. The orthogonal architecture case.

the differential equations need to be integrated while the algebraic equations need to be solved at each
integration step simultaneously. Integration was performed utilizing the basic 4th order Runge–Kutta
method (Ode45 solver) in a Matlab program.

Several steps were performed during each integration iteration. First, the orientation of each
omnidirectional wheel is translated into the input function for the vibration equations utilizing
Eq. (11). Then the actual current omnidirectional wheel radii (rwi

) and their time derivatives are
evaluated. Next, the contact forces Ni are evaluated algebraically. Finally, the differential equations
are evaluated and the required external force is calculated. At the end of the integration step, constraints
are checked and enforced.

3.1. Verification and validation
A Matlab program was developed to simulate the dynamics. To verify the program and equations,
the orthogonal case presented in ref. [15] was considered. The orthogonal case is presented in Fig. 6,
where omnidirectional wheels control mutually orthogonal axes. The goal of this exercise was to
qualitatively validate the program by introducing scenarios with predictable results before delving
into the analyses of more realistic and complex behaviours.

First, a scenario where all bodies are rigid and omnidirectional wheels are perfectly round is
examined as a baseline. Here the expectation is to obtain a pure ideal motion of a sphere rolling
without sliding on actuating omnidirectional wheels. The translation should show parabolic motion
as a result of a constant driving force. The rotational motion is expected to behave similarly as driven
by constant torques, which is to be indicated in Euler parameters behaving in a sinusoidal manner.
The resulting angular velocity vector of the sphere is expected to develop linearly. Zero vibration or
perturbatory motion is expected is such an ideal system. Observing the above-mentioned resulting
motion should verify the basic equations of the motion portion of the model.

Second, to ensure that non-ideal omnidirectional wheel shapes are correctly introduced into the
simulation, a basic set of examples with varying values of roundness ratio is offered. The expectation
is to observe vibrational motion superimposed on ideal motion. The frequencies are expected to
reflect the number of rollers and angular velocity of each omnidirectional wheel. The orthogonal
configuration was used so that the three axes would be independent of one another, thus each axis
should represent the effects of a single omnidirectional wheel.

Finally, to show the effects of a non-rigid sphere, an effective spring coefficient was considered
along with imperfect omnidirectional wheels to show the vibration isolation effects of the model.
The expectation is to observe reduction in the maximal magnitude that was observed when a similar
omnidirectional wheel was used combined with a rigid sphere.

The baseline configuration is a sphere with radius R = 1.22 m, and mass Ms = 5 kg. Since in
a vibrating system the larger the mass, the less it is affected by external irregularities, low mass
was selected for the sphere to enhance any vibrational motion for easier analysis. The translational
platform’s mass is Ml = 5 kg. The three identical wheels have a mass of m1 = m2 = m3 = 0.25 kg
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Fig. 7. �� as a function of time for the orthogonal case.

and nominal radii of rw1 = rw2 = rw3 = 7.58 cm. The coefficient of friction at the contact points was
taken as a representative value with μ = 0.9.

3.1.1. Ideal case. The most basic results presented are for the ideal case, where all bodies are
rigid and the omnidirectional wheels are perfectly round (η = 0). This case is used for the basic
verification of the simulation. The details of the driving forces used for the validation were taken to
be step functions, where the magnitudes of the steps are Px = 0.1 N, Py = 0.2 N, Pz = 0.3 N, T1 =
0.1 N · m, T2 = 0.2 N · m, and T3 = 0.3 N · m. Figure 7 shows the development of the angular velocity
vector components of the sphere. Both translational behaviour and magnitudes behave as predicted
since there is no resisting moment acting on the sphere, and the actuating moment is constant.

The components of the quaternion representing the orientation of the sphere are shown in Fig. 8.
The harmonic plots represent motion about a constant axis and the increasing frequency indicates an
increasing angular velocity as one would expect. The translational portion of the motion, indicated
by the position of the centre of mass of translational platform, is presented in Fig. 9. It is expected to
develop in a parabolic fashion as there are no resisting forces to oppose the constant applied force �P .
It is also clear that there is no indication of coupling between the angular degrees of freedom and the
translational ones.

All other components remain at zero level as expected. That is, there is no relative translational
motion between the sphere and the translational platform.

3.1.2. Imperfect omnidirectional wheels. In the imperfect omnidirectional wheel case, the
omnidirectional wheels are no longer assumed to be perfectly round; however, all system components
remain rigid. The goal here is to observe whether the rigid system reacts to the shape input of wheels
within the rigid constraints. It is expected that observable relative motion will occur between the
centre of the sphere and the translational platform which is of the same magnitude as the input signal,
that is, the shape irregularities of omnidirectional wheels. Results show vibration caused by the gaps
between the rollers.

The omnidirectional wheels currently in use in the Atlas demonstrator have 14 rollers, and a
roundness ratio, η = 0.4485. The motion of the centre of sphere relative to the translational platform,
in the inertial x, y, and z-directions, along with the magnitude of the vector, was simulated. Figure 10,
using the real parameters of the Atlas demonstrator, is presented in a dual format, on the left are the
raw results, and on the right is the magnification of the graph showing the first 1.5 s of the results
revealing more details. Similar plots were obtained for various values of roundness ratio, and it was
observed that the lower the roundness ratio, the smoother the motion, since the magnitude of the
vibration of the sphere’s centre of mass grows larger as the roundness ratio increases. A summary of
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Fig. 8. The quaternion as a function of time for the orthogonal case.

Fig. 9. �Rl as a function of time for the orthogonal case.

these results is illustrated directly in Figs. 10 and 11. Figure 10 also reveals that there is no change
in the frequency of the peaks observed in the plots. These results are expected as suggested by Eqs.
(6) and (8), where reducing θsi

and θRi
reduces �rwi

, thereby reducing the magnitude of the input
perturbation function.

3.1.3. Non-rigid sphere. When considering a non-rigid sphere, the stiffness of the contact point is
considered. In this example, the stiffness coefficient was selected to be Ki = 188, 208 N/m, which
is the measured stiffness of the Atlas demonstrator sphere. Figure 12 shows the response for constant
angular speed values of ω1 = 0.1 rad/s, ω2 = 1.2 rad/s, and ω3 = 0.3 rad/s for the case where the
roundness ratio is η = 0.4485, but with the above stiffness coefficient. Comparing Fig. 12 with the
results illustrated in Figs. 10 and 11 it is to be seen that the magnitude of vibration for the non-rigid
sphere is several orders of magnitude lower than that of the rigid system.
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Fig. 10. � �R as a function of time for the orthogonal case, η = 0.4485.

Fig. 11. Maximum magnitude of � �R as a function of η for the orthogonal case.

Figure 13 presents the result for the same system but with a damping coefficient of Ci =
8500 N · s/m, and Fig. 14 shows results for a damping coefficient of Ci = 20, 000 N · s/m. Thus,
adding damping to the system causes a noticeable but very slight reduction in the magnitude of the
vibration. It is observed, though, that adding damping to the system removes the secondary vibration
overlaid on top of the main vibration, that is, the high-frequency but lower-magnitude vibration that
is observed in Fig. 12 disappears in the plots where damping was introduced. Thus, the importance
of the stiffness of sphere is highlighted and is worth further examination, but damping effects seem
to be relatively minor.

4. Discussion
The purpose of presenting the simulation results was verification and validation of the simulation
program prior to investigate more complex cases. The expected results were stated for the ideal case
and the simulation results obtained indeed were as expected. The introduction of non-ideal shape for
omnidirectional wheels added vibrations to the system, and it was shown, as expected, that increasing
the roundness ratio increases the magnitude of the vibratory motion of the centre of sphere. Removing
the rigid body assumption from the sphere introduced vibration isolation effects; and a significant
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Fig. 12. � �R as a function of time for the orthogonal case, η = 0.4485, Ki = 188208 N/m.

Fig. 13. � �R as a function of time for the orthogonal case η = 0.4485, Ki = 188, 208 N/m, and Ci =
8500 N · s/m.

reduction in the magnitude and frequency of the sphere was observed. Adding damping to the system
indeed smoothed the plots more without much affecting the magnitude and frequency of the vibration.
All these results were predicted prior to running the simulation program and presented earlier, thus
verifying and validating the program for use in more complex scenarios.

It is quite clear from the results that the roundness ratio and the stiffness of the sphere significantly
affect the motion of the sphere, as expected and presented in Figs. 11 and 12, while the equivalent
damping coefficient at contact point has a less significant role in the resulting motion of the centre of
sphere.

5. Conclusions
The kinetics of a sphere actuated using omnidirectional wheels has been explored in a general way
for the first time. The number of actuating wheels as well as their type has been considered, and some
specific configurations have been explored. Once the kinematics of a system is in place, deriving
the equations of motion, assuming that all bodies are rigid, is a relatively straightforward process.
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Fig. 14. � �R as a function of time for the orthogonal case η = 0.4485, Ki = 188, 208 N/m, and Ci =
20, 000 N · s/m.

However, no system is completely rigid. Specifically with the Atlas platform, it was observed that
the sphere–roller interface experiences significant deflections (associated with the low mass design
objective and the soft castor rollers material). Thus, it was assumed that the interfaces between the
sphere and omnidirectional wheels are non-rigid. In addition, other connection points were assumed
flexible. Most interesting is the non-rigid interface at force transfer points; that is, the contact points
between the sphere and the actuating omnidirectional wheels. The deflection at the sphere–roller
interface causes the contact points to become contact patches with distributed normal and tangential
forces. These, in turn, create moments resisting the driving moments in the form of spin resistance
and rolling resistance. These moments were modelled as a product of a moment arm and a force.
This idea for modelling allowed for the investigation of the effects of the moment arm length on
the resisting moments regardless of the model selected to evaluate them. A detailed analysis using
the classic Hertzian model for contact forces was performed to demonstrate this approach. However,
due to the Hertzian basic assumption that the contact patch is symmetric, rolling resistance vanished.
This demonstrated the power of the modelling approach of a moment arm that can be varied to
investigate its effect. The results showed only negligible effects of both spin resistance and especially
rolling resistance. The effects of elastic contact on the vibration of the centre of sphere were, though,
dominant when compared with a rigid sphere, but varied little with changes in the effective spring
coefficient of contact. Modelling for vibration assumed that the contact points between the sphere and
omnidirectional wheels act like spring–damper systems that are independent of one another, since the
actual centre of sphere is not necessarily connected to contact points. The shape of omnidirectional
wheels was taken as positional excitation. Similarly, the mounting of omnidirectional wheels onto the
linear platform and the contact between the sphere and kinematic closure mounting points were taken
as non-rigid. The most significant effect on vibration by far was that of the stiffness of the sphere–
wheel contact. It was evident that the effective spring coefficient of this interface is the dominant
factor when it comes to natural frequency and maximum vibration magnitude of the centre of sphere’s
position. The omnidirectional wheel’s mounting stiffness had a minor impact on the natural frequency
of the system, but not much on the maximal magnitude. The damping coefficient’s contribution was
also minor.

Acknowledgements
The authors gratefully acknowledge the contribution made by Andrew Dobson in creating the image
in Fig. 6.

References
1. V. E. Gough, “Discussion in London: Automobile Stability, Control and Tyre Performance,” Proceedings

of the Automotive Division of the Institution of Mechanical Engineers (1956) pp. 392–394.

https://doi.org/10.1017/S0263574714001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001088


1868 Dynamics analysis of sphere–omnidirectional wheels interface

2. D. Stewart, “A Platform with 6 Degrees of Freedom,” Proc. Inst. Mech. Eng. 180(15, Pt. 1), 371–386
(1965).

3. J. Kim, J. C. Hwang, J. S. Jim, C. C. Iurascu, F. C. Park and Y. M. Cho, “Eclipse II: A new parallel
mechanism enabling continuous 360-degree spinning plus three-axis translational motions,” IEEE Trans.
Robot. Autom. 18(3), 367–373 (Jun. 2002).

4. W. Bles and E. Groen, “The DESDEMONA motion facility: Applications for space research,” Microgravity
Sci. Technol. 21(4), 281–286 (Nov. 2009).

5. G. S. Chirikjian and D. Stein, “Kinematic design and commutation of a spherical stepper motor,”
IEEE/ASME Trans. Mechatronics 4(4), 342–353 (Dec. 1999).

6. T. B. Lauwers, G. A. Kantor and R. L. Hollis, “One is Enough!,” Proceedings of 2005 International
Symposium of Robotics Research, San Francisco, CA, USA (Oct. 12–15, 2005).

7. L. Ferriere and B. Raucent, “ROLLMOBS, a New Universal Wheel Concept,” Proceedings of the 1998 IEEE
International Conference on Robotics and Automation, Leuven, Belgium (May 16–20, 1998) pp. 1877–
1882.

8. M. West and H. Asada, “Design and Control of Ball Wheel Omnidirectional Vehicles,” Proceedings of the
IEEE International Conference on Robotics and Automation, Nagoya, Japan (May 21–27, 1995) pp. 1931–
1938.

9. R. Williams, D. Carter, P. Gallina and G. Rosati, “Dynamics model with slip for wheeled omni-directional
robots,” IEEE Trans. Robot. Autom. 18(3), 285–293 (2002).

10. K. Saha, J. Angeles and J. Darcovich, “The design of kinematically isotropic rolling robots with
omnidirectional wheels,” Mech. Mach. Theory 30(8), 1127–1137 (1995).

11. M. J. D. Hayes and R. G. Langlois, “A novel kinematic architecture for six DOF motion platforms,” Trans.
Can. Soc. Mech. Eng. 29(4), 701–709 (May 2005).

12. A. Weiss, R. G. Langlois and M. J. D. Hayes, “Unified treatment of the kinematic interface between a
sphere and omnidirectional wheel actuators,” ASME J. Mech. Robot. 3(4), 041001 (Sep. 26, 2011).

13. H. Hertz, “On the contact of elastic solids,” J. Reine und Angewandte Mathematik 92, 156–171 (1882).
14. K. L. Johnson, Contact Mechanics (Cambridge University Press, New York, NY, 1985).
15. M. J. D. Hayes, R. G. Langlois and A. Weiss, “Atlas motion platform generalized kinematic model,”

Meccanica 46(1), 17–25 (Jan. 2011).
16. Y. P. Leow, K. H. Low and W. K Loh, “Kinematic Modelling and Analysis of Mobile Robots with Omni-

Directional Wheels,” Proceedings of the 7th International Conference on Control, Automation, Robotics
and Vision (ICARCV 2002), Singapore (Dec. 2–5, 2002) pp. 820–825.

17. J. B. Song and K. S. Byun, “Design and control of a four-wheeled omnidirectional mobile robot with
steerable omnidirectional wheels,” J. Robot. Syst. 21(4), 193–208 (Apr. 2004).

18. S. L. Dickerson and B. D. Lapin, “Control of an Omni-Directional Robotic Vehicle with Mecanum Wheels,”
Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Atlanta, GA, USA
(Mar. 26–27, 1991) pp. 323–328.

19. J. Agullo, S. Cardona and J. Vivancos, “Dynamics of vehicle with directionally sliding wheels,” Mech.
Mach. Theory 24(1), 53–60 (1989).

20. M. Shugen, R. Chao and Y. Changlong, “An Omnidirectional Mobile Robot: Concept and Analysis,”
Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) (2012)
pp. 920–925.

21. A. Weiss, R. G. Langlois and M. J. D. Hayes, “The effects of dual-row omnidirectional wheels on the
kinematics of the atlas spherical motion platform,” J. Mech. Mach. Theory 44(2), 349–358 (Feb. 2009).

https://doi.org/10.1017/S0263574714001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001088

