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ABSTRACT

In the global insurance market, the number of product-specific policies from
different companies has increased significantly, and strong market competition
has boosted the demand for a competitive premium. Thus, in the present pa-
per, by considering the competition between each pair of insurers, an N-player
game is formulated to investigate the optimal pricing strategy by calculating the
Nash equilibrium in an insurance market. Under that framework, each insurer
is assumed to maximise its utility of wealth over the unit time interval. With the
purpose of solving a game of N-players, the best-response potential game with
non-linear aggregation is implemented. The existence of a Nash equilibrium
is proved by finding a potential function of all insurers’ payoff functions. A 12-
player insurance game illustrates the theoretical findings under the framework in
which the best-response selection premium strategies always provide the global
maximum value of the corresponding payoff function.
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1. INTRODUCTION

1.1. Motivation

In the insurance world, determining an appropriate and attractive premium is
always a highly challenging issue because of the competition amongst differ-
ent companies. The premium loading depends critically on the price that the
other insurers charge for comparable policies. Clapp (1985) was able to demon-
strate it using the seminal model by Rothschild and Stiglitz (1976, 1992). Insur-
ance pricing is a fundamental aspect that attracts the interest of both actuaries
and academics. Standard actuarial approaches for non-life insurance products
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suggest that the premium is divided into three main components: the actuar-
ial price, the safety loading and the loading for expenses. The actuarial price is
normally deduced according to different premium principles, such as the Net
Premium Principle, the Expected Value Premium Principle and others (Teugels
and Sundt, 2004; Rolski et al., 2009). Classical approaches focus on determin-
ing the safety loading of each policy class proportional to the expected claim
expenses or to its moment.

However, in a highly competitive insurance environment which is dominated
by a relatively small number of companies (compared with the banking sec-
tor and investment funds), each insurer monitors, attempts to predict reactions
and takes advantages against the others. Thus, the actuarial premium might
eventually be altered by the marketing and management department for several
reasons, such as the customer’s affordability, the market conditions and the mu-
tualisation across the portfolio of customers to decrease risk. What is more, the
pricing cycles, which are found in different lines of insurance, appear also to
be affected by market competition (Rantala, 1988; Malinovskii, 2010; Emms,
2012). These suggestions indicate that the insurance premium price should
not focus only on the risk assessment. Consequently, to study the competition
amongst insurers, a model needs to be formulated in order to investigate insur-
ers’ premium pricing interactions in the corresponding market.

1.2. Developments in competitive insurance markets

Over the last three decades, academics have been interested in how competition
might affect insurance premiums and how insurers respond to changes in the
premium levels that is being offered by competitors.

Taylor (1986) was the first from the actuarial community who mentioned
that competition is a key component in insurance premium pricing, and he
used the Australian market to extract very useful remarks. The premium was
priced based on unit of exposure, which is applicable in different lines of
non-life insurance. Analytically, the relation between the market’s behaviour
and optimal response of an individual insurer was explored, with the objective
of maximising the expected present value of wealth arising from a pre-defined
finite time horizon. The law of demand was embedded in the modelling process
to analyse the change of exposure volume through a comparison between
insurer’s and market average premiums. Moreover, he stated that the optimal
response depends on various factors, including (a) the predicted time that will
elapse before a return of market rates to profitability; (b) the price elasticity
of demand for the insurance product under consideration and (c) the rate of
return required on the capital supporting the insurance operation. With his
next paper, Taylor (1987) noted that the optimum underwriting strategies might
be substantially affected by proper marginal expense rates, a concept that must
be taken also into consideration.

After almost two decades of silence, Emms and his co-authors were able to
extend significantly Taylor (1986, 1987)’s ideas developing a series of models
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in continuous time by implementing optimal control theory techniques (Emms
and Haberman, 2005; Emms, 2007a,b; Emms et al., 2007; Emms and Haber-
man, 2009; Emms, 2011). In more detail, Emms andHaberman (2005) assumed
that the average premium is a positive random process with finite mean at time t,
and left unspecified the distribution of themean claim size process; whilst Emms
et al. (2007) modelled the market’s average premium as a geometric Brownian
motion instead. Simultaneously, Emms (2007a) determined the optimal strat-
egy for an insurer that maximises a particular objective over a fixed planning
horizon and the premium by using a competitive demand model and the ex-
pected main claim size. Moreover, Emms (2007b) considered the process with
different types of constrains. By assuming a deterministic control framework,
the optimisation problem was solved using elements from control parameter-
isation. Market reactions regarding one insurer’s premium were considered in
Emms (2011).

In all previous approaches, fixed premium strategies were considered and
sensitivity analysis of the parameters’ involved in the model was applied. What
is more, the ratio of initial market average premium to breakeven premium,
the measure of the inverse elasticity of the demand function, and the non-
dimensional drift of the market average premium were the most influential pa-
rameters in the optimal strategies derived.

Following previous work, Pantelous and Passalidou (2013) proposed a
stochastic demand function for the volume of business in a discrete-time frame-
work. Later on, in Pantelous and Passalidou (2015), the volume of busi-
ness was formed as a general stochastic demand function, and making the
model more pragmatic and realistic. Moreover, in Pantelous and Passalidou
(2016), the volume of business was modelled as a non-linear function with
respect to the accumulated reserves, the premium and the noise. What is
more, a quadratic performance criterion concerning the utility function was
implemented.

1.3. Game-theoretic approaches

However, for most of the models and approaches discussed in the previous sub-
section, a common assumptionwasmade that there exists a single insurer, whose
pricing strategy does not cause any reaction to the rest of the market’s competi-
tors. Thus, for each participant in the insurance market, others reaction cannot
be observed, and the premium remains eventually unaffected by their actions.
In reality, this situation is not often the case.

Lately, game theoretical approaches have been introduced mostly in the pre-
mium pricing processes of non-life insurance products. Competition amongst
insurers reveals the pricing strategy of each market participant in a constructed
insurance game, whereas one can only obtain a single insurer’s pricing strat-
egy through optimal control used in previous studies. However, in our ap-
proach, as it is discussed more extensively in the following subsection, a non-
cooperative game model is designed for the insurance market implementing
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already well-defined parameters from the corresponding literature (Taylor,
1986, 1987; Emms et al., 2007; Pantelous and Passalidou, 2015).

The use of game theory in actuarial science has a long history. The
first attempts go back to Borch (1962, 1974), Bühlmann (1980, 1984) and
Lemaire (1984, 1991), who applied cooperative games to model insurer and
reinsurer risk transfer; see also other extensions and reviews (Aase, 1993;
Brockett and Xia, 1995; Tsanakas and Christofides, 2006; Boonen, 2015).
Two models were applied in non-life insurance markets for non-cooperative
games: (a) the Bertrand oligopoly in which insurers set premiums and (b)
the Cournot oligopoly in which insurers choose the volume of business. See
Polborn (1998), Rees et al. (1999), Dutang et al. (2013) for the Bertrand
model and Powers and Shubik (1998), Powers et al. (1998) for the Cournot
model.

Emms (2012) developed a model by applying a differential game-theoretic
methodology for a non-cooperative market. Under his framework, each in-
surer’s price depends on other insurers’ premium strategies, assuming that each
market participant chooses an optimal pricing strategy. Nevertheless, each in-
surer was assumed to maximise its utility of wealth at the terminal time of
planning horizon. Finally, very recently, Boonen (2016) also proposed a way
to optimally regulate bargaining for risk redistributions. Thus, he investigated
the strategic interaction between two insurance companies that trade risk over-
the-counter in a one-period model.

1.4. A new approach: Potential game with aggregation

In our approach, a two-stage non-life insurance game is constructed in a com-
petitive market. Numerical solutions of Nash equilibria are obtained for a large
number of insurers under the two-stage framework. Moreover, instead of sim-
ply parameterising competition through comparison between single insurer’s
premium and the market average premium as it has been done so far in the
relevant literature (see Subsections 1.2 and 1.3), an aggregate game approach
is formulated to investigate further the insurance market competition. Differ-
ent from Emms (2012), the existence of Nash equilibrium is proved under our
framework.

The concept of aggregative game, which was first proposed by Selten (1970)
by considering it as the sum of the players’ strategies, is applied broadly in our
approach. Thus, the derived strategy for all insurers in the insurance market is
presented as a single parameter, i.e., the aggregate. In greater detail, each in-
surer’s utility (payoff) function only depends on its own pricing premium strat-
egy and the aggregate parameter.

Also following the suggestions by Taylor (2008) and Emms (2012), market
competition is measured by calculating an insurer’s new volume of exposure
and by summing up all of the policy flows during the competition between the
insurers and the volume of exposure in a previous stage. A non-linear aggregate
is obtained, which presents the strategies of all insurers in themarket.Moreover,
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a potential game approach is further developed to prove the existence of a Nash
equilibrium in the insurance game. This approach also gives us an opportunity
to simplify the problem of determining the Nash equilibrium by solving a single
optimisation problem.1

The literature on potential games can be traced back toMonderer and Shap-
ley (1996a,b), who created the potential game concept on the basis of a conges-
tion game. Their technique did not only solve the congestion game itself but
also was regarded as an equilibrium refinement tool. Following their idea, the
best-response potential gameswere introduced and characterised byVoorneveld
(2000). His paper proposed that, for any best-response potential game, if the po-
tential has a maximum over its domain, the best-response potential game has a
Nash equilibrium.

Dubey et al. (2006) were the first to embed the aggregate into potential
games. By considering just a linear aggregation, they investigated a special type
of best-response potential game that restricts the best-response selection to a
continuously decreasing or increasing function. Then, any game with linear ag-
gregation and a decreasing or increasing continuous best-response selection is
proved to belong to a pseudo-potential game, which is pre-defined in their pa-
per. By proving that any pseudo-potential game has a pure Nash equilibrium
strategy, the existence of a Nash equilibrium was obtained in this special class
of potential games irrespective of whether strategy sets were convex or payoff
functions were quasi-concave.

In this paper, for the first time according to our knowledge, these two game-
theoretic techniques are successfully implemented to determine the premium
strategy for modelling competition in a non-life insurance market. Thus, in
greater detail, a best-response potential game with non-linear aggregation is con-
structed and discussed. Premiums per unit of exposure are regarded as the
premium strategy, which makes our game to be suitable for different lines of
product-specific policies. As a new side-effect result of our approach, when it is
compared with the linear aggregation limitation in Dubey et al. (2006), we still
prove the existence of a pure Nash equilibrium strategy when the aggregate is
non-linear. This is novel result from a game-theoretic perspective. Furthermore,
from the point of view of actuarial science, the pure Nash equilibrium existence
of a constructed insurance game with a non-convex strategy set is obtained.2

That is, insurers can avoid any premium range that is not preferred to price.
We solve the insurance game with respect to two distinct insurance models by
calculating the best-response equations system. The numerical result for a 12-
player insurance game is presented under the assumption that the best-response
selection premium strategies always give the global maximum value of the cor-
responding payoff function.

The remainder of this paper is organised as follows. Section 2 introduces
the formation of two insurance market competition models and constructs the
game. In Section 3, the existence of a Nash equilibrium is proved using potential
game techniques. Section 4 presents the simulation results of twomodels in a 12-
insurer game. A conclusion can be found in Section 5.
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2. MODELLING FORMULATION AND PRELIMINARIES

2.1. Basic notations and assumptions

In this subsection, the necessary notation is provided and appropriate
assumptions are introduced. Thus, in the next lines, the definition of key
parameters is concentrated for a better understanding of the remaining paper:

N Set of insurers in the insurance market, N = {1, . . . , n}, n ∈ N;
ai Price sensitivity (positive) parameter of insurer i ∈ N;
h1, h2 Market presence limit factor, which controls the amount of the

flow of insurance policies attributable to the competition in the
market;

p1i Premium value (per unit of exposure) for insurer i ∈ N at time
t = 1;

Pi Set of strategies for insurer i ∈ N;
P Set of joint strategies for all insurers in the competitive market;
p Arbitrary profile in P ;
p1−i Strategy profile of other players at time t = 1,

{P1
1 , . . . , P1

i−1, P
1
i+1, . . . , P

1
n };

q1i Exposure (volume of business) for insurer i ∈ N at time t = 1,
which represents the number (quantity) of policies undertaken by
i ∈ N;

�q1i Marginal difference of exposure volume for insurer i ∈ N at time
t = 1;

q̂1i Actual (number of policies) volume of exposure in themarket com-
ing to insurer i ∈ N at time t = 1 from the unallocated exposure
at time t = 0;

q̂0i Given number of policies in the market, which is intended to flow
in or away from insurer i ∈ N at time t = 1 from the unallocated
exposure of time t = 0;

u1i Utility of insurer i at time t = 1, which represents the net income
of insurer i ∈ N at time t = 1, depends on insurer i ’s premium
and the aggregate of other players’ strategies;

σi Interacting function, which represents the interaction between in-
surer i ’s payoff with the others in the market;

x1−i Parameter indicating the aggregation of p1−i ;
αi Cost ratio of holding wealth of i ∈ N, generally higher than the

risk-free rate, αi ∈ (0, 1);
π1
i Expected breakeven premium (per unit of exposure) for insurer

i ∈ N at time t = 1, i.e., expectation of future claims plus other
expenses. However, for purposes of simplicity, we skip the word
“expected” when we refer to the breakeven premium in the re-
maining paper;
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ki Breakeven ratio for insurer i ∈ N, ki is equal to π1
i divided by p1i ;

θ1 Market stability factor, which is used to describe the market’s
condition;

βi Best-response correspondences for insurer i regarding all the other
players’ strategies;

Ri Best-response correspondences for insurer i regarding x1−i ;
r̂i The maximal selections of Ri .

Before we proceed further, the following general assumption is proposed.

Assumption 1: In the insurance market, for any insurer i ∈ N at time t = 1,

• the breakeven premium (per unit of exposure) π1
i is assumed to be less than

the corresponding premium p1i ;
• both π1

i and p1i are positive quantities.

Entries of new insurers and insurance products are not taken into consider-
ation. Insurers avoid to set premium under cost level (Taylor, 1986, 1987; Emms
et al., 2007; Pantelous and Passalidou, 2013, 2015, 2016, and see the references
therein). Thus, the case that p1i ≤ π1

i is not considered in this paper.

2.2. Insurance premium pricing model

For the proposed insurance model, every insurer must maximise its wealth. In
this direction, a two-period framework: t = 0, 1 is investigated in a general
insurance market. In line with the previous literature (see Section 1), the utility
function u1i that concerns insurer i with initial wealth u

0
i is formulated as follows:

u1i = −αi u0i + (1 − αi )(p1i − π1
i )q

1
i . (1)

For insurer i , pi is the premium value per unit of exposure; qi represents the
holding exposure volume; πi denotes the breakeven premium per unit of expo-
sure, which includes risk premium and other expenses. pi , qi , πi are all positive
and αi ∈ (0, 1) is a given parameter that refers to the cost ratio of holding in-
surer i ’s wealth. As shown in Equation (1), the net income of any insurer i is
regarded as its utility u1i , and each insurer is assumed to receive the premium
from policyholders at the beginning of time t = 1. We also assume that the in-
surance market contains N = {1, . . . , n} insurers, and each insurer has perfect
knowledge of its previous information. Moreover, p0i , q

0
i , π

0
i , u

0
i are all known

as constants at time t = 1. What is more, the value of q1i implies competition in
themarket andmust be determined analytically. An insurer’s change in the num-
ber of policies is related to the deviation in the insurer’s premium which is also
connected to the market’s premium level (Daykin et al., 1994).With the purpose
of investigating exposure changes, marginal difference of exposure volume �q1i
is defined in Equation (2):

�q1i = q1i − q0i . (2)
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We define the total market exposure Q1
m > 0 at time t = 1 as Emms (2012)

did, which contains two components. The first part was related to the sum of the
current exposure for each insurance company, i.e., Q1 = ∑

i∈N q
1
i > 0, and the

second part had to do with the available (unallocated) exposure in the market,
Q̂1, thus

Q1
m = Q1 + Q̂1.

Q̂1 is allowed to be negative, and Q̂1 ≤ Q1
m. Policyholders may stop renewing

policies at the end of time t = 0, and new clients may buy policies at the begin-
ning of time t = 1 to become new policyholders. Consequently, Q1 cannot be
equal to Q0, which causes the sum of all insurers’ exposure change

∑
i∈N �q1i

to take any value in R. In our approach, instead of simply applying the demand
function as it was the current trend (see the references in Section 1), the com-
petition between any pair of insurers is now considered. Thus, additionally, the
interaction between insurers’ premiums needs to be formulated; consequently,
�q1i is further analysed.

In the following two subsections, two distinct insurance models are intro-
duced: (a) the simple exposure difference model I (GI ), where

∑
i∈N �q1i might

take any value in R and the available (unallocated) exposure of the insurance
market Q̂1 is under consideration; (b) the advanced exposure difference model
II (GII ), which is used to further analyse policies for any insurer. Both models
investigate the competition under the following assumption.

Let us define the transfer function ρ from insurer j to insurer i at time t = 1
as follows:

ρ1
j→i = 1 − p0j

p0i

p1i
p1j

. (3)

The transfer function ρ1
j→i in Equation (3) describes that, for time t = 1, when

the quotient of insurer i ’s premium and the previous premium p1i
p0i

is less than

j ’s quotient
p1j
p0j
, insurer j ’s policies tend to flow to insurer i . The exposure of in-

surer i increases in the competition with j , whereas the exposure of j decreases.

Policies flow in a reverse manner and p1i
p0i

>
p1j
p0j
.

This assumption indicates that the preference of policyholders, i.e., when one
insurer increases its premium and its competitor decreases its own premium,
the insurer simultaneously decreases its attractiveness. When both insurers in-
crease their premiums by different percentages, the insurer with the smaller in-
crement becomes more attractive. Finally, in a similar manner, when both de-
crease their premiums, the insurer with the larger decrement becomes more
attractive.

Insurer i gains exposure from the competition with insurer j when it offers
a more attractive premium. However, policyholders sometimes choose an in-
surer’s policies with higher premiums as the most preferable one because of a
better reputation (Pantelous and Passalidou, 2015, and the references therein).
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For this reason, the percentage changes in the premium are adapted in the trans-
fer function rather than in the value of the premium itself. Note that the transfer
function ρ1

i→ j can be either positive or negative. The policy amount of i is in-
creased when ρ1

i→ j > 0 and reduced when ρ1
i→ j < 0.

By investigating the flow of policies between any pair of insurers, the entire
insurance market competition can be evaluated by aggregating every competi-
tion amongst the different pairs of insurers. This topic is the focus of discussion
in the following subsections.

2.2.1. Simple exposure difference model I (GI). Let us consider that the com-
petition in the insurance market is formulated as follows. First, the premium
levels vary over time, which might even cause a change in the total number of
policies in themarket. Second, potential clients consider holding insurance poli-
cies when premiums decline. In contrast, the insurance market may lose clients
if the market premium level is high.

In GI , we assume that for any pair of insurers i and j , exposure qi —which
is related to gain or loss — is not equal to exposure q j — which has to do with
loss or gain — respectively. Thus, this assumption indicates that the available
exposure joins or leaves the market because of competition between i and j .
The expected exposure to flow by insurer i attributable to competition with j is
given by

q1j→i = h1aiρ1
j→i q

0
i (4)

�= −q1i→ j , h1 > 0.

The exposure gain or loss from all other insurers to i is given by

�q1i =
∑
j∈N

q1j→i . (5)

Equations (4)–(5) are interpreted as follows. The strength (which is related to
either gain or loss) of the exposure of insurer i attributable to the competition
with j is demonstrated in Equation (4). The premium p1j is modelled as being

transferred to insurer i ’s premium by multiplying p0i
p0j

in ρ1
i→ j for the purpose

of simultaneously comparing two insurers’ premiums. Insurer i ’s market price
sensitivity parameter ai is considered as information of insurer i for present-

ing the market power. Note that, regarding the transferred premium p0i
p0j
p1j as

i ’s previous premium p0i , the item aiρ1
j→i q

0
i is just the volume of business i ’s

gain or loss when the price elasticity is ai . In our case, the price elasticity of
demand, ai , is determined by imitating the concept of the Lerner (1934) index,
i.e., the leader in the insurance market which has the larger market power has
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lower price sensitivity and so on and so forth. In a competitive market, q1i de-
pends not only on p1i but also on other insurers’ premiums. Hence, instead of

comparing the previous premium p0i , the transferred premium p0i
p0j
p1j is adopted

to characterise the change in the volume of polices. In Equation (4), h1 is the
market presence limit factor, which is used to limit the scale of the policies’ flow
amount. Because different stabilities exist in various insurance markets, h1 can
take different positive values.

The exposure difference �q1i from the competition in the entire market is
obtained by summing up all of the policies’ gains or losses when competing with
all insurers. Note that

∑
i∈N �q1i is allowed not to be equal to zero. Regarding

Equations (1)–(5), the utility function can be deduced.
We define u1GI ,i (similar for u1GII ,i , see Subsection 2.2.2) be the utility func-

tions of insurer i at time t = 1 in GI (GII ).

Lemma 1. For the simple exposure difference model I, the utility function u1GI ,i of
insurer i at time t = 1 is given by

u1GI ,i = −aih1q0i (1 − αi )

p0i

⎛⎝∑
j∈N

p0j
p1j

⎞⎠ (p1i )
2

+ (1 − αi )

⎡⎣q0i + nh1aiq0i + π1
i

⎛⎝∑
j∈N

p0j
p1j

⎞⎠ aih1q0i
p0i

⎤⎦ p1i

− αi u0i − π1
i (1 − αi )[q0i + naih1q0i ]. (6)

Proof. By combining Equations (2)–(5), we obtain the exposure of i consid-
ering that the competition occurred at time t = 1.

q1i = q0i + �q1i

= q0i +
∑
j∈N

h1aiρ1
j→i q

0
i

= q0i +
∑
j∈N

h1aiq0i

(
1 − p0j

p0i

p1i
p1j

)

= q0i + nh1aiq0i − aih1q0i p
1
i

p0i

∑
j∈N

p0j
p1j

.
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By taking q1i above into Equation (1), we have that

u1GI ,i = −αi u0i + (1 − αi )(p1i − π1
i )

⎛⎝q0i + nh1aiq0i

−aih1q0i p
1
i

p0i

∑
j∈N

p0j
p1j

⎞⎠
= −aih1q0i (1 − αi )

p0i

⎛⎝∑
j∈N

p0j
p1j

⎞⎠ (p1i )
2

+(1 − αi )

⎡⎣q0i + nh1aiq0i + π1
i

⎛⎝∑
j∈N

p0j
p1j

⎞⎠ aih1q0i
p0i

⎤⎦ p1i

−αi u0i − π1
i (1 − αi )[q0i + naih1q0i ].

2.2.2. Advanced exposure difference model II (GI I). The modified exposure
for insurer i can be further analysed. Different from GI , in GII , we concretely
characterise the two components mentioned in Subsection 2.2, i.e., (a) reallo-
cated policies of the previous market Q0, and (b) policies from the (unallocated)
exposure Q̂1.

Regarding the competition between any pair of insurers i and j , the number
of exchange policies is characterised. The exposure gain or loss from i to j is
obtained with respect to both insurers’ premium strategy and market power.
Given a positive market presence limit factor h2, the strength of the flow of
business between i and j is modelled as follows:

q1j→i = h2(aiρ1
j→i q

0
i − a jρ1

i→ j q
0
j ) (7)

= −q1i→ j , h2 > 0.

As demonstrated in Equation (7), both exposure i which tended to a gain or loss,
aiρ1

j→i q
0
i , and exposure j which showed a potential loss or gain, −a jρ1

i→ j q
0
j ,

represent the exchange strength from summing up the volume. The volume of
the flow of exposure is further governed by a positive market presence limit fac-
tor h2. Note that

∑
i∈N

∑
j∈N q

1
j→i equals to zero because of policies exchange

between insurers in the component (a). In the same way, for the (b) component,
the potential flow of policies, either attract or withdraw from the unallocated

insurance market Q̂1, and it is modelled as h2ai (1 − p1i
p0i

θ1)q0i .

The flow of policies from the unallocated insurance market is modelled
similarly to the concept of price elasticity: a comparison with previous pre-
mium price. Apart from the competition between pairs of insurers, they tend to
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lose policies to the available market when increasing their premiums and gain
policies by lowering them. In addition, a positive market stability factor θ1 is
adopted to describe themarket condition: θ1 = 1 indicates that themarket faces
a general condition; the insurance industry expands when θ1 < 1 because more
policies tend to flow into the industry from the unallocated market; θ1 > 1,
when the market faces a situation with challenges. Overall, the exposure gain or
loss for i is given by

�q1i =
∑
j∈N

q1j→i + h2ai

(
1 − p1i

p0i
θ1

)
q0i , θ1 > 0. (8)

FollowingAssumption 1, ki ∈ (0, 1). Then, the objective function for the GII
case can be deduced.

Lemma 2. For the advanced exposure difference model II, the utility function
u1GII ,i of insurer i at time t = 1 is given by

u1GII ,i = − (1 − ki )(1 − αi )h2aiq0i
p0i

⎛⎝∑
j∈N

p0j
p1j

+ θ1

⎞⎠ (p1i )
2

+ (1 − ki )(1 − αi )(q0i + (n + 1)h2aiq0i − h2
∑
j∈N

a jq0j )p
1
i

+ (1 − ki )(1 − αi )h2 p0i
∑
j∈N

a jq0j
p1j
p0j

− αi u0i . (9)

Proof. Using Equations (7)–(8) instead, Lemma 2 can be showed similarly
as Lemma 1.

In the next Subsection, the construction of the game is presented and further
discussed.

2.3. Game construction

2.3.1. Normal form game. Let us define an N-insurer game, G, in a two-
period framework: t = 0, 1. Each insurer i ’s strategy at time t = 1 is p1i ,
which stands for the action setting premium as the value of p1i , whereas Pi

is the set of strategies. We use P̃1
i to denote the equilibrium strategy for in-

surer i . Insurer i ’s payoff function is defined as u1i : P → R, where P ≡
P1×· · ·×PN and p is an arbitrary profile inP . The notation p1−i ∈ P−i stands
for {p11, . . . , p1i−1, p

1
i+1, . . . , p

1
n}, which is used to represent the strategy profile of

other players at time t. (p1i , p
1
−i ) ∈ P decomposes a strategy profile in two parts,

the insurer i ’s strategy and other insurers’ components. Given this game in the
insurance market, instead of calculating the optimal premium that maximises a
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single insurer’s wealth, as was the case in the previous literature (see Section 1
for further details), the calculation of the Nash equilibrium is targeted.

Generally, from a game theory perspective, the Nash equilibrium is a predic-
tion strategy that dictates the choices that each insurer is willing to make. Given
the optimal strategy profile of other insurers, the market reaches a Nash equi-
librium when no insurer can increase its total payoff by changing its strategy.
The Nash equilibrium is defined through the best-response correspondences. In
what it follows the next definitions should be stated.

Definition 1 (Fudenberg and Tirole 1991). Define βi by

βi (p
1
−i ) = {p1i ∈ Pi : u1i (p

1
i , p

1
−i ) ≥ u1i ( ṕ

1
i , p

1
−i ), ∀ ṕ1i ∈ Pi }.

We call βi the best-response correspondences for insurer i .

For any choice p−i ∈ P−i of others’ strategies at time t, the set βi (p
1
−i ) of

best replies of insurer i is given by

βi (p
1
−i ) = argmaxp1i ∈Pi u

1
i (p

1
i , p

1
−i ).

Each player’s predicted strategy must be a best response to the predicted
strategies of the other players as the market reaches a Nash equilibrium.

Definition 2 (Fudenberg and Tirole 1991). A strategy profile, p̃1, is a Nash equi-
librium of the game (at time t) if and only if each player’s strategy is a best re-
sponse to the other players’ strategies. That is

p̃1i ∈ β(̃p1−i ), ∀i ∈ N.

The best-response potential game technique is further considered, which is
widely used to prove the existence of Nash equilibrium.

Definition 3 (Voorneveld 2000). A strategic game G̃ =< (βi ,Pi )i∈N > is a best-
response potential game if there exists a function f : P → R such that

∀i ∈ N, ∀p−i ∈ P−i : βi (p−i ) = argmaxpi∈Pi f (pi , p−i ).

The function f is called a best-response potential function of the game G̃.

The potential function f offers a new approach to determining the Nash
equilibrium for the game G̃ by maximising f . Note that, f is a function, which
depends on every insurer’s strategy. If f has a maximum over P , G̃ has a Nash
equilibrium. A specific type of game, known as an aggregate game, is introduced
to solve the Nash equilibrium for the N insurers’ game.

2.3.2. Aggregate games. With the additional requirement that each insurer’s
payoff is written as a function that depends only on its own strategy and an
aggregate of the full strategy profile, a normal form game can be transformed
into a game with aggregation. Formally, we have the following definition.
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Definition 4 (Martimort and Stole 2012). An aggregate game in the insurance
market, G ′ =< (Pi , u1i )i∈N, g >, is a normal form game with an extra condition
that there exists an aggregate function, g(p1) : P −→ M ⊆ R, such that each
player’s payoff function can be further specialised to the aggregate form:

p1 �→ u1i (p
1
i , g(p

1)),

where M1 ∈ M, is called an aggregator of p1.

The only requirement for a game to represent an aggregate game is that there
exists an aggregate function (Alos-Ferrer and Ania, 2005). To construct an in-
surance game with aggregation, a meaningful monotone aggregate function g is
expected to be obtained. Here, the Insurance Game I, equipped with the objec-
tive function in the simple exposure difference model I, and the Insurance Game
II, implemented with the objective function in the advanced exposure difference
model II, are considered. Before we proceed further, the definitions of GI and
GII are given as follows.

Definition 5. Agame GI =< (PGI ,i , u
1
GI ,i )i∈N > has a finite set of players N, with

compact, positive, pure strategy set PGI ,i with respect to every i , whereas u
1
GI ,i in

Equation (6) is the payoff function for i at time t = 1. This type of game is called
Insurance Game I.

Similarly, Insurance Game II is defined as GI I =< (PGII ,i , u
1
GII ,i )i∈N >, with

player set N, compact, positive, pure strategy set PGII ,i and payoff function u
1
GII ,i

in Equation (9).

3. MAIN RESULTS

In this section, the theoretical results for models GI and GII are presented.
However, before we proceed further with the existence of a Nash equilibrium, it
is necessary to show that both GI and GII are aggregate games.

Lemma 3. Based on the definition of payoff functions stated in the previous sec-
tion, both GI and GII are aggregate games.

Proof. Denote M1 = ∑
j∈N

p0j
p1j

as the aggregation of GI game. Then, the

payoff function in Equation (6) turns out to be

u1GI ,i = −aih1q0i (1 − αi )

p0i
M1(p1i )

2 + (1 − αi )

[
q0i + nh1aiq0i + π1

i M
1 aih1q

0
i

p0i

]
p1i

− αi u0i − π1
i (1 − αi )[q0i + naih1q0i ].
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There exists an aggregate function g(p1) = ∑
j∈N

p0j
p1j

in GI . For GII game, we

further denotem1 = ∑
j∈N a jq

0
j
p1j
p0j
as the other aggregation. Similarly, we obtain

the payoff,

u1GII ,i = − (1 − ki )(1 − αi )h2aiq0i
p0i

(M1 + θ1)(p1i )
2

+ (1 − ki )(1 − αi )

⎛⎝q0i + (n + 1)h2aiq0i − h2
∑
j∈N

a jq0j

⎞⎠ p1i

+ (1 − ki )(1 − αi )h2 p0i m
1 − αi u0i .

Thus, the statement of the Lemma is derived.

In aggregate games, for every player i , the other players in the competi-
tive market are considered as a single player because their strategies aggregate
through an interacting function σi : P−i → X−i ⊆ R. Intuitively, the other
players influence i through the interaction function σi (p

1
−i ). X−i = σi (P−i )

is set to indicate the range of σi , whereas x1−i = σi (p
1
−i ) ∈ X−i for any t.

With x1−i = ∑
j �=i

p0j
p1j
, respectively, the GI and GII payoff functions are given as

follows:

u1GI ,i = −aih1q0i (1 − αi )

p0i
x1−i (p

1
i )

2

+ (1 − αi )

[
q0i + (n − 1)h1aiq0i + π1

i x
1
−i
ai h1q0i
p0i

]
p1i

− αi u0i − π1
i (1 − αi )[q0i + (n − 1)aih1q0i ]

and

u1GII ,i = − (1 − ki )(1 − αi )h2aiq0i
p0i

(x1−i + θ1)(p1i )
2

+ (1 − ki )(1 − αi )

⎛⎝q0i + nh2aiq0i − h2
∑
j �=i

a j q0j

⎞⎠ p1i

+ (1 − ki )(1 − αi )h2 p0i
∑
j �=i

a j q0j
p1j
p0j

− αi u0i .

To generate Nash equilibrium premium strategies, Ri : X−i → 2Pi , we need to
define

Ri (x1−i ) = argmaxp1i ∈Pu
1
i (p

1
i , x

1
−i ),
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which coincides with βi (p
1
−i ). In other words, Ri describes how the interaction

parameter x1−i = σi (p
1
−i ) influences insurer i ’s best-response strategy.

In the case of GI , we have

RGI ,i (x
1
−i ) = argmax

p1i ∈P
u1GI ,i (p

1
i , x

1
−i ). (10)

r̂G I ,i is defined as the maximal selections of RGI ,i (x
1
−i ), and for GII , we have

RGII ,i (x
1
−i ) = argmax

p1i ∈P
u1GII ,i (p

1
i , x

1
−i ). (11)

r̂G I I ,i is defined as the maximal selections of RGII ,i (x
1
−i ).

Before we prove that both GI and GII are best-response potential games, we
need to recall first, Lemma 4 which is proposed by Jensen (2010).
Lemma 4. The game< (βi ,Pi )i∈N > is a best-response potential game if and only
if there exists a real-valued function, f :→ R, such that

p̃1 
 p1 ⇒ f (p̃1) ≥ f (p1) (12)

and
p̃1 � p1 ⇒ f (p̃1) > f (p1), (13)

where the previous two binary relations are defined as

p̃1 
 p1 ⇔ ∃i ∈ N, s.t. [p̃1−i = p1−i , and p̃1i ∈ Ri (x1−i )]

p̃1 � p1 ⇔ [p̃1 
 p1, and p1−i /∈ Ri (x1−i )]

The next lemma is useful for the main result of our paper. Its proof is rather
technical, and for better understanding, we present it using intermediate steps.

Lemma 5. Both GI and GII are best-response potential games.

Proof. Initially, GI is considered.

• Step 1: State the best-response potential function.
– Convex hull of X−i .

In the case that Pi is not convex, X−i is not convex as well. Denote 	−i as
the convex hull of X−i , which is obviously compact.

For GI , RGI ,i is the best-response correspondences to x
1
−i of i . We extend

RGI ,i in a piecewise linear fashion to 
GI ,i , defined on the domain 	−i .

GI ,i coincides with RGI ,i on X−i . For any s ∈ 	−i \ X−i , define


GI ,i (s) = z− s
z− y

RGI ,i (y) + s − y
z− y

RGI ,i (z),

with y = max{v ∈ X−i |v ≤ s} and z = min{v ∈ X−i |v ≥ s}.
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– For any insurer i , linearly enhance the best response domain to be the same
as its strategy domain.
Let P̂GI ,i denote the range of player i ’s best response map, and the set be
{p1i ∈ PGI ,i : p

1
i ∈ Ri (σi (p1−i ))} ⊆ PGI ,i . Denote φ1

GI ,i as the selections of

GI ,i , which is continuous on 	−i . We further define a mapping Oi (φ

1
GI ,i ),

which linearly enhances the domain P̂GI ,i to PGI ,i . In addition, r1GI ,i is de-
fined as the selection of Oi (φ

1
GI ,i ). In other words,

∀i, ∃x̂1−i s.t. p1i ∈ Oi (
GI ,i (x̂
1
−i )).

Let ⊥1
i = minp1

−i∈P1
−i

σi (p
1
−i ), �1

i = maxp1
−i∈P1

−i
σi (p

1
−i ) and extend each

r1GI ,i to [⊥1
i , �1

i ] along the line with Kukushkin (2004).
– We state that the following Equation (14) is the best-response potential func-

tion of GI .

f (p1i , p
1
−i ) =

∑
i

[
p0i

∫ �1
i

⊥1
i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ− p0i

p1i
⊥i

]
+

∑
i< j

p0i p
0
j

p1i p
1
j

.

(14)
• Step 2: Prove that Equations (12) and (13) are true.

– Prove that each of the correspondences RGI ,i : X−i → 2Pi is a strictly de-
creasing selection; that is, for every Ri , all x1−i ∈ X−i such that Ri (x̄1−i ) >

Ri (x1−i ) whenever x̄
1
−i ≤ x1−i .

The statement is satisfied as long as the conditions of Topkis’ Theorem
(see Topkis (1998) for details) are satisfied, i.e. each Pi is a lattice, every
uGI ,i (p

1
i , x

1
−i ) supermodular in p1i ,and has strictly decreasing differences

in p1i and x
1
−i .

Since p1i is one-dimensional for all i , the first two of these requirements
are satisfied:Pi is a lattice for all i ; every uGI ,i supermodular in p1i . In addi-
tion, because u1i is twice differentiable, uGI ,i (p

1
i , x

1
−i ) has strictly decreasing

differences in p1i and x
1
−i if and only if ∂2uGI ,i (p

1
i , x

1
−i )/∂p

1
i ∂x

1
−i < 0. In an

insurance game GI , we have

∂2uGI ,i (p
1
i , x

1
−i )/∂x

1
−i∂p

1
i = ∂

{
−2

(1 − αi )h1aiq0i
p0i

x1−i p
1
i + (1 − αi )

[
q0i

+ (n − 1)h1aiq0i + π1
i x

1
−i
ai h1q0i
p0i

]}
/∂x1−i

= aih1q0i (1 − αi )

p0i
(π1

i − 2p1i ) < 0.

According to the assumption that for any i, t, π1
i < p1i , the above item

is negative. Hence, u1i (p
1
i , x

1
−i ) has strictly decreasing differences in p1i and
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x1−i . Because Oi (φ
1
GI ,i ) enhance the domain P̂GI ,i linearly, r

1
GI ,i coincides

with φ1
GI ,i . One can deduce that if x̂1−i > x1−i , we have p

1
i < p̃1i and vice

versa.
– The comparison between f ( p̃1i , p

1
−i ) and f (p1i , p

1
−i ).

With equilibrium premium p̃1i of i in p̃1, the difference between f (p̃1) and
f (p1) is demonstrated as

f ( p̃1i , p
1
−i ) − f (p1i , p

1
−i )

=
∑
i∈N

[ ∫ �1
i

⊥1
i

p0i · min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ

]

−
∑
i∈N

[ ∫ �1
i

⊥1
i

p0i · min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ

]

−
∑
i∈N

[
p0i
p̃1i

· ⊥1
i

]
+

∑
i∈N

[
p0i
p1i

· ⊥1
i

]
+

[
p0i
p̃1i

− p0i
p1i

]
·
∑
j �=i

p0j
p1j

=
∫ �1

i

⊥1
i

p0i · min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ −

∫ �1
i

⊥1
i

p0i · min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ

− p0i
p̃1i

· ⊥1
i + p0i

p1i
· ⊥1

i + p0i
p̃1i

· x1−i − p0i
p1i

· x1−i

= p0i

[ ∫ �1
i

⊥1
i

min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ −

∫ �1
i

⊥1
i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ

−
∫ x1−i

⊥1
i

− 1

p̃1i
dτ +

∫ x1−i

⊥1
i

− 1

p1i
dτ

]
.

When x̂1−i > x1−i ,

f (P̃1
i , p1−i ) − f (p1i , p

1
−i )

=
∫ x1−i

⊥1
i

min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ +

∫ x̂1−i

x1−i

min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ

+
∫ �1

i

x̂1−i

min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ −

∫ x1−i

⊥1
i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ
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−
∫ x̂1−i

x1−i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ −

∫ �1
i

x̂1−i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ

−
∫ x1−i

⊥1
i

− 1

p̃1i
dτ +

∫ x1−i

⊥1
i

− 1

p1i
dτ

=
∫ x1−i

⊥1
i

− 1

p̃1i
dτ +

∫ x̂1−i

x1−i

− 1

r1GI ,i (τ )
dτ +

∫ �1
i

x̂1−i

− 1

r1GI ,i (τ )
dτ

−
∫ x1−i

⊥1
i

− 1

p1i
dτ −

∫ x̂1−i

x1−i

− 1

p1i
dτ −

∫ �1
i

x̂1−i

− 1

r1GI ,i (τ )
dτ

−
∫ x1−i

⊥1
i

− 1

p̃1i
dτ +

∫ x1−i

⊥1
i

− 1

p1i
dτ

=
∫ x̂1−i

x1−i

[
1

p1i
− 1

r1GI ,i (τ )
]dτ > 0.

When x̂1−i < x1−i ,

f (P̃1
i , p1−i ) − f (p1i , p

1
−i )

=
∫ x̂1−i

⊥1
i

min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ +

∫ x1−i

x̂1−i

min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ

+
∫ �1

i

x1−i

min

{
− 1

p̃1i
, − 1

r1GI ,i (τ )

}
dτ −

∫ x̂1−i

⊥1
i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ

−
∫ x1−i

x̂1−i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ −

∫ �1
i

x1−i

min

{
− 1

p1i
, − 1

r1GI ,i (τ )

}
dτ

−
∫ x1−i

⊥1
i

− 1

p̃1i
dτ +

∫ x1−i

⊥1
i

− 1

p1i
dτ

=
∫ x̂1−i

⊥1
i

− 1

p̃1i
dτ +

∫ x1−i

x̂1−i

− 1

r1GI ,i (τ )
dτ +

∫ �1
i

x1−i

− 1

r1GI ,i (τ )
dτ

−
∫ x1−i

⊥1
i

− 1

p1i
dτ −

∫ x̂1−i

x1−i

− 1

p1i
dτ −

∫ �1
i

x̂1−i

− 1

r1GI ,i (τ )
dτ
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−
∫ x1−i

⊥1
i

− 1

p̃1i
dτ +

∫ x1−i

⊥1
i

− 1

p1i
dτ

=
∫ x1−i

x̂1−i

[
1

r1GI ,i (τ )
− 1

p1i
]dτ > 0.

It is obvious that if x̂1−i = x1−i , this item equals zero. In this case,
p1i , p̃

1
i ∈ RGI ,i (σi (p

1
−i )) (i.e., if Equation (12) holds but not Equation (13)),

f (P̃1
i , p1−i ) − f (p1i , p

1
−i ) = 0. Equation (12) is proved to be true in an

insurance game GI . If not, Equation (13) is proved.

• Step 3: Conclusion
We conclude that when (p1i , p

1
−i ), ( p̃

1
i , p

1
−i ) ∈ Pi ,( p̃1i , p

1
−i ) 
 (�)(p1i , p

1
−i ) ⇒

f ( p̃1i , p
1
−i ) − f (p1i , p

1
−i ) ≥ (>)0, with respect to Lemma 5. An insurance

game G1 is the best-response potential game, whereas f is the best-response
potential function.

Similarly, in GII ,

∂2u1GII ,i (p
1
i , x

1
−i )/∂x

1
−i∂p

1
i = ∂{−2

(1 − αi )(1 − ki )h2aiq0i
p0i

(x1−i + θ1)p1i

+(1 − ki )(1 − αi )(q0i + nh2aiq0i − h2
∑
j �=i

a j q0j )}/∂x1−i

= −2
(1 − αi )(1 − ki )h2aiq0i

p0i
p1i < 0.

We also obtain that u1GII ,i (p
1
i , x

1
−i ) has strictly decreasing differences in p1i

and x1−i . By replacing r1GI ,i by r
1
GII ,i in f from Equation (14), one obtains the

best-response potential function of u1GII ,i in GII .

Following the discussion so far, one can deduce the useful Theorem, which
is the main theoretical result of our paper.

Theorem 1. The Nash equilibrium at time t = 1 in both GI and GII exists.

Proof. In GI , let us suppose that

p̃1 ∈ argmax f (p1i , p
1
−i ).

Such a p̃1 exists because Pi is compact for any i and f is continuous. If p̃1

is not a Nash equilibrium of G1, then f (c1i , p̃
1
−i ) > f (p̃1) for some c1i ∈ Pi ,

contradicting that p̃1 maximises f . Hence, the Nash equilibrium exists in GI .
Similarly, it can be shown that the Nash equilibrium exists in GII .
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TABLE 1

12 INSURANCE COMPANIES ARE CONSIDERED FROM THE GREEK INSURANCE MARKET IN 2010. PREMIUM
VALUES AND NUMBER OF CONTRACTS ARE BASED ON DATA FROM the Hellenic Association of Insurance

Companies. PRICE SENSITIVITY PARAMETER FOR EVERY INSURER DEMONSTRATED IN THE TABLE IS USED AS
A BENCHMARK.

Insurance Number of Price sensitivity
Companies Premium Contracts parameter
i p0i q0i ai

1 e269.09 298,269 2.0
2 e282.07 303,673 2.0
3 e377.06 282,224 2.0
4 e371.52 304,609 2.0
5 e281.56 295,769 2.0
6 e377.83 796,139 1.9
7 e257.88 298,304 2.0
8 e366.99 200,135 2.1
9 e347.58 211,314 2.1
10 e351.18 299,690 2.0
11 e364.11 299,995 2.0
12 e291.22 319,453 2.0

4. NUMERICAL EXAMPLE

In this section, a numerical example with 12 major non-life insurance compa-
nies based on the number of contracts (i.e., volume of business) they have in
their portfolios is proposed to illustrate the main modelling characteristics and
theoretical findings of our paper. A scenario which investigates insurers with
different market power is considered by consisting of a market leading insurer
with 796, 139 contracts, nine almost equal insurers with around 300, 000 con-
tracts and two followers with only around 200, 000 contracts.3 Referring to the
premium values at time t = 0, the pricing strategy for the entire market of in-
surers is derived by finding the Nash equilibrium premiums at time t = 1. The
impact of different parameters involved in the process to the equilibrium premi-
ums is also analysed. To generate results that are comparable to those existing in
the literature of actuarial science and for simplicity in our calculations, convex
premium strategy sets are considered in the numerical example.4

Data are used from the Greek market, as it was presented in Pantelous and
Passalidou (2013, 2016). Thus, the premium prices are calculated in Euros. Let
us assume that the number of contracts at time t = 0 is demonstrated in Ta-
ble 1. With respect to t, this dataset is adopted for a 12-player game because the
insurers’ premium prices and exposure in the previous period are used. With an
intention to describe insurance companies’ market power, the price sensitivity
parameter, ai , for all insurers i is characterised further.
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TABLE 2

ENVIRONMENTAL PARAMETER VALUES IN GI .

Number of Market Participants n 12
Market Presence Limit Factor h1 0.09
The Breakeven Ratio of Every Insurer ki 0.5

The standard values of price sensitivity parameter are set up in Table 1, and
they can be used as a benchmark. As it was already demonstrated, insurer 6 is
considered to be the market leader with a lower price sensitivity parameter a6 =
1.9, because it occupies significant greater market weight compared with other
insurers. Correspondingly, insurers 8 and 9 are regarded as market followers,
which have price sensitivity parameters of value 2.1. All of the others insurers’
price sensitivity parameter take the value of 2.0 in our insurance game.5

The diversity of the price sensitivity parameter for the insurers obviously
affect the equilibrium premium profiles. Different values of ai are investigated
through a simulation. However, for any i , a1i are restricted in [1.5, 2.5]. Using the
previously demonstrated market data, the Nash equilibrium premium profiles
are calculated for both GI and GII .

4.1. Insurance game I simulation results

In insurance game I, GI , the Nash equilibrium premium profiles are calculated
with respect to the market’s data at time t = 0; see Table 1. Table 2 sets up also
ad hoc the main parameters. Note that for any insurer i in G1, the breakeven
premium π1

i is not assumed to be proportional to p1i . The percentage between
π1
i and p1i is used to describe the cost structure of i .
From Equation (6), the second-order condition of payoff is negative for

each insurer i in GI . Hence, when the stationary point is in the domain PGI ,i ,
i ’s payoff is maximised. What is more, one can find out the Nash equilibrium
profiles by implementing the following algorithm:

Step 1: For each insurer i , set the first-order condition of its payoff function
equal to zero as the maximum selection(s). From Equation (10),

r̂G I ,i :
1 + (n − 1)h1ai + π1

i x
1
−i

ai h1
p0i

2h1ai x1−i
p0i = 0.

Step 2: Solve the system of r1GI ,i .

Step 3: Select the profile(s) corresponds (correspond) to each insurer’s premium
located in PGI ,i , which is (are) the Nash equilibrium premium profile(s).
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FIGURE 1: Previous (at time t = 0) vs. equilibrium (at time t = 1) premium profiles in GI . The red solid line is
the equilibrium premium profile at time t = 1 with respect to 12 insurers, which is on the x-axis. Premium

values are given on the y-axis. The blue dash line represents the previous premium profile given in the Table 1.

Be aware that when the derived values are located outside of PGI ,i , then these
are not the equilibrium premiums, as the edges of the premium domain reach
a maximum instead. Furthermore, it indicates that the Nash equilibrium still
exists even though the calculated premium profile have not located inside of
PGI ,i . However, this case won’t be analysed further here.

Let us now characterise the premium strategies set PGI ,i . For each insurer i ,
the premiums are restricted to take values between e180 and e800 during any
period, i.e., p1i ∈ [e180,e800]. In addition, the other parameters are restrained,
i.e., the market presence limit factor h1 ∈ [0.07, 0.11] and the breakeven pre-
mium π1

i ∈ [30%p1i , 70%p1i ], for any i , t. Numerical results for the system of
equations r1GI ,i are generated using m-file “fsolve”. It should be mentioned that
the Nash equilibrium premium profile might not be unique. However, amongst
these results, we chose the first positive premium profile which was located in
PGI ,i .

6 This result is illustrated in Figure 1. Figure 2 shows the corresponding
number of contracts from insurers 1 to 12.

The ratio between insurers’ equilibrium premiums at time t = 1 is correl-
ative to the previous premium ratio in Figure 1. Note that the market leader
insurer 6 tends to increase its premium, which leads to a reduction of its pol-
icy numbers in Figure 2. Larger market power offers insurer 6 the advantage
in competition, which allows it to increase its premium until equilibrium for
seeking higher profit.
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FIGURE 2: Previous (at time t = 0) vs. equilibrium (at time t = 1) number of policies in GI . The left figure
illustrates the number of contracts with respect to 12 insurers at time t = 0, which are given in Table 1. The

right figure shows the equilibrium number of contracts at time t = 1.

Figure 3 demonstrates the effect of the increasing parameter π1
6 in GI . In

Figure 3, adjustment for a single insurer’s breakeven premium ratio is inves-
tigated. The market leader, insurer 6, is modelled to increase π1

6 from 30% to
70% of p1i , whereas all other insurers keep the ratio at 50%. The increase in the
breakeven premium ratio of insurer 6 is observed to cause not only an increase in
its equilibrium premium but also a slight incremental increase in other insurers’
premiums.

Price sensitivity parameter, ai , strongly affects the equilibrium premium of
each insurer i . The effects of modifying ai with regard to the market leading
insurer 6 and the market follower 8 are illustrated in Figures 4 and 5, and all
other parameters remain the same as before. Figure 4 shows that the two players’
equilibrium premiums decrease as the price sensitivity parameter decreases. In
Figure 5, the number of contracts is observed to increase as ai increases for
both insurers 6 and 8. In addition, in both Figures 4 and 5, the slope of insurer
6 is obviously larger than that of insurer 8, indicating that parameter ai is more
sensitive with respect to the market leader than the market follower.

The values of parameters a6 and h1 strongly affect the equilibrium premium
at time t = 1. We give an example of insurer 6 about the sensitivity with respect
to these two parameters in Figure 6.
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FIGURE 3: Diversity of equilibrium premium profiles with different π1
6 in GI . The market leader 6’s

breakeven premium ratio is investigated, which takes values from 30% to 70%. The corresponding five
different equilibrium premium profiles are given.

FIGURE 4: Equilibrium premium sensitivity test of a6 and a8 in GI .
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FIGURE 5: Equilibrium number of policies sensitivity test of a6 and a8 in GI .

FIGURE 6: Diversity of insurer 6’s equilibrium premium in GI . Different equilibrium premium values are
given, with respect to different a6 and h1.

https://doi.org/10.1017/asb.2016.31 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.31


POTENTIAL GAMES WITH AGGREGATION 295

TABLE 3

ENVIRONMENTAL PARAMETER VALUES IN GII .

Number of Market Participants n 12
Market Presence Limit Factor h2 0.0205
Market Stability Factor θ1 1

4.2. Insurance game II simulation results

Using Table 1, and the same parameters reported in Table 3, the Nash equilib-
rium premium profiles in GII are calculated. From Equation (9), the second-
order condition of payoff is negative for each insurer i in GII . Similarly, we
use the algorithm which is presented for the case GI by assuming that r̂1GII ,i is
defined by

r̂1GII ,i :
q0i + nh2aiq0i − h2

∑
j �=i a j q

0
j

2h2aiq0i (x
1
−i + θ1)

p0i = 0,

where r̂1GII ,i is the maximal selection of RGII ,i (x
1
−i ), see Equation (11), for i at

time t = 1 in GII .
Note that the breakeven ratio ki does not affect the best-reply selection in

GII . If the calculated premium for each insurer is located in PGI ,i , the Nash
equilibrium is unique in GII , since the equation of r̂1GII ,i is a linear one.

InGII , for each insurer i , the premiums are retained betweene180 ande900
during any period, i.e., p1i ∈ [e150,e900]. The other parameters are also re-
stricted, such as the market presence limit factor h2 ∈ [0.0203, 0.0207] and the
market stability factor θ1 ∈ [0.8, 1.2] for any t. Figures 7 and 8, respectively,
show the equilibrium premium profile and number of contracts from insurers 1
to 12.

In Figure 7, similar to GI , market leader insurer 6 tends to increase its pre-
mium until equilibrium. As exposure flows between insurers are enhanced, the
ratio between insurers’ equilibrium premium in GII significantly diverge from
the previous. Compared with GI , the market leader has a greater advantage in
the competition, which generates a larger reduction in the policy numbers than
in Figure 2. Market followers 8 and 9 reduce their premiums significantly to
increase their exposure. As demonstrated in Figure 8, the equilibrium number
of policies of insurers 8 and 9 approximately reach the other insurer’s level, ex-
cluding the market leader insurer 6.

With the other parameters unaffected, the impacts of modifying ai in G2
with regard to the market leading insurer 6 and the market follower 8 are il-
lustrated in Figures 9 and 10. Similarly as GI , Figures 9 and 10 indicate that
both players’ equilibrium premiums in GII decrease and the number of con-
tracts increases as the price sensitivity parameter ai decreases. In addition, we
also conclude that the parameter ai with respect to the market leader is more
sensitive than the market follower in GII . Comparing with Figures 4 and 5 in
GI that a6 is more sensitive than a8 in GII is also noteworthy.
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FIGURE 7: Previous (at time t = 0) vs. equilibrium (at time t = 1) premium profiles in GII . Similar with
Figure 1.

FIGURE 8: Previous (at time t = 0) vs. equilibrium (at time t = 1) number of policies in GII . Similar with
Figure 2.
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FIGURE 9: Equilibrium premium sensitivity test of a6 and a8 in GII .

FIGURE 10: Equilibrium number of policies sensitivity test of a6 and a8 in GII .
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FIGURE 11: Diversity of equilibrium premium profiles with different θ1 in GII . The market stability factor θ1

is investigated which takes values from 0.8 to 1.2. The corresponding five different equilibrium premium
profiles are given.

A new parameter, market stability factor θ1, significantly affect the equilib-
rium premium profile in GII . Figure 11 illustrates the diversity of the equilib-
rium premium profiles with a varying market stability factor θ1 from 0.8 to 1.2.
As θ1 represents the wholemarket’s business condition, it is reasonable to expect
the equilibrium profile entirely moves up or down with different θ1.

Similarly as in GI , we test the sensitivity of a6 and h2 for GII in Figure
12. As we can observe, h2 is much more sensitive than h1, a tiny increase
of just 10−4 in h2 causes a compelling decrease in equilibrium premium for
insurer 6.

Overall, we observe that insurers with larger market power take advantage in
the competition, and they tend to increase their premium to reach equilibrium.
On the other hand, insurers with less market power tend to decrease their pre-
mium requesting a bigger volume of exposure. The price sensitivity parameter,
ai , is quite sensitive. The market presence limit factor h1, h2, and the market sta-
bility factor θ1 have an impact on the market equilibrium levels, which control
the exposure of volume flow amongst the insurers and the exposures volume
flow into or away from the insurance market, respectively. Different with GI , a
breakeven premium for i appears not to affect the insurer’s equilibriumpremium
in GII .
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FIGURE 12: Diversity of insurer 6’s equilibrium premium in GII . Different equilibrium premium values are
given, with respect to different a6 and h2.

5. CONCLUSION

This paper models two-stage non-cooperative games in an insurance market to
investigate how the competition impacts the pricing process of non-life insur-
ance products. Insurers compete to maximise their payoffs in a second stage by
adjusting premium pricing strategies, which leads to diversity of the volume of
exposure. We further characterise one insurer’s second-stage modified volume
of exposure in a way that sums up the exposure flows in or out during com-
petitions with other insurers. The modified second volumes of exposure in any
two insurers’ competition are characterised by transferring one insurer’s second
stage premium to the other’s first-stage premium and modelling the changing
volume through a definition of price elasticity. Two models are discussed in
detail regarding the modified volume of exposure: simple exposure difference
model I (GI ) and advanced exposure difference model II (GII ). Using payoffs
in these twomodels, twoN-player games are constructed with non-linear aggre-
gate and positive, compact but not necessarily convex, premium strategy sets. A
potential game with an aggregation technique is applied:We prove the existence
of a pure Nash equilibrium of these two games by determining the potential
functions. Both games’ pure Nash equilibriums can be solved by calculating the
best-response equation systems. The numerical results for 12-player insurance
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games are presented under the framework that the best-response selection pre-
mium strategies always provide the global maximum value of the corresponding
payoff function.

The insurance game can be extended in different directions. A natural next
extension is to develop dynamic insurance games to observe insurance mar-
ket premium pricing cycles. Applying stochastic models might be interesting
in dynamic cases. Another extension would be a mixed strategy Nash equilib-
rium, where insurers choose a probability distribution over possible premium
strategies.
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NOTES

1. Wewon’t discuss unnecessary technical details about how to introduce and solve numerically
the single optimisation problem, as it is out of the scope of the present paper.

2. It is true that since we are able to extend the results of Dubey et al. (2006) for a non-linear
aggregation, the concept of our model is possible to be used in other fields of economics. For
this comment, we would like cordially to thank one of our reviewers who pointed this out to us.
However, further discussion falls out of the scope of this paper, since various parameters from the
relevant actuarial science literature are incorporated in the construction of our insurance model
(Taylor, 1986, 1987; Emms et al., 2007; Pantelous and Passalidou, 2013, 2015, 2016).

3. We don’t have here any intention to develop any type of Stackelberg leadership model. How-
ever, the Greek insurance market might be considered as an ideal case for this model. Thus, it will
be considered as a future work.

4. We recall that the theoretical results did not assume any type of convexity.
5. The values for ai have been considered ad hoc based on the concept of Lerner (1934) index.

Unfortunately, we don’t have access to more detailed data, and some of the model parameters are
rather artificial. This is common in the corresponding literature (Emms et al., 2007; Emms and
Haberman, 2009).

6. Amongst all the possible positive profiles, we pick up the smallest one based on the iterative
algorithm of the Matlab, m-file “fsolve”.
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