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Influence of optimally amplified streamwise
streaks on the Kelvin–Helmholtz instability

Mathieu Marant1 and Carlo Cossu1,2,†
1IMFT, CNRS-INP-UPS, 2 allée du Professeur Camille Soula, 31400 Toulouse, France
2LHEEA, CNRS – Ecole Centrale de Nantes, 1 rue de la Noé, 44300 Nantes, France

(Received 22 August 2017; revised 30 October 2017; accepted 19 December 2017;
first published online 17 January 2018)

The optimal energy amplifications of streamwise-uniform and spanwise-periodic
perturbations of the hyperbolic-tangent mixing layer are computed and found
to be very large, with maximum amplifications increasing with the Reynolds
number and with the spanwise wavelength of the perturbations. The optimal initial
conditions are streamwise vortices and the most amplified structures are streamwise
streaks with sinuous symmetry in the cross-stream plane. The leading suboptimal
perturbations have opposite (varicose) symmetry. When forced with finite amplitudes
these perturbations modify the characteristics of the Kelvin–Helmholtz instability.
Maximum temporal growth rates are reduced by optimal sinuous perturbations and
are slightly increased by varicose suboptimal ones. In contrast, the onset of absolute
instability is delayed by varicose suboptimal perturbations and is slightly promoted
by sinuous optimal ones. We show that if, instead of the computed fully nonlinear
basic-flow distortions, the stability analysis is based on a shape assumption for the
flow distortions, then opposite effects on the flow stability are predicted in most of
the considered cases. These strong differences are attributed to the spanwise-uniform
component of the nonlinear basic-flow distortion which, we conclude, should be
systematically included in sensitivity analyses of the stability of two-dimensional
basic flows to three-dimensional basic-flow perturbations. We finally show that the
leading-order quadratic sensitivity of the eigenvalues to the amplitude of the streaks
is preserved if the effects of the mean flow distortion are included in the sensitivity
analysis.

Key words: absolute/convective instability, free shear layers, instability control

1. Introduction
We are interested in the control of nominally two-dimensional (2D) flows, which

are invariant in the spanwise direction, by three-dimensional (3D) spanwise-periodic
perturbations. This type of control has long been used to suppress or attenuate vortex
shedding in the wake of bluff bodies with 3D perturbations forced by devices ranging
from wrapped helical cables (as discussed, for example, by Zdravkovich (1981)) to
spanwise-periodic indentations of the trailing or leading edges (as shown by Tanner
(1972), Tombazis & Bearman (1997) and many others), and has long been known
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to be very efficient and effective even at high Reynolds numbers Re (as discussed
by Choi, Jeon & Kim (2008)). Suitable 3D perturbations have also been shown to
reduce the far-field spreading of turbulent (2D) plane mixing layers up to a factor of
two (Bell & Mehta 1993), stabilize the growth of unstable 2D Tollmien–Schlichting
waves in the (2D) Blasius boundary layer (Kachanov & Tararykin 1987; Cossu &
Brandt 2002; Fransson et al. 2005) and delay transition to turbulence (Fransson et al.
2006). They also have been shown to strongly affect the shape of axisymmetric jets
(see, for example, Zaman, Reeder & Samimy (1994)) and, when forced by azimuthally
periodic chevrons, to reduce low-frequency noise emitted by axisymmetric jets (see,
for example, Bridges & Brown (2004), Zaman, Bridges & Huff (2011).

A number of recent studies have found that a key factor in the 3D control is
the presence of spanwise-periodic and streamwise-elongated regions of alternating
high- and low-speed streamwise velocity (see Choi et al. (2008) for a review) – the
‘streamwise streaks’. In the context of wall-bounded shear flows it is known that
streamwise streaks can be efficiently forced by low-energy streamwise vortices which
fuel their growth through the lift-up effect and that the ratio of the energy of the
streaks to that of the forced vortices can be proportional to Re2 (see, for example,
Gustavsson (1991), Schmid & Henningson (2001)). Standard optimization techniques
are used to find the optimal shape of the vortices leading to maximum energy
amplification in the lift-up effect (see, for example, Schmid & Henningson (2001)).
In this way, it has been possible to use minimum-energy input vortices to force the
controlling streaks in the Blasius boundary layer (Cossu & Brandt 2002, 2004), in
parallel and non-parallel 2D wakes (Del Guercio, Cossu & Pujals 2014a,b,c), in a
non-parallel axisymmetric wake (Marant, Cossu & Pujals 2017) and in a turbulent
pipe (Willis, Hwang & Cossu 2010). In the present study we will follow a similar
approach by computing the optimal perturbations of the reference 2D basic flow that
will then be used to enforce the 3D control with finite-amplitude streamwise streaks.

That the beneficial effects of 3D control are related to alteration of the growth rates
of the most unstable linear modes is known in the case of 3D control of laminar
boundary layers (Cossu & Brandt 2002, 2004). In the case of free shear flows,
Gudmundsson & Colonius (2006, 2007) have shown that 3D-modulated jets (‘chevron
jets’) display growth rates of the most unstable modes which are smaller than those of
the reference axisymmetric jet, and have related this to the observed noise reduction
(see also Jordan & Colonius (2013) for a discussion). In the case of wakes, where
self-sustained oscillations are associated with a global instability driven by a pocket
of local absolute instability (Chomaz, Huerre & Redekopp 1988; Monkewitz 1988),
Hwang, Kim & Choi (2013) have shown that suitable (varicose) spanwise-periodic
modulations of the 2D basic flow can reduce the absolute growth rate of standard
wake profiles when the spanwise wavelength of the perturbations is in a suitable range.
Del Guercio et al. (2014c) have shown that the absolute instability can be completely
quenched when fully nonlinear streaks forced with optimal perturbations are used.
Nonlinear streaks optimally forced with spanwise-periodic blowing and suction on
the body skin have then been shown to suppress the linear global instability in the
wakes of circular cylinders at least up to Re= 100 (Del Guercio et al. 2014b).

An interesting property of the control of 2D instabilities by means of spanwise-
periodic (3D) modulations of the basic flow is that the first-order sensitivity of the
eigenvalues to the control amplitude is zero and that, in general, at leading order
the variation of the eigenvalue with respect to the uncontrolled (2D) case depends
quadratically upon the 3D modulation amplitude. This quadratic dependence on the
control amplitude was initially shown to apply to absolute growth rates of parallel
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wakes (Hwang et al. 2013), and then later shown to apply to temporal growth
rates of parallel wakes (Del Guercio et al. 2014c) and to the sensitivity of global
modes growth rates in non-parallel wakes (Del Guercio et al. 2014a,b). A key issue
emphasized in the studies of Del Guercio et al. (2014a,b) is that, at the finite control
amplitudes required to stabilize flows at Reynolds numbers relatively far from the
onset of the instability, the quadratic sensitivity of 3D controls, combined with the
large amplifications associated with the (inherently 3D) lift-up effect, result in much
higher efficiencies of the 3D controls when compared to 2D controls.

Further studies have explicitly computed the second-order sensitivity by asymptotic
analyses of a model equation (Cossu 2014) and of the linearized Navier–Stokes
equations (Tammisola et al. 2014; Boujo, Fani & Gallaire 2015; Tammisola
2017). In particular, Boujo et al. (2015), considering the case of a plane mixing
layer, show that the (3D) spanwise-periodic basic-flow distortions maximizing the
second-order sensitivity of the Kelvin–Helmholtz instability growth rate coincide with
those inducing the maximum energy amplification of streamwise streaks, therefore
explaining a posteriori the success of optimally grown streaks for control purposes.

An important issue when dealing with stability analysis of spanwise-periodic 3D-
distorted basic flows is the definition of the basic flow itself, which can be classified
into two main types of approach:

(i) In the first approach, the basic flow is given by experimental measures or
direct numerical simulations, and streamwise velocity profiles are of the form
U(y, z, X; A), where X is the selected streamwise station (omitted in some
parallel-flow analyses), y is the cross-stream direction, z is the spanwise (or
azimuthal) direction in which periodic modulations of U are enforced, and A is
the control or modulation amplitude defined in some suitable way (inclination of
chevrons or amplitude of optimal vortices, etc.). This approach has been followed
by Cossu & Brandt (2002), Gudmundsson & Colonius (2006), Gudmundsson &
Colonius (2007), Del Guercio et al. (2014a,b,c), Marant et al. (2017), among
others.

(ii) In the second approach, a shape assumption (see, for example, Herbert (1988))
is made and, typically, the streamwise velocity profiles are postulated in the
form USA(y, z, X; A)= U2D(y)+ AU1(y, X) cos(βz), where β is the spanwise (or
azimuthal) wavenumber associated with the periodic basic-flow modulations. In
this approach, followed by Hwang et al. (2013), Cossu (2014), Tammisola
et al. (2014), Boujo et al. (2015) and Tammisola (2017), only the first
spanwise-harmonic of the basic-flow distortion is taken into account; the effects
of higher spanwise-harmonics and of the zeroth spanwise-harmonic (the ‘mean
flow distortion’) are neglected.

In most of the mentioned studies, especially in the discussion of the results, it is
implicitly admitted that the two different approaches lead to similar results, at least
qualitatively. A warning against this rationale, however, came from Cossu & Brandt
(2002), who, using 3D basic flows given by nonlinear simulations, studied their
stabilizing effect on the Tollmien–Schlichting instability in the Blasius boundary layer.
They showed that, while the mean flow distortion 1U (the zeroth spanwise-harmonic
component) associated with the 3D basic-flow distortion 1U = U3D − U2D had a
(leading) stabilizing effect, the spanwise-oscillating part 1̃U of the 3D basic-flow
distortion had a destabilizing effect. In the subsequent analysis of parallel wakes by
Del Guercio et al. (2014c), 1U and 1̃U were found to be both stabilizing and of
comparable relevance, and therefore the issue was not further pursued.
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In the present study we will therefore address the important issue of the correct
definition of the basic flow and try to answer some questions related to it. Can
the use of shape assumptions to analyse the influence of 3D spanwise-periodic
basic-flow distortions on linear stability provide potentially misleading results in
flows other than the Blasius boundary layer? If yes, is this explained by the influence
of the (spanwise) mean flow distortion alone or are higher spanwise-harmonics
relevant? If shape assumptions are not correct, does this mean that second-order
sensitivity analyses systematically provide results which are potentially misleading?
Why quadratic sensitivities of the eigenvalues are observed also when the basic flow
is computed with fully nonlinear simulations despite the fact that eigenvalues have
non-zero first-order sensitivity to mean flow distortions (which are spanwise-uniform)?

We choose, as a test bed for the analysis, the 3D control of the Kelvin–
Helmholtz instability developing in the plane (spanwise-uniform) mixing layer with
a hyperbolic-tangent profile, whose stability properties have been well known since
the investigations of Garcia (1956), Drazin & Howard (1962), Michalke (1964), and
Huerre & Monkewitz (1985).

Despite its theoretical and practical relevance as the prototype of inflectional
instabilities, the plane mixing layer has not been extensively studied from the
theoretical perspective of optimal amplifications of streamwise streaks or of the
stabilization by means of spanwise-periodic (3D) flow distortions. Arratia, Caulfield &
Chomaz (2013) have computed the optimal perturbations supported by the tanh mixing
layer, not for control purposes, but to analyse the development of instabilities in the
transition process. As they were not restricted to streamwise-uniform perturbations,
the optimal perturbations found were the unstable ones which were the most amplified.
Arratia & Chomaz (2013) have analytically computed the optimal perturbations of
arbitrary shear flow profiles, and in particular that of the erf-profile mixing layer in
the inviscid limit. Boujo et al. (2015) have addressed the 3D control of mixing layers
restricted to streamwise-uniform perturbations. They have developed a second-order
sensitivity analysis aimed at finding the most efficient control of the hyperbolic-tangent
mixing layer. Among other results, they have computed the most stabilizing streak
profiles and find that they almost coincide with the optimal or the suboptimal ones,
depending on the spanwise wavenumber. However, as their analysis is based on
a shape assumption, we will revisit it by using basic-flow profiles given by fully
nonlinear numerical simulations.

This study is organized as follows. After briefly introducing, in § 2, the problem
formulation and the theoretical and numerical methods that will be used, we compute,
in § 3, the linear optimal (and the leading suboptimal) streamwise-uniform (linearly
stable) perturbations which maximize the energy amplification supported by the
hyperbolic-tangent profile. Streaky mixing layers are then computed by nonlinear
simulations of the response of the mixing layer to optimal perturbations enforced with
finite amplitudes. The influence of the enforced 3D modulations (nonlinear streaks)
on the temporal growth rate and on the convective–absolute instability thresholds of
the Kelvin–Helmholtz instability are described in § 4. A comparison of the results
with those obtained under a shape assumption is made in § 5. The self-similarity and
the scaling of the mean flow distortion, and its influence on the temporal stability
and on the absolute–convective instability thresholds are then discussed. A composite
second-order sensitivity formula is finally proposed. The implications of these results
are discussed in § 6.
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2. Problem formulation and methods
2.1. Problem formulation

We consider parallel mixing layers separating two parallel streams of the same density
and velocities Uaex and Ubex, respectively, for |y| →∞, where ex is the unit vector
along the streamwise direction x (y and z will denote the cross-stream and spanwise
coordinates, respectively). The hyperbolic-tangent profile is chosen as a reference two-
dimensional (2D) basic flow U2D =U2D(y)ex with

U2D(y)=
1

2R
+

1
2

tanh y, (2.1)

where velocities are made dimensionless with respect to |Ua − Ub|, lengths with
respect to half the vorticity thickness δω/2 and the velocity ratio is defined as
R= |Ua −Ub|/|Ua +Ub|.

In the following we will consider essentially perturbations to the reference 2D
parallel basic-flow profile U2D and to 3D ‘streaky’ parallel basic-flow profiles
U3D = U(y, z) ex. The evolution of incompressible viscous perturbations u′, p′ to the
considered parallel basic flows is ruled by the Navier–Stokes equation in perturbation
form:

∇ · u′ = 0, (2.2)
∂u′

∂t
+ (∇U)u′ + (∇u′)U+ (∇u′)u′ =−∇p′ +

1
Re
∇

2u′, (2.3)

where U is the considered (2D or 3D) basic flow and the Reynolds number is
defined as Re = |Ua − Ub|δω/2ν, with ν the kinematic viscosity of the fluid. In the
linearized stability framework the term (∇u′)u′ is neglected. Equations (2.2)–(2.3) are
supplemented by the condition that perturbations vanish for |y| → ∞ and that they
are periodic in the streamwise and spanwise directions with wavelengths λx and λz,
respectively (the associated wavenumbers are α = 2π/λx and β = 2π/λz).

2.2. Numerical integration of the Navier–Stokes equations
The Navier–Stokes solutions are numerically integrated with OpenFOAM, an
open-source code (see OpenCFD 2007) which is based on a finite-volume spatial
discretization of the equations which are advanced in time using the PISO (Pressure
Implicit with Splitting of Operators) algorithm. An ‘in-house’ modified version of the
code is used, where the Navier–Stokes equations are formulated in perturbation form
and can be integrated in the fully nonlinear form or under the linear approximation.
This version of the code has been extensively used and validated in the previous
studies of Del Guercio et al. (2014a,b,c). The flow is solved inside the domain
[−Lx/2, Lx/2] × [−Ly/2, Ly/2] × [−Lz/2, Lz/2], which is discretized with Nx and
Nz equally spaced intervals in the streamwise and spanwise directions, respectively.
Ny intervals are used in the y (shear) direction using a stretching allowing one
to refine the grid in the shear region of the basic flow. Typically, results have
been obtained using Lx = 300, Ly = 20, Lz = 2π/β and Nx = 750 (corresponding to
1x= 0.4), Ny= 102 (with 1y ranging from 0.06 near y= 0 to 1.2 near the free-stream
boundaries), Nz = 24 for β = 1 and β = 2 and Nz = 16 for β = 3 (corresponding to
1z= 0.26 for β = 1 and 1z= 0.13 for β = 2 and β = 3). In addition to the periodic
boundary conditions applied in the streamwise and spanwise directions, zero normal
gradients of velocity and pressure have been enforced at the lateral (pseudo-free
stream) boundaries (|y| = Ly/2).
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2.3. Optimal and suboptimal streamwise streaks
Similarly to many previous investigations, such as those of Reddy et al. (1998),
Cossu & Brandt (2002), Del Guercio et al. (2014c), among others, the first step of
the investigation consists in the computation of the optimal (and suboptimal) linear
energy growths sustained by the 2D reference mixing layer. As the basic flow is
invariant in the streamwise and spanwise directions, Fourier modes û(α, y, β, t) ei(αx+βz)

of streamwise and spanwise wavenumbers α and β can be considered separately.
In particular, in the following we will consider the optimal amplification of
streamwise-uniform perturbations (i.e. with α = 0) because they are linearly stable
and mimic, in the temporal analysis, the steady perturbations that would be spatially
forced by passive devices.

We therefore compute the optimal energy growth G = maxû0 6=0 ‖û‖2/‖û0‖
2, where

û0 is the initial condition and ‖û‖2
= (1/δωλz)

∫
∞

−∞

∫ λz/2
−λz/2
|û|2 dy dz. As usual, in order

to compute the optimal transient growth, the linearized Navier–Stokes equations are
recast in terms of the cross-stream velocity and vorticity v′− η′. The system satisfied
by Fourier modes v̂(y, t)ei(αx+βz), η̂(y, t)ei(αx+βz) is the standard Orr–Sommerfeld–Squire
system. The optimal energy growth corresponds to the largest singular value of the
linearized stability operator (see, for example, Schmid & Henningson (2001)). We
will also compute the second-largest singular value and the associated perturbations
and, for brevity, denote them ‘suboptimal’ and ‘suboptimal perturbations’. Suboptimal
growths and perturbations are computed because in the previous investigations of
Del Guercio et al. (2014a,c) it was shown that (suboptimal) varicose perturbations
were more efficient than the optimal sinuous ones in suppressing vortex shedding in
2D wakes, despite being much less amplified.

Differentiation matrices based on second-order accurate finite differences have been
used to discretize the Orr–Sommerfeld–Squire system on a grid of Ny points uniformly
distributed in [−Ly/2, Ly/2], as in Del Guercio et al. (2014c). The optimal and
(leading) suboptimal growth supported by the discretized system and the associated
perturbations are then computed using standard methods and codes already used in
previous investigations (for example, Cossu, Pujals & Depardon (2009), Pujals et al.
(2009), Del Guercio et al. (2014c)). Most of the results have been obtained with
Ny = 201 and Ly = 20, but it has been verified on selected cases that the results are
not significantly affected if the number of points is doubled and/or if Ly is further
increased.

2.4. Nonlinear streaky basic flows
Continuing to follow the approach used in the previous investigations of Reddy et al.
(1998), Cossu & Brandt (2002), Brandt et al. (2003), Cossu & Brandt (2004), Park,
Hwang & Cossu (2011) and Del Guercio et al. (2014c), the 3D basic-flow distortions
induced by finite-amplitude linear optimal and suboptimal perturbations are computed
by using them as initial conditions with finite amplitude A0: U3D(y, z; t=0)=U2D(y)+
A0u(opt)(y, z), where u(opt)(y, z)= û(opt)

(y) cos(2πz/λz) and ‖u(opt)
‖ = 1. Fully nonlinear

Navier–Stokes simulations with these initial conditions are used to compute a set of
streaky mixing layer solutions U3D(y, z, t,A0). The amplitude of the streaks associated
with these nonlinear solutions is defined as:

As =

[
max

y,z
(U3D −U2D)−min

y,z
(U3D −U2D)

]/
2. (2.4)
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As the temporal scale on which the streaky basic flows evolve is viscous (slow and
of order ∼ 1/Re) while the one associated with the Kelvin–Helmholtz (inflectional,
inviscid) instability is convective (fast), it is appropriate to analyse the linear stability
of ‘frozen’ streaky profiles. Following the previous investigations mentioned, we will
analyse the stability of the streaky basic flows extracted at the time tmax at which they
reach their maximum amplitude As,max. This defines a set of parallel streaky mixing
layers U3D(y, z; β, A0) at the considered Reynolds number.

2.5. Impulse response analysis
The linear impulse response supported by reference (2D) and the streaky (3D) mixing
layers is analysed in order to determine their linear stability properties, following
Huerre & Monkewitz (1990). The mixing layer is linearly stable if the amplitude of
the impulse response tends to zero as t→∞ and unstable otherwise. The instability
is absolute if the impulse response amplitude grows in the position of the initial pulse,
while it is convective if it eventually tends to zero in the position of the initial pulse
despite growing while being advected by the flow (see, for example, Bers (1983),
Huerre & Monkewitz (1985)).

The linear impulse response is computed by numerically integrating the Navier–
Stokes equations (2.2)–(2.3) linearized near the considered basic flow U using
(u′0, v

′

0, w′0) = (∂ψ ′0/∂y, −∂ψ ′0/∂x, 0) as initial condition to approach the forcing
by a delta function in space, where ψ ′0 = Aimpe−(x−x0)

2/2σ 2
x −(y−y0)

2/2σ 2
y −(z−z0)

2/2σ 2
z . This

type of initial condition has already been used in a number of previous investigations,
such as those of Delbende & Chomaz (1998) and Del Guercio et al. (2014c). The
parameters σx= 0.83, σy= 0.83 and σz= 0.3 for β = 1, σz= 0.15 for β = 2 and β = 3
have been chosen small enough to reproduce a localized impulse within the limits of
good resolution. The impulse is centred in x0 = 0, y0 = 0.8, z0 = λz/4, ensuring that
no particular symmetry is preserved by the initial condition. The precise position of
the initial pulse affects the initial transients but, in general, has no influence on the
asymptotic impulse response.

The temporal and spatio-temporal stability properties of the considered basic-flow
profile are retrieved from the numerically computed impulse response using the same
techniques and codes used by Brandt et al. (2003) and Del Guercio et al. (2014c),
which are the three-dimensional extension of the ones developed by Delbende &
Chomaz (1998) and Delbende, Chomaz & Huerre (1998) for two-dimensional wakes.

Let us summarize the procedure followed by denoting with q′(x, y, z, t) the generic
perturbation variable (which, in this study, is the normal velocity component v′). In
order to extract the temporal growth rate ωi(α) (the imaginary part of ω) from the
signal, we first compute the x-Fourier transform q̃(α, y, z, t) of q′ and then define the
amplitude spectrum of q as Q̃2(α, t)=

∫ Ly/2
−Ly/2

∫ Lz/2
−Lz/2
|q̃|2 dy dz. For each given streamwise

wavenumber α, for sufficiently large times, the leading temporal mode has emerged
with a growth rate well approximated by ωi(α)∼ d ln Q̃/dt, which is computed using
the finite-difference formula ωi(α)≈ [ln Q̃(α, t2)− ln Q̃(α, t1)]/(t2 − t1) with suitably
chosen times t1 and t2 (typically t1 = 40 and t2 = 80 in our case).

In the spatio-temporal stability analysis the development of the impulse response
wave packet is considered along x/t = vg rays. To demodulate the wave packet we
use the Hilbert transform, which in wavenumber space is defined by q̃H(α, y, z, t)=
2H(α)q̃(α, y, z, t), where H(α) is the Heaviside unit-step function. The (demodulated)
signal amplitude Q is then defined as Q2(x, t) =

∫ Ly/2
−Ly/2

∫ Lz/2
−Lz/2
|qH|

2 dy dz, where qH
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FIGURE 1. (Colour online) (a) Optimal energy growth curves G(t) for three selected
spanwise wavenumbers for Re= 1000. (b) Dependence of the rescaled maximum energy
growth Gmax/Re2 on the spanwise wavenumber β for optimal sinuous perturbations (S-type,
solid line, violet) and suboptimal varicose perturbations (V-type, dashed line, green).
Results obtained at three selected Reynolds numbers are shown to verify the accuracy of
the Re2 scaling.

is the inverse x-Fourier transform of q̃H . According to steepest-descent arguments
(e.g. Bers 1983) Q(x, t) ∝ t−1/2ei[α(vg)x−ω(vg)t] as t → ∞, where α(vg) and ω(vg)
represent the complex wavenumber and frequency travelling at the group velocity
vg. The real part of the exponential σ(vg) = ωi(vg) − αi(vg)vg is the temporal
growth rate observed while travelling at the velocity vg, and it can be evaluated
for large t as σ(vg) ∼ d ln[t1/2 Q(vgt, t)]/dt, which is approximated by σ(vg) ≈
[ln Q(vgt2, t2)− ln Q(vgt1, t1)]/(t2− t1)+ (1/2)(ln t2− ln t1)/(t2− t1), where t1= 60 and
t2 = 100 for the presented results.

3. Optimal perturbations of the hyperbolic-tangent mixing layer and associated
nonlinear streaky mixing layers

3.1. Optimal linear perturbations
Optimal and suboptimal energy amplifications G(t) sustained by the 2D reference
mixing layer have been computed, as detailed in § 2.3, for selected spanwise
wavenumbers and Reynolds numbers. We find that, for a given Reynolds number, the
energy amplifications increase with increasing spanwise wavelengths λz (decreasing
spanwise wavenumbers β) and that the time tmax at which the maximum energy
amplification Gmax is reached also increases with λz, as exemplified in figure 1(a),
where are reported three optimal amplification curves corresponding to three selected
spanwise wavelengths at Re= 1000. From the figure it is also seen that the computed
G(t) curves typically have a single maximum and tend to zero for large times.
The attained maximum energy amplifications can be quite large at the considered
Re= 1000. Our results verify the prediction of Gustavsson (1991) that in the limit of
small αRe (which is verified here as we consider α = 0 perturbations) Gmax and tmax
are proportional to Re2 and Re, respectively. This can be verified in figure 1(b), where
the rescaled curves Gmax/Re2 obtained for Re = 200, Re = 500 and Re = 1000 are
shown to collapse for all the considered values of β. The same is found for tmax/Re
(not shown). From the same figure it can also be seen how the maximum energy
growths Gmax (and the associated tmax, not shown) increase with λz (decrease with β)
in the range of considered β values, similarly to what was observed by Del Guercio
et al. (2014c) in parallel wakes. Similar considerations apply to the leading suboptimal
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FIGURE 2. Cross-stream view of the optimal (a) and suboptimal (b) streamwise-uniform
perturbations of the hyperbolic-tangent 2D reference mixing layer for Re= 1000 and β =
2. The arrows represent the cross-stream velocity components of optimal initial vortices
and the contour lines the iso-levels of the streamwise component of the corresponding
maximally amplified streak (solid lines correspond to positive levels, dashed lines to
negative levels).
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FIGURE 3. (Colour online) Profiles of the hyperbolic-tangent reference basic velocity
U2D(y) (a) and of the v̂ component of the optimal initial (t= 0) vortices (b,d) and of the
û component of the corresponding optimally amplified (t= tmax) streaks (c,e), respectively,
corresponding to the optimal sinuous (b,c) and suboptimal varicose (d,e) perturbations for
β = 1 (λz= 6.3, solid, violet), β = 2 (λz= 3.1, dashed, green) and β = 3 (λz= 2.1, dotted,
dark red) and Re= 1000.

perturbations (dotted green curve in figure 1b), which are amplified one decade less
than the optimal ones.

Optimal initial perturbations are found to correspond to spanwise-periodic
streamwise vortices (with negligible streamwise velocity component) while the most
amplified perturbations correspond to spanwise-periodic streamwise streaks (with
negligible cross-stream velocity components). The most amplified initial condition
and response are found to satisfy the following symmetries of the velocity field with
respect to the y = 0 plane (see figures 2a, 3b and 3c): û(−y) = û(y), v̂(−y) = v̂(y),
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FIGURE 4. (Colour online) Dependence of the maximum streak amplitude As on the
amplitude A0 of the optimal initial condition for the optimal sinuous (a) and suboptimal
varicose (b) perturbations for three selected spanwise wavenumbers at Re= 1000.

ŵ(−y) = −ŵ(y). The shape of the computed optimal v̂(y) profile is qualitatively
consistent with the solution of Arratia & Chomaz (2013), which was computed in the
inviscid limit for a slightly different basic flow. The (leading) suboptimal perturbations
have opposite symmetries (see figures 2b and 3d,e). From figure 3 it can also be
seen how the size of optimal and suboptimal perturbations increases with λz in both
the spanwise and the normal directions.

3.2. Nonlinear streaky mixing layers
A set of nonlinear streaky mixing layers is computed by integration of the fully
nonlinear Navier–Stokes equations using the optimal sinuous and suboptimal varicose
perturbations as initial condition with finite initial amplitude A0, as explained in § 2.4.

The dependence of the maximum streak amplitude, at which the basic-flow profiles
are extracted, on A0 is shown in figure 4. A substantially linear dependence of
As,max on A0 is observed. Only a slight departure from linearity can be noticed for
suboptimal varicose perturbations. The times at which As,max is attained do not depend
significantly on the considered amplitude (not shown). Despite the substantially linear
As,max(A0) behaviour, which is not surprising for the small values of As,max considered,
nonlinearity is, however, already fully acting, inducing a nonlinear modification of
the spanwise-averaged mean flow that has important consequences, as discussed in
§ 5.

Two sample nonlinear streaky basic flows, obtained for β = 2, with amplitudes
As ≈ 15 % are reported in figure 5. From the figure it can be seen that the forcing
of optimal perturbations (a) induces a sinuous distortion of the mixing layer in the
cross-stream plane, while suboptimal perturbations (b) induce a varicose distortion.
In the following we will therefore mainly refer to optimal perturbations as sinuous
perturbations and to the leading suboptimal perturbations as varicose perturbations.

4. Influence of streaks on the stability of the mixing layer
4.1. Influence of nonlinear streaks on the temporal growth rate

We first examine the influence of nonlinear streaks of increasing amplitude on
the temporal stability by postprocessing the numerically computed linear impulse
responses (as described in § 2.5) of the considered basic flows (described in § 3.2)
in order to compute the growth-rate curves ωi(α). The considered Reynolds number
Re= 1000 is sufficiently large for the viscous effects to be almost negligible.
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FIGURE 5. Cross-stream view of the U3D(y, z) iso-contours of the streamwise-uniform
streaky basic flows obtained by forcing optimal sinuous perturbations (As= 14.8 %, a) and
suboptimal varicose perturbations (As= 14.6 %, b) for Re= 1000 and β= 2. Solid (dashed)
lines correspond to positive (negative) contours.

In the absence of streaks (A0 = As = 0) the known characteristics of the Kelvin–
Helmholtz instability developing on the 2D hyperbolic-tangent reference mixing layer
are retrieved. The maximum growth rate is ωi,max= 0.09, reached for αmax= 0.45, and
the cutoff wavelength (the wavelength separating the unstable waveband with ωi >

0 from the stable region where ωi < 0) is αc = 0.98; these values are in reasonable
agreement with those (respectively 0.095, 0.44 and 1) found in the inviscid limit by
Michalke (1964).

We find that the forcing of the nonlinear sinuous streaks of increasing amplitude
has an increasingly stabilizing effect on the Kelvin–Helmholtz instability: both the
maximum growth rate and the cutoff streamwise wavenumber are indeed reduced (as
shown in figure 6a, for β = 2). The opposite is found for the nonlinear varicose
streaks, which have a slightly destabilizing effect associated with a slight increase
of the maximum growth rate and with an increase of the cutoff wavenumber (see
figure 6b for β = 2). Similar results are obtained for β = 1 and β = 3.

The dependence of the maximum temporal growth rate ωi,max on the streak
amplitude is shown in figure 7. In the sinuous case (figure 7a) the maximum
growth-rate reductions show a clear quadratic dependence on the streak amplitude
As. In the varicose case (figure 7b) the increase of maximum growth rates is almost
negligible and no quadratic dependence can be clearly established.

4.2. Influence of nonlinear streaks on spatio-temporal growth rates
The impulse response analysis is then used to retrieve the spatio-temporal growth
rates σ(vg) supported by the streaky mixing layers along the rays x/t = vg at
Re = 1000. Huerre & Monkewitz (1985) had shown that in the inviscid case the
hyperbolic-tangent mixing layer is absolutely unstable when R>Rt= 1.315, i.e. when
the mean velocity (Ua + Ub)/2, made dimensionless with respect to |Ua − Ub|, was
less than 1/(2Rt) = 0.38. In the case of the temporal mixing layer considered here,
(Ua +Ub)/2= 0, and the Kelvin–Helmholtz instability is therefore absolute. Because
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FIGURE 6. (Colour online) Influence of increasing amplitudes of the streaks on the
temporal growth rates ωi(α) for optimal sinuous (a) and suboptimal varicose (b)
perturbations for β = 2 and Re= 1000.
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FIGURE 7. (Colour online) Influence of increasing amplitudes of the streaks on the
maximum temporal growth rates ωi,max for optimal sinuous (a) and suboptimal varicose
(b) perturbations for selected values of the spanwise wavenumber β at Re= 1000.

of the shift-and-reflect symmetry of the basic-flow profile, when Ub = −Ua the
wave packet leading and trailing edge velocities are exactly opposite (v− =−v+) and
coincide with the critical mean velocity necessary to induce a transition from absolute
to convective instability (−v− = v+ = 1/(2Rt)). One can therefore compute Rt with
Rt = 1/(v+− v−) (where it must be noted that v− and v+ have been computed in the
strictly temporal shift-and reflect symmetric case). In this way, we find that in the
absence of streaks (A0 = As = 0) −v− = v+ = 0.375, and therefore Rt = 1.33, which
is in relatively good agreement with the inviscid prediction of Huerre & Monkewitz
(1985).

When nonlinear streaks are forced, their influence on the onset of the absolute
instability is found to be almost the opposite of the one on the maximum temporal
growth rates. The influence of nonlinear sinuous streaks of increasing amplitude is to
very slightly increase −v− and v+ (see figure 8a for the case β= 2), therefore slightly
promoting the onset of the absolute instability, as the critical Rt is slightly lowered
(see figure 9a). The opposite effect is found for the nonlinear varicose streaks, which
induce a decrease of |v−| and |v+| (see figure 8b for the case β = 2), and therefore
delay the onset of the absolute instability, the critical Rt being increased, as shown in
figure 9(b).
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FIGURE 8. (Colour online) Influence of increasing amplitudes of the streaks on
spatio-temporal growth rates σ(vg) for optimal sinuous (a) and suboptimal varicose (b)
perturbations for β = 2 and Re = 1000. The wave packet’s leading and trailing edge
velocities v− and v+ are given by the left and right, respectively, velocities for which
σ = 0. While the shifts of v− and v+ with As are almost negligible in the sinuous case
(a), they clearly consist in a reduction of the absolute value of v− and v+ in the varicose
case (b).
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FIGURE 9. (Colour online) Influence of increasing amplitudes of the streaks on the critical
velocity ratio Rt separating the convectively and absolutely unstable regimes for optimal
sinuous (a) and suboptimal varicose (b) perturbations for selected values of the spanwise
wavenumber β at Re= 1000.

These results are different from the ones found by Del Guercio et al. (2014c) in
parallel wakes, where the influence of both sinuous and varicose nonlinear streaks was
stabilizing on both the maximum temporal growth rate and on the absolute growth rate
of the inflectional instability.

5. Role of the nonlinear flow distortion and second-order sensitivity to the streak
amplitudes

5.1. Predictions based on shape assumptions
We have, so far, analysed the stability of streaky mixing layers given by the integration
of the fully nonlinear Navier–Stokes equations. In the nonlinear cases considered,
therefore, the shape of the flow distortion 1U = U3D − U2D in general depends on
the amplitude A0 of the forced vortices (or, equivalently, on the amplitude As of
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FIGURE 10. (Colour online) Influence of increasing amplitudes of the streaks on the
maximum temporal growth rates ωi,max(As) for optimal sinuous (a–c) and suboptimal
varicose (d–f ) perturbations for β = 1 (a,d), β = 2 (b,e), β = 3 (c, f ) at Re= 1000. The
results pertain to the velocity profiles given by nonlinear simulations (black lines, filled
circles), profiles under the shape assumption (magenta lines, crosses), the fictitious Ũ (red
lines, open circles) and U (blue lines, open squares) profiles. The predictions of (5.2) are
also reported (green lines, ×-symbols).

the induced streaks). However, in many previous studies aimed at understanding the
stabilizing mechanism, such as, for example, those of Hwang et al. (2013), Tammisola
et al. (2014) and Boujo et al. (2015), a ‘shape assumption’ was made, as discussed
in § 1.

We have therefore repeated the impulse response analysis under the shape
assumption using as basic-flow profiles U2D(y)+Asû(opt)(y) cos(βz), where û(opt) is the
streamwise velocity component of the optimal streaks given by the linear theory, to
ascertain if the influence on stability can be attributed to the first spanwise-harmonic
of 1U, the only ingredient under the shape assumption. The results are reported
in figures 10 and 11 for the ωi,max(As) and Rt(As) curves, respectively, and selected
values of β. We find that in most of the considered cases the predictions based on
shape assumptions (magenta lines with crosses) are the opposite (destabilizing instead
of stabilizing, and vice versa) of the ones based on the nonlinear streak profiles
(black lines with filled circles).

5.2. Roles of the spanwise-uniform and sinusoidal parts of the basic-flow distortion
The failure of the (single-harmonic) shape assumption discussed in § 5.1 in mimicking
the effects of the full nonlinear flow distortion induced by the nonlinear streaks
1U(y, z) = U3D(y, z)−U2D(y) could be attributed to the influence of the zeroth
spanwise-harmonic or to harmonics higher than one or, less likely, to an important
modification of the shape of the first harmonic at finite As. To further investigate
this issue, following Cossu & Brandt (2002), we decompose the nonlinear basic-flow
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FIGURE 11. (Colour online) Influence of increasing amplitudes of the streaks on critical
velocity ratios Rt(As) for the onset of the absolute instability for optimal sinuous (a–c)
and suboptimal varicose (d–f ) perturbations for β = 1 (a,d), β = 2 (b,e), β = 3 (c, f ) at
Re= 1000. Same legends as in figure 10.

distortion 1U into its spanwise-averaged part 1U(y) (the zeroth spanwise-harmonic)
and its spanwise-varying part 1̃U(y, z)=1U(y, z)−1U(y) (which includes the first
and higher spanwise-harmonics). We then repeat the impulse response analysis for
two ‘artificial’ basic flows obtained by considering only the spanwise-varying or the
spanwise-uniform part of the basic-flow distortion: Ũ(y, z) = U2D(y) + 1̃U(y, z) and
U(y)=U2D(y)+1U(y).

We find that, in all considered cases, the stability properties of the fictitious Ũ
profiles (red lines, open circles in figures 10 and 11) almost coincide with those
obtained under the shape assumption (magenta lines with crosses). This means that
the influences of higher spanwise-harmonics and of the change in shape of the first
harmonic are negligible, and therefore not responsible for the qualitative differences
between shape assumption and full nonlinear profiles results. On the contrary, the
stability properties of the fictitious U profiles (blue lines, open squares in figures 10
and 11) are, in almost all considered cases, in qualitative (but often not in quantitative)
agreement with the ones of the full nonlinear basic-flow profile (black lines with filled
circles). This means that 1U(y), despite its very small magnitude when compared
to 1̃U (maxy 1U is at best 2 % or 3 %, depending on the streak symmetries when
As ≈ 15 %), has a stronger effect on the flow stability.

5.3. A composite second-order sensitivity
The results reported in the previous § 5.2, show that the (small amplitude) mean flow
distortion 1U has the leading effect on the stability of the mixing layer while the
(larger amplitude) spanwise-varying part of the nonlinear streaks 1̃U only mitigates
or enhances this leading effect. These results must be reconciled with those of
Hwang et al. (2013) and Del Guercio et al. (2014a,b,c), where it was shown that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

92
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.925


Influence of streamwise streaks on the Kelvin–Helmholtz instability 493

the sensitivity of the growth rates on the streak amplitudes is quadratic, and with the
second-order sensitivity analyses of Cossu (2014), Tammisola et al. (2014), Boujo
et al. (2015) and Tammisola (2017). The cornerstone of those analyses is that if the
most unstable direct and adjoint modes of the 2D undisturbed basic flow are 2D
(spanwise-uniform) and the basic-flow distortion 1̃U is spanwise sinusoidal then the
first-order sensitivity of the leading growth rates to the 3D distortion amplitude (the
streak amplitude As) is zero and the leading-order dependence is quadratic. However,
we have just found that the leading effect on the stability of mixing layers is given by
the spanwise-uniform mean flow distortion term 1U, which, therefore, has non-zero
first-order sensitivity, apparently in contrast to the findings and/or the assumptions of
those previous investigations.

The apparent paradox can, however, be removed by an analysis of the scaling of
1U. The equation for the evolution of 1U is easily obtained, under the (already
made) assumptions that the reference basic flow has components {U(y), 0, 0} and the
perturbations are uniform in the streamwise direction, by averaging in the spanwise
direction the streamwise component of (2.3):

∂1U
∂t
=−

∂u′v′

∂y
+

1
Re
∂21U
∂y2

. (5.1)

Equation (5.1) is a standard Reynolds-averaged equation except for the fact that the
average is performed in the spanwise direction, and not in time or the streamwise
direction as usual. This equation clearly shows that 1U is generated by the Reynolds
stress, which in our case is associated with the transient growth leading from the
streamwise vortices to the streamwise streaks. If the viscous stress is neglected,
which seems reasonable at the considered high Re= 1000, the amplitude of the mean
flow distortion can therefore be expected to be proportional to the product of the
characteristic amplitude of the vortices A0 and that of the streaks As. In the considered
case, however, As is almost proportional to A0 (see figure 4), and therefore one can
expect the mean flow distortion to scale proportionally to A2

s (or equivalently to A2
0).

This is verified to be indeed the case, as shown in figure 12, where the profiles
1U obtained for different amplitudes of the initial conditions for β = 2 are virtually
superposed and indistinguishable when rescaled by A2

s for both the optimal sinuous
and the suboptimal varicose perturbations (similar results, not shown, are found for
the other considered spanwise wavenumbers).

We are now ready to determine, in two steps, the leading-order modification
(sensitivity) of the generic eigenvalue µ of the linear stability operator with respect
to a modification 1U = 1U + 1̃U (an equivalent but more systematic derivation is
presented in appendix A). In the first step the reference basic flow is distorted only by
the mean flow distortion 1U. As 1U is spanwise-uniform, the leading-order variation
of µ depends, in general, linearly on the amplitude of 1U, and can be computed
either by a linear fitting of the computed eigenvalues or explicitly, as detailed by Hill
(1992), Chomaz (2005) and Giannetti & Luchini (2007). As discussed above, however,
the mean flow distortion is well approximated by 1U = A2

s F(y), i.e. the amplitude
of the mean flow distortion depends quadratically on the streak amplitude As. At this
stage, therefore, µ−µ2D ≈ A2

s1µ. In the second step the (intermediate fictitious) 2D
basic flow U =U2D(y)+1U is distorted with the spanwise-periodic 1̃U to give the
actual total distorted flow U3D(y, z). In a first approximation 1̃U=AsF̃(y, z) if a shape
assumption for the spanwise-periodic part of the distortion is made (this is justified by
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FIGURE 12. (Colour online) Mean flow distortion rescaled by the square of the streaks
amplitude 1U(y)/A2

s corresponding to the forcing of the optimal sinuous (a) and
suboptimal varicose (b) streaks with β = 2 at Re = 1000. The profiles obtained for the
three amplitudes As ≈ 5 %, As ≈ 10 % and As ≈ 15 % are reported in order to appreciate
the accuracy of the scaling.

the discussion in § 5.2). As the distortion of the basic flow is now spanwise-periodic,
the first-order sensitivity of µ to this distortion is zero and the leading-order term
is the second-order term A2

s1̃µ. The second-order sensitivity 1̃µ can be computed
by quadratic fitting of the computed eigenvalues or by an explicit second-order
sensitivity analysis, as detailed by, for example, Tammisola et al. (2014) and Boujo
et al. (2015). The combined result of the two-step asymptotic analysis is therefore that
the eigenvalue µ of the linear stability operator pertaining to the streaky basic flow
U3D(y, z)≈U2D(y)+1U(y)+ 1̃U(y, z) can, at leading order, be approximated by

µ−µ2D = A2
s1̃µ+ A2

s1µ, (5.2)

where µ2D pertains to the (unperturbed) 2D profile, µ̃ is the second-order sensitivity
to AsF̃(y, z), and µ is the first-order sensitivity to A2

s F(y).
A qualitative assessment of the validity of (5.2) has been obtained by comparing,

in figures 10 and 11, the value of µ given by the analysis of the full nonlinear
U3D profile (black lines with filled circles) to µ2D + A2

s1̃µ + A2
s1µ (green lines,

×-symbols), where A2
s1̃µ and A2

s1µ are obtained from the analyses of the fictitious
profiles U and Ũ. From the figures it can be seen that the agreement is fairly good
for small streak amplitudes (As . 6 %) and, for all but two cases, acceptable even at
quite higher streak amplitudes.

These results confirm that the variation of the eigenvalues remains quadratic at
leading order even when the effects of the nonlinear mean flow distortion are taken
into account. Taking into due account the mean flow distortion in sensitivity analyses,
therefore, is not inconsistent with the quadratic variations of the eigenvalues with
the streak amplitudes reported by Del Guercio et al. (2014a,b,c), who used the fully
nonlinear streaks as basic flow.

6. Conclusions
In this study we have computed the optimal (3D) spanwise-periodic and streamwise-

uniform perturbations associated with the optimal and suboptimal energy amplifications
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sustained by the (2D) hyperbolic-tangent mixing layer. The computed optimal
perturbations have then been forced with finite amplitudes to analyse their influence
on the Kelvin–Helmholtz instability, which is the prototype of inflectional inviscid
instabilities. The respective roles of the spanwise-periodic and spanwise-uniform
components of the basic-flow distortion have been finally analysed to address the
long-standing issue of the appropriateness of using shape assumptions in this kind of
analysis. We briefly summarize and discuss these three sets of results separately.

6.1. Optimal perturbations and energy growths

Concerning optimal energy growths, we find that the parallel hyperbolic-tangent
mixing layer can sustain very large transient growths of 3D streamwise-uniform
perturbations that are linearly stable and that:

(i) For all the considered spanwise wavenumbers, ranging from β = 0.6 to
β = 3.2, and Reynolds numbers, ranging from Re = 100 to Re = 1000, optimal
perturbations are symmetric, in the y − z cross-stream plane, with respect to
the mixing layer (anti)symmetry plane and induce a sinuous (in the y–z plane)
deformation of the mixing layer. Leading suboptimal perturbations have opposite
symmetries and induce varicose deformations of the mixing layer.

(ii) The optimal and suboptimal initial perturbations consist of streamwise vortices
(most of the energy is in the cross-stream velocity perturbations), while the most
amplified (optimal and suboptimal) perturbations consist of streamwise streaks
(most of the energy is in the streamwise velocity perturbation). The spanwise and
cross-stream extension of these structures both increase with increasing spanwise
wavelengths.

(iii) The optimal and suboptimal energy growths are proportional to the square of
the Reynolds number and present a single maximum in time. The time at which
maximum energy growths are obtained is proportional to the Reynolds number.

(iv) The maximum amplifications of sinuous (optimal) and varicose (suboptimal)
perturbations are an increasing function of their spanwise wavelength with Gmax

in the considered β range, and the gap between the two increases significantly
with λz.

These results are, in many respects, similar to the ones found in most parallel shear
flows (see, for example, Schmid & Henningson (2001) for a review) and, in particular,
to those found in parallel wakes by Del Guercio et al. (2014c). The symmetries of
the optimal and suboptimal perturbations also agree with those found by Boujo et al.
(2015).

The large amplification of sinuous perturbations can probably also be related to
the experimental findings of Bell & Mehta (1993), who observe a strong far-field
sensitivity of turbulent spatial mixing layers to the forcing of sinuous counter-rotating
vortices on the splitter plate. In an averaged sense, indeed, the (upstream forced)
vortices of the spatial case are reminiscent of the optimal (initial) vortices and the
(far-field) streaky flow distortion is reminiscent of the optimal response (at later times)
to the optimal forcing. In both cases, also, the vortices decay while the streaks are
transiently amplified, and the fact that the streaky distortions are observed in the far
field is reminiscent of the relatively large times (at high Re) required for the streaks
to amplify.
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6.2. Influence of nonlinear streaks on the Kelvin–Helmholtz instability
When forced with finite amplitude, optimal and suboptimal perturbations lead to
nonlinearly distorted 3D mixing layers. These nonlinear streaky basic-flow distortions
have an influence on the Kelvin–Helmholtz instability which depends on the symmetry
of the forced 3D perturbations: sinuous optimal perturbations have a stabilizing effect
on the maximum temporal growth rates but slightly reduce the critical velocity ratio
Rt required for the onset of absolute instability; almost opposite trends are found for
varicose suboptimal perturbations, which are slightly destabilizing for the maximum
temporal growth rates but which delay the onset of absolute instability to higher
critical velocity ratios Rt.

The stabilizing influence of sinuous optimal perturbation on the maximum growth
rate of the inflectional instability is consistent, in an averaged sense, with the
reductions of the growths observed by Bell & Mehta (1993) in far-field sinuously
streaky mixing layers; it is also consistent with the stabilization of inflectional
instabilities found by Gudmundsson & Colonius (2006, 2007) in ‘chevron jets’
(sinuously streaky jets).

An intriguing result is that almost opposite effects on stability are found for the
two different symmetries (sinuous or varicose) and for temporal and absolute growth
rates, contrary to the case of wakes, where Del Guercio et al. (2014c) found that both
symmetries had a stabilizing role both on maximum growth rates and the absolute
instability. This might be related to the opposite symmetries of the mixing layer and
wake reference 2D velocity profiles, but further analysis of this issue is probably
required.

6.3. Shape assumptions, the role of the mean flow distortion and consistent
second-order sensitivity analyses

We have further investigated the nature of the (de)stabilizing influence of the 3D
nonlinear basic-flow distortion 1U on the Kelvin–Helmholtz instability by comparing
it with the effects that would have been obtained using a shape assumption on 1U
and by separating the effects of the spanwise-oscillating part 1̃U from those of the
spanwise-uniform part 1U (the mean flow distortion) of 1U. The main findings can
be summarized as follows:

(i) If a shape assumption is made, by distorting the 2D reference basic-flow profile
only with the single spanwise-harmonic linear optimal streak profile, then results
opposite to the ones found with the nonlinear profiles are obtained, in almost
all analysed cases, for the maximum growth rates and convective–absolute
instability thresholds. The results obtained under the shape assumption are,
however, consistent with those obtained under the same assumption by Boujo
et al. (2015) (sinuous optimal perturbations reduce the maximum temporal
growth rate only for β . 1.5 and that the varicose suboptimal perturbations
reduce it for all the considered β & 0.4).

(ii) If the 2D reference basic-flow profile is distorted with the whole spanwise-
oscillating part 1̃U of the nonlinear basic-flow distortion (first an higher
spanwise-harmonics, but not the zero harmonic), then the obtained results are
almost identical to those obtained with the shape assumption.

(iii) The leading influence on the variation of the maximum growth rate ωi,max and
of the absolute–convective instability critical value Rt is given by the spanwise-
uniform part 1U (the mean flow distortion) of the nonlinear basic-flow distortion.
This effect is the opposite to that of 1̃U in almost all considered cases.
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(iv) The mean flow distortion is found to be proportional to the square of the streak
amplitude 1U = A2

s F(y; β).
(v) If the effects of the mean flow distortion are included in the prediction of

the variation of eigenvalues induced by the 3D spanwise-periodic streaks, the
dependence of the variation on the streak amplitude remains quadratic at leading
order: µ−µ2D ∼ A2

s (1̃µ+1µ).

(vi) It is verified that the variations of ωi,max and Rt obtained by combining those
induced by 1̃U with those induced by 1U are in quantitative agreement with
those induced by the whole nonlinear basic-flow distortion for As . 6 %. An
acceptable agreement is often found for even higher As values.

These results emphasize the necessity of including the mean flow distortion in the
theoretical analyses of the (de)stabilization of mixing layers by 3D streaky flow
distortions. In this respect they are similar to those found by Cossu & Brandt
(2002) in boundary layers. The new key point of the present study is that the
observed relevance of the mean flow distortion is explained by the fact that, while
the sensitivity of eigenvalues to the O(As) spanwise-oscillating part 1̃U of the flow
distortion is quadratic, their sensitivity to the mean flow distortion 1U is linear,
but the amplitude of 1U is O(A2

s ) and, therefore, at leading order the variation of
the eigenvalues induced by 1U is of the same quadratic order as the one induced
by 1̃U. This could have been directly recognized, as detailed in appendix A, by
using a consistent fully second-order sensitivity analysis based on the expansion
1U = AsF̃(y, z)+ A2

s F(y, z) (which is a sort of ‘order-by-order’ shape assumption).
Another important point is that, as the mean flow distortion 1U is mainly

determined by the Reynolds stresses generated during the streak generation process
(see (5.1)), it is not simply determined by the final shape of the first spanwise-
harmonic (the ‘streaks’). Therefore, it would be in principle possible to obtain
different mean flow distortions 1U for the same final shape of the first-order harmonic
(the ‘streak’) by altering its generation processes. If, for instance, one is able to
enforce an initial condition (or upstream forcing) directly consisting of the optimal
(single, first-harmonic) streaks (i.e. with zero cross-stream velocity perturbations),
then the −u′v′ Reynolds stress would remain zero and there would be no mean flow
distortion. In this hypothetical case (where, however, one would spend O(Re2) more
energy directly forcing the streaks instead of forcing the optimal vortices) the results
obtained using the shape assumption would probably apply. An important conclusion
is that in theoretical analyses of instability control by 3D streaky flow distortions one
has to specify not only the shape of the first harmonic of the flow distortions (the
linear streaks’) but also how they are generated in order to compute the mean flow
distortion induced in the process. An interesting line of research, which is currently
actively pursued, therefore consists in finding which types of forcing would obtain the
maximum combined stabilizing influence of the streaks and the mean flow distortion
induced in the process of their generation.

Acknowledgements
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referee for suggesting to use the formulation discussed in appendix A.

Appendix A. A consistent second-order sensitivity analysis
In this appendix we develop, in a more standard way, the composite second-order

sensitivity which was derived heuristically in § 5.3. The key point is that, in the case
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of spanwise-periodic perturbations of the basic flow associated with zero first-order
sensitivity, second-order perturbations of the basic flow should be included from
the start in the perturbation analysis for the sake of consistency (see, for example,
Tammisola (2017)).

Using the notation of Cossu (2014) we therefore consider the generic eigenvalue
problem: µψ = Lψ , where the linear operator L is given by a reference linear
operator L0 perturbed to L=L0 + εL1 + ε

2L2. In this expansion, ε is understood as
proportional to the streak amplitude As, the perturbation εL1 is associated with
perturbation of the basic flow due to the first spanwise-harmonic and ε2L2 is
associated with the perturbation of the basic flow due to the zeroth spanwise-harmonic
(the mean flow distortion) as discussed in § 5.3. In the limit ε� 1, the eigenvalue µ
and the corresponding eigenfunction ψ can be developed as: µ = µ0 + εµ1 + ε

2µ2
and ψ = ψ0 + εψ1 + ε

2ψ2. These expansions lead, when replaced in the eigenvalue
problem, to the zeroth, first- and second-order problems:

µ0ψ0 =L0ψ0, (A 1)
µ0ψ1 +µ1ψ0 =L0ψ1 +L1ψ0, (A 2)

µ0ψ2 +µ1ψ1 +µ2ψ0 =L0ψ2 +L1ψ1 +L2ψ0. (A 3)

The zeroth-order problem is simply the unperturbed problem, for which the solution
is known. If L†

0 is the adjoint of L0 with respect to the inner product 〈 , 〉, to each
eigenvalue µ0 of L0 corresponds an eigenvalue of L†

0 which simply is the complex
conjugate of µ0 and whose corresponding eigenfunction is denoted by ψ

†
0 . The

first-order sensitivity is easily found to be µ1 = 〈ψ
†
0 , L1ψ0〉/〈ψ

†
0 , ψ0〉 by projecting

equation (A 2) on ψ
†
0 and making use of the identity 〈ψ†

0 , µ0ψ1〉 = 〈ψ
†
0 , L0ψ1〉 (see,

for example, Bottaro, Corbett & Luchini (2003), Chomaz (2005)). However, when
spanwise uniform basic flows are perturbed with spanwise-periodic perturbations,
µ1 = 0 because 〈ψ†

0 , L1ψ0〉 = 0, as remarked by Hwang & Choi (2006), Hwang
et al. (2013), Del Guercio et al. (2014a,c). In this case, an expression for µ2 can be
retrieved by projecting the second-order equation (A 3) on ψ†

0 and making use of the
identity 〈ψ†

0 ,L0ψ2〉 = 〈ψ
†
0 , µ0ψ2〉:

µ2 =
〈ψ

†
0 ,L1ψ1〉

〈ψ
†
0 , ψ0〉

+
〈ψ

†
0 ,L2ψ0〉

〈ψ
†
0 , ψ0〉

, (A 4)

which, recalling that µ = µ0 + ε
2µ2, is equivalent to (5.2) with ε = As, µ0 = µ2D,

µ = 〈ψ
†
0 , L2ψ0〉/〈ψ

†
0 , ψ0〉, µ̃ = 〈ψ

†
0 , L1ψ1〉/〈ψ

†
0 , ψ0〉. The first-order eigenfunction

correction ψ1 can be retrieved from (A 2), which, when µ1= 0, reduces to the singular
linear system (L0 − µ0)ψ1 = −L1ψ0, which can be solved as discussed by Cossu
(2014), Tammisola et al. (2014), Boujo et al. (2015) and Tammisola (2017).
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