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Non-commutative logic, which is a unification of commutative linear logic and cyclic linear

logic, is extended to all linear connectives: additives, exponentials and constants. We give two

equivalent versions of the sequent calculus (directly with the structure of order varieties, and

with their presentations as partial orders), phase semantics and a cut-elimination theorem.

This involves, in particular, the study of the entropy relation between partial orders, and the

introduction of a special class of order varieties: the series–parallel order varieties.

1. Introduction

Non-commutative logic is a unification of:

— commutative linear logic (Girard 1987) and

— cyclic linear logic (Girard 1989; Yetter 1990), which is a classical conservative extension

of the Lambek calculus (Lambek 1958).

In a previous paper with Abrusci (Abrusci and Ruet 2000) we presented the multiplicative

fragment of non-commutative logic, with proof nets and a sequent calculus based on

the structure of order varieties, and a sequentialization theorem. Here we consider full

propositional non-commutative logic.

Non-commutative logic

Let us first review the basic ideas. Consider the purely non-commutative fragment of

linear logic, obtained by completely removing the exchange rule
` Γ,∆,Σ,Π ,
` Γ,Σ,∆,Π
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and say we want to introduce commutative connectives. First, we cannot just remove

exchange entirely, because we need to be able to distinguish one formula, sometimes two,

in a sequent, and separate it from the context; a reasonable solution is to admit cyclic

permutations†:
` ∆,Σ ,
` Σ,∆

with the well-known consequence that there is a single negation.

In order to combine a commutative conjunction and a non-commutative conjunction,

we are naturally led to the idea of a single conjunction on a partial order: A times B can

therefore have three different meanings, depending on the order between A and B. We

are then faced with the following problems:

1 Entropy. We must be able to replace a partial order by a weaker one (or a stronger

one, depending on the connective considered) – for instance a totally ordered sequent

by an unordered one.

2 Contexts. There is a difficulty in isolating a formula from its context: should we

write a sequent as ` Γ, A or ` A,Γ, not to mention A in parallel with Γ, and other

configurations. . . ?

3 Cyclicity. Since the non-commutative fragment should be cyclic, our system has to

allow some kind of cyclicity, to move a formula A from left to right in a sequent, etc.

The number of negations however, remains open: there could be a commutative one

and a non-commutative one. . . .

Order varieties

The solution is based on:

— A syntactic idea – the seesaw rule.

— Its semantic counterpart – the structure of order variety.

Order varieties – see Ruet (1997) and Abrusci and Ruet (2000), and Section 3 – are

structures that can be presented by partial orders in several ways, a good analogy being

the oriented circle, which becomes a total order as soon as an origin is fixed. An essential

property of order varieties (Proposition 2.5) is that in a sequent ` Γ structured by an

order variety, any formula can be isolated. For instance, if we focus on A ∈ Γ, the context

Γ′ becomes a partial order, and ` Γ can be presented as a partial order in three different

ways‡: ` Γ′;A, ` A; Γ′ or ` Γ′, A. The point is that the three presentations are equivalent

(Proposition 3.6): we can forget about the choice of A (Proposition 3.7) and this process

of ‘swinging’ is completely reversible.

This solves Problem 2, but also Problem 3 at the same time: indeed, the restriction of

the sequent calculus to the class of total order varieties is precisely cyclic LL. This is easily

visualized in the calculus on presentations (Section 2), where the reversible structural rules

(seesaw, and its inverse, which is a particular case of entropy) enable one to change a

† See Appendix F in Girard (1999) for the associativity problems in the absence of cyclicity.
‡ From now on, commas and semicolons, respectively, denote the parallel and serial compositions of orders.
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parallel composition into a serial composition and vice-versa. A significant consequence

is that there is only one negation. Another consequence of the seesaw rule is that there is

a single unit 1 for both multiplicative conjunctions (and, dually, a single unit ⊥ for both

multiplicative disjunctions).

By the way, we are only dealing with binary connectives here, so another class of

order varieties will play an important role, namely the series–parallel order varieties,

introduced and characterized in Sections 3.2 and 3.3. They are the order varieties that can

be presented by a series–parallel order.

Entropy

Finally, Problem 1: the good notion of entropy is the inclusion of order varieties – see

Section 3.5. At the level of series–parallel orders, that is, the presentations of series–parallel

order varieties, this corresponds to the ability to move arbitrarily from serial to parallel

composition. Note that this is not quite what one could expect: for instance one might

have expected that the right notion be something like the inclusion of orders, but this is

too strong, since the two conjunctions become commutative, and even equivalent. Even

other intermediate notions of refinement, such as ‘` Γ; (∆,Σ) implies ` (Γ; ∆),Σ’, lead to

the same problem.

Exponentials

For the extension to exponentials, there are several possible choices:

1 ?ed formulas do not commute in a non-commutative situation: from ` Γ[?A;B], we

may not infer ` Γ[B; ?A], even if B is itself a ?ed formula. This has been considered

by Demaille in Demaille (1999).

2 Bags of ?ed formulas commute. This has been considered in Ruet (1997), and it is

consistent with the intuition that there is basically a single par – and a single tensor –

and the isomorphisms: (?A; ?B) ∼=?(A⊕ B) ∼= (?A, ?B).

3 ?ed formulas are central: they commute with everyone. This is the choice we make

here, as it is simpler than 2, while preserving the above isomorphisms.

Sequent calculus

There are two natural ways of describing the sequent calculus: either directly on order

varieties or on the presentations (partial orders). We shall give both descriptions (Sections 2

and 4) and prove that they are equivalent, because the calculus on orders is closer to the

phase semantics, and, on the other hand, order varieties give a better understanding of

the structural rules and are necessary for the connection with proof nets.

The present sequent calculus on order varieties differs from the one given in Abrusci and

Ruet (2000) essentially by the fact that it contains an explicit rule for entropy. The absence

of rule for entropy in Abrusci and Ruet (2000) was motivated by the desired connection

with proof nets, which indeed do not have entropy links. In Section 4.2, we show that the
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two presentations are equivalent, relying on non-trivial results from Sections 3.6 and 3.7,

where we develop a bit further the theory of order varieties by studying:

— the appropriate notion of inf of order varieties,

— the operation of identification of two points in an order variety.

The crucial point is that it is always possible to identify two points in an order variety,

and that this modifies the context in a way that can be simulated by entropy.

Phase semantics and cut elimination

Finally, in Section 5 we give a phase semantics. At this stage, we think it lacks a simple

and natural construction; still it enables one to prove (weak) cut elimination (Section 6),

using a technique due to Okada (Okada 1994).

2. Sequent calculus: on partial orders

2.1. Language

Definition 2.1. The formulas (of NL) are built from atoms p, q, . . ., p⊥, q⊥, . . ., constants 1,

⊥ (multiplicative), >, 0 (additive), and the following multiplicative connectives:

— non-commutative conjunction � (next) and disjunction ∇ (sequential),

— commutative multiplicative conjunction ⊗ (times) and disjunction¶ (par),

— additive conjunction & (with) and disjunction ⊕ (plus),

— exponentials: ! (of course) and ? (why not).

Definition 2.2 (Negation). Negation is defined by De Morgan rules:

(p)⊥ = p⊥ (p⊥)⊥ = p

(A� B)⊥ = B⊥ ∇A⊥ (A ∇B)⊥ = B⊥ � A⊥
(A⊗ B)⊥ = B⊥¶A⊥ 1(A¶B)⊥ = B⊥ ⊗ A⊥
(A & B)⊥ = B⊥ ⊕ A⊥ (A⊕ B)⊥ = B⊥ & A⊥
(!A)⊥ =?A⊥ (?A)⊥ =!A⊥
1⊥ = ⊥ ⊥⊥ = 1

>⊥ = 0 0⊥ = >
Negation is then an involution: for any formula A, A⊥⊥ = A.

Definition 2.3 (Implications).

A( B = A⊥¶B, A−• B = A⊥ ∇B, B •− A = B ∇A⊥.

2.2. Rules

Definition 2.4. Sequents are of the form ` Γ, where Γ is an expression built from formulas

and binary constructors (−,−) and (−;−).

https://doi.org/10.1017/S0960129599003084 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599003084


Non-commutative logic II 281

Table 1. Sequent calculus I.

Identity - Cut

` A⊥, A ` Γ, A ` A⊥,∆
cut` Γ,∆

Associativity - Commutativity

` Π[Γ; (∆; Σ)]
a1` Π[(Γ; ∆); Σ]

` Π[(Γ; ∆); Σ]
1a` Π[Γ; (∆; Σ)]

` Π[Γ, (∆,Σ)]
a2` Π[(Γ,∆),Σ]

` Π[(Γ,∆),Σ]
2a` Π[Γ, (∆,Σ)]

` Π[Γ,∆]
com` Π[∆,Γ]

Structural rules

` Γ; ∆; Σ
entropy` Γ,∆,Σ

` Γ,∆
seesaw` Γ; ∆

`?Γ,∆,Σ
centre`?Γ; ∆; Σ

Multiplicatives

` Γ;A ` B; ∆ �` Γ;A� B; ∆

` Γ;A;B ∇` Γ;A∇B

` Γ, A ` B,∆ ⊗` Γ, A⊗ B,∆
` Γ, A, B

¶` Γ, A¶B

Additives

` Γ, A ` Γ, B
&` Γ, A&B

` Γ, A ⊕1` Γ, A⊕ B
` Γ, B ⊕2` Γ, A⊕ B

Exponentials

` Γ, A
d` Γ, ?A

`?Γ, A
!`?Γ, !A

` Γ, ?A, ?A
c` Γ, ?A

` Γ w` Γ, ?A

Constants

` 1
` Γ ⊥` Γ,⊥ (no rule for 0) ` Γ,>

The rules of the sequent calculus are given in Table 1. In the following, Γ[ ] denotes an

expression with a hole (a leaf of the expression Γ), and Γ[∆] is the expression obtained

by filling the hole with ∆. We also use the notation ?Γ for any expression whose formulas

are all ?ed.

Remarks.

I About associativity and commutativity. There is a bijective correspondence between the

equivalence classes of sequents under the rules for the associativity of (−,−) and (−;−)
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and the commutativity of (−,−), and the series–parallel ordered sets of occurrences of

formulas – see Mohring (1989) for a survey on series–parallel orders. We now recall the

definition of serial and parallel compositions of orders. Let ω1 and ω2 be orders on

disjoint sets X and Y , respectively. Then their serial and parallel compositions ω1 <ω2

and ω1 ‖ω2 are, respectively, two orders on X ∪ Y defined by

— (ω1 <ω2)(x, y) iff x<ω1
y or x<ω2

y or (x ∈ X and y ∈ Y ),

— (ω1 ‖ω2)(x, y) iff x<ω1
y or x<ω2

y.

In the bijective correspondence, the constructors (−;−) and (−,−) of the sequent

calculus are interpreted, respectively, by serial and parallel compositions of partial orders,

(−<−) and (−‖−). We have included the rules for associativity and commutativity for

the sake of clarity, but we shall refer explicitly to these rules as sparingly as possible. In

particular, we systematically avoid useless parentheses (see the rules for¶, ∇, contraction,

centre and entropy in Table 1) and we shall freely consider – even though this is not

strictly true – that the present version of the sequent calculus relies on (series–parallel)

partial orders. This is why they are separated from the more interesting structural rules:

seesaw, entropy and centre.

I About seesaw. This is the key to the system. It is reversible and its inverse is a particular

case of entropy:

` Γ; ∆
co-seesaw.` Γ,∆

We shall call co-seesaw the inverse of seesaw. Together, they imply cyclic exchange in the

usual sense:
` Γ; ∆

co-seesaw` Γ,∆
com` ∆,Γ
seesaw.` ∆; Γ

Intuitively, the seesaw rule can be read as follows: proofs with at most 2 conclusions can

freely pivot, which means that for such subproofs of a larger proof, commutative and

non-commutative compositions should be indistinguishable.

Major consequences of the combination of seesaw and co-seesaw are:

— a single negation,

— a single unit, 1 (respectively, ⊥), for both multiplicative conjunctions (respectively,

disjunctions): A� 1 a` 1� A a` A a` A⊗ 1 and A∇⊥ a` ⊥∇A a` A a` A¶⊥,

— a single introduction rule for each connective,

— the following focusing† property.

Proposition 2.5 (Focusing). Let ` Γ be a sequent and A be any formula of Γ. Then there

is a sequence of seesaw and co-seesaw, the application of which leads from ` Γ to a

sequent of the form ` Γ′, A with the same formulas.

† The terminology should not be confused with Andreoli’s homonymic property for linear logic (Andreoli

1992), which is related but not at all identical.
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Proof. The expression Γ is a binary tree with nodes either (−,−) or (−;−). We proceed

by induction on the length l of the path from the root of Γ to A. If l = 0 or 1, that is,

Γ = A, (∆, A), (A,∆), (∆;A) or (A; ∆), the result is obtained after at most one application

of the seesaw rule and/or commutativity. If l > 2, we have the following cases:

— Γ = (∆; Σ); Π. If A is in Σ, first apply the following rules:

` (∆; Σ[A]); Π
co-seesaw` (∆; Σ[A]),Π
com` Π, (∆; Σ[A])
seesaw` Π; (∆; Σ[A])
a1,` (Π; ∆); Σ[A]

and then the induction hypothesis. If A is in ∆, apply one step of associativity and

then the induction hypothesis.

— Γ = Π; (∆; Σ) and A is in ∆ or Σ. This follows by an identical argument.

— Γ = (∆,Σ); Π. If A is in Σ, apply co-seesaw, commutativity and associativity of (−,−)

map ` Γ to ` (Π,∆),Σ, and then the induction hypothesis applies. If A is in ∆, start

with co-seesaw and associativity and commutativity of (−,−).

— Γ = Π; (∆,Σ). This is similar.

— Γ = (∆; Σ),Π and A is in Σ. This follows by commutativity, seesaw and associativity

of (−;−), ` Γ is mapped to ` (Π; ∆); Σ, and then the induction hypothesis applies.

— Γ = Π, (∆; Σ). This follows by an identical argument.

— Γ = (∆,Σ),Π. This is similar.

— Γ = Π, (∆,Σ). This follows by an identical argument.

Note also that the result is unique modulo the associativity and commutativity rules. That

is, all the expressions Γ′ we obtain from a given sequent ` Γ have the same associated

partial order.

I About exponentials and the centre rule. As we shall verify below (see the examples,

or the phase semantics: Proposition 5.13 (viii)), the sequent calculus enjoys the essential

properties of exponentials:

!A�!B a`!(A&B) a`!A⊗!B,

which express the fact that commutativity constraints are irrelevant between ?ed formulas.

Besides, for cut elimination, it is necessary to add at least the rule

` Γ[?∆, ?Σ] ,
` Γ[?∆; ?Σ]

which, in the presence of seesaw, is equivalent to the simpler

` Γ, ?∆, ?Σ
.` Γ; ?∆; ?Σ

(For instance in the proof of !A�!B a`!B�!A obtained by composing the proofs of

!A�!B a`!(A&B) and !(A&B) a`!B�!A given below, the final cut indeed cannot be

eliminated without this rule.)

Note that the above two equations do not imply that a ?ed formula commutes with

any context, only with a ?ed context. However, it is cheap – and much simpler when we
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shall move to order varieties – to make this additionnal assumption, which is expressed

by the centre rule. Hence, as in Yetter (1990), ?ed formulas are central (Proposition 2.6).

In order to make the terminology as clear as possible, and to avoid the word entropy in

the reversible cases, we shall adopt the same convention as for the seesaw rule and use

co-centre rule for the inverse of the centre rule (a particular case of entropy).

Proposition 2.6 (Central exponentials). Let ` Γ[?A] be a sequent where ?A is any formula

in the expression Γ. There is a sequence of seesaw, co-seesaw, centre and co-centre, the

application of which leads from ` Γ[?A] to the sequent ` Γ[ ], ?A with the same formulas.

Proof. As in the proof of Proposition 2.5, we proceed by induction on the length l

of the path from the root of Γ to ?A. If l = 0 or 1, Γ =?A, (∆, ?A), (?A,∆), (∆; ?A) or

(A; ∆), and the result is obtained after at most one application of the centre rule and/or

commutativity. If l > 2, we have the same cases as in the proof of Proposition 2.5. Let us

consider the case Γ = (∆; Σ[?A]); Π, (the others being similar):

` (∆; Σ[?A]); Π
cyclicity` (Π; ∆); Σ[?A]

induction hypothesis` ((Π; ∆); Σ[ ]), ?A
seesaw` Π; (∆; Σ[ ]); ?A

co-centre` Π, (∆; Σ[ ]), ?A
com` (∆; Σ[ ]),Π, ?A
centre` (∆; Σ[ ]); Π; ?A
co-seesaw.` ((∆; Σ[ ]); Π), ?A

Corollary 2.7. Let ` Π be a sequent and ?A1, . . . , ?An be all occurrences of ?ed formulas

in the set |Π|. Let X = |Π| \ {?A1, . . . , ?An}. Then given any expression Π′ on the set |Π|
such that Π′ �X= Π�X , there is a sequence of seesaw, co-seesaw, centre and co-centre, the

application of which leads from ` Π to ` Π′. In particular, taking Π′ = Π�X, ?A1, . . . , ?An
amounts to extract all ?ed formulas from Π.

Note that a formula of MANL (the multiplicative additive fragment of NL) is provable

iff it is provable without the centre rule: this is an immediate consequence of the cut

elimination theorem (Theorem 6.1) and the subformula property (Proposition 2.8).

Examples.

I In the first two examples, we still mention explicitly the commutativity rule for (−,−).

Here is a proof of A⊗ B ` A� B:

` A⊥, A
seesaw` A⊥;A

` B, B⊥
seesaw` B;B⊥ �` A⊥;A� B;B⊥

entropy
` A⊥, A� B, B⊥

com` A� B, B⊥, A⊥
¶` A� B, B⊥¶A⊥
com` B⊥¶A⊥, A� B
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I Here is a proof of A⊗ (A−• B) ` B:

` B, B⊥
seesaw` B;B⊥

` A,A⊥
seesaw` A;A⊥ �` B;B⊥ � A;A⊥

entropy
` B, B⊥ � A,A⊥

¶` B, (B⊥ � A)¶A⊥
com` (B⊥ � A)¶A⊥, B

I Here are proofs of !(A&B) a`!A�!B:

` A,A⊥
d`?A⊥, A
seesaw`?A⊥;A

w`?B⊥, (?A⊥;A)
seesaw`?B⊥; ?A⊥;A
co-seesaw` (?B⊥; ?A⊥), A

` B, B⊥
d` B, ?B⊥
seesaw` B; ?B⊥

w` (B; ?B⊥), ?A⊥
seesaw` B; ?B⊥; ?A⊥
co-seesaw` (?B⊥; ?A⊥), B
&` (?B⊥; ?A⊥), A&B

!` (?B⊥; ?A⊥), !(A&B)
seesaw`!(A&B); ?B⊥; ?A⊥ ∇`!(A&B); ?B⊥∇?A⊥

co-seesaw`?B⊥∇?A⊥, !(A&B)

` A⊥, A ⊕2` B⊥ ⊕ A⊥, A
d`?(B⊥ ⊕ A⊥), A
!`?(B⊥ ⊕ A⊥), !A
seesaw`?(B⊥ ⊕ A⊥); !A

` B, B⊥ ⊕1` B, B⊥ ⊕ A⊥
d` B, ?(B⊥ ⊕ A⊥)
!`!B, ?(B⊥ ⊕ A⊥)
seesaw`!B; ?(B⊥ ⊕ A⊥) �`?(B⊥ ⊕ A⊥); !A�!B; ?(B⊥ ⊕ A⊥)

entropy
`?(B⊥ ⊕ A⊥), !A�!B, ?(B⊥ ⊕ A⊥)

c`?(B⊥ ⊕ A⊥), !A�!B

I Here are proofs of A� 1 a` A:

` A,A⊥
seesaw` A⊥;A ⊥` ⊥, (A⊥;A)

seesaw` ⊥;A⊥;A
co-seesaw` A, (⊥;A⊥)
seesaw` A;⊥;A⊥ ∇` A;⊥∇A⊥
co-seesaw` ⊥∇A⊥, A

` A⊥, A
seesaw` A⊥;A ` 1 �` A⊥;A� 1

co-seesaw` A⊥, A� 1
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I Here is a proof of !A� B ` B�!A:

` B⊥, B
seesaw` B⊥;B

` A,A⊥
d` A, ?A⊥
!`!A, ?A⊥
seesaw`!A; ?A⊥ �` B⊥;B�!A; ?A⊥

co-centre` B⊥; (?A⊥, B�!A)
centre` B⊥; ?A⊥;B�!A ∇` B⊥∇?A⊥, B�!A

Clearly, the sequent calculus enjoys the subformula property.

Proposition 2.8 (Subformula property). If D is a cut-free proof of ` Γ, then the formulas

occurring in D are subformulas of the formulas in Γ.

Cut elimination will be proved using the phase semantics (Theorem 6.1).

2.3. Invariants

The sequent calculus with all the structural rules explicit (previous section) is not entirely

satisfactory. This is essentially because:

— A proof of a sequent containing only non-commutative connectives may use the

commutative composition (−,−). For instance

` A⊥, A
seesaw` A⊥;A ∇,

` A⊥∇A
— For the sake of stability by cut elimination (in particular commutation with seesaw),

the cut rule has to appear in 4 different forms (premisses with (−,−) or (−;−)), which

are clearly equivalent modulo seesaw and co-seesaw:

` Γ;A
seesaw` Γ, A ` A⊥,∆

cut` Γ,∆

→ ` Γ;A ` A⊥,∆
cut.` Γ,∆

This raises the question of determining the invariant of sequents under seesaw and co-

seesaw. In other words, we are looking for the sequent calculus without seesaw and

co-seesaw, corresponding to the calculus of the present section. One might expect to solve

the problem by adding ` A⊥;A as an axiom, and other logical rules, with nested contexts,

such as
` Γ, A ` ∆[B]

. . .` ∆[Γ;A� B]

and by eliminating the seesaw rule, having again in mind a calculus relying on orders

(reminiscent of the intuitionistic calculus, see de Groote (1996)). But, in fact, to prove

the associativity of multiplicative connectives, the seesaw rule is essential, which means

that the mathematical structure underlying a sequent, invariant by the rules seesaw and

co-seesaw, is not an order.
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This is our reason for introducing order varieties. Order varieties (Section 3) are

structures that can be presented by partial orders in several ways, a good analogy being

the oriented circle that becomes a total order as soon as an origin is fixed: provided a

point of view (an element x in the base set), an order variety can be seen as a partial order

on the complement of {x}. This reflects Proposition 2.5 precisely, which enables one to

change the presentation of a sequent (the associated order) in a completely reversible way,

for example, by ‘pulling out’ any formula A. Order varieties can therefore be presented in

different ways by changing the viewpoint – of course they are invariant under the change

of presentation.

In Section 4 we shall present the version of the sequent calculus without seesaw and co-

seesaw, using order varieties. We first present the definition and some properties of order

varieties (some of them are just recalled from Abrusci and Ruet (2000)), and introduce

series–parallel order varieties.

3. Order varieties

3.1. Order varieties and orders

Definition 3.1 (Order varieties). Let X be a set. An order variety on X is a ternary relation

α that is
cyclic : ∀x, y, z ∈ X, α(x, y, z)⇒ α(y, z, x),

anti-reflexive : ∀x, y ∈ X,¬α(x, x, y)

transitive : ∀x, y, z, t ∈ X, α(x, y, z) and α(z, t, x)⇒ α(y, z, t),

spreading : ∀x, y, z, t ∈ X, α(x, y, z)⇒ α(t, y, z) or α(x, t, z) or α(x, y, t).

An order variety α on X is said to be total when ∀x, y, z ∈ X, x 6= y 6= z 6= x⇒ α(x, y, z)

or α(z, y, x).

Ternary relations satisfying the first three axioms have been studied by Novák (Novák

1982) and called cyclic orders.

A few elementary properties and examples of order varieties are collected in the

following remarks (for proofs, see Abrusci and Ruet (2000)).

Remarks.

I If α is a total order variety, α(x, y, z) can be read as ‘y is between x and z’.

Definition 3.2. An order variety α on X induces a binary relation →α on X by x→α y iff

∀z ∈ X:

z 6= x and z 6= y ⇒ α(x, y, z).

One verifies easily that, when α is total, →α is an oriented cycle. In Section 4, the relation

→α will be used in the introduction rule for ∇, for arbitrary order varieties.

Conversely, any oriented cycle G induces a ternary r(G) on |G| by: r(G)(x, y, z) iff y is

between x and z in G; then the set of finite oriented cycles is isomorphic to the set of

finite total order varieties, by →r(G)= G and r(→α) = α.
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I The empty ternary relation on any set X is an order variety on X, called the empty

order variety on X and denoted by ?X , or simply ? if there is no ambiguity.

I The cyclic closure of {(a, b, c)} is not an order variety on {a, b, c, d}, as it does not enjoy

the spreading condition; it is an order variety on {a, b, c}.
Notation. The finite total order variety corresponding to the oriented cycle a1 → · · · →
an → a1 will simply be denoted (a1 . . . an).

Definition 3.3.

(i) Let α be an order variety on X and x ∈ X. Define the binary relation αx on X \ {x}
by: αx(y, z) iff α(x, y, z).

(ii) Let ω = (X,<) be a (strict) partial order on X and z ∈ X. Define the binary relation
z
< by:

— x
z
< y iff x < y and z is comparable with neither x nor y,

and the ternary relation ω on X by:

— ω(x, y, z) iff x < y < z or y < z < x or z < x < y or

x
z
< y or y

x
< z or z

y
< x.

Proposition 3.4.

(i) If α is an order variety on X and x ∈ X, then αx is a partial order on X \ {x}. It is

called the order induced by α and x.

(ii) If (X,ω) is a partial order, then ω is an order variety on X.

Proposition 3.4 expresses the possibility of focusing on an arbitrary element x in an

order variety (α 7→ αx ‖ x) to perform operations (the usual operations on binary orders)

and then come back to an order variety (ω 7→ ω). Note the following properties of

commutation with restriction.

Facts 3.5.

(i) Let ω be an order on X and Y ⊆ X. Then (ω)�Y = ω�Y .

(ii) Let α be an order variety on X, x ∈ X and Y ⊆ X \ {x}. Then αx �Y = (α�Y ]{x})x.

Proposition and Definition 3.6 (Glueing). If ω and τ are two partial orders on disjoints

sets, then ω<τ = ω ‖ τ = τ<ω. Define

ω ∗ τ = ω<τ = ω ‖ τ = τ<ω.

For instance, one may easily check as an exercise that if ω ∗ τ is a total order variety,

with |ω| and |τ| non-empty, then both ω and τ are total orders. The following proposition

establishes a reversible relation between order varieties and partial orders:

Proposition 3.7. Let α be an order variety on a set X, x ∈ X and ω a partial order on

X \ {x}. Then

αx ∗ x = α and (ω ∗ x)x = ω.
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An order variety is indeed a glueing of order structures, as its name implies, but a very

strict kind of glueing, more like the one-point compactification of the plane than general

manifold glueing.

3.2. Series–parallel order varieties

Recall that the class of so-called series–parallel orders is the least class of finite orders

containing empty orders on singletons and closed by serial and parallel compositions. See

Mohring (1989) for a survey on series–parallel orders.

In this section, we define the corresponding class of order varieties, called series–parallel

order varieties. In practice the sequent calculus of Section 4 will rely on series–parallel

order varieties.

Definition 3.8. Let α and β be order varieties on the sets X and Y , respectively, with

X ∩ Y = {x}. Define {
α�x β = αx < x< βx = (βx < αx) ∗ x
α⊗x β = αx ‖ x ‖ βx = (αx ‖ βx) ∗ x.

Clearly, if α and β are order varieties on the sets X and Y , respectively, with X∩Y = {x},
then α�x β and α⊗x β are order varieties on X ∪ Y .

Example. If X ∩ Y = {x}, ?X ⊗x ?Y = ?X∪Y , but ?X �x ?Y 6= ?X∪Y .

Definition 3.9 (Series–parallel order varieties). Given a set X, the class of series–parallel

order varieties on X is the least class of order varieties containing the empty order varieties

?{a} and ?{a,b} on singletons and pairs (a, b ∈ X), and closed by �x and ⊗x.
For instance, total and empty order varieties are series–parallel order varieties. The

following is a straightforward calculation.

Lemma 3.10. Let α and β be order varieties on the sets X and Y , respectively, with

X ∩ Y = {x}, and let y ∈ X \ {x}, z ∈ Y \ {x}.
(α�x β)x = βx < αx (α⊗x β)x = βx ‖ αx
(α�x β)y = αy[(x< βx)/x] (α⊗x β)y = αy[(x ‖ βx)/x]

(α�x β)z = βz[(αx < x)/x] (α⊗x β)z = βz[(αx ‖ x)/x]

Lemma 3.11. If α is a series–parallel order variety on a non-empty set X, and x ∈ X, then

αx is a series–parallel order on X \ {x}.
Proof. By Proposition 3.4 (i), αx is an order on X \ {x}. To show that it is series–

parallel, we proceed by induction on the construction of series–parallel order varieties.

For singletons and pairs, it is obvious. Let γ = α�tβ or α⊗tβ, by the induction hypothesis

αx, αt, βx and βt are series–parallel orders, so by Lemma 3.10, (α�t β)x and (α⊗t β)x are

series–parallel.

Proposition 3.12. Let α be an order variety on a non-empty set X. Then α is series–parallel

iff there exists a series–parallel order ω on X such that ω = α.
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Proof. If α is series–parallel, let x ∈ X. Then, by Lemma 3.11, (x ‖ αx) is a series–parallel

order, and by Proposition 3.7, α = x ‖ αx.
Conversely, if X has one or two elements, it is obvious. Otherwise, take x ∈ X. By

Lemma 3.11, αx is a series–parallel order on the set X \ {x} that has at least two elements,

so αx = (ω1 ‖ω2) or (ω1 <ω2). By Proposition 3.7, α = x ∗ αx, and hence α = x ∗ (ω1 ‖ω2)

or x ∗ (ω1 <ω2). In the first case, α = (x ∗ ω1) ⊗x (x ∗ ω2) is series–parallel, and in the

second case, α = (x ∗ ω1)�x (x ∗ ω2) is series–parallel as well.

Propositions 3.12, 3.6 and 3.7 suggest the possibility of visualizing series–parallel order

varieties on a set X as rootless trees with leaves labelled by elements of X and ternary

nodes labelled by ⊗ or �. Given an order variety α on X (]X > 2), α = ω for some

(non-unique) series–parallel order ω. Write ω as a (non-unique) binary tree t with leaves

labelled by elements of X, and root and nodes labelled by ⊗ (in the case of parallel

composition) or � (serial composition); then remove the root of t.

⊗

ω2ω1

�

ω1 ω2

ω2ω1

For instance (x<y < z) ‖ v ‖ (t < u) can be represented by

⊗

v

�

x

�

y �

z

u

t

To read the tree, take three leaves a, b, c. Then (a, b, c) is in the order variety iff:

— the node • at the intersection of the three paths ab, bc and ca is labelled by � and

— the paths a•, b• and c• are in this cyclic order while moving clockwise around •.
Note that the law of spreading, in particular, is easy to check in the tree representa-

tion. Note also how the removal of the root corresponds to the glueing operation of

Proposition 3.6.

The resulting tree is obviously not unique (change x � (y � z) for (x � y) � z in the

above example). However, if we quotient the set of such trees by associativity of ⊗ and

� and commutativity of ⊗, then the result is unique (in particular it is independent from

the choice of ω) – see Proposition 3.17.
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3.3. Characterization of series–parallel order varieties

There is a characterization of series–parallel orders as those orders on finite sets X whose

restriction to any 4-elements subset {a, b, c, d} is different from the order N(a, b, c, d) =

{(a, b), (c, b), (c, d)}. There is a similar characterization of series–parallel order varieties.

Definition and Lemma 3.13. G(a, b, c, d, e) denotes the ternary relation

(a, b, d) ∪ (a, c, d) ∪ (c, b, e) ∪ (c, d, e) ∪ (a, b, e).

It is an order variety on {a, b, c, d, e}.
Note that G(a, b, c, d, e)e = {(a, b), (c, b), (c, d)} = N(a, b, c, d) is not a series–parallel order,

so according to Lemma 3.11, G(a, b, c, d, e) is not a series–parallel order variety. Moreover,

we have the following proposition.

Proposition 3.14. Let α be an order variety on a non-empty finite set X. The following

are equivalent:

(i) α is series–parallel,

(ii) there exists a series–parallel order ω on X such that ω = α,

(iii) the restriction of α to every 5-element subset {a, b, c, d, e} of X is different from

G(a, b, c, d, e).

Proof. (i ⇔ ii) Cf. Proposition 3.12.

(ii ⇒ iii) Assume that ω = α and α �Y = G(a, b, c, d, e) for some 5-element subset Y =

{a, b, c, d, e} of X. Then ω�Y = (ω) �Y = G(a, b, c, d, e), so ω�Y is not a series–parallel

order variety and ω �Y is not a series–parallel order by Proposition 3.12. Hence ω is not

a series–parallel order either, which is a contradiction.

(iii ⇒ ii) Let e ∈ X. We can concentrate on sets of at least 5 elements (for smaller

sets the result is obvious). If (iii), then αe is a series–parallel order: indeed, otherwise

αe �{a,b,c,d}= (α �{a,b,c,d,e})e = N(a, b, c, d), thus α �{a,b,c,d,e}= N(a, b, c, d) ∗ e = G(a, b, c, d, e),

which is a contradiction. Therefore there exists a series–parallel order ω on X such that

ω = α, namely ω = (e ‖ αe).

In particular, we have the following consequence.

Proposition 3.15 (Restriction).

(i) Let ω be an order on X and Y ⊆ X. Then (ω)�Y = ω�Y .

If α is an order variety on a set X and Y ⊆ X, then the restriction α�Y of α to Y (as

a set of triples) is an order variety on Y . Moreover if Y 6= ? and α is series–parallel,

then so is α�Y .

(ii) If α is an order variety on X ∪ {x} with x 6∈ X, then α�X= αx.

Proof. (i) Immediate consequences of (i), Proposition 3.7 and Proposition 3.14.

(ii) Let α be an order variety on X ∪ {x} with x 6∈ X. α�X and αx are both order varieties

on X, and by Proposition 3.7, α�X= (αx ‖ x)�X= αx.
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In the tree representation for series–parallel order varieties, the restriction to a subset

Y is obtained by cancelling all nodes and edges that are not on a simple path between

two leaves of Y : in particular, the leaves outside Y and the adjacent edges are cancelled,

and so on. For instance, the restrictions of (x<y < z) ‖ v ‖ (t < u) to the sets {x, t, u, v} and

{y, t, u, v} are, respectively,

y

x

t

u

t

u

⊗

�

v

⊗

�

v

3.4. Seesaw

The equivalence of series–parallel orders induced by the seesaw rule of Section 2 is the

same as the equality of the associated order varieties.

Definition 3.16 (Seesaw). ∼ is the equivalence relation between partial orders on the same

set, defined by

ω ∼ σ iff ω = σ.

Proposition 3.17. The restriction of ∼ to series–parallel orders is the least equivalence

relation between series–parallel orders on the same set such that

(ω1 ‖ω2) ∼ (ω1 <ω2).

Proof. One direction is just Proposition 3.6.

Conversely, let ≈ be the equivalence relation defined by (ω1 ‖ω2) ≈ (ω1 <ω2). The

result is obvious if X = ?. If ]X > 0, let x ∈ X. One proves that ω ≈ (x ‖ (ω)x) by

induction on h(x, ω) = min{length of the path from x to the root of t | t tree representing

ω}:
— If h(x, ω) = 0 or 1, it is clear.

— If h(x, ω) > 1, then ω is a ternary combination of series–parallel orders with ‖
and < . Consider the case ω = (ω1[x] ‖ω2)<ω3, the other cases being similar. Let

ω′′ = ω1[x] ‖ (ω2 ‖ω3). On the one hand ω ≈ ω′′, so ω ∼ ω′′ and ω = ω′′, and on

the other hand ω′′ ≈ (x ‖ (ω′′)x) because h(x, ω′′) = h(x, ω) − 1, and hence ω ≈ ω′′ ≈
(x ‖ (ω′′)x) = (x ‖ (ω)x).

Therefore, if ω ∼ σ, that is, ω = σ, then ω ≈ (x ‖ (ω)x) = (x ‖ (σ)x) ≈ σ.
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3.5. Entropy

Definition 3.18 (Entropy). P is the relation defined on the set of all partial orders for a

fixed set by

ω P σ iff ω ⊆ σ and ω ⊆ σ.

The following facts are obvious.

Facts 3.19. (i) P is a partial order.

(ii) P is compatible with restriction.

Lemma 3.20. P is compatible with the compositions ‖ and < of partial orders.

Proof. If ω P ω′ and σ P σ′, then (ω ‖ σ) ⊆ (ω′ ‖ σ′), and, furthermore, ω ‖ σ ⊆ ω′ ‖ σ′.
Indeed:

— ω ‖ σ�|ω|= ω = ω′ ‖ σ′ �|ω| and ω ‖ σ�|σ|= σ = ω′ ‖ σ′ �|σ|.
— If a, b ∈ |ω| and c ∈ |σ|, then ω ‖ σ(a, b, c) ⇔ ω(a, b) ⇒ ω′(a, b) ⇔ ω′ ‖ σ′(a, b, c); idem

for a, b ∈ |σ| and c ∈ |ω|.
Idem for < .

Corollary 3.21. If ω P ω′ and σ P σ′, then ω ∗ σ ⊆ ω′ ∗ σ′.
In Proposition 3.24, we will see that P is a generalization to arbitrary partial orders

of the relation considered in the sequent calculus of Section 2 in the series–parallel case:

moving from serial composition to parallel composition. The fact that P corresponds to

the inclusion of order varieties (Proposition 3.22) confirms that it is indeed a good choice,

and it will serve as a basis for defining a calculus on order varieties in Section 4.

Proposition 3.22. Let α and β be order varieties on X and x ∈ X. Then the following are

equivalent:

(i) α ⊆ β.

(ii) αx P βx.

(iii) There exist partial orders ω and σ on X such that α = ω, β = σ and ω P σ.

Proof. (i)⇒ (ii). If α ⊆ β, then αx ⊆ βx, and on the other hand αx = α�X\{x}⊆ β�X\{x}=
βx by Proposition 3.15, therefore αx P βx.

(ii) ⇒ (iii). αx P βx implies the existence of the required partial orders: take ω = (αx ‖ x)

and σ = (βx ‖ x); by Lemma 3.20, ω P σ.

(iii) ⇒ (i). If there exist partial orders ω and σ on X such that α = ω, β = σ and ω P σ,

then by definition of P, ω ⊆ σ, that is, α ⊆ β.

Lemma 3.23. ω[ω1 ‖ω2] P ω[ω1 <ω2].

Proof. If ω = ω[ω1 ‖ω2] and σ = ω[ω1 <ω2], then:

— Clearly, ω ⊆ σ.
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— ω ⊆ σ. Indeed, consider a, b, c ∈ X such that ω(a, b, c). Let X = |ω|, X1 = |ω1|, X2 =

|ω2|, X3 = X \ (X1 ∪ X2) and I be the least set of indices ⊆ {1, 2, 3} such that

{a, b, c} ⊆ ⋃i∈I Xi. If I = {i}, then σ(a, b, c) holds trivially. If I = {1, 2}, then say

a, b ∈ X1 and c ∈ X2, whence ω(a, b, c) iff ω1(a, b) iff σ(a, b, c). If I = {1, 3}, then

ω(a, b, c) iff ω�X1∪X3
(a, b, c) iff σ�X1∪X3

(a, b, c) iff σ(a, b, c). The case I = {2, 3} is

similar. Finally, I = {1, 2, 3} simply contradicts ω(a, b, c).

Hence ω P σ.

Proposition 3.24. The restriction of P to series–parallel orders is the least reflexive tran-

sitive relation between series–parallel orders on the same set such that

ω[ω1 ‖ω2] P ω[ω1 <ω2].

Proof. By Lemma 3.23, the above rule is sound. Conversely, let ω and σ be two

series–parallel orders on the same set such that ω P σ. We use the axiomatisation of the

inclusion between series–parallel orders given by Bechet et al. (1997); the result stated in

Propositions 3.2 and 4.1 of Bechet et al. (1997) is ω ⊆ σ iff ω is obtained from σ by means

of the following reflexive and transitive congruence:

(1) τ< θ → τ ‖ θ
(2) τ< (θ1 ‖ θ2) → (τ< θ1) ‖ θ2

(3) (θ1 ‖ θ2)<τ → θ1 ‖ (θ2 <τ)

(4) (τ1 ‖ τ2)< (θ1 ‖ θ2) → (τ1 <θ1) ‖ (τ2 <θ2).

Now ω P σ, thus ω ⊆ σ. We have to use condition ω ⊆ σ to restrict ourselves to the

rewrite rule (1). We shall write
1→ for the congruence induced by (1). We proceed by

induction on the cardinality of σ \ω. If σ \ω = ?, the result is trivial. If σ \ω 6= ?, there

is a derivation ω ← σ of ω ⊆ σ. There are four cases:

— The first rule applied is (1), that is, ω ← ρ[τ ‖ θ] ← ρ[τ< θ] = σ. Then clearly

ρ[τ ‖ θ]
1← σ and ω ⊆ ρ[τ ‖ θ]. On the other hand, ω ⊆ ρ[τ ‖ θ]. Indeed,

ω�|ρ| ⊆ σ�|ρ|
= ρ[τ ‖ θ]�|ρ| and

ω�X\|ρ| ⊆ σ�X\|ρ|
= τ< θ

= τ ‖ θ
= ρ[τ ‖ θ]�X\|ρ| .

Besides, ω(x, a, b) for some x ∈ |ρ| and a, b ∈ X\|ρ| implies σ(x, a, b), and then a, b ∈ |τ|
or a, b ∈ |θ| because ω ⊆ ρ[τ ‖ θ], whence ρ[τ ‖ θ](x, a, b) as well. Finally, ω(x, y, a) for

some x, y ∈ |ρ| and a ∈ X \ |ρ| implies σ(x, y, a), and clearly ρ[τ ‖ θ](x, y, a) holds.

Hence ω P ρ(τ ‖ θ), and by induction ω
1← ρ(τ ‖ θ), therefore ω

1← σ by transitivity of
1←.

— The first rule applied is (2): ω ← ρ[(τ< θ1) ‖ θ2] ← ρ[τ< (θ1 ‖ θ2)] = σ. Since ω ⊆ σ,

for all a ∈ |τ|, b1 ∈ |θ1|, b2 ∈ |θ2|, we have ¬ω(a, b1, b2) and ¬ω(a, b2, b1). By ω ⊆
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ρ[(τ< θ1) ‖ θ2], we conclude that a and b1 are incomparable in ω, hence

ω ⊆ ρ[τ ‖ θ1 ‖ θ2].

We prove ω ⊆ ρ[τ ‖ θ1 ‖ θ2] as above, by replacing θ by θ1 ‖ θ2. Therefore ω P
ρ[τ ‖ θ1 ‖ θ2], and by induction, ω

1← ρ[τ ‖ θ1 ‖ θ2]. Now, obviously, ρ[τ ‖ θ1 ‖ θ2]
1← σ,

therefore ω
1← σ by transitivity of

1←.

— The first rule applied is (3). This case is similar.

— The first rule applied is (4):

ω ← ρ[(τ1 <θ1) ‖ (τ2 <θ2)]← ρ[(τ1 ‖ τ2)< (θ1 ‖ θ2)] = σ.

Since ω ⊆ σ and ω ⊆ ρ[(τ1 <θ1) ‖ (τ2 <θ2)], we can prove, as in the case of Rule (2),

that ω ⊆ ρ[τ1 ‖ θ1 ‖ τ2 ‖ θ2]. Then by replacing τ by τ1 ‖ τ2, and θ by θ1 ‖ θ2 in the

argument used for Rule (1), we get ω ⊆ ρ[τ1 ‖ θ1 ‖ τ2 ‖ θ2], and we conclude by using

ρ[τ1 ‖ θ1 ‖ τ2 ‖ θ2]
1← σ.

In the tree representation for series–parallel order varieties, entropy is performed by

changing some �-nodes into ⊗-nodes. For instance, the following order variety is obtained

by entropy from (x<y < z) ‖ v ‖ (t < u):

⊗�

x

y
z

t

u

⊗

�

v

Lemma 3.25.

(i) The partial orders ω such that ω Q N(a, b, c, d) are N(a, b, c, d), a< c< b<d and

c< d<a<b.

(ii) The order varieties α such that α ⊇ G(a, b, c, d, e) are G(a, b, c, d, e) and the total order

varieties (a, c, b, d, e) and (c, d, a, b, e).

(iii) The partial orders ω such that ω P N(a, b, c, d) are N(a, b, c, d) and a ‖ b ‖ c ‖ d.
(iv) The order varieties α such that α ⊆ G(a, b, c, d, e) are G(a, b, c, d, e) and ?{a,b,c,d,e}.

Proof. (i) Let ω be a partial order such that ω Q N(a, b, c, d), and assume ω 6=
N(a, b, c, d). Then, in particular, ω ⊃ N(a, b, c, d), and is therefore one of the following 12
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non-trivial extensions of N(a, b, c, d):

(a ‖ c)< (b ‖ d) (a ‖ c)<b<d
a< c<b<d (a ‖ c)<d<b
a< c<d<b (a ‖ (c< d))<b

c< a<b<d a< c< (b ‖ d)
c< a<d<b c< a< (b ‖ d)
c< d<a<b c< ((a< b) ‖ d).

It is easy to check that the additional condition ω ⊇ N(a, b, c, d) = (a, b, d)∪ (a, c, d) implies

the result.

(ii) By Proposition 3.22, α ⊇ G(a, b, c, d, e) iff αe Q G(a, b, c, d, e)e = N(a, b, c, d), whence the

result.

(iii) Among the 8 partial orders ω ⊆ N(a, b, c, d), only N(a, b, c, d) and a ‖ b ‖ c ‖ d enjoy

ω ⊆ N(a, b, c, d).

(iv) We use the same argument as in (ii).

3.6. Interior and wedges

Before turning to the sequent calculus on order varieties, we develop the theory of order

varieties a bit further by studying:

— the appropriate notion of inf of order varieties,

— the operation of identification of two points in an order variety (see the next section).

The reason for these two sections is to show (Section 4) that the forthcoming calculus on

order varieties is consistent with the multiplicative sequent calculus given in Abrusci and

Ruet (2000). They can therefore be skipped in a first reading.

Intersections of order varieties are obviously cyclic orders but not necessarily order

varieties. As we are definitely dealing with order varieties, we need a way to transform

cyclic orders into order varieties. This motivates the following definitions.

Definition 3.26 (Interior). Let α be a cyclic order on X (that is, an order variety without

the spreading condition). Define its interior \α by:

\α =
⋂
x∈X(αx ∗ x).

(The definition of the partial order αx on X \ {x} is the same as for order varieties.) For

instance if α = (x, y, z, t) ∪ (x, y, u), then \α = (x, y, z) ∪ (x, y, t) ∪ (x, y, u). As shown in

Abrusci and Ruet (2000), the interior of a cyclic order satisfies the following properties.

Proposition 3.27. Let α and β be cyclic orders on X.

(i) \α is an order variety on X.

(ii) \α ⊆ α.
(iii) \\α = \α.

(iv) \α is the largest order variety included in α.
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(v) α ⊆ β ⇒ \α ⊆ \β.

(vi) If Y ⊆ X then (\α)�Y⊆ \(α�Y ).

(vii) \(α ∩ β) ⊆ \α ∩ \β.

(viii) \(\α ∩ \β) = \(α ∩ β).

(ix) →\α = →α.

Definition 3.28 (Wedge of order varieties). Let αi, i ∈ I, be order varieties on X. Define∧
αi = \

⋂
αi.

If I has cardinality 2, we write α1 ∧ α2.

Proposition 3.29. (i) ∧ is commutative and associative.

(ii)
∧
αi is the largest order variety included in all the αi.

Proof. (i) Commutativity is clear. For associativity,

(α ∧ β) ∧ γ = \(\(α ∩ β) ∩ γ)
= \(\(α ∩ β) ∩ \γ)
= \(α ∩ β ∩ γ).

The second equality holds because γ is an order variety and the third is a consequence of

Proposition 3.27 (viii). Similarly, α ∧ (β ∧ γ) = \(α ∩ β ∩ γ).
(ii) This follows from an obvious application of Proposition 3.27.

Corollary 3.30. Order varieties on a given set form a complete inf-semi-lattice for inclusion

and wedge.

Definition 3.31 (Wedge of orders). Let ωi, i ∈ I, be partial orders on X. Define∧
ωi = (

∧
ωi ∗ x)x.

where x 6∈ X. If I has cardinality 2, we write ω1 ∧ ω2.

Lemma 3.32.

(i) If Y ⊆ |αi|, we have (
∧
αi)�Y⊆ ∧ αi�Y .

(ii) If Y ⊆ |ωi|, we have (
∧
ωi)�YP ∧ωi�Y .

(iii) Wedge commutes with focusing: (
∧
αi)x =

∧
(αi)x for any x ∈ |αi|.

(iv) Wedge commutes with glueing: (
∧
ωi) ∗ x =

∧
(ωi ∗ x) for any x 6∈ |ωi|.

(v) More generally, (
∧
i∈I ωi) ∗ (

∧
j∈J τj) =

∧
i∈I,j∈J(ωi ∗ τj) when |ωi| ∩ |τj | = ?.

Proof. (i) This follows from Proposition 3.27 (vi).

(ii) This follows from

(
∧
ωi)�Y = ((

∧
ωi ∗ x)x)�YP (

∧
ωi�Y ∗x)x by (i) and Proposition 3.22

=
∧
ωi�Y .
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(iii) This follows from the equality
∧

(αi)x = [
∧

((αi)x∗x)]x = (
∧
αi)x, which is a consequence

of Proposition 3.6.

(iv) This is analogous.

(v) It is enough to prove that (
∧
i∈I ωi)∗τ =

∧
i∈I (ωi∗τ). The inclusion (

∧
ωi)∗τ ⊆ ∧(ωi∗τ)

follows from
∧
ωi P ωi and Corollary 3.21. For the converse, let X = |ωi|, Y = |τ|, and

consider a, b, c ∈ X ∪ Y such that
∧

(ωi ∗ τ) (a, b, c). Either the a, b, c are all in X or all in

Y , or one of them is in one set and the other two are in the other, but in any case we can

apply (iv). For instance, if a, b, c ∈ X, take y ∈ Y . Then by (i) and (iv) we have

(
∧

(ωi ∗ τ))�X∪{y} ⊆
∧

(ωi ∗ τ)�X∪{y}
=

∧
(ωi ∗ y)

= (
∧
ωi) ∗ y,

therefore
∧

(ωi ∗ τ) (a, b, c) implies ((
∧
ωi) ∗ y) (a, b, c), and hence ((

∧
ωi) ∗ τ) (a, b, c). If, on

the other hand, a, b ∈ X and c ∈ Y , we apply the same property with y = c.

Proposition 3.33. (i) ∧ is a commutative and associative operation on partial orders.

(ii)
∧
ωi is the largest order ω (with respect to P) such that ω P ωi for all i.

Proof. (i) Commutativity is obvious. Associativity is a consequence of Propositions 3.29

and 3.6.

(ii)

τ P all the ωi iff τ ∗ x ⊆ ⋂(ωi ∗ x) by Proposition 3.22

iff τ ∗ x ⊆ ∧(ωi ∗ x) because τ ∗ x is an order variety

iff (τ ∗ x)x P [
∧

(ωi ∗ x)]x by Proposition 3.22 again

iff (τ ∗ x)x P ∧(ωi ∗ x)x by Lemma 3.32

iff τ P ∧ωi by Proposition 3.6.

Remarks.

I ω∧τ ⊂ ω∩τ but the inclusion is strict in general. Consider, for instance, ω = (a ‖ b)<c
and τ = (a< c) ‖ b. Since τ ⊆ ω, we have ω ∩ τ = τ. On the other hand,

ω ∧ τ = (ω ∗ x ∧ τ ∗ x)x

= [((a, c, x) ∪ (b, c, x)) ∧ ((a, c, b) ∪ (a, c, x))]x

= [\(a, c, x)]x

= (?{a,b,c,x})x
= ?,

because \(a, c, x) ⊆ (a, c, x)b ∗ b = ?{a,b,c,x}.

I α and β may be series–parallel and not α∧ β: take α = (a, c, b, d, e) and β = (c, d, a, b, e),

they are even total, but α ∧ β = G(a, b, c, d, e) = α ∩ β.
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I For similar reasons, ω and τ may be series–parallel but not ω ∧ τ:
(c < d < a < b) ∧ (a < c < b < d) = ((c < d < a < b) ∗ e ∧ (a < c < b < d) ∗ e)e

= ((c, d, a, b, e) ∧ (a, c, b, d, e))e

= G(a, b, c, d, e)e

= N(a, b, c, d).

By the way, note that the wedge of two order varieties equals their intersection as soon

as this intersection is an order variety, whereas the intersection of partial orders is always

an order, and we cannot conclude anything about their wedge.

3.7. Identification

Definition 3.34 (Identification). Let α be an order variety on a set X∪{x, y}, with x, y 6∈ X,

x 6= y, and let z 6∈ X. Define the identification α[z/x, y] of x and y into z in α by

α[z/x, y] = α�X∪{x} [z/x] ∧ α�X∪{y} [z/y].

Clearly, if α is an order variety, then so is α[z/x, y].

Lemma 3.35.

(i) α[z/x, y]z = (αx)y ∧ (αy)x.

(ii) α[z/x, y]z ∗ (x ‖ y) ⊆ α.
(iii) Let α be an order variety on X ∪ {x, y}, with x, y different and not in X, and ω be a

partial order on X such that ω ∗ (x ‖ y) ⊆ α. Then ω ∗ (x ‖ y) ⊆ α[z/x, y]z ∗ (x ‖ y), or,

equivalently, ω P α[z/x, y]z .

Proof. (i) By Lemma 3.32,

α[z/x, y]z = α�X∪{x} [z/x]z ∧ α�X∪{y} [z/y]z

= (α�X∪{x})x ∧ (α�X∪{y})y
= (αy)x ∧ (αx)y.

(ii) Let a, b, c ∈ X ∪ {x, y} be such that α[z/x, y]z ∗ (x ‖ y) (a, b, c). First, {a, b, c} does not

contain both x and y, so assume y 6∈ {a, b, c}, whence (α[z/x, y]z ∗ (x ‖ y)) �X∪{x} (a, b, c),

that is, (α[z/x, y]z ∗ x)(a, b, c). By (i) and Proposition 3.33:

α[z/x, y]z ∗ x = (αx)y ∗ x ∧ (αy)x ∗ x
⊆ (αy)x ∗ x
= αy

= α�X∪{x} .

Therefore α(a, b, c). The case where x 6∈ {a, b, c} is similar.

(iii) Let us prove that ω ∗ z ⊆ α[z/x, y], that is, ω ∗ z ⊆ α�X∪{x} [z/x] and ω ∗ z ⊆ α�X∪{y}
[z/y]. This is immediate, since by hypothesis ω ∗ x ⊆ α�X∪{x} and ω ∗ y ⊆ α�X∪{y}.
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Proposition 3.36.

(i) Inclusion is compatible with identification in order varieties.

(ii) If α is a series–parallel order variety, so is α[z/x, y].

Proof.

(i) We have to show that α ⊆ β implies α[z/x, y] ⊆ β[z/x, y]. By Lemma 3.35 (ii),

α[z/x, y]z ∗ (x ‖ y) ⊆ α ⊆ β. Therefore by Lemma 3.35 (iii) applied to ω = α[z/x, y]z , we

have α[z/x, y]z P β[z/x, y]z .

(ii) Let |α| = X]{x, y}, and assume for a contradiction that α[z/x, y] is not series–parallel,

that is, that α[z/x, y]z is not a series–parallel order: α[z/x, y]z �Y = N(a, b, c, d) for some

Y = {a, b, c, d} ⊆ X. By Lemma 3.35 (i), α[z/x, y]z = (αx)y ∧ (αy)x, hence by Lemma 3.32

(ii),

α[z/x, y]z �Y P (αx)y �Y ∧(αy)x �Y

= (βx)y ∧ (βy)x,

with β = α�Y ]{x,y}= α�{a,b,c,d,x,y}. Therefore N(a, b, c, d) P (βx)y and N(a, b, c, d) P (βy)x.

Moreover, (βx)y and (βy)x are series–parallel order varieties because so is β. Hence by

Lemma 3.25, (βx)y and (βy)x are either (a< c< b<d) or (c< d<a<b). They cannot be

equal, because otherwise their wedge, α[z/x, y]z �Y , would equal their common value. So

we may assume without loss of generality that

(βx)y = (a< c< b<d)

(βy)x = (c< d<a<b),

that is,

α�{a,b,c,d,y} = βx = (a, c, b, d, y)

α�{a,b,c,d,x} = βy = (c, d, a, b, x).

We now have a contradiction because the first equality implies α(a, c, b) whereas the second

implies α(a, b, c).

In the series–parallel case, the identification can be performed directly on the tree

representation introduced in Section 3.2. Take a representation T of α, an order variety

on X ∪ {x, y}, and let p be the path between x and y in T . Then ‘normalize’ T as follows:

— Collapse neighbouring nodes of the same type (� or ⊗) in p, so that in the resulting

tree T ′, nodes of the path p′ between x and y have alternating types.

— Transform every �-node in p′ into 2 or 3 adjacent �-nodes as follows:

�x y�x y

�

�
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It is obvious that the normal tree still represents α, and the identification α[z/x, y] is

obtained by changing all the �-nodes into ⊗-nodes and by identifying x and y.

To see that this is the largest series–parallel order variety obtained by identifying x and

y (in fact the largest order variety thanks to Proposition 3.36), first recall that, in general,

entropy between series–parallel order varieties is indeed achieved in the tree representation

by changing some �-nodes into ⊗-nodes. Of course, there is some choice in where to

perform entropies. In the case of identification, however, we know from Lemma 3.35 that

x and y have to be in parallel in the end. The above ‘fusions’ and ‘fissions’ are then

performed to minimize the number of �-nodes between x and y to which entropies are

applied: indeed these operations commute with entropy.

4. Sequent calculus: on order varieties

4.1. Rules

Definition 4.1. A sequent ` α | Γ consists of an order variety α of formula occurrences,

and a set Γ of formula occurrences (with no additional structure). Γ is required to be

disjoint from the support of α.

The rules of the sequent calculus are given in Table 2. When there is no ambiguity, that

is, when α or Γ is empty and the notation enables one to decide whether it is an order

variety or a set, we avoid the stoup | . If ω is an order on X, we denote X by |ω|.
Example. Here is a proof of !A�!B `!(A&B):

` A ∗ A⊥
centre` A | A⊥

w` A | A⊥, B⊥

` B ∗ B⊥
centre` B | B⊥

w` B | B⊥, A⊥
&` A&B | B⊥, A⊥

!`!(A&B) | B⊥, A⊥
d` !(A&B)< ?B⊥ | A⊥
d` (!(A&B)< ?B⊥)∗?A⊥

. . . . . . . . . . . . . . . . . . . . . . . .
`!(A&B) ∗ (?B⊥< ?A⊥) ∇`!(A&B) ∗ (?B⊥∇?A⊥)

The dotted line corresponds to a change in the presentation of the series–parallel order

variety.

Remarks.

I By Proposition 3.7, there is no loss of generality in taking order varieties of the form

ω ∗ A, since any order variety α can be written as αA ∗ A.

Note that the condition of series–parallelism in entropy, dereliction and the ⊥-rule

suffices to preserve series–parallelism along the construction of a proof.

Lemma 4.2. If ` α | Γ is a provable sequent, then α is series–parallel.

On the other hand, these conditions are necessary since a partial order ω may not

be series–parallel, even when ω is (for instance, N(a, b, c, d) = (a, b, d) ∪ (a, c, d)), and a
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Table 2. Sequent calculus II.
All order varieties and partial orders here are series–parallel. In particular, in dereliction and the ⊥-rule, ω is

series–parallel, and in the entropy rule, α is series–parallel.

Identity - Cut

` A⊥ ∗ A



` ω ∗ A | Γ ` ω′ ∗ A⊥ | Γ′
cut` ω ∗ ω′ | Γ,Γ′

` α | A,Γ `!A⊥ | Γ′
cut!` α | Γ,Γ′

Structural rules

` ω ∗ A | Γ
centre` ω | A,Γ

` β | Γ
entropy, α ⊆ β` α | Γ

Multiplicatives

` ω ∗ A | Γ ` ω′ ∗ B | Γ′ �` (ω′<ω) ∗ A� B | Γ,Γ′
` ω ∗ (A<B) | Γ

∇` ω ∗ A∇B | Γ

` ω ∗ A | Γ ` ω′ ∗ B | Γ′ ⊗` (ω ‖ω′) ∗ A⊗ B | Γ,Γ′
` ω ∗ (A ‖B) | Γ

¶` ω ∗ A¶B | Γ

Additives

` ω ∗ A | Γ ` ω ∗ B | Γ
&` ω ∗ A&B | Γ



` ω ∗ A | Γ ⊕1` ω ∗ A⊕ B | Γ

` ω ∗ B | Γ ⊕2` ω ∗ A⊕ B | Γ

Exponentials

` ω | A,Γ
d` ω∗?A | Γ

` A | Γ
!`!A | Γ

` α | A,A,Γ
c` α | A,Γ

` α | Γ
w` α | A,Γ

Constants

` 1
` ω | Γ ⊥` ω ∗ ⊥ | Γ

(no rule for 0) ` ω ∗ > | Γ

non-series–parallel order variety may be included in a series–parallel one (for instance,

G(a, b, c, d, e) ⊆ (a, c, b, d, e) by Lemma 3.25).

I About the stoup. The centre rule and the rule for weakening take formulas out of

the scope of the order variety. Conversely, on its way back to earth (the scope of the

order variety), a formula can be placed in any position that does not affect the current

structure α on X, that is, the extended order variety α′ on X + x is any series–parallel
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order variety enjoying α′ �X= α. Indeed, if α′ is such an order variety, take ω = α′x. Then

by Proposition 3.15, we have α = α′ �X= α′x = ω.

This corresponds to the previous centre rule in the calculus of Section 2. Note that in

the absence of exponentials, the ‘set’ part of sequents remains empty (a consequence of

the subformula property) and can henceforth be forgotten.

I About the ∇-rule. The rule for ∇ corresponding to the one given in Abrusci and

Ruet (2000) would be

` α[A,B] | Γ ∇ ? , if A→α B,` α[A∇B/A, B] | Γ

where the notation α[A,B, . . .] stands for an order variety on a set X such that A,B, . . . ∈ X.

In Table 2, we prefered to replace it by another one, where the relation →α is expressed

more simply. They are equivalent. Indeed, if A→α B, consider the partial order αB , where

every C is less than or equal to A, so αB = (ω < A), and hence α = ω ∗ (A < B).

Conversely, it is clear that A→ω∗(A<B) B.

In order to simplify the notation, we assume that the sequent calculus of Section 2

relies on partial orders.

Theorem 4.3 (Equivalence between the two sequent calculi).

1 Given a proof of ` ω in the calculus on orders, let ?X be the set of ?ed formulas in

|ω| and Y = |ω|\?X. We construct, by forgetting the seesaw rule, a proof of ` α | X
in the calculus on order varieties for α = ω �Y . The notation X means that the main

? has been removed in all formulas of ?X.

2 Conversely, given a proof of ` α | X, where the support of α is Y , we construct, by

making some structural steps explicit, a proof of ` ω for any series–parallel order ω

on Y ∪?X such that ω�Y = α.

3 The mappings (1) and (2) preserve the absence of cuts.

Proof.

1 We proceed by induction on a proof of ` ω. We consider the last rule of the proof:

— Axiom: At most one of the formulas is ?ed, so the translation is either just an

axiom or an axiom followed by centre.

— Cut rule:

` ω,A ` A⊥, ω′
cut` ω,ω′

If neither A nor A⊥ is ?ed, then the induction hypothesis gives proofs of ` τ∗A | X
and ` τ′ ∗ A⊥ | X ′, where |ω| =?X ] Y , |ω′| =?X ′ ] Y ′, τ ∗ A = (ω ∗ A)�Y and

τ′ ∗ A⊥ = (ω′ ∗ A⊥)�Y ′ . An application of cut then gives a proof of ` τ ∗ τ′ | X,X ′.
We have τ = ω�Y and τ′ = ω′�Y ′ so τ ∗ τ′ = (ω ∗ ω′)�Y ∪Y ′ .
When A or A⊥ is ?ed, say A, then the induction hypothesis gives proofs of

` α | A,X and ` τ′∗!A⊥ | X ′ with α = ω �Y and τ′∗!A⊥ = (ω′∗!A⊥)�Y ′ . Taking

τ = ω�Y , we have α = τ, so by an application of dereliction and a cut, we get a
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proof of ` τ ∗ τ′ | X,X ′ enjoying τ ∗ τ′ = (ω ∗ ω′)�Y ∪Y ′ :

` ω, ?A `!A⊥, ω′
cut` ω,ω′ 7→

` α | A,X
. . . . . . . . . . .
` τ | A,X

d` τ∗?A | X ` τ′∗!A⊥ | X ′
cut.` τ ∗ τ′ | X,X ′

— Entropy: By Lemma 3.23, ω ‖ τ ‖ σ ⊆ ω<τ<σ.

— Seesaw and centre: By Proposition 3.6, ω<τ = ω ‖ τ.
— The cases of the rules for �, ⊗, ∇, ¶, &, ⊕ and ! are handled in a similar way to

the cut rule, by using the dereliction rule when an active formula is ?ed.

— For dereliction, either the active formula A is not ?ed and the translation of the

rule is a centre rule, or it is already ?ed and we apply dereliction followed by

centre.

— The cases of contraction, weakening and the rules for 1, ⊥ and > are trivial.

2 We do not need to prove that much: it is enough to exhibit a proof of ` ω for some

series–parallel order ω on Y ∪?X such that ω�Y = α. Indeed, by Corollary 2.7, we can

then arbitrarily move the formulas in ?X without changing the order on Y , and by

Proposition 3.17, we can change ω for another arbitrary series–parallel order ω′ such

that ω′ �Y = α.

Proceed by induction on a proof of ` α | X. The above remark makes the result trivial,

except for the following cases:

— The centre rule is translated by a step of dereliction.

— In the case of entropy, the induction hypothesis gives, in particular, a proof

of ` ω ‖A for some formula A ∈ |β| = Y and ω �Y = βA. Now αA P βA by

Proposition 3.22, so by Proposition 3.24, we get, by applications of entropy, a

proof of ` τ ‖A where τ�Y = αA.

— In the cases of dereliction and the ⊥-rule, the point is to choose a proof where the

restriction of the order to |ω| is precisely ω.

3 This is just a straighforward remark.

4.2. Discussion about entropy and the par-rule

The¶-rule corresponding to the one given in Abrusci and Ruet (2000) would be:

` α[A,B] | Γ
¶?` α[A¶B/A, B] | Γ

where α[A¶B/A, B] is the identification defined in Section 3.7. In Abrusci and Ruet (2000)

there is no explicit rule for entropy: it is hidden in the ¶? -rule through the absence of

a condition on the order variety. In the multiplicative fragment, the two versions are

equivalent (hence our presentation is consistent with Abrusci and Ruet (2000)) in the

following sense:

— By Lemma 3.35 (ii), α[A¶B/A, B]A¶B ∗ (A ‖B) ⊆ α, so our new pair of rules, entropy

and the¶-rule, can mimic the¶? -rule.
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— By Lemma 3.35 (iii), ω ∗ (A ‖B) ⊆ α implies ω ∗ (A ‖B) ⊆ α[A¶B/A, B]A¶B ∗ (A ‖B), so

¶? is an optimized version of¶-rule, where entropy has been minimized.

Removing the rule of entropy from the sequent calculus would carry us closer to proof

nets since proof nets do not have entropy links, but it is not clear how to do it in full

NL. In the multiplicative–additive fragment MANL, it is possible to remove the rule of

entropy and define an optimized rule for & as well. Because entropy is implicit, it is then

necessary to allow different order varieties ω ∗ x and τ ∗ x (of equal support, of course) in

the two premisses:

` ω ∗ A | Γ ` τ ∗ B | Γ
& ? .` (ω ∧ τ) ∗ A&B | Γ

Note that ω ∧ τ may not be series–parallel, even if ω and τ are (see Section 3.6), so the

situation becomes subtler.

In the presence of exponentials, the problem is with entropy, dereliction and the ⊥-rule,

where points move into or out of the order variety. The point is that it is possible to have

a partial order ω on X such that ω ⊆ α and no partial order τ satisfying both τ = α and

ω P τ: in other words, it becomes more difficult to relate the calculus on order varieties to

the one on partial orders because the inclusion of order varieties may not be simulated by

entropy for any given choice of presentation: this is also true in the series–parallel case.

For instance, take ω = (a ‖ b ‖ d)< (c ‖ e) and α = a ∗ [(b ‖ c)< (d ‖ e)]: ω = ?, but the two

conditions (b ‖ d)< (c ‖ e) = ω�b,c,d,e⊆ τ�b,c,d,e and τ�b,c,d,e = α�b,c,d,e= ? are incompatible.

So we leave this study – essentially general proof nets for NL – to further work and

keep explicit entropy in our calculus.

5. Phase semantics

5.1. Phase spaces

Definition 5.1. A phase space is a sextuplet P = (P , ·, ? , 1,6,⊥) such that:

1 (P , ·, 1) is a monoid.

2 (P , ? , 1) is a commutative monoid.

3 6 is a partial order on P , compatible with both monoidal structures and such that

x ? y 6 x · y, ∀x, y ∈ P .

4 ⊥ ⊆ P is an order ideal such that ∀x, y ∈ P , x · y ∈ ⊥ ⇔ y · x ∈ ⊥ ⇔ x ? y ∈ ⊥.

The elements of P are called phases, the elements of ⊥ are called the antiphases.

The compatibility condition for 6 means that x 6 x′ and y 6 y′ ⇒ x · y 6 x′ · y′ and

x ? y 6 x′ ? y′. As an order ideal, ⊥ satisfies x ∈ ⊥ and y 6 x⇒ y ∈ ⊥.

Examples.

I If (P , ? , 1,⊥) is a commutative phase space in the sense of Girard (1987), then

(P , ? , ? , 1,=,⊥) is a phase space.

I Let (P , ·, 1,6,∧,∨) be a lattice-ordered monoid (a good reference is Fuchs (1963)),

that is, a monoid (P , ·, 1) together with a lattice structure (6,∧,∨) compatible with

multiplication. The product x ? y = xy ∧ yx is obviously commutative with unit 1, and
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satisfies x ? y 6 xy. If for all x, y, z ∈ P
xyz ∧ zyx = yzx ∧ xzy,

that is, the quantity xyz ∧ zyx is invariant by any permutation of x, y, z, then x ? y is

associative.

Definition 5.2. If G is a subset of P , its dual is defined by

G⊥ = {p ∈ P | ∀q ∈ G, p ? q ∈ ⊥}.
Alternatively, G⊥ = {p ∈ P | ∀q ∈ G, p · q ∈ ⊥} = {p ∈ P | ∀q ∈ G, q · p ∈ ⊥}. For G, H

subsets of P , define
G ·H = {p · q | p ∈ G, q ∈ H}
G?H = {p ? q | p ∈ G, q ∈ H}.

Definition 5.3 (Fact). A fact is a subset A of P such that A⊥⊥ = A.

As is the case for the usual commutative and cyclic linear logic, we have the following

items (i)–(v) and (vii). Item (vi) is specific to NL.

Proposition 5.4.

(i) For any G ⊆ P , G ⊆ G⊥⊥.

(ii) For any G,H ⊆ P , G ⊆ H ⇒ H⊥ ⊆ G⊥.

(iii) G ⊆ P is a fact iff it is of the form H⊥ for some H ⊆ P .

(iv) If G is any subset of P , then G⊥⊥ is the smallest fact containing G.

(v) ⊥ is a fact since ⊥ = {1}⊥.

(vi) Facts are order ideals.

(vii) Facts are closed under arbitrary intersections.

Proof. (i) to (v) are immediate.

For (vi), let G be a fact, and take x ∈ G and y 6 x. If z ∈ G⊥, then x · z ∈ ⊥, so

y · z ∈ ⊥ (monotonicity of ·). Therefore y ∈ G⊥⊥ = G.

For (vii) it suffices to verify that if (Gi)i∈I is a family of facts, then
⋂
Gi = (

⋃
G⊥i )⊥.

If x ∈ ⋂Gi then for all i ∈ I , x ∈ Gi. Now if y ∈ ⋃G⊥i , then y ∈ G⊥i0 for some i0 ∈ I ,
so x · y ∈ ⊥. Conversely, if x ∈ (

⋃
G⊥i )⊥, then for all i ∈ I and all y ∈ G⊥i , x · y ∈ ⊥, so

x ∈ G⊥⊥i = Gi.

Definition 5.5. A few notable facts: the largest one > = ?⊥ = P (with respect to

inclusion); the smallest one 0 = >⊥, and 1 = ⊥⊥.

Definition 5.6. Define the following operations on facts A,B:

A� B = (A · B)⊥⊥

A∇B = (B⊥ · A⊥)⊥

A⊗ B = (A?B)⊥⊥

A¶B = (B⊥ ?A⊥)⊥

A&B = A ∩ B
A⊕ B = (A ∪ B)⊥⊥.

Phase spaces enjoy the following fundamental property.
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Lemma 5.7. For any subsets F and G of P , F⊥⊥ · G⊥⊥ ⊆ (F · G)⊥⊥ and F⊥⊥ ?G⊥⊥ ⊆
(F ?G)⊥⊥.

Proof. Consider the case of ·. Let p ∈ F⊥⊥ and q ∈ G⊥⊥. If v ∈ (F · G)⊥, then for all

f ∈ F and g ∈ G, v ? (f · g) ∈ ⊥, so v · (f · g) = (v · f) · g ∈ ⊥ (because v ? v′ ∈ ⊥ iff

v · v′ ∈ ⊥), so for all f ∈ F , v · f ∈ G⊥ = G⊥⊥⊥, and q · (v · f) = (q · v) · f ∈ ⊥, whence

q · v ∈ F⊥ = F⊥⊥⊥. Therefore p · q · v ∈ ⊥.

For ? , apply a similar argument: if v ∈ (F ?G)⊥, then for all f ∈ F and g ∈ G,

v · (f ? g) ∈ ⊥, so v ? (f ? g) = (v ? f) ? g ∈ ⊥, and (v ? f) · g ∈ ⊥. Therefore for all f ∈ F ,

v ? f ∈ G⊥ = G⊥⊥⊥, so q ? (v ? f) = (q ? v) ? f ∈ ⊥, whence q ? v ∈ F⊥ = F⊥⊥⊥. Therefore

p ? q ? v ∈ ⊥.

Proposition 5.8.

(i) De Morgan laws hold for � and ∇, ⊗ and ¶, & and ⊕. Moreover, these 6 operations

are associative; ⊗,¶, & and ⊕ are commutative; 1 is neutral for � and ⊗; ⊥ is neutral

for ∇; and ¶, > and 0 are, respectively, neutral for & and ⊕. Distributivity properties

hold for � and ⊕, ⊗ and ⊕, ∇ and &, and¶ and &.

(ii) With A and B any facts,

A⊗ B ⊆ A� B (dually A∇B ⊆ A¶B).

Proof. Only the following deserve attention:

— Associativity of the multiplicatives (by duality, we just consider the conjunctions):

Using Lemma 5.7, we have (A � B) � C = ((A · B)⊥⊥ · C)⊥⊥ = ((A · B)⊥⊥ · C⊥⊥)⊥⊥ ⊆
(A·B·C)⊥⊥, and (A·B·C)⊥⊥ ⊆ (A�B)�C is immediate. Hence (A�B)�C = (A·B·C)⊥⊥,

as required. The case of ⊗ is similar.

— Neutrality: These properties rely on the neutrality of 1 ∈ 1 for both · and ? .

— Distributivities: The proofs are exactly the same as for commutative LL.

— A ⊗ B ⊆ A � B: It is enough to show that A?B ⊆ A � B = (A · B)⊥⊥. If a ∈ A and

b ∈ B, then a · b ∈ A · B ⊆ (A · B)⊥⊥. (A · B)⊥⊥ is a fact and a ? b 6 a · b, so by

Proposition 5.4 (vi), a ? b ∈ (A · B)⊥⊥.

Definition 5.9.

A( B = {x ∈ P | ∀a ∈ A, a ? x ∈ B}
A−• B = {x ∈ P | ∀a ∈ A, a · x ∈ B}
B •− A = {x ∈ P | ∀a ∈ A, x · a ∈ B}.

Proposition 5.10. Let A and B be any facts. Then

A−• B = A⊥∇B
B •− A = B∇A⊥
A( B = A⊥¶B

A( ⊥ = A−• ⊥ = ⊥ •− A = A⊥.

Hence, in particular, A−• B, B •− A and A( B are facts.
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Proof. Here we use again the fact that for all x, y ∈ P , x · y ∈ ⊥ iff x ? y ∈ ⊥. Let us

just consider the case of −• (the others are similar). Assume x ∈ A−• B. Let a ∈ A and

y ∈ B⊥. Then a · x ∈ B, so y · a · x ∈ ⊥, and thus x ∈ A⊥∇B = (B⊥ · A)⊥. Conversely,

assume x ∈ A⊥∇B, and take a ∈ A. For all y ∈ B⊥, y · a · x ∈ ⊥, and thus a · x ∈ B⊥⊥ = B,

whence x ∈ A−• B.

As in Girard (1995) and Lafont (1997), we extend the semantics to exponential con-

nectives. If P is a phase space, define J(P ) = {x ∈ 1 | x ∈ {x ? x}⊥⊥}. Note that

x ∈ J(P )⇒ x ∈ {x · x}⊥⊥, because {x ? x}⊥⊥ ⊆ {x · x}⊥⊥.

Definition 5.11. An enriched phase space consists of a phase space P and a subset K of

J(P ) such that:

— For any x ∈ K and y ∈ P , we have {x · y}⊥⊥ = {y · x}⊥⊥ = {x ? y}⊥⊥.

— Both (K, ? , 1) and (K, ·, 1) are monoids.

The enriched phase space will still be denoted by P .

Definition 5.12. With A a fact, we define

?A = (A⊥ ∩K)⊥

!A = (A ∩K)⊥⊥.

Proposition 5.13.

(i) For every fact A, ?A and !A are facts.

(ii) ! and ? satisfy the De Morgan laws.

(iii) For every facts A and B, A ⊆ B ⇒ !A ⊆ !B,

(iv) !!A = !A ⊆ A,

(v) !A⊗!B ⊆!(A⊗ B) and !A�!B ⊆!(A� B),

(vi) !A ⊆ 1, !A =!A⊗!A and !A =!A�!A,

(vii) !A⊗ B = !A� B = B�!A,

(viii) !A⊗!B = !(A&B) = !A�!B = !B�!A.

Proof. (i), (ii) and (iii) are immediate.

(iv) For a fact A, one clearly has !A ⊆ A⊥⊥ = A. In particular, !!A ⊆!A, and, moreover,

A∩K ⊆ (A∩K)⊥⊥ =!A and A∩K ⊆ K , thus A∩K ⊆!A∩K ⊆ (!A∩K)⊥⊥, whence

!A = (A ∩K)⊥⊥ ⊆ (!A ∩K)⊥⊥ =!!A.

(v) !A⊗!B = ((A∩K)⊥⊥ ? (B∩K)⊥⊥)⊥⊥ = ((A∩K) ? (B∩K))⊥⊥ ⊆ ((A?B)∩K)⊥⊥ since

(K, ? ) is a monoid, therefore !A⊗!B ⊆ ((A?B)⊥⊥ ∩K)⊥⊥ =!(A⊗B). Using the fact

that (K, ·) is a monoid, one proves that !A�!B ⊆!(A� B).

(vi) The first inclusion is obvious. If x ∈ A ∩ K , then x ∈ K thus x ∈ {x ? x}⊥⊥ ⊆
((A ∩ K) ? (A ∩ K))⊥⊥, therefore A ∩ K ⊆ ((A ∩ K) ? (A ∩ K))⊥⊥ = (!A? !A)⊥⊥
according to Lemma 5.7, whence !A = (A ∩K)⊥⊥ ⊆!A⊗!A. One proceeds similarly

for �.

(vii) As B = B⊥⊥, !A ⊗ B = ((A ∩ K)⊥⊥ ?B)⊥⊥ = ((A ∩ K) ? B)⊥⊥ = ((A ∩ K) · B)⊥⊥ =

(B · (A ∩K))⊥⊥ by definition of K .

(viii) In view of (vii) it is enough to prove that !A⊗!B =!(A&B). According to (vi),

!(A&B) ⊆!(A&B)⊗!(A&B), now A&B = A∩B ⊆ A, whence by (iii), !(A&B) ⊆!A and
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similarly !(A&B) ⊆!B, thus !(A&B) ⊆!A⊗!B. Conversely, !A⊗!B ⊆!A⊗1 =!A ⊆ A,

and similarly !A⊗!B ⊆ B, thus !A⊗!B ⊆ A&B. Hence, according to (iv) and (v),

!A⊗!B =!!A⊗!!B ⊆!(!A⊗!B) ⊆!(A&B).

The phase semantics we have defined, when restricted to the connectives ¶ and ⊗
(respectively, ∇ and �), is the phase semantics of commutative (respectively, cyclic) linear

logic.

5.2. Soundness

Definition 5.14 (Phase structure, Validity). A phase structure (P , S) is an enriched phase

space P , together with a valuation that assigns a fact S(p) to any positive propositional

symbol p.

Given a phase structure, one defines inductively the interpretation S(A) of a formula A

in the obvious way. The interpretation of a context Γ is defined by induction: S(()) = ⊥,

S(Γ; ∆) = S(Γ)∇S(∆) and S(Γ,∆) = S(Γ)¶S(∆).

With A a formula, A is said to be valid in S when 1 ∈ S(A). A is a tautology if it is valid

in every phase structure. A sequent ` Γ is valid if 1 ∈ S(Γ) for every phase structure S .

Theorem 5.15. If a sequent is provable in the sequent calculus, it is valid.

Proof. We use the sequent calculus on orders (Section 2). Let (P , S) be a phase structure,

and ` Γ be a sequent provable in the sequent calculus. First note that implicit associativity

of (−,−) and (−;−), and commutativity of (−,−) in the sequent calculus are sound,

because of the associativity of ¶ and ∇ and of the commutativity of ¶ (Proposition 5.8

(i)). Now we proceed by induction on a proof of ` Γ:

— The proof is an axiom ` A⊥, A: The interpretation is S(A⊥, A) = S(A⊥¶A) = S(A( A)

by Proposition 5.10, thus S(A⊥, A) = S(A)( S(A) and 1 ∈ S(A⊥, A).

— The proof is an axiom ` 1: Here 1 ∈ 1 = ⊥⊥.

— The proof is an axiom ` Γ,>: The interpretation is S(Γ,>)=S(Γ)¶S(>)=S(>)¶S(Γ)=

S(0)( S(Γ) = 0( S(Γ), and 0 is the least fact, thus 0 ⊆ S(Γ) and 1 ∈ 0( S(Γ).

— The proof ends with a cut rule: By the induction hypothesis, 1 ∈ S(Γ)¶S(A) and

1 ∈ S(A⊥)¶S(∆), which means S(Γ)⊥ ⊆ S(A) and S(A⊥)⊥ = S(A) ⊆ S(∆).

— The proof ends with an entropy: This follows from Proposition 5.8 (ii).

— The proof ends with the seesaw rule: By the induction hypothesis, 1 ∈ S(Γ)¶S(∆), that

is, S(Γ)⊥ ⊆ S(∆). As 1 is neutral for ·, it is equivalent to 1 ∈ S(Γ)⊥ −• S(∆) = S(Γ)∇S(∆).

— The proof ends with the centre rule: This follows from Proposition 5.13 (vii).

— The proof ends with the &-rule: This is an immediate consequence of A&B = A ∩ B.

— The proof ends with a ⊕-rule: This is an immediate consequence of A⊕B = (A∪B)⊥⊥
and of Proposition 5.4 (v).

— The proof ends with a ∇ or¶-rule: This is an immediate.

— The proof ends with the �-rule: By induction, S(Γ)⊥ ⊆ S(A) and S(∆)⊥ ⊆ S(B), thus

(S(∆)∇S(Γ))⊥ = S(Γ)⊥ � S(∆)⊥ ⊆ S(A)� S(B), that is, 1 ∈ (S(∆) ∇ S(Γ))∇S(A� B) =

S(∆; Γ;A� B). Therefore by seesaw, 1 ∈ S(Γ;A� B; ∆).

— The proof ends with the ⊗-rule: This follows by a similar argument, using the fact

that G⊥ ⊆ H iff 1 ∈ G¶H .
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— The proof ends with the dereliction rule: By induction, S(Γ)⊥ ⊆ S(A), and by Propo-

sition 5.13 (iv) (translated in dual terms of ‘?’), S(A) ⊆ S(?A).

— The proof ends with the promotion rule: This is an immediate consequence of the

monotonicity of ! (Proposition 5.13 (iii)–(v)).

— The proof ends with the contraction rule: This is immediate because S(?A) = S(?A¶?A)

(Proposition 5.13 (vi)).

— The proof ends with the weakening rule: This is an immediate consequence of ⊥ ⊆
S(?A) (Proposition 5.13 (vi)), and ⊥ neutral for¶ (Proposition 5.8 (i)).

— The proof ends with an introduction of ⊥: This is as for weakening.

5.3. Completeness

Theorem 5.16. If a sequent is valid, then it is provable in the sequent calculus.

Proof. We define the following enriched phase space:

— P is the set of contexts, Γ · ∆ is sequential composition (Γ; ∆), Γ ?∆ is parallel

composition (Γ,∆), and the neutral is ().

— The order 6 is the least order such that (Γ,∆) 6 (Γ; ∆) for every Γ,∆ ∈ P , and Γ 6 Γ′
and ∆ 6 ∆′ imply (Γ; ∆) 6 (Γ′; ∆′) and (Γ,∆) 6 (Γ′,∆′).

— ⊥ is the set of contexts Γ such that ` Γ is provable in the sequent calculus.

— K is the set of contexts of the form ?Γ (where Γ is an arbitrary context).

By entropy and seesaw, ⊥ satisfies the axioms of Definition 5.1. Moreover, K satisfies

the axioms of Definition 5.11:

— K contains 1 = () and is closed by · and ? .

— By the weakening rule, ?Γ ∈ ⊥⊥ = 1.

— By the contraction rule, ?Γ ∈ {?Γ ? ?Γ}⊥⊥.

— By the centre and co-centre rules, {?Γ ?∆}⊥⊥ = {?Γ · ∆}⊥⊥ = {∆·?Γ}⊥⊥.

Thus what we have defined is an enriched phase space.

We have {A}⊥ = {Γ ∈ P | ` Γ, A is provable in the sequent calculus}.
The {A}⊥’s are facts, more precisely {A}⊥ = {A⊥}⊥⊥ (the proof is the same as in

Girard (1987)). Define a phase structure S by letting S(p) = {p}⊥ for every positive

propositional symbol p. One then easily proves, as in the commutative case, by induction

on A, that S(A) = {A}⊥: it amounts to proving that commutations of the type {A⊗B}⊥ =

{A}⊥ ⊗ {B}⊥. Let us consider the case of the exponentials:

— ?{A}⊥ = ({A}⊥⊥ ∩ K)⊥ = ({A⊥}⊥ ∩ K)⊥. Let Γ ∈ {?A}⊥ and ?∆ ∈ {A⊥}⊥. One has

?∆ ∈ {!A⊥}⊥ by the promotion rule, whence by the cut rule Γ, ?∆ ∈ ⊥, which shows

that {?A}⊥ ⊆?{A}⊥. Conversely, by the dereliction rule, ?A ∈ {A⊥}⊥, and, moreover,

?A ∈ K , thus if Γ ∈?{A}⊥, then Γ, ?A ∈ ⊥, that is, Γ ∈ {?A}⊥, as required.

— S(!A)⊥ =?S(A⊥) =?{A⊥}⊥ = {?A⊥}⊥ = {(!A)⊥}⊥ = {!A}⊥⊥, thus S(!A) = {!A}⊥.

Finally, if ` Γ is a valid sequent, 1 = () ∈ S(Γ) = {Γ}⊥ and thus ` Γ is provable.
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6. Cut elimination

As in Okada (1994), one can use the phase semantics to prove cut elimination.

Theorem 6.1. If a sequent is valid, then it is provable in the sequent calculus without cuts.

Proof. Define the following enriched phase space P ′. It is defined like the phase space

P in the proof of Theorem 5.16 except that here ⊥ is the set of contexts Γ such that

` Γ is provable in the sequent calculus without cuts. ⊥ again satisfies the axioms of

Definition 5.1, thus the above is a well-defined enriched phase space.

{A}⊥ = {Γ ∈ P ′ | ` Γ, A is provable in the sequent calculus without cut}.
The {A}⊥’s are facts, thus one can define a phase structure S ′ by letting S ′(p) = {p}⊥
for every positive propositional symbol p. One then proves, by induction on A, that

S ′(A) ⊆ {A}⊥:

— For a positive propositional symbol p, it is clear.

— For the dual p⊥ of a propositional symbol, one has S ′(p⊥) = S ′(p)⊥ = {p}⊥⊥ ⊆ {p⊥}⊥
because p ∈ {p⊥}⊥ (axiom).

— S ′(A¶B) = S ′(A)¶S ′(B) = (S ′(B)⊥ ? S ′(A)⊥)⊥ ⊆ ({B}⊥⊥ ? {A}⊥⊥)⊥ ⊆ ({B} ? {A})⊥ by

Lemma 5.7, so S ′(A¶B) ⊆ {A¶B}⊥ by the¶-rule.

— Similarly, S ′(A∇B) ⊆ {A∇B}⊥ by the ∇-rule.

— S ′(A ⊗ B) = (S ′(A) ? S ′(B))⊥⊥ ⊆ ({A}⊥ ? {B}⊥)⊥⊥ ⊆ {A ⊗ B}⊥ because {A}⊥ ? {B}⊥ ⊆
{A⊗ B}⊥ by the ⊗-rule.

— Similarly, S ′(A� B) ⊆ {A� B}⊥ by the �-rule.

— S ′(A&B) = S ′(A) ∩ S ′(B) ⊆ {A}⊥ ∩ {B}⊥ ⊆ {A&B}⊥ by the &-rule.

— S ′(A⊕B) = (S ′(A)∪ S ′(B))⊥⊥ ⊆ ({A}⊥ ∪ {B}⊥)⊥⊥ ⊆ {A⊕B}⊥ because {A}⊥ ∪ {B}⊥ ⊆
{A⊕ B}⊥ by the ⊕-rules.

— S ′(⊥) = ⊥ ⊆ {⊥}⊥ by the ⊥-rule.

— S ′(1) = ⊥⊥ ⊆ {1}⊥ because 1 ∈ ⊥ by the axiom for 1.

— S ′(>) = P ′ = {>}⊥ by the axiom for >.

— S ′(0) = P ′⊥ ⊆ {0}⊥.

— S ′(?A) = (S ′(A)⊥ ∩K)⊥ ⊆ ({A}⊥⊥ ∩K)⊥ ⊆ {?A}⊥ because ?A ∈ K and {A}⊥ ⊆ {?A}⊥
by the dereliction rule.

— S ′(!A) = (S ′(A) ∩ K)⊥⊥ ⊆ ({A}⊥ ∩ K)⊥⊥ ⊆ {!A}⊥ because {A}⊥ ∩ K ⊆ {!A}⊥ by the

promotion rule.

Finally, if ` Γ is a valid sequent, 1 = () ∈ S ′(Γ) ⊆ {Γ}⊥, and thus ` Γ is provable in the

sequent calculus without cuts.

Corollary 6.2. If a sequent is provable in the sequent calculus, it is provable without the

cut rule.

Proof. This is an immediate consequence of the soundness of the phase semantics

(Theorem 5.15), and of its completeness with respect to the sequent calculus without cuts

(Theorem 6.1).
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