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W e propose a remedy for the discrepancy between the way political scientists analyze data with
missing values and the recommendations of the statistics community. Methodologists and
statisticians agree that “multiple imputation” is a superior approach to the problem of missing

data scattered through one’s explanatory and dependent variables than the methods currently used in applied
data analysis. The discrepancy occurs because the computational algorithms used to apply the best multiple
imputation models have been slow, difficult to implement, impossible to run with existing commercial
statistical packages, and have demanded considerable expertise. We adapt an algorithm and use it to
implement a general-purpose, multiple imputation model for missing data. This algorithm is considerably
faster and easier to use than the leading method recommended in the statistics literature. We also quantify
the risks of current missing data practices, illustrate how to use the new procedure, and evaluate this
alternative through simulated data as well as actual empirical examples. Finally, we offer easy-to-use
software that implements all methods discussed.

On average, about half the respondents to sur-
veys do not answer one or more questions
analyzed in the average survey-based political

science article. Almost all analysts contaminate their
data at least partially by filling in educated guesses for
some of these items (such as coding “don’t know” on
party identification questions as “independent”). Our
review of a large part of the recent literature suggests
that approximately 94% use listwise deletion to elimi-
nate entire observations (losing about one-third of
their data, on average) when any one variable remains
missing after filling in guesses for some.1 Of course,

similar problems with missing data occur in nonsurvey
research as well.

This article addresses the discrepancy between the
treatment of missing data by political scientists and the
well-developed body of statistical theory that recom-
mends against the procedures we routinely follow.2
Even if the missing answers we guess for nonrespon-
dents are right on average, the procedure overesti-
mates the certainty with which we know those answers.
Consequently, standard errors will be too small. List-
wise deletion discards one-third of cases on average,
which deletes both the few nonresponses and the many
responses in those cases. The result is a loss of valuable
information at best and severe selection bias at worst.Gary King (King@harvard.edu, http://GKing.Harvard.Edu) is Pro-
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1 These data come from our content analysis of five years (1993–97)

of the American Political Science Review, the American Journal of
Political Science, and the British Journal of Political Science. Among
these articles, 203—24% of the total and about half the quantitative
articles—used some form of survey analysis, and 176 of these were
mass rather than elite surveys. In only 19% of the articles were
authors explicit about how they dealt with missing values. By also
asking investigators, looking up codebooks, checking computer pro-
grams, or estimating based on partial information provided, we were
able to gather sufficient information regarding treatment of missing
values for a total of 77% of the articles. Because the situation is
probably not better in the other 23% of the articles without adequate
reporting, both missing data practices and reporting problems need
to be addressed. Our more casual examinations of other journals in
political science and other social sciences suggest similar conclusions.
2 This article is about item nonresponse, that is, respondents answer
some questions but not others (or, in general, scattered cells in a data
matrix are missing). A related issue is unit nonresponse: Some of the
chosen sample cannot be located or refuse to be interviewed. Brehm
(1993) and Bartels (1998) demonstrate that, with some interesting
exceptions, the types of unit nonresponse common in political
science data sets do not introduce much bias into analyses. Globetti
(1997) and Sherman (2000) show that item nonresponse is a com-
paratively more serious issue in our field. The many other types of
missing data can often be seen as a combination of item and unit
nonresponse. Some examples include entire variables missing from
one of a series of cross-sectional surveys (Franklin 1989; Gelman,
King, and Liu 1998), matrix sampling (Raghunathan and Grizzle
1995), and panel attrition.
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Some researchers avoid the problems missing data
can cause by using sophisticated statistical models
optimized for their particular applications (such as
censoring or truncation models; see Appendix A).
When possible, it is best to adapt one’s statistical model
specially to deal with missing data in this way. Unfor-
tunately, doing so may put heavy burdens on the
investigator, since optimal models for missing data
differ with each application, are not programmed in
currently available standard statistical software, and do
not exist for many applications (especially when miss-
ingness is scattered throughout a data matrix).

Our complementary approach is to find a better
choice in the class of widely applicable and easy-to-use
methods for missing data. Instead of the default
method for coping with the issue—guessing answers in
combination with listwise deletion—we favor a proce-
dure based on the concept of “multiple imputation”
that is nearly as easy to use but avoids the problems of
current practices (Rubin 1977).3 Multiple imputation
methods have been around for about two decades and
are now the choice of most statisticians in principle, but
they have not made it into the toolbox of more than a
few applied statisticians or social scientists. In fact,
aside from the experts, “the method has remained
largely unknown and unused” (Schafer and Olsen
1998). The problem is only in part a lack of information
and training. A bigger issue is that although this
method is easy to use in theory, in practice it requires
computational algorithms that can take many hours or
days to run and cannot be fully automated. Because
these algorithms rely on concepts of stochastic (rather
than deterministic) convergence, knowing when the
iterations are complete and the program should be
stopped requires much expert judgment, but unfortu-
nately, there is little consensus about this even among
the experts.4 In part for these reasons, no commercial
software includes a correct implementation of multiple
imputation.5

We begin with a review of three types of assumptions
one can make about missing data. Then we demon-
strate analytically the disadvantages of listwise dele-
tion. Next, we introduce multiple imputation and our
alternative algorithm. We discuss what can go wrong

and provide Monte Carlo evidence that shows how our
method compares with existing practice and how it is
equivalent to the standard approach recommended in
the statistics literature, except that it runs much faster.
We then present two examples of applied research to
illustrate how assumptions about and methods for
missing data can affect our conclusions about govern-
ment and politics.

ASSUMPTIONS ABOUT MISSINGNESS

We now introduce three assumptions about the process
by which data become missing. Briefly in the conclusion
to this section and more extensively in subsequent
sections, we will discuss how the various methods
crucially depend upon them (Little 1992).

First, let D denote the data matrix, which includes
the dependent Y and explanatory X variables: D 5 {Y,
X}. If D were fully observed, a standard statistical
method could be used to analyze it, but in practice,
some elements of D are missing. Define M as a
missingness indicator matrix with the same dimensions
as D, but there is a 1 in each entry for which the
corresponding entry in D is observed, or a 0 when
missing. Elements of D for which the corresponding
entry in M is 0 are unobserved but do “exist” in a
specific metaphysical sense. For example, everyone has
a (positive or negative) income, even if some prefer not
to reveal it in an interview. In some cases, however, “I
don’t know” given in response to questions about the
national helium reserve or the job performance of the
Secretary of Interior probably does not mean the
respondent is hiding something, and it should be
treated as a legitimate answer to be modeled rather
than a missing value to be imputed. We focus on
missing data for which actual data exist but are unob-
served, although imputing values that the respondent
really does not know can be of interest in specific
applications, such as predicting how people would vote
if they were more informed (Bartels 1996). Finally, let
Dobs and Dmis denote observed and missing portions of
D, respectively, so D 5 {Dobs, Dmis}.

Standard terminology describing possible missing-
ness assumptions is unintuitive (for historical reasons).
In Table 1 we try to clarify the assumptions according
to our ability to predict the values of M (i.e., which
values of D will be missing) (Rubin 1976). For example,
missing values in processes that are missing completely
at random (MCAR) cannot be predicted any better
with information in D, observed or not. More formally,
M is independent of D: P(M?D) 5 P(M). An example
of an MCAR process is one in which respondents

3 The most useful modern work on the subject related to our
approach is Schafer (1997), which we rely on frequently. Schafer
provides a detailed guide to the analysis of incomplete multivariate
data in a Bayesian framework. He presents a thorough explanation of
the use of the IP algorithm. Little and Rubin (1987), Rubin (1987a),
and Rubin (1996) provide the theoretical foundations for multiple
imputation approaches to missing data problems.
4 Although software exists to check convergences, there is significant
debate on the adequacy of these methods (see Cowles and Carlin
1996; Kass et al. 1998).
5 The public domain software that accompanies Schafer’s (1997)
superb book implements monotone data augmentation by the IP
algorithm, the best currently available approach (Liu, Wong, and
Kong 1994; Rubin and Schafer 1990). The commercial programs
Solas and SPlus have promised implementations. SPSS has released
a missing data module, but the program only produces sufficient
statistics under a multivariate normality model (means, variances,
and covariates), so data analysis methods that require raw data
cannot be used. Furthermore, it adds no uncertainty component,
which produces standard errors biased toward zero.

TABLE 1. Three Missingness Assumptions

Assumption Acronym
You Can

Predict M with:
Missing completely

at random MCAR —
Missing at random MAR Dobs
Nonignorable NI Dobs and Dmis
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decide whether to answer survey questions on the basis
of coin flips. Of course, the MCAR assumption rarely
applies: If independents are more likely to decline to
answer a vote preference or partisan identification
question, then the data are not MCAR.

For missing at random (MAR) processes, the prob-
ability that a cell value is missing may depend on Dobs
but (after controlling for Dobs) must be independent of
Dmis. Formally, M is independent of Dmis: P(M?D) 5
P(M?Dobs). For example, if Democratic Party identifi-
ers are more likely to refuse to answer the vote choice
question, then the process is MAR so long as party
identification is a question to which at least some
people respond. Similarly, if those planning to vote for
Democrats do not answer the vote choice question as
frequently as those planning to vote for Republicans,
the process is not MCAR, but it would be MAR if this
difference can be predicted with any other variables in
the data set (such as ideology, issue positions, income,
and education). The prediction required is not causal;
for example, the vote data could be used whether or
not the vote causes or is caused by party identification.
To an extent then, the analyst, rather than the world
that generates the data, controls the degree to which
the MAR assumption fits. It can be made to fit the data
by including more variables in the imputation process
to predict the pattern of missingness.

Finally, if the probability that a cell is missing
depends on the unobserved value of the missing re-
sponse, the process is nonignorable (NI). Formally, M is
not independent of D: P(M?D) does not simplify. An
example occurs when high-income people are more
likely to refuse to answer survey questions about
income and when other variables in the data set cannot
predict which respondents have high income.6

The performance of different methods of analyzing
incomplete data under MCAR, MAR, or NI depends
upon the ultimate goals of the analysis. We consider
various situations in some detail in subsequent sec-
tions, but a few general statements are possible at this
stage. First, inferences from analyses using listwise
deletion are relatively inefficient, no matter which
assumption characterizes the missingness, and they are
also biased unless MCAR holds. Inferences based on
multiple imputation are more efficient than listwise
deletion (since no observed data are discarded), and
they are not biased under MCAR or MAR (Little and
Rubin 1989; Little and Schenker 1995). Both listwise
deletion and basic multiple imputation approaches can
be biased under NI, in which case additional steps must
be taken, or different models must be chosen, to ensure
valid inferences. Thus, multiple imputation will nor-
mally be better than, and almost always not worse than,
listwise deletion. We discuss below the unusual config-
uration of assumptions, methods, and analysis models

for which listwise deletion can outperform multiple
imputation.

In many situations, MCAR can be rejected empiri-
cally in favor of MAR. By definition, however, the
presence or absence of NI can never be demonstrated
using only the observed data. Thus, in most circum-
stances, it is possible to verify whether multiple impu-
tation will outperform listwise deletion, but it is not
possible to verify absolutely the validity of any multiple
imputation model (or, of course, any statistical model).
In sum, these methods, like all others, depend on
assumptions that, if wrong, can lead the analyst astray,
so careful thought should always go into the applica-
tion of these assumptions.

DISADVANTAGES OF LISTWISE DELETION

Whenever it is possible to predict the probability that a
cell in a data matrix is missing (using Dobs or Dmis), the
MCAR assumption is violated, and listwise deletion
may generate biased parameter estimates. For exam-
ple, listwise deletion can bias conclusions if those who
think of themselves as independents are less likely to
respond to a party identification question, or if better
educated people tend to answer issue opinion ques-
tions, or if less knowledgeable voters are less likely to
reveal their voting preferences. These patterns might
each be MAR or NI, but they are not MCAR. Listwise
deletion can result in different magnitudes or signs of
causal or descriptive inferences (Anderson, Basilevsky,
and Hum 1983). It does not always have such harmful
effects; sometimes the fraction of missing observations
is small or the assumptions hold sufficiently well so that
the bias is not large.

In this section, we quantify the efficiency loss due to
listwise deletion under the optimistic MCAR assump-
tion, so that no bias exists. We consider estimating the
causal effect of X1 on Y, which we label b1, and for
simplicity suppose that neither variable has any missing
data. One approach might be to regress Y on X1, but
most scholars would control for a list of potential
confounding influences, variables we label X2. As crit-
ics we use omitted variables as the first line of attack,
and as authors we know that controlling for more
variables helps protect us from potential criticism;
from this perspective, the more variables in X2 the
better.

The goal is to estimate b1 in the regression E(Y) 5
X1b1 1 X2b2. If X2 contains no missing data, then
even if X2 meets the rules for causing omitted variable
bias (i.e., if the variables in X2 are correlated with and
causally prior to X1 and affect Y), omitting it is still
sometimes best. That is, controlling will reduce bias but
may increase the variance of b1 (since estimating
additional parameters puts more demands on the
data). Thus, the mean square error (a combination of
bias and variance) may in some cases increase by
including a control variable (Goldberger 1991, 256).
Fortunately, since we typically have a large number of
observations, adding an extra variable does not do
much harm so long as it does not introduce substantial
colinearity, and we often include X2.

6 Missingness can also be NI if the parameters of the process that
generate D are not distinct from those that generate M, even if it is
otherwise MAR. In the text, for expository simplicity, we assume that
if a data set meets the MAR assumption, it also meets the distinct-
ness condition and is therefore ignorable.
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The tradeoff between bias and variance looms larger
when data are missing. Missing data will normally be
present in Y, X1, and X2, but suppose for simplicity
there is MCAR item nonresponse only in l fraction of
the n observations in X2. Ideally, we would observe all
of X2 (i.e., l 5 0) and estimate b1 with the complete
data:

Infeasible Estimator: Regress Y on X1 and a fully observed
X2, and use the coefficient on X1, which we denote b1

I .

In contrast, when data are missing (0 , l , 1), most
analysts consider only two estimators:

Omitted Variable Estimator: Omit X2 and estimate b1 by
regressing Y on X1, which we denote b1

O.

Listwise Deletion Estimator: Perform listwise deletion on Y,
X1, and X2, and then estimate the vector b1 as the
coefficient on X1 when regressing Y on X1 and X2, which
we denote b1

L.

The omitted variable estimator (b1
O) risks bias, and the

listwise deletion estimator (b1
L) risks inefficiency (and

bias except in the “best” case in which MCAR holds).
Presumably because the risks of omitted variable bias
are better known than the risks of listwise deletion,
when confronted with this choice most scholars opt for
listwise deletion. We quantify these risks with a formal
proof in Appendix B and discuss the results here. If
MSE(a) is the mean square error for estimator a, then
the difference MSE(b1

L) 2 MSE(b1
O) is how we assess

which method is better. When this difference is posi-
tive, b1

O has lower mean square error and is therefore
better than b1

L; when it is negative, b1
L is better. The

problem is that this difference is often positive and
large.

We need to understand when this mean square error
difference will take on varying signs and magnitudes.
The actual difference is a somewhat complicated expres-
sion that turns out to have a very intuitive meaning:

MSE~b1
L! 2 MSE~b1

O! 5
l

1 2 l
V~b1

I !

1 F @V~b2
I ! 2 b2b92# F9. (1)

The second term on the right side of equation 1 is the
well-known tradeoff between bias and variance when
no data are missing (where F are regression coefficients
of X2 on X1, and b2

I is the coefficient on X2 in the
infeasible estimator). The key here is the first term,
which is the extra mean square error due to listwise
deletion. Because this first term is always positive, it
causes the comparison between the two estimators to
tilt farther away from listwise deletion as the fraction of
missing data (l) grows.

To better understand equation 1, we estimate the
average l value in political science articles. Because of
the bias-variance tradeoff, those who try to fend off
more possible alternative explanations have more con-
trol variables and thus larger fractions of observations
lost. Although, on average, slightly less than one-third
of observations are lost when listwise deletion is used,7

the proportion can be much higher. In the papers and
posters presented at the 1997 annual meeting of the
Society for Political Methodology, for example, the
figure exceeded 50% on average and in some cases was
more than 90%.8 Because scholars usually drop some
variables to avoid extreme cases of missingness, the
“right” value of l for our purposes is larger than the
observed fraction. We thus study the consequences of
setting l 5 1/2, which means the first term in equation
1 reduces to V(b1

I ). The MSE also depends on the
second term, which can be positive or negative depend-
ing on the application. For simplicity, consider the case
in which this second term is zero (such as when V(b2

I )
5 b2b92, or X1 and X2 are uncorrelated). Finally, we
take the square root of the MSE difference to put it in
the interpretable units of the average degree of error.
The result is that the average error difference is
SE(b1

I ), the standard error of b1
I .

If these assumptions are reasonable, then the point
estimate in the average political science article is about
one standard error farther away from the truth because
of listwise deletion (as compared to omitting X2 entire-
ly). This is half the distance from no effect to what
usually is termed “statistically significant” (i.e., two
standard errors from zero).9 Of course, this is the
average absolute error: Point estimates in some articles
will be too high, in others too low. In addition, we are
using the standard error here as a metric to abstract
across applications with different meanings, but in any
one application the meaning of the expression depends
on how large the standard error is relative to changes in
the variables. This relative size in large part depends on
the original sample size and cases lost to listwise
deletion. Omitted variable bias, in contrast, does not
diminish as the sample size increases.

Although social scientists rarely choose it, omitted
variable bias is often preferable, if only it and listwise
deletion are the options. One cannot avoid missing
value problems since they usually affect all variables
rather than only potential control variables. Moreover,
because this result relies on the optimistic MCAR
assumption, the degree of error will often be more than
one standard error, and its direction will vary as a
function of the application, pattern of missingness, and
model estimated (Globetti 1997; Sherman 2000). For-
tunately, better methods make this forced choice be-
tween suboptimal procedures unnecessary.

A METHOD FOR ANALYZING INCOMPLETE
DATA

We now describe a general definition of multiple
imputation, a specific model for generating the impu-

7 This estimate is based on our content analysis of five years of the

American Political Science Review, the American Journal of Political
Science, and the British Journal of Political Science.
8 This estimate is based on 13 presented papers and more than 20
posters.
9 This is one of the infeasible estimator’s standard errors, which is
71% of the listwise deletion estimator’s standard error (or, in
general, =l 3 SE(b1

L)). Calculated standard errors are correct under
MCAR but larger than those for better estimators given the same
data, and they are wrong if MCAR does not hold.
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tations, and the existing computational algorithms and
our alternative. We also make several theoretical clar-
ifications and consider potential problems.

Definition of Multiple Imputation

Multiple imputation involves imputing m values for
each missing item and creating m completed data sets.
Across these completed data sets, the observed values
are the same, but the missing values are filled in with
different imputations to reflect uncertainty levels. That
is, for missing cells the model predicts well, variation
across the imputations is small; for other cases, the
variation may be larger, or asymmetric, to reflect
whatever knowledge and level of certainty is available
about the missing information. Analysts can then con-
veniently apply the statistical method they would have
used if there were no missing values to each of the m
data sets, and use a simple procedure that we now
describe to combine the m results. As we explain
below, m can be as small as 5 or 10.

First estimate some Quantity of interest, Q, such as a
univariate mean, regression coefficient, predicted prob-
ability, or first difference in each data set j (j 5
1, . . . , m). The overall point estimate q# of Q is the
average of the m separate estimates, qj:

q# 5
1
m O

j51

m

qj . (2)

Let SE(qj) denote the estimated standard error of qj
from data set j, and let Sq

2 5 ((j51
m (qj 2 q# )2/(m 2 1)

be the sample variance across the m point estimates.
Then, as shown by Rubin (1987a), the variance of the
multiple imputation point estimate is the average of
the estimated variances from within each completed
data set, plus the sample variance in the point esti-
mates across the data sets (multiplied by a factor that
corrects for bias because m , `):

SE~q!2 5
1
m O

j51

m

SE~qj!
2 1 Sq

2~1 1 1/m!. (3)

If, instead of point estimates and standard errors,
simulations of q are desired, we create 1/mth the
needed number from each completed data set (follow-
ing the usual procedures; see King, Tomz, and Witten-
berg 2000) and combine them into one set of simula-
tions.

An Imputation Model

Implementing multiple imputation requires a statistical
model from which to compute the m imputations for
each missing value in a data set. Our approach assumes
that the data are MAR, conditional on the imputation
model. The literature on multiple imputation suggests
that in practice most data sets include sufficient infor-
mation so that the additional outside information in an
application-specific NI model (see Appendix A) will
not add much and may be outweighed by the costs of

nonrobustness and difficulty of use (Rubin 1996; Scha-
fer 1997). Although this is surely not true in every
application, the advantages make this approach an
attractive option for a wide range of potential uses. The
MAR assumption can also be made more realistic by
including more informative variables and information
in the imputation process, about which more below.
Finally, note that the purpose of an imputation model
is to create predictions for the distribution of each of
the missing values, not causal explanation or parameter
interpretation.

One model that has proven useful for missing data
problems in a surprisingly wide variety of situations
assumes that the variables are jointly multivariate
normal. This model obviously is an approximation, as
few data sets have variables that are all continuous and
unbounded, much less multivariate normal. Yet, many
researchers have found that it works as well as more
complicated alternatives specially designed for categor-
ical or mixed data (Ezzati-Rice et al. 1995; Graham
and Schafer 1999; Rubin and Schenker 1986; Schafer
1997; Schafer and Olsen 1998). Transformations and
other procedures can be used to improve the fit of the
model.10 For our purposes, if there exists information
in the observed data that can be used to predict the
missing data, then multiple imputations from this nor-
mal model will almost always dominate current prac-
tice. Therefore, we discuss only this model, although
the algorithms we discuss might also work for some of
the more specialized models as well.

For observation i (i 5 1, . . . , n), let Di denote the
vector of values of the p (dependent Yi and explanatory
Xi) variables, which if all observed would be distributed
normally, with mean vector m and variance matrix S.
The off-diagonal elements of S allow variables within D
to depend on one another. The likelihood function for
complete data is:

L~m, (?D! } P
i51

n

N~Di?m, (!. (4)

By assuming the data are MAR, we form the ob-
served data likelihood. The procedure is exactly as for
application-specific methods (equations 12–13 in Ap-
pendix A, where with the addition of a prior this
likelihood is proportional to P (Dobs?u)). We denote
Di,obs as the observed elements of row i of D, and mi,obs
and Si,obs as the corresponding subvector and subma-
trix of m and S (which do not vary over i), respectively.
Then, because the marginal densities are normal, the
observed data likelihood is

L~m, (?Dobs! } P
i51

n

N~Di,obs?mi,obs, (i,obs!. (5)

The changing compositions of Di,obs, mi,obs, and Si,obs
over i make this a complicated expression to evaluate,

10 Most variables in political science surveys are ordinal variables
with four to seven values, which are reasonably well approximated by
the normal model, at least for the purpose of making imputations.
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although for clarity of presentation we have omitted
several computational conveniences that can help (see
Schafer 1997, 16).11

The multivariate normal specification implies that
the missing values are imputed linearly. Thus, we
create an imputed value the way we would usually
simulate from a regression. For example, let D̃ij denote
a simulated value for observation i and variable j, and
let Di,2j denote the vector of values of all observed
variables in row i, except variable j. The coefficient b
from a regression of Dj on the variables in D2j can be
calculated directly from elements of m and S, since they
contain all available information in the data under this
model. Then we use this equation to create an impu-
tation:

D̃ij 5 Di,2jb̃ 1 ẽi , (6)

where ; indicates a random draw from the appropriate
posterior. Thus, random draws of D̃ij are linear func-
tions of the other variables whenever they are observed
Di,2j, of estimation uncertainty due to not knowing b
(i.e., m and S) exactly, and of fundamental uncertainty
ẽi (i.e., since S is not a matrix of zeros). If we had an
infinite sample, b̃ could be replaced with the fixed b,
but there would still be uncertainty generated by the
world, ei. The computational difficulty is taking random
draws from the posterior of m and S.

Equation 6 can be used to generate imputations for
categorical variables by rounding off to the nearest
valid integer (as recommended by Schafer 1997). A
slightly better procedure draws from a multinominal or
other appropriate discrete distribution with mean
equal to the normal imputation. For example, to
impute a 0/1 variable, take a Bernoulli draw with mean
equal to the imputation (truncated to [0,1] if neces-
sary). That is, we impute a 1 with probability equal to
the continuous imputation, 0 otherwise.

Computational Algorithms

Computing the observed data likelihood in equation 5,
and taking random draws from it, is computationally
infeasible with classical methods. Even maximizing the
function takes inordinately long with standard optimi-
zation routines. In response to such difficulties, the
Imputation-Posterior (IP) and Expectation-Maximiza-
tion (EM) algorithms were devised and subsequently
applied to this problem.12 From the perspective of
statisticians, IP is now the gold standard of algorithms
for multivariate normal multiple imputations, in large
part because it can be adapted to numerous specialized
models. Unfortunately, from the perspective of users, it
is slow and hard to use. Because IP is based on Markov
Chain Monte Carlo (MCMC) methods, considerable
expertise is needed to judge convergence, and there is

no agreement among experts about this except for
special cases. IP has the additional problem of giving
dependent draws, so we need adaptations because
multiple imputation requires that draws be indepen-
dent. In contrast, EM is a fast deterministic algorithm
for finding the maximum of the likelihood function, but
it does not yield the rest of the distribution. We outline
these algorithms and refer the reader to Schafer (1997)
for a clear presentation of the computational details
and historical development.

We also will discuss two additional algorithms, which
we call EMs (EM with sampling) and EMis (EM with
importance resampling), respectively. Our recom-
mended procedure, EMis, is quite practical: It gives
draws from the same posterior distribution as IP but is
considerably faster, and, for this model, there appear to
be no convergence or independence difficulties. Both
EMs and EMis are made up of standard parts and have
been applied to many problems outside the missing
data context. For missing data problems, EMs has been
used, and versions of EMis have been used for special-
ized applications (e.g., Clogg et al. 1991). EMis also
may have been used for problems with general patterns
of missingness, although we have not yet located any
(and it is not mentioned in the most recent exposition
of practical computational algorithms, Schafer 1997).
In any event, we believe this procedure has widespread
potential (see Appendix C for information about soft-
ware we have developed).

IP. A version of the data augmentation algorithm of
Tanner and Wong (1987), IP enables us to draw
random simulations from the multivariate normal ob-
served data posterior P(Dmis?Dobs) (see Schafer 1997,
72ff). The basic idea is that drawing directly from this
distribution is difficult, but “augmenting” it by condi-
tioning on additional information makes the problem
easier. Because this additional information must be
estimated, the procedure has two steps that are carried
out iteratively. First, imputations, D̃mis, are drawn from
the conditional predictive distribution of the missing
data in what is called the imputation step:

D̃mis , P~Dmis?Dobs, m̃, (̃!. (7)

On the first application of equation 7, guesses are used
for the additional information, m̃ and S̃. Then, new
values of the parameters m and S are drawn from their
posterior distribution, which depends on the observed
data and the present imputed values for the missing
data. This is called the posterior step:

m̃, (̃ , P~m, (?Dobs, D̃mis!. (8)

This procedure is iterated, so that over time draws of
D̃mis, and m̃ and S̃, come increasingly from their actual
distributions independent of the starting values.

The advantage of IP is that the distributions are
exact, but convergence to these distributions is known
to occur only after an infinite number of iterations. The
belief is that after a suitably long “burn-in period” (a
number of iterations that are performed and discarded
before continuing), perhaps recognizable by various

11 Since the number of parameters p( p 1 3)/2 increases rapidly with
the number of variables p, priors help avoid overfitting and numerical
instability in all the algorithms discussed here.
12 Gelman et al. (1995), Jackman (2000), McLachlan and Krishan
(1997), and Tanner (1996) provide excellent introductions to the
literature on these algorithms and on Bayesian methods more
generally.
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diagnostics, convergence will have occurred, after
which additional draws will come from the posterior.
Unfortunately, experts disagree about how to assess
convergence of this and other MCMC methods
(Cowles and Carlin 1996; Kass et al. 1998).

In order to use the relatively simple equations 2 and
3 in combining the separate multiply imputed analyses,
imputations must be statistically independent, but this
is not a characteristic of successive draws from Markov
chain methods such as IP. Some scholars reduce de-
pendence by using every rth random draw from IP
(where r is determined by examining the autocorrela-
tion function of each of the parameters), but Schafer
(1997), following Gelman and Rubin (1992), recom-
mends addressing both problems by creating one inde-
pendent chain for each of the m desired imputations,
with starting values drawn randomly from an overdis-
persed approximation distribution. The difficulty with
taking every rth draw from one chain is the interpre-
tation of autocorrelation functions (which requires
analysts of cross-sectional data to be familiar with
time-series methods). The difficulty of running sepa-
rate chains is that the increase in run time, due to the
need to burn in iterations to ensure convergence for
each chain, is typically greater than the m times r
iterations saved by not needing multiple draws from
any one chain.

EM. The EM algorithm (Dempster, Laird, and Rubin
1977; McLachlan and Krishnan 1996; Orchard and
Woodbury 1972) works like IP except that random
draws from the entire posterior are replaced with
deterministic calculations of posterior means. The
draw of D̃mis in equation 7 is replaced with each
missing cell’s predicted value. The random draw of m̃
and S̃ in equation 8 is replaced with the maximum
posterior estimate. In simple cases, this involves run-
ning regressions to estimate b, imputing the missing
values with a predicted value, reestimating b, and
iterating until convergence. The result is that both the
imputations and the parameters computed are the
single (maximum posterior) values, rather than a whole
distribution.

The advantages of EM are that it is fast (relative to
other options), it converges deterministically, and the
objective function increases with every iteration. Like
every numerical optimization algorithm, EM can some-
times settle on a local maximum, and for some prob-
lems convergence is slow, although these do not seem
to be insurmountable barriers in most political science
data. The more serious disadvantage of EM is that it
yields only maximum values, rather than the entire
density. It is possible to use EM to produce multiple
imputations by treating point estimates of m and S as if
they were known with certainty. This means that
estimation uncertainty is ignored, but the fundamental
variability is included in the imputations. EM for
multiple imputation works reasonably well in some
instances, but ignoring estimation uncertainty means
its standard errors are generally biased downward, and
point estimates for some quantities will be biased.

EMs. Our strategy is to begin with EM and to add
back in estimation uncertainty so we get draws from
the correct posterior distribution of Dmis. The problem
is that it is difficult to draw from the posterior of m and
S. We approach this problem in two different ways. In
this section, we use the asymptotic approximation (e.g.,
Tanner 1996, 54–9), which we find works as expected—
well in large data sets and poorly in small ones.

To create imputations with this method, which we
denote EMs, we first run EM to find the maximum
posterior estimates of the parameters, û 5 vec(m̂, Ŝ)
(where the vec(z) operator stacks the unique elements).
Then we compute the variance matrix, V(û).13 Next we
draw a simulated u from a normal with mean û and
variance V(û). From this, we compute b̃ deterministi-
cally, simulate ẽ from the normal, and substitute these
values into equation 6 to generate an imputation. The
entire procedure after the EM step and variance
computation is repeated m times for the necessary
imputations.

EMs is very fast, produces independent imputations,
converges nonstochastically, and works well in large
samples. For small samples, for data with many vari-
ables relative to the number of observations, or for
highly skewed categorical data, EMs can be misleading
in the shape or variance of the distribution. As a result,
the standard errors of the multiple imputations, and
ultimately of the quantities of interest, may be biased.

EMis. EM finds the mode well, and EMs works well
for creating fast and independent imputations in large
samples, but it performs poorly with small samples or
many parameters. We can improve EMs with a round
of importance resampling (or “sampling importance/
resampling”), an iterative simulation technique not
based on Markov chains, to enhance small sample
performance (Gelfand and Smith 1990; Gelman et al.
1995; Rubin 1987a, 192–4, 1987b; Tanner 1996; Wei
and Tanner 1990).

EMis follows the same steps as EMs except that
draws of u from its asymptotic distribution are treated
only as first approximations to the true (finite sample)
posterior. We also put the parameters on unbounded
scales, using the log for the standard deviations and
Fisher’s z for the correlations, to make the normal
approximation work better with smaller sample sizes.
We then use an acceptance-rejection algorithm by
keeping draws of ũ with probability proportional to the
“importance ratio”—the ratio of the actual posterior to
the asymptotic normal approximation, both evaluated
at ũ—and discarding the rest. Without priors, the
importance ratio is

13 To compute the variance matrix, we generally use the outer
product gradient because of its speed. Other options are the inverse
of the negative Hessian, which is asymptotically the same and
supposedly somewhat more robust in real problems; “supplemented
EM,” which is somewhat more numerically stable but not faster; and
White’s estimator, which is more robust but slower. We have also
developed an iterative simulation-based method that seems advan-
tageous in speed and numerical stability when p is large.
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IR 5
L~ũ?Dobs!

N~ũ?ũ, V~ũ!!
. (9)

We find that the normal approximation is usually good
enough even in small, nonnormal samples so that the
algorithm operates quickly.14 In the final step, these
draws of ũ are used with equation 6 to produce the
desired m imputations.

EMis has all the advantages of IP, since it produces
multiple imputations from the exact, finite sample
posterior distribution. It is fast, does not rely on
Markov chains, and produces the required fully inde-
pendent imputations. Importance resampling, on
which EMis is based, does not work well for all
likelihood functions, especially when the normal den-
sity is not a good first approximation; for the present
likelihood, however, our extensive experimentation
with a wide variety of data types has not revealed any
systematic differences when compared to runs of IP
with immense numbers of iterations (so that judging
MCMC convergence of IP is not as much of an issue).
Our software includes the full range of standard diag-
nostics in case a problem arises that we have not
foreseen. It also includes other approaches (IP, EM,
EMs, and others), since our suggestion for improving
methodological practice in political science is not to
rely exclusively on EMis. Rather, we argue that any
appropriately applied multiple imputation algorithm
will generally outperform current incomplete data
analysis practices.

Theoretical Clarifications and Common
Misconceptions

It has been shown that multiple imputation inferences
are statistically valid from both Bayesian and frequen-
tist perspectives (Brownstone 1991; Meng 1994a; Ru-
bin 1987a, 1996; Schafer 1997; Schenker and Welsh
1988). Since there is some controversy over the
strength and applicability of the assumptions involved
from a frequentist perspective, we focus on the far
simpler Bayesian version. This version also encom-
passes the likelihood framework, which covers the vast
majority of social science statistical models.

The fundamental result, for some chosen quantity Q
to be estimated, involves approximating the correct
posterior P(Q?Dobs). We would get this from an opti-
mal application-specific method, with an approach
based on the “completed” data P(Q?Dobs, D̃mis), that
is filled in with imputations D̃mis drawn from the
conditional predictive density of the missing data
P(Dmis?Dobs). Under MAR, we know that averag-
ing P(Q?Dobs, D̃mis) over D̃mis gives exactly P(Q?Dobs):

P~Q?Dobs! 5 E P~Q?Dobs, Dmis!P~Dmis?Dobs!dDmis. (10)

This integral can be approximated with simulation. To
draw a random value of Q̃ from P(Q?Dobs), draw
independent random imputations of D̃mis from
P(Dmis?Dobs), and then draw Q conveniently from
P(Q?Dobs, D̃mis), given the imputed D̃mis. We can
approximate P(Q?Dobs) or any point estimate based on
it to any degree of accuracy with a large enough
number of simulations. This shows that if the complete-
data estimator is consistent and produces accurate
confidence interval coverage, then multiple imputation
based on m 5 ` is consistent, and its confidence
intervals are accurate.

Multiple imputation is feasible because the efficiency
of estimators based on the procedure increases rapidly
with m (see Rubin 1987a and the citations in Meng
1994a; and especially Wang and Robins 1998). Indeed,
the relative efficiency of estimators with m as low as 5
or 10 is nearly the same as with m 5 `, unless
missingness is exceptionally high.

Multiple imputation is made widely applicable by
Meng’s (1994a) results regarding an imputation model
that differs from the analysis model used. He finds that
so long as the imputation model includes all the
variables (and information) in the analysis model, no
bias is introduced; nominal confidence interval cover-
age will be at least as great as actual coverage and
equal when the two models coincide (Fay 1992). Rob-
ins and Wang (2000) indicate, however, that multiple
imputation confidence intervals are not always conser-
vative when there is misspecification of either both the
imputation and analysis model or just the latter. (The
next section considers in greater depth what can go
wrong with analyses using multiple imputation.)15

In summary, even with a very small m and an
imputation model that differs from the analysis model,
this convenient procedure gives a good approximation
to the optimal posterior distribution, P(Q?Dobs). This
result alone guarantees valid inferences in theory from
multiple imputation. Indeed, deviating from it to focus
on partial calculations sometimes leads to misconcep-
tions on the part of researchers. For example, no
assumptions about causal ordering are required in
making imputations: The use of variables that may be
designated “dependent” in the analysis phase to im-
pute missing values in variables to be designated
“explanatory” generates no endogeneity, since the im-
putations do not change the joint distribution. Simi-

14 For difficult cases, our software allows the user to substitute the
heavier tailed t for the approximating density. The normal or t with
a larger variance matrix, scaled up by some additional factor (1.1–1.5
to work well), can also help.

15 When the information content is greater in the imputation than
analysis model, multiple imputation is more efficient than even the
“optimal” application-specific method. This is the so-called super-
efficiency property (Rubin 1996). For example, suppose we want to
run 20 cross-sectional regressions with the same variables measured
in different years, and we discover an additional control variable for
each that strongly predicts the dependent variable but on average
across the set correlates at zero with the key causal indicator.
Excluding this control variable will only bias the causal estimate, on
average, if it is a consequence of the causal variable, whereas
including it will substantially increase the statistical efficiency of all
the regressions. Unfortunately, an application-specific approach
would need to exclude such a variable if it were a consequence of the
key causal variable to avoid bias and would thus give up the potential
efficiency gains. A multiple imputation analysis could include this
variable no matter what its causal status, so statistical efficiency
would increase beyond an application-specific approach.
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larly, randomness in the missing values in the explan-
atory variable from the multiple imputations do not
cause coefficients to be attenuated (as when induced by
random measurement error) because the imputations
are being drawn from their posterior; again, the joint
distribution is unchanged. Since the multiple imputa-
tion procedure taken as a whole approximates
P(Q?Dobs), these “intuitions” based on parts of the
procedure are invalid (see Schafer 1997, 105ff).16

WHAT CAN GO WRONG?

We first discuss common fixable stumbling blocks in
the application of EMis and multiple imputation. We
then consider the one situation in which listwise dele-
tion would be preferable to multiple imputation, as
well as situations in which application-specific ap-
proaches would sufficiently outperform multiple impu-
tation to be preferable.

Practical Suggestions

As with any statistical approach, if the model-based
estimates of EMis are wrong, then there are circum-
stances in which the procedure will lead one astray. At
the most basic level, the point of inference is to learn
something about facts we do not observe by using facts
we do observe; if the latter have nothing to do with the
former, then we can be misled with any statistical
method that assumes otherwise. In the present context,
our method assumes that the observed data can be
used to predict the missing data. For an extreme
counterexample, consider an issue scale with integer
responses 1–7, and what you think is a missing value
code of 29. If, unbeknownst to you, the 29 is actually
an extreme point on the same scale, then imputing
values for it based on the observed data and rounding
to 1–7 will obviously be biased.17 Of course, in this case

listwise deletion will be at least as bad, since it generally
discards more observed information than EMis has to
impute, and it is biased unless strong assumptions
about the missing data apply.

An advantage of our approach over application-
specific methods (see Appendix A) is that it is often
robust to errors in the imputation model, since (as with
the otherwise inferior single imputation models; see
Appendix A) separating the imputation and analysis
stages means that errors in the missingness model can
have no effect on observed parts of the data set,
because they are the same for all m imputations. If a
very large fraction of missingness exists in a data set,
then multiple imputation will be less robust, but list-
wise deletion and other methods will normally be
worse.

Beyond these general concerns, a key point for
practice is that the imputation model should contain at
least as much information as the analysis model. The
primary way to go wrong with EMis is to include
information in the analysis model and omit it from the
imputation model. For example, if a variable is ex-
cluded from the imputation model but used in the
analysis, estimates of the relationship between this
variable and others will be biased toward zero. As a
general rule, researchers should include in the impu-
tation model all the variables from the analysis model.
For greater efficiency, add any other variables in the
data set that would help predict the missing values.18

The ability to include extra variables in the imputa-
tion model that are not in the analysis model is a
special advantage of this approach over listwise dele-
tion. For example, suppose the chosen analysis model
is a regression of Y on X, but the missingness in X
depends on variables Z that also affect Y (even after
controlling for X). In this case, listwise deletion regres-
sion is inconsistent. Including Z in the regression would
make the estimates consistent in the very narrow sense
of correctly estimating the corresponding population
parameters, but these would be the wrong population
parameters because in effect we were forced to control
for Z. For example, suppose the purpose of the analysis
model is to estimate the causal effect of partisan
identification X on the vote Y. We certainly would not
want to control for voting intention five minutes before
walking into the voting booth Z, since it is a conse-
quence of party identification and so would incorrectly
drive that variable’s estimated effect to zero. Yet, Z
would be a powerful predictor of the missing value of
the vote variable, and the ability to include it in the
imputation stage of a multiple imputation model and

16 Because the imputation and analysis stages are separate, propo-
nents of multiple imputation argue that imputations for public use
data sets could be created by a central organization, such as the data
provider, so that analysts could ignore the missingness problem
altogether. This strategy would be convenient for analysts and can be
especially advantageous if the data provider can use confidential
information in making the imputations that otherwise would not be
available. The strategy is also convenient for those able to hire
consultants to make the imputations for them. Others are not
enthusiastic about this idea (even if they have the funds) because it
can obscure data problems that overlap the two stages and can
provide a comforting but false illusion to analysts that missingness
problems were “solved” by the imputer (in ways to which analysts
may not even have access). The approach also is not feasible for large
data sets, such as the National Election Studies, because existing
computational algorithms cannot reliably handle so many variables,
even in theory. Our alternative but complementary approach is to
make the tools of imputation very easy to use and available directly
to researchers to make their own decisions and control their own
analyses.
17 In this sense, the problem of missing data is theoretically more
difficult than ecological inference, for example, since both involve
filling in missing cells, but in missing data problems deterministic
bounds on the unknown quantities cannot be computed. In practice,
dealing with the missing data problem may be relatively easier since
its assumption (that observed data will not drastically mislead in
predicting the missing data) is very plausible in most applications.

18 If the data are generated using a complex or multistage survey
design, then information about the design should be included in the
imputation model. For example, to account for stratified sampling,
the imputation model should include the strata coded as dummy
variables. Our software allows one to include these directly or to
condition on them. The former requires no special programming.
The latter, which we do by letting m be a linear function of the
dummy variables, is easy to implement because the dummies are fully
observed, and many fewer parameters need to be estimated. Other
possibilities for dealing with complex sampling designs include
hierarchical Bayesian models, the general location model, and other
fixed effects designs.
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also omit it from the analysis model is a great advan-
tage.

In fact, in many applications scholars apply several
analysis models to the same data (such as estimating
the effect of party identification while excluding voting
intentions, and estimating the effect of voting inten-
tions while including party ID). Despite these different
theoretical goals, using different missingness models
for the same variables, as listwise deletion effectively
requires, is rarely justified. For another example, schol-
ars often choose for an analysis model only one of
several very similar issue preference variables from a
data set to measure ideology. This is fine for the
analysis model, but for the imputation model the entire
set of issue preference questions should be included,
because an observed value in one can be especially
useful for predicting a missing value in another.

A similar information discrepancy occurs if the
analysis model specifies a nonlinear relationship, since
the imputation model is linear (see equation 6). There
is little problem with the set of nonlinear functional
forms typically used in the social sciences (logit, probit,
exponential, and so on), because a linear approxima-
tion to these forms has been shown to perform very
well during imputation, even if not for the analysis
model. Yet, more severe nonlinearity, such as qua-
dratic terms that are the central question being re-
searched, can cause problems if ignored. A quadratic
form is estimated in an analysis model by including an
explanatory variable and its square as separate terms.
Omitting the squared term from the imputation model
causes the same problems as omitting any other impor-
tant variable. The solution is easy: Include the squared
term in the imputation model. The same problem and
solution apply to interaction terms (although the im-
putation procedure will be less efficient if one variable
has much more missingness than another).

Researchers also should try to meet the distribu-
tional assumptions of the imputation model. For the
imputation stage, variables should be transformed to
be unbounded and relatively symmetric. For example,
budget figures, which are positive and often positively
skewed, can be logged. Event counts can be made
closer to normal by taking the square root, which
stabilizes the variance and makes them approximately
symmetric. The logistic transformation can be used to
make proportions unbounded and symmetric.

Ordinal variables should be coded to be as close to
an interval scaling as information indicates. For exam-
ple, if categories of a variable measuring the degree of
intensity of international conflicts are diplomatic dis-
pute, economic sanctions, military skirmish, and all out
war, a coding of 1, 2, 3, and 4 is not approximately
interval. Perhaps 1, 2, 20, and 200 might be closer. Of
course, including transformations to fit distributional
assumptions, and making ordinal codings more reason-
able like this, are called for in any linear model, even
without missing data.19

Finally, NI missingness is always a serious concern
because, by definition, it cannot be verified in the
observed data. We discuss this issue in different ways in
the sections to follow.

When Listwise Deletion Is Preferable

For listwise deletion to be preferable to EMis, all four
of the following (sufficient) conditions must hold. (1)
The analysis model is conditional on X (such as a
regression model), and the functional form is known to
be correctly specified (so that listwise deletion is con-
sistent, and the characteristic robustness of regression
is not lost when applied to data with measurement
error, endogeneity, nonlinearity, and so on). (2) There
is NI missingness in X, so that EMis can give incorrect
answers, and no Z variables are available that could be
used in an imputation stage to fix the problem. (3)
Missingness in X is not a function of Y, and unobserved
omitted variables that affect Y do not exist. This
ensures that the normally substantial advantages of our
approach in this instance do not apply. (4) The number
of observations left after listwise deletion should be so
large that the efficiency loss from listwise deletion does
not counterbalance (e.g., in a mean square error sense)
the biases induced by the other conditions. This last
condition does not hold in most political science appli-
cations except perhaps for exit polls and some nonsur-
vey data.

In other words, in order to prefer listwise deletion,
we must have enough information about problems with
our variables so that we do not trust them to impute the
missing values in the X’s—or we worry more about
using available information to impute the X’s than the
possibility of selection on X as a function of Y in (3),
which our approach would correct. Despite this, to use
listwise deletion we must still trust the data enough to
use them in an analysis model. That is, we somehow
know the same variables cannot be used to predict Dmis
but can be used to estimate quantities based on Dobs.
Furthermore, we must have no extra variables Z to
predict X or Y, and many observations must be left
after listwise deletion.

If all of these conditions hold, listwise deletion can
outperform EMis, and researchers should consider
whether these might hold in their data. However, we
feel this situation—using more information is
worse—is likely to be rare. It is indeed difficult to think
of a real research project that fits these conditions
sufficiently so that listwise deletion would be knowingly
preferable to EMis. Probably the best case that can be
made for listwise deletion is convenience, although our
software should help close the gap.

When Application-Specific Approaches Are
Worth the Trouble

Although proponents of application-specific methods
and of multiple imputation frequently debate the right
approach to analyzing data with missing values, if a
good application-specific approach is feasible, we be-
lieve it should be adopted. Such an approach not only

19 Researchers with especially difficult combinations of nominal and
continuous variables may want to consider implementing the general
location imputation model (Schafer 1997).
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is better statistically but also by definition allows inclu-
sion of more of the normally substantial qualitative
knowledge available to social scientists but not re-
corded in the numerical data. It encourages research-
ers to explore features of their data suggested by this
qualitative knowledge or revealed by preliminary data
analyses, and more information is extracted. Unfortu-
nately, these methods do not exist for all applications,
are especially rare for missingness scattered through-
out X and Y, can be technically demanding to create,
and often are not robust when the chosen model does
not fit the data well. The rich variety of methods now
available should be studied by social scientists, and the
literature should be followed for the many advances
likely to come. But if no such method is available, when
is a social scientist’s effort best devoted to developing a
new application-specific method? We identify four
situations.

First, as discussed above, imputing values that do not
exist makes little sense. Answers to survey questions
that are “inconvenient” for the analyst, as when “no
opinion” means that the respondent really has no
opinion rather than prefers not to share information
with the interviewer, should be treated seriously and
modeled directly, like any other survey response. In
this situation, virtually any general-purpose imputation
method would bias the analysis model, and listwise
deletion would be no better. An application-specific
approach is necessary to model the specific process that
generated the survey responses.

Second, when missingness is a function of Y?X (even
after controlling for extra variables in the imputation
stage), the data are NI. For example, researchers
should be suspicious that MAR might not hold in
measures of the duration of parliamentary cabinets
that are censored due to governments that are still in
office at the time of data collection. If these missing
values can be predicted from the remaining variables,
then the data are still MAR, but this fact is unverifi-
able, and researchers should tread especially carefully
in these circumstances. When NI is a strong possibility,
substantial gains can sometimes be had with an appli-
cation-specific approach. Even if the selection mecha-
nism is not so severe, but is central to the research
question, then development of an application-specific
approach may be worth considering.

Third, whenever key information in the analysis
model cannot be approximated within the imputation
model, it may be desirable to develop an alternative.
For example, if the analysis model contains severe
nonlinearity or very complex interactions that cannot
be incorporated into our linear imputation model, then
it may be worth developing an application-specific
approach. Neural network models provide one such
example that cannot be handled easily within the EMis
imputation stage (Bishop 1995).

Finally, extreme distributional divergences from
multivariate normal can be a good reason to consider
an alternative approach. Ordinal and dichotomous
variables will often do well under EMis, but variables
that are highly skewed (even after transformation) or a
variable of primary interest that is mixed continuous

and discrete may make it worth the trouble to develop
an alternative.

MONTE CARLO EVIDENCE

In this section, we provide analyses based on simulated
data: a timing test that reveals EMis is much faster than
IP under different conditions; an illustration of how
EMis corrects the problems in EMs and EM in order to
match IP’s (correct) posterior distribution; and more
extensive Monte Carlo evidence demonstrating that IP
and EMis give the same answers, and these results are
only slightly worse than if no data were missing and
normally are far better than listwise deletion. (We have
run many other Monte Carlo experiments to verify that
the reported standard errors and confidence intervals,
as well as estimates for other quantities of interest and
different analysis models, are correct, but we omit these
here.)

First, we compare the time it takes to run IP and
EMis. Since imputation models are generally run once,
followed by numerous analysis runs, imputation meth-
ods that take time are still useful. Runs of many hours,
however, make productive analysis much less likely,
especially if several data sets must be analyzed.

We made numerous IP and EMis runs, but it is not
obvious how IP should be timed because there are no
clear rules for judging convergence. We made edu-
cated guesses, ran experiments in which we knew the
distribution to which IP was converging, studied profile
plots of the likelihood function, and otherwise used
Schafer’s (1997) recommended defaults. On the basis
of this experience, we chose max(1000, 100p) iterations
to generate the timing numbers below, where p is the
number of variables. For the EMis algorithm we chose
a very conservative 1/50 ratio of draws to imputations.
With each algorithm we created ten imputed data sets.
We used a computer with average speed for 1999
(450Mhz with 128M of RAM). We then created a data
set with 1,000 observations, of which 50 of these and
one variable were fully observed. Every remaining cell
was missing with 5% probability, which is not unusual
for most social science survey data.

For 5 variables, IP takes 4.8 minutes, whereas EMis
finishes in 3 seconds. For 10 variables, IP takes 28
minutes, and EMis runs for 14 seconds. With 20
variables, IP takes 6.2 hours, and EMis takes 2 minutes.
With 40 variables, IP takes 3.5 days, whereas EMis runs
for 36 minutes. Overall, EMis ranges from 96 to 185
times faster. Counting the analyst’s time that is neces-
sary to evaluate convergence plots would make these
comparisons more dramatic.20 Running one IP chain
would be 2–3 times as fast as the recommended
approach of separate chains, but that would require
evaluating an additional p( p 1 3)/2 autocorrelation

20 Since convergence is determined by the worst converging param-
eter, one typically needs to monitor p( p 1 3)/2 convergence plots.
For applications in which the posterior is nearly normal, evaluating
the worst linear function of the parameters can sometimes reduce the
number of plots monitored. We also did not include the time it would
take to create an overdispersed set of starting values for the IP
chains.
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function plots to avoid creating dependent imputa-
tions.21

Second, we plot smooth histograms (density esti-
mates of 200 simulations) of one mean parameter from
a Monte Carlo run to illustrate how EM, EMs, and
EMis approximate the posterior computed by IP and
known to be correct (see Figure 1). The first row of

graphs is for n 5 25, and the second row is for n 5
500. The first column compares EMs and EM to IP,
and the second compares EMis to IP. In all four
graphs, the correct posterior, computed by IP, is a solid
line. Clearly, the maximum likelihood point estimate
found by EM (and marked by a small vertical bar on
the left graphs) is not an adequate approximation to
the entire posterior. By ignoring estimation variability,
EM underestimates standard errors and confidence
intervals.

The figure also enables us to evaluate EMs and
EMis. For example, the dashed line in the top left
graph shows how, with a small sample, EMs produces a
poor approximation to the true IP posterior. The
bottom left graph shows how EMs improves with a
larger sample, courtesy of the central limit theorem. In
this example, more than 500 observations are appar-
ently required to have a close match between the two,
but EMs does not perform badly with n 5 500. In
contrast, EMis closely approximates the true IP poste-
rior when the sample is as small as 25 (in the top right)
and is not noticeably different when n 5 500. (The

21 We programmed both IP and EMis in the same language
(GAUSS), which keeps them comparable to a degree. Our algorithm
is more suited to the strengths of the GAUSS language. Additional
vectorization will speed up both algorithms, but not necessarily in the
same ratio. For example, Schafer’s (1997) FORTRAN implementa-
tion of IP (which should be approximately as fast as vectorized code
in a modern vectorized language) is about 40 times as fast as our
GAUSS implementation of IP following Schafer’s pseudocode. Scha-
fer’s FORTRAN implementation of EM is about 25 times as fast as
the EM portion of EMis. Similarly, the speed of our variance
calculation could be substantially improved with complete vectoriza-
tion. We use a FORTRAN implementation, as part of our GAUSS
code, for calculating the likelihood in the importance sampling
portion of the EMis algorithm, making the calculation of the
likelihood fully vectorized. We do this because it is a calculation not
well suited to GAUSS. Without this, our algorithm in GAUSS runs
for 5 seconds, 52 seconds, 25 minutes, and 25 hours, respectively, or
from 4 to 58 times faster than IP.

FIGURE 1. Comparison of Posterior Distributions

Note: These graphs show, for one mean parameter, how the correct posterior (marked IP) is approximated poorly by EM, which only matches the mode,
and EMs when n is small (top left). IP is approximated well by EMs for a larger n (bottom left) and by EMis for both sample sizes (right top and bottom).
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small differences remaining between the lines in the
two right graphs are attributable to approximation
error in drawing the graphs based on only 200 simula-
tions.)

Finally, we generate data sets with different missing-
ness characteristics and compare the mean square
errors of the estimators. The Monte Carlo experiments
we analyze here were representative of the many others
we tried and are consistent with others in the literature.
We generate 100 data sets randomly from each of five
data generation processes, each with five variables, Y,
X1, . . . , X4.

MCAR-1: Y, X1, X2, and X4 are MCAR; X3 is
completely observed. About 83% of the observations
in the regression are fully observed.

MCAR-2: The same as MCAR-1, with about 50% of
rows fully observed.

MAR-1: Y and X4 are MCAR: X1 and X2 are MAR,
with missingness a function of X3, which is com-
pletely observed. About 78% of rows are fully ob-
served.

MAR-2: The same as MAR-1, with about 50% of rows
fully observed.

NI: Missing values in Y and X2 depend on their
observed and unobserved values; X1 depends on the
observed and unobserved values of X3; and X3 and
X4 are generated as MCAR. About 50% of rows are
fully observed.22

The quantities of interest are b1 and b2 in the
regression E(Y) 5 b0 1 b1X1 1 b2X2.23 The S matrix
is set so that b1 and b2 are each about 0.1. For each of
the 100 data sets and five data-generation processes,
we estimate these regression coefficients with imputa-
tion models based on listwise deletion, IP, and EMis as
well as with the true complete data set. For each
application of IP and EMis, we multiply imputed ten
data sets and averaged the results as described above.
We then computed the average root mean square error
for the two coefficients in each run and averaged these
over the 100 simulations for each data type and statis-
tical procedure.

The vertical axis in Figure 2 is this averaged root
mean square error. Each line connects the four differ-
ent estimations for a single data-generation process.
The graph helps demonstrate three points. First, the
root mean square error of EMis is virtually identical to
that of IP for each data-generation process. This
confirms again the equivalence of the two approaches.

22 We drew n 5 500 observations from a multivariate normal with
means 0, variances 1, and correlation matrix {1 2.12 2.1 .5 .1, 2.12
1 .1 2.6 .1, 2.1 .1 1 2.5 .1, .5 2.6 2.5 1 .1, .1 .1 .1 .1 1}, where
commas separate rows. For each missingness process, we created M
as follows. Let row i and column j of M be denoted Mij, and let u be
a uniform random number. Recall that columns of M correspond to
columns of D 5 {Y, X1, . . . , X4}. For MCAR-1, if u , 0.6, then
Mij 5 1, 0 otherwise. For MCAR-2, if u , 0.19, then Mij 5 1, 0

otherwise. For MAR-1, Mi1 and Mi5 were created as in MCAR-1;
Mi4 5 0@ i; and if Xi3 , 21 and u , 0.9, then Mi2 5 1 and (with
a separate value of u) Mi3 5 1, 0 otherwise. For MAR-2, Mi1 and
Mi5 equal 0 if u , 0.12, 1 otherwise; Mi4 5 0@ i; and if Xi3 , 20.4
and u , 0.9, then Mi2 5 1 and (with a separate value of u) Mi3 5
1. For NI, Mi1 5 1 if Yi , 20.95; Mi2 5 1 if Xi3 , 20.52; Mi3 5
1 if Xi2 . 0.48; and Mi4 and Mi5 were created as in MCAR-1. In
other runs, not reported, we changed every parameter, the generat-
ing density, and the analysis model, and our conclusions were very
similar.
23 We chose regression as our analysis model for these experiments
because it is probably still the most commonly used statistical method
in the social sciences. Obviously, any other analysis model could have
been chosen, but much research has demonstrated that multiple
imputation works in diverse situations. For our testing, we did
extensive runs with logit, linear probability, and several univariate
statistics, as well as more limited testing with other more complicated
models.

FIGURE 2. Root Mean Square Error Comparisons

Note: This figure plots the average root mean square error for four missing data procedures—listwise deletion, multiple imputation with IP and EMis, and
the true complete data—and the five data-generation processes described in the text. Each point in the graph represents the root mean square error
averaged over two regression coefficients in each of 100 simulated data sets. Note that IP and EMis have the same root mean square error, which is lower
than listwise deletion and higher than the complete data.
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Second, the error for EMis and IP is not much higher
than the complete (usually unobserved) data set, de-
spite high levels of missingness. Finally, listwise dele-
tion ranges from slightly inferior to the two multiple
imputation methods (in the MCAR cases when the
assumptions of listwise deletion hold) to a disaster (in
the MAR and NI cases). Since the true value of the
coefficients being estimated is about 0.1, root mean
square errors this large can bias results by flipping signs
or greatly changing magnitude. An open question is
which articles in political science have large mean
square errors like that for MAR-2 due to listwise
deletion.

A further illustration of the results of our Monte
Carlo study is provided in Figure 3, which gives a
different view of the MAR-1 run in Figure 2. For
MAR-1, the case of low missingness, the root mean
square error for listwise deletion was higher than for
the other methods but not as high as for MAR-2.
Figure 3 graphs the t statistic for the constant term and
each of the two regression coefficients, averaged over
the 100 runs for each of the four imputation proce-
dures. For the two regression coefficients, the sign is
negative (and “significant” for b1) when estimated by
the true complete data, IP, and EMis, but the opposite
is the case for listwise deletion. In the listwise deletion

run, both coefficients have point estimates that are
positive but statistically indistinguishable from zero.
Most of the action in the listwise case is generated in
the substantively uninteresting constant term.

Figure 3 is a clear example of the dangers political
scientists face in continuing to use listwise deletion.
Only 22% of the observations were lost in this case, yet
the key substantive conclusions are reversed by choos-
ing an inferior method. It is easy to generate hypothet-
ical data with larger effects, but this instance is proba-
bly closer to the risks we face.

EXAMPLES

We present two examples that demonstrate how
switching from listwise deletion can markedly change
substantive conclusions.

Voting Behavior in Russian Elections

The first example is vote choice in Russia’s 1995
parliamentary election. Analyses of elections in Russia
and emerging democracies generally present conflict-
ing descriptions of individual voting behavior. In one
view, electoral choice in these elections is thought to be
chaotic at worst and personalistic at best. The alterna-

FIGURE 3. Monte Carlo Comparison of t Statistics

Note: T statistics are given for the constant (b0) and the two regression coefficients (b1, b2) for the MAR-1 run in Figure 2. Listwise deletion gives the
wrong results, whereas EMis and IP recover the relationships accurately.

Analyzing Incomplete Data: An Alternative Algorithm for Multiple Imputation March 2001

62

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
03

05
54

01
00

02
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0003055401000235


tive perspective is that voting decisions are based in
predictable ways on measurable social, demographic,
attitudinal, and economic variables (not unlike voters
in more established democracies). Our analysis illus-
trates how inferences can be substantially improved by
implementing the EMis algorithm.

We present only a simplified voting model, but
detailed accounts of behavior in recent Russian elec-
tions are available (Brader and Tucker 2001; Colton
2000; Fish 1995; Miller, Reisinger, and Hesli 1998;
White, Rose, and McAllister 1997; Whitefield and
Evans 1996).24 Using data from the Russian Election
Study (Colton n.d.), we estimate a logit model with the
dependent variable defined as 1 if the voter casts a
ballot for the Communist Party of the Russian Feder-
ation (KPRF), 0 otherwise. With more than 22% of the
popular vote, the KPRF was the plurality winner in the
1995 parliamentary elections, which makes under-
standing this vote essential to a correct interpretation
of the election. The explanatory variables for our
simple model vary according to the stage of the voter’s
decision-making process being tested, in order to avoid
controlling for the consequences of key causal vari-
ables. Listwise deletion loses 36%, 56%, and 58% of
the observations, respectively, in the three stages from
which we use data.

Table 2 presents estimates of three first differences
derived from our logit regressions for listwise deletion
and EMis. First, we estimate the effect of a voter’s
satisfaction with democracy on the probability of sup-
porting the KPRF. This is one measure of voters’
assessments of current economic and political condi-
tions in Russia. Voters more satisfied with democracy
may be less likely to support the KPRF than those who
are dissatisfied. The quantity of interest is the differ-
ence between the predicted probability for a voter who
is completely dissatisfied with how democracy is devel-
oping in Russia and the predicted probability for a
voter who is completely satisfied, holding all other
values of the explanatory variables constant at their

means. The listwise deletion estimate is 20.06 with a
relatively large standard error of 0.06, which for all
practical purposes is no finding. In contrast, the EMis
estimate is 20.10 with a standard error of 0.04. The
unbiased and more efficient EMis estimate is nearly
twice as large and is estimated much more precisely. As
such, we can be relatively confident that voters highly
satisfied with Russian democracy were about 10% less
likely to support the KPRF, a finding not ascertainable
with existing methods.

Issue opinions are another likely determinant of vote
choice. In particular, are voters who oppose the tran-
sition to a market economy more likely than others to
support the Communist Party? The answer seems
obvious, but listwise deletion reveals little support for
this hypothesis; again, the first-difference estimate is in
the hypothesized direction but is only as large as its
standard error (and thus not “significant” by any
relevant standard). In contrast, the EMis estimate
suggests that voters opposed to the transition were
about 12% more likely to vote for the KPRF, with a
very small standard error.

The final comparison that we report is the voting
effect of trust in the Russian government. Positive
evaluations should have had a negative influence on
KPRF support in the 1995 Duma election. Again,
listwise deletion detects no effect, but multiple impu-
tation finds a precisely estimated twelve percentage
point difference.

Table 2 presents only these three of the forty-six
effects we estimated. Overall, we found substantively
important changes in fully one-third of the estimates.
Ten changed in importance as judged by traditional
standards (from “statistically significant” to not, or the
reverse, plus some substantively meaningful differ-
ence), and roughly five others increased or decreased
sufficiently to alter the substantive interpretation of
their effects.

Public Opinion about Racial Policies

The second example replicates the analysis by Alvarez
and Brehm (1997) of the factors that explain Ameri-
cans’ racial policy preferences and the variance in those
preferences. They use a heteroskedastic probit to
model citizens preferences about racial policies in
fair-housing laws, government set asides, taxes to ben-
efit minority educational opportunities, and affirmative
action in university admissions. Their explanatory vari-
ables are scales constructed to measure individual’s
core values or beliefs, such as individualism, authori-
tarianism, egalitarianism, and ideology. They also in-
clude scales measuring antiblack stereotypes, generic
out-group dislike (proxied by anti-Semitism), and mod-
ern racism. The latter term is a subject of debate in the
literature (Kinder 1986; Kinder and Sears 1981; Mc-
Conahay 1986); proponents argue that there is “a form
of racism that has replaced overt expressions of racial
superiority” (Alvarez and Brehm 1997, 347), and it
defines attitudes to racial policies and questions. This
“symbolic or modern racism denotes a conjunction of
antiblack affect with traditional American values, tak-

24 We were alerted to the potential importance of missing data
problems in this literature by Timothy Colton as he experimented
with alternative strategies for his study, Transitional Citizens: Voters
and What Influences Them in the New Russia (2000).

TABLE 2. First-Difference Effects on Voting
in Russia

Listwise
Deletion

Multiple
Imputation

Satisfaction with democracy 2.06 2.10
(.06) (.04)

Opposition to the market
economy

.08 .12
(.08) (.05)

Trust in the Russian
government

2.06 2.12
(.08) (.04)

Source: Authors’ reanalysis of data from Colton 2000.
Note: Entries are changes in the probability of voting for the Communist
Party in the 1995 parliamentary election as a function of changes in the
explanatory variable (listed on the left), with standard errors in paren-
theses.
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ing form in the sense that blacks are receiving more
attention from government or other advantages than
they deserve” (p. 350).25

Alvarez and Brehm employ a statistical model that
explains with these variables not only the racial policy
preferences of individuals but also the individual vari-
ability in responses. When variability is explained by
the respondent’s lack of political information, then it is
considered to be caused by uncertainty, whereas if
variability is explained by a conflict between “compet-
ing core values” or “incommensurable choices,” then it
is caused by ambivalence. They find that these prefer-
ences are not motivated by core values such as individ-
ualism, and so on, but are solely determined by a
person’s level of modern racism. The authors are more
interested substantively in understanding what causes
variability in response. They find that the “individual
variability in attitudes toward racial policy stems from
uncertainty” (Alvarez and Brehm 1997, 369) derived
from a “lack of political information” (p. 370), not
from a conflict of core values, such as individualism
with egalitarianism. The same model shows variability
in abortion policy preferences to be due to a conflict of
core values (Alvarez and Brehm 1995), but variability
in response on racial policy is due to a lack of political
information. Therefore, better informed individuals
might change their responses, which offers encourage-
ment to advocates of education and debate about racial
policy.

To tap core values, Alvarez and Brehm constructed
“core belief scales” from responses to related feeling
thermometers and agree/disagree measures. A missing
value in any of the individual scale items caused the
entire scale value for that observation to be treated as
missing. This problem was severe, since listwise dele-
tion would have eliminated more than half the obser-
vations.

For one of the scales—ideology—Alvarez and
Brehm dealt with the missingness problem by replacing
the scale (based on a question using the terms “liberal-
conservative”) with an alternate question if respon-
dents refused to answer or did not know their ideology
in the terms of the original question. The alternate
question pressed the respondent to choose liberal or
conservative, which Alvarez and Brehm coded as a
neutral with a weak leaning to the side finally chosen.
This is a clear case of unobserved data and the use of
a reasonable but ad hoc imputation method.26 If the
question concerned party identification, a valid re-
sponse might be “none,” and this might not be a
missing value, merely an awkward response for the
analyst. Yet, although “ideological self-placement”
may be legitimately missing, the self-placement ques-
tion is considered to be at fault. The individual pre-

sumably has some ideological stance, no matter how
uncertain, but is not willing or able to communicate it
in the terminology of the survey question. Neverthe-
less, to press the respondent to choose and then guess
how to code these values on the same scale as the
original question risks attenuating the estimated rela-
tionships.27

Fortunately, use of the forcing question is unneces-
sary, since items on homelessness, poverty, taxes, and
abortion can easily be used to predict the technical
placement without shifting the responsibility to the
respondent who does not understand, or has not
thought about, our academic terminology. Indeed, bias
seems to be a problem here, since in the Alvarez and
Brehm analysis, ideology rarely has an effect. When we
impute missing ideology scores from the other items,
however, instead of using the alternate question, ide-
ology becomes significant just over half the time, and
the coefficients all increase in both the choice and the
variance models (for all the dependent variables they
used).

We apply EMis for the missing components of the
scales to counter the problem of nonresponse with
greater efficiency and less bias. We present first-differ-
ence results in the style of Alvarez and Brehm in Table
3. The first differences represent the change in proba-
bility of supporting an increase in taxation to provide
educational opportunities to minorities when a partic-
ular variable is moved from its mean to its mean plus
two standard deviations, as in Alvarez and Brehm.28

The main substantive finding, that variance in policy
choice between respondents is driven by a lack of
information rather than a conflict between the core
values, still holds. In contrast, the secondary finding,
which explains individual preferences and which con-
tributes to the more mainstream and developed policy
argument, is now reversed. Most important, individual
racial policy choice now appears to be a broad function
of many competing values, not just modern racism. An
individual’s level of authoritarianism, anti-Semitism,
and egalitarianism as well as ideological position all
strongly affect the probability that a person will support
increased taxes for minority educational opportunities.

Finally, and quite important, the chi-square test
reported at the bottom of Table 3 is insignificant under
Alvarez and Brehm’s original specification but is now

25 Alvarez and Brehm measured modern racism with three questions
relating to the amount of attention minorities are paid by govern-
ment, anger that minorities are given special advantages in jobs and
education, and anger about minority spokespersons complaining
about discrimination.
26 This procedure was made known to us, and other portions of the
replication were made possible, when the authors provided us code
from their original analysis, for which we are grateful.

27 Consistent with the literature (e.g., Hinich and Munger 1994), we
assume that ideology measures an individual’s underlying policy
preferences. If one assumes that people have at least some policy
views, then they have an ideology, even if they are unwilling or
unable to place themselves on an ideological scale. Alternative
treatments, especially in the European context, view ideology as an
exogenous orientation toward politics. Missingness in ideology in
that framework might be treated very much like partisan identifica-
tion.
28 These results mirror those presented by Alvarez and Brehm (1997,
367) in their Table 3, column 3, rows 1–7. Similar effects are found in
all the other rows and columns of their tables 3 and 4. Our replication
using their methods on the original data does not match their results
exactly, including the N, but the substantive findings of our replica-
tion of their methods and their results are almost entirely the same
throughout tables 1–4 of the original work. We also include standard
errors in the reporting of first differences in our presentation (King,
Tomz, and Wittenberg 2000).
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significant.29 This test measures whether their sophis-
ticated analysis model is superior to a simple probit
model, and thus whether the terms in the variance
model warrant our attention. Under their treatment of
missing values, the variance component of the model
does not explain the between-respondent variances,
which implies that their methodological complications
were superfluous. Our approach, however, rejects the
simpler probit in favor of the more sophisticated model
and explanation.30

CONCLUSION

For political scientists, almost any disciplined statistical
model of multiple imputation would serve better than
current practices. The threats to the validity of infer-
ences from listwise deletion are of roughly the same
magnitude as those from the much better known
problems of omitted variable bias. We have empha-
sized the use of EMis for missing data problems in a
survey context, but it is no less appropriate and needed
in fields that are not survey based, such as international
relations. Our method is much faster and far easier to
use than existing multiple imputation methods, and it
allows the usage of about 50% more information than
is currently possible. Political scientists also can jettison
the nearly universal but biased practice of making up
the answers for some missing values. Although any
statistical method can be fooled, including this one, and
although we generally prefer application-specific meth-
ods when available, EMis normally will outperform
current practices. Multiple imputation was designed to
make statistical analysis easier for applied researchers,
but the methods are so difficult to use that in the twenty
years since the idea was put forward it has been applied
by only a few of the most sophisticated statistical
researchers. We hope EMis will bring this powerful
idea to those who can put it to best use.

APPENDIX A. CURRENT APPROACHES
Available methods for analyzing data sets with item nonre-
sponse can be divided into two approaches: application
specific (statistically optimal but hard to use) and general
purpose (easy to use and more widely applicable but statis-
tically inadequate).

Application-Specific Approaches
Application-specific approaches usually assume MAR or NI.
The most common examples are models for selection bias,
such as truncation or censoring (Achen 1986; Amemiya 1985,
chap. 10; Brehm 1993; Heckman 1976; King 1989, chap. 7;
Winship and Mare 1992). Such models have the advantage of
including all information in the estimation, but almost all
allow missingness only in or related to Y rather than scattered
throughout D.

When the assumptions hold, application-specific ap-
proaches are consistent and maximally efficient. In some
cases, however, inferences from these models tend to be
sensitive to small changes in specification (Stolzenberg and
Relles 1990). Moreover, different models must be used for
each type of application. As a result, with new types of data,
application-specific approaches are most likely to be used by

29 See Meng (1994b) and Meng and Rubin (1992) for procedures and
theory for p values in multiply imputed data sets. We ran the entire
multiple imputation analysis of m 5 10 data sets 100 times, and this
value never exceeded 0.038.
30 Sometimes, of course, our approach will strengthen rather than
reverse existing results. For example, we also reanalyzed Domı́nguez
and McCann’s (1996) study of Mexican elections and found that their
main argument (voters focus primarily on the potential of the ruling
party and viability of the opposition rather than specific issues) came
through stronger under multiple imputation. We also found that
several of the results on issue positions that Domı́nguez and McCann
were forced to justify ignoring or attempting to explain away turned
out to be artifacts of listwise deletion.

We also replicated Dalton, Beck, and Huckfeldt’s (1998) analysis
of partisan cues from newspaper editorials, which examined a
merged data set of editorial content analyses and survey responses.

Most missing data resulted from the authors’ inability to content
analyze the numerous newspapers that respondents reported read-
ing. Because the survey variables contained little information useful
for predicting content analyses that were not completed, an MCAR
missingness mechanism could not be rejected, and the point esti-
mates did not substantially change under EMis, although confidence
intervals and standard errors were reduced. Since Dalton, Beck, and
Huckfeldt’s analysis was at the county level, it would be possible to
gather additional variables from census data and add them to the
imputation stage, which likely would substantially improve the
analysis.

TABLE 3. Estimated First Differences of
Core Beliefs

Listwise
Deletion

Multiple
Imputation

Modern racism 2.495* 2.248*
(.047) (.046)

Individualism .041 .005
(.045) (.047)

Antiblack 2.026 2.011
(.047) (.042)

Authoritarianism .050 .068*
(.045) (.035)

Anti-Semitism 2.097 2.115*
(.047) (.045)

Egalitarianism .201* .236*
(.049) (.053)

Ideology 2.076 2.133*
(.054) (.063)

N 1,575 2,009
x2 8.46 11.21*
p(x2) .08 .02
Note: The dependent variable is support for an increase in taxation to
support educational opportunities for minorities. The first column re-
ports our calculation of first difference effects and standard errors for the
substantive variables in the mean function, using the same data set (the
1991 Race and Politics Survey, collected by the Survey Research
Center, University of California, Berkeley) used by Alvarez and Brehm
(1997). (For details on the survey and availability information, see their
note 1.) Although we followed the coding rules and other procedures
given in their article as closely as possible, our analysis did not yield the
same values reported by Alvarez and Brehm for the first difference
effects. Even so, our listwise deletion results confirm the substantive
conclusions they arrived at using this method of dealing with missing
data. The second column is our reanalysis using EMis. Asterisks
indicate p , 0.05, as in the original article. The x2 test indicates whether
the heteroskedastic probit model is distinguishable from the simpler
probit model.
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those willing to devote more time to methodological mat-
ters.31

More formally, these approaches model D and M jointly
and then factor the joint density into the marginal and
conditional. One way to do this produces selection models,
P(D, M?u, g) 5 P(D?u)P(M?D, g), where P(D?u) is the
likelihood function when no data are missing (a function of u,
the parameter of interest), and P(M?D, g) is the process by
which some data become missing (a function of g, which is
not normally of interest). Once both distributions are speci-
fied, as they must be for these models, averaging over the
missing data yields the following likelihood:

P~Dobs, M?u, g! 5E P~D?u!P~M?D, g!dDmis, (11)

where the integral is over elements of Dmis and is summation
when discrete. If MAR is appropriate (i.e., D and M are
stochastically independent), then equation 11 simplifies:

P~Dobs, M?u, g! 5 P~Dobs?u!P~M?Dobs, g!. (12)

If, in addition, u and g are parametrically independent, the
model is ignorable, in which case the likelihood factors and
only P(Dobs?u) need be computed.

Unlike multiple imputation models, application-specific
approaches require specifying P(M?D, g), about which schol-
ars often have no special interest or knowledge. Evaluating
the integral in equation 11 can be difficult or impossible.
Even with MAR and ignorability assumptions, maximizing
P(Dobs?u) can be computationally demanding, given its non-
rectangular structure. When these problems are overcome,
application-specific models are theoretically optimal, even
though they can make data analyses difficult in practice.
(Software that makes this easier includes Amos and Mx, but
only for linear models and only assuming MAR.)

General Purpose Methods
General purpose approaches are easier to use. The basic idea
is to impute (“fill in”) or delete the missing values and then
analyze the resulting data set with any standard treatment
that assumes the absence of missing data. General purpose
methods other than listwise deletion include mean substitu-
tion (imputing the univariate mean of the observed observa-
tions), best guess imputation (common in political science),
imputing a zero and then adding a dummy variable to control
for the imputed value, pairwise deletion (which really only
applies to covariance-based models), and hot deck imputa-
tion (imputing from a complete observation that is similar in
as many observed ways as possible to the observation that has
a missing value). Under MAR (or NI), all these techniques
are biased or inefficient, except in special cases. Most of those
which impute give standard errors that are too small because
they essentially “lie” to the computer program, telling it that
we know the imputed values with as much certainty as we do
the observed values. It is worth noting that listwise deletion,
despite the problems discussed above, does generate valid
standard errors, which makes it preferable in an important
way to approaches such as mean substitution and best guess
imputation.

When only one variable has missing data, one possibility is
to run a regression (with listwise deletion) to estimate the
relationship among the variables and then use the predicted

values to impute the missing values. A more sophisticated
version of this procedure can be used iteratively to fill in data
sets with many variables missing. This procedure is not biased
for certain quantities of interest, even assuming MAR, since
it conditions on the observed data. Since the missing data are
imputed on the regression line as if there were no error,
however, the method produces standard errors that are too
small and generates biased estimates of quantities of interest
that require more than the conditional mean (such as Pr(Y .
7)). To assume that a statistical relationship is imperfect
when observed but perfect when unobserved is optimistic, to
say the least.

Finally, one general purpose approach developed recently
is an imputation method that combines elements of the
multiple imputation procedures presented in this article and
the application-specific methods discussed above. Analysts
generate one or more imputed data sets in the first step and
then calculate estimates of the relevant quantity of interest
and its variance using alternative formulas to equations 2 and
3 (Robins and Wang 2000; Wang and Robins 1998). Like
application-specific methods, this approach is theoretically
preferred to multiple imputation but requires different ad-
justments for each analysis model, and it is not currently
available in commercial software packages. Since this ap-
proach can be more efficient than multiple imputation, and
the computed variances are correct under several forms of
misspecification, there is much to recommend it.

APPENDIX B. PROOF OF MEAN SQUARE
ERROR COMPARISONS

Model
Let E(Y) 5 Xb 5 X1b1 1 X2b2 and V(Y) 5 s2I, where X
5 (X91, X92)9, b 5 (b91, b92)9, and l is the fraction of rows of
X2 missing completely at random (other rows of X2 and all of
Y and X1 are observed). The ultimate goal is to find the best
estimator for b1; the specific goal is to derive equation 1. We
evaluate the three estimators of b1 by comparing their mean
square errors (MSE). MSE is a measure of how close the
distribution of the estimator û is concentrated around u.
More formally, MSE (û, u) 5 E[(û 2 u)2] 5 V(û) 1 E(û 2
u)E(û 2 u)9 5 variance 1 bias2.

Estimators
Let bI 5 AY 5 (b1

I9, b2
I9)9, where A 5 (X9X)21X9. Then b1

I

is the Infeasible estimator of b1. Let b1
O 5 A1Y be the

Omitted variable bias estimator of b1, where A1(X91X1)21X91.
Finally, let bL 5 ALYL 5 (b1

L9, b2
L9)9, where AL 5 (X L9

XL)21XL9, and where the superscript L denotes listwise
deletion applied to X and Y. So b1

L is the Listwise deletion
estimator of b1.

Bias
The infeasible estimator is unbiased—E(bI) 5 E(AY) 5
AXb 5 b—and thus bias(b1

I ) 5 0. The omitted variable
estimator is biased, as per the usual calculation, E(b1

O) 5
E(b1

I 1 Fb2
I ) 5 b1 1 Fb2, where each column of F is a

factor of coefficients from a regression of a column of X2 on
X1 so bias (b1

O) 5 Fb2. If MCAR holds, then listwise
deletion is also unbiased, E(bL) 5 E(ALYL) 5 ALXLb 5 b,
and thus bias(b1

L) 5 0.

31 For application-specific methods in political science, see Achen
1986; Berinsky 1997; Brehm 1993; Herron 1998; Katz and King 1999;
King et al. 1990; Skalaban 1992; and Timpone 1998.
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Variance
The variance of the infeasible estimator is V(bI) 5 V(AY) 5
As2IA9 5 s2(X9X)21. Since V(b1

I ) 5 V(b1
I 2 Fb2

I ) 5
V(b1

O) 2 FV(b2
I )F9, the omitted variable bias variance is

V(b1
O) 5 V(b1

I ) 2 FV(b2
I )F9. Because V(bL) 5 V(ALYL) 5

ALs2IAL9
5 s2(XL9XL)21, the variance of the listwise

deletion estimator is V(b1
L) 5 s2(QL)11, where (QL)11 is

the upper left portion of the (XL9XL)21 matrix corresponding
to X1

L.

MSE
Putting together the (squared) bias and variance results gives
MSE computations: MSE(b1

O) 5 V(b1
I ) 1 F[b2b29 2

V(b2
I )]F9, and MSE(b1

L) 5 s2(QL)11.

Comparison
In order to evaluate when listwise deletion outperforms the
omitted variable bias estimator, we compute the difference d
in MSE:

d 5 MSE~b1
L! 2 MSE~b1

O! 5 @V~b1
L! 2 V~b1

I !#

1 F @V~b2
I ! 2 b2b92# F9. (13)

Listwise deletion is better than omitted variable bias when
d , 0, worse when d . 0, and no different when d 5 0. The
second term in equation 13 is the usual bias-variance tradeoff,
so our primary concern is with the first term. V(bI)[V(bL)]21

5 s2(XL9 XL 1 X9misXmis)
211/s2(XL9 XL) 5 I 2 (XL9 XL

1 X9misXmis)
21(X9misXmis), where Xmis includes the rows of X

deleted by listwise deletion (so that X 5 {XL, Xmis}). Since
exchangability among rows of X is implied by the MCAR
assumption (or, equivalently, takes the expected value over
sampling permutations), we write (XL9 XL 1 X9misXmis)

21

(X9misXmis) 5 l, which implies V(b1
L) 5 V(bI)/(1 2 l).

This, by substitution into equation 13, yields and thus com-
pletes the proof of equation 1.

APPENDIX C. SOFTWARE
To implement our approach, we have written easy-to-use
software, Amelia: A Program for Missing Data (Honaker et al.
1999). It has many features that extend the methods dis-
cussed here, such as special modules for high levels of
missingness, small n’s, high correlations, discrete variables,
data sets with some fully observed covariates, compositional
data (such as for multiparty voting), time-series data, time-
series cross-sectional data, t distributed data (such as data
with many outliers), and data with logical constraints. We
intend to add other modules, and the code is open so that
others can add modules themselves.

The program comes in two versions: for Windows and for
GAUSS. Both implement the same key procedures. The
Windows version requires a Windows-based operating sys-
tem and no other commercial software, is menu oriented and
thus has few startup costs, and includes some data input
procedures not in the GAUSS version. The GAUSS version
requires the commercial program (GAUSS for Unix 3.2.39 or
later, or GAUSS for Windows NT/95 3.2.33 or later), runs on
any computer hardware and operating system that runs the
most recent version of GAUSS, is command oriented, and
has some statistical options not in the Windows version. The
software and detailed documentation are freely available at
http://GKing.Harvard.Edu.
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