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Consider a single machine that can process multiple jobs in batch mode. We have
n jobs and the processing time of job j is a random variable Xj with distribution Fj.
Up to b jobs can be processed simultaneously by the machine. The jobs in a batch
all have to start at the same time and the batch is completed when all jobs have
finished their processing (i.e., at the maximum of the processing times of the jobs
in that batch). We are interested in two objective functions, namely the
minimization of the expected makespan and the minimization of the total expected
completion time. We first show that under certain fairly general conditions, the
minimization of the expected makespan is equivalent to specific deterministic
combinatorial problems, namely the Weighted Matching problem and the Set
Partitioning problem. We then consider the case when all jobs have the same mean
processing time but different variances. We show that for certain special classes of
processing time distributions the Smallest Variance First rule minimizes the
expected makespan as well as the total expected completion time. In our
conclusions we present various general rules that are suitable for the minimization
of the expected makespan and the total expected completion time in batch scheduling.

1. INTRODUCTION

Consider a single machine and n jobs. The processing time of job j is a random vari-
able Xj from distribution Fj. The machine can process jobs in a batch mode; that is, it
can process up to b jobs at the same time; the b being the batch size. The jobs that
are processed in any given batch start their processing all at the same time, and
the completion time of the batch is determined by the last job of the batch to be
completed. So the time to process a batch is equal to the maximum of the processing
times of the jobs in the batch. Let Cj denote the completion time of job j. We are
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interested in the policies that minimize the expected makespan E(Cmax) ¼ E(max(C1,
. . . , Cn)) and policies that minimize the total expected completion time EðPj¼1

n CjÞ.
There are many settings in industry where jobs have to be processed in batches;

batch scheduling problems are actually ubiquitous. For example, burn-in operations in
the production of circuit boards are performed in ovens that can handle several jobs at
the same time. Other applications occur in the process industries. Chemical processes
often have to be performed in tanks or kilns. In such cases too, a batching machine
might have to process a number of jobs simultaneously, see Chandru et al. [2] and
Hochbaum and Landy [3].

In the deterministic scheduling literature, batch scheduling has received a signifi-
cant amount of attention over the years. This research has resulted in numerous articles
as well as chapters in basic scheduling books. The problem considered in this article is
the stochastic counterpart of a problem that is often referred to in the deterministic
scheduling literature as the single-machine batch scheduling problem. The determinis-
tic counterparts of our problems have at times been denoted by 1̃ j b j Cmax and 1̃ j b jP

Cj. These deterministic problems turn out to be polynomial time solvable via
dynamic programming. The deterministic batch scheduling problem 1̃ j b j Cmax is
very easy. It is clear that an optimal schedule puts first the b longest jobs in a batch,
then forms the second batch by taking among the remaining jobs the b longest jobs,
and so on. The 1̃ j b j

P
Cj problem is slightly more difficult. Brucker et al. [1] analyzed

this problem and obtained an O(nb(b21)) dynamic programming algorithm.
Koole and Righter [4] were the first to consider stochastic counterparts of 1̃ j b j

Cmax and 1̃ j b j
P

Cj. They considered the minimization of E(Cmax) when the
random processing times of the n jobs, X1, . . . , Xn, are stochastically ordered and
showed that a simple full batch policy again minimizes the expected makespan in a
class of arbitrary batch policies; that is, first group b jobs with the largest means;
then group among the remaining jobs the b jobs with the largest means, and so on.
(The last batch might turn out to have less than b jobs.) Koole and Righter [4]
found that it is much harder to obtain elegant and comprehensive results for the mini-
mization of the total expected completion time when the n processing times are sto-
chastically ordered. Even when the n processing times are exponentially distributed
with different means, no simple optimal policy could be found.

In this article we consider special cases in which all processing times have the same
mean. We focus on how the variance (or the variability) of the distributions affects the
schedule. In order to focus on the variance, we assume that the means of the processing
times of all the jobs are the same, say 1. We are interested in determining the structure of
the policies that minimize the expected makespan and the structure of the policies that
minimize the total expected completion time.

This article is organized as follows. In the next section we discuss preliminaries with
regard to processing time distributions, forms of stochastic dominance, and structures
of optimal policies. In the third section we consider two special cases of the stochastic
batching problem that are equivalent to two deterministic combinatorial problems,
namely the Weighted Matching problem and the Set Partitioning problem. In the
fourth section we determine the optimality of the Smallest Variance First (SVF)
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policy when the processing time distributions have symmetric probability density
functions and are ordered according to a form of stochastic dominance that we refer to
as symmetrically more variable. In the subsequent section we consider distributions
that are mixtures of exponential distributions and mixtures of Erlang distributions.
We show that the SVF policy minimizes both the expected makespan and the total
expected completion time in case the batch size b is 2. In the last section we present
our conclusions and formulate heuristics and rules for the minimization of the expected
makespan and the total expected completion time in more general settings.

2. PRELIMINARIES

In this article we consider two classes of scheduling policies. Neither class of policies
allows for preemptions.

The first class of policies is referred to as the class of full batch policies. In this
class, the decision-maker must, whenever he starts a batch of jobs, select a full
batch provided there are b or more jobs still waiting for processing. In such a schedule,
all batches are full, with the possible exception of the last batch, which might be a
partial batch (since at the end of the process, there might be less than b jobs
waiting for processing).

The second class of policies is referred to as the class of arbitrary batch policies.
The decision-maker is allowed to start a partial batch (which contains strictly less than
b jobs) at any time, even when b or more jobs are waiting for processing. It can be
shown easily that in many settings it pays to have partial batches when the expected
makespan or the total expected completion time has to be minimized.

In what follows we consider various classes of probability distributions. One
class of distribution functions that we will consider is the class of symmetric distri-
bution functions. A symmetric random variable Xj has a density function fj (t)
that is symmetric around mean 1 and is defined on a finite support [0, 2] (i.e.,
( fj (t) ¼ fj (2 2 t)). Examples of such classes of distributions are as follows:

1. the Uniform distribution (either discrete or continous)
2. the truncated Normal distribution
3. the Beta distribution
4. the Binomial distribution.

The Uniform distribution with mean 1 on a support [a, 2 2 a] might be either con-
tinuous or discrete. A Normal distribution with mean 1 has to be truncated at zero as
well as at 2 and has to be renormalized. Beta distributions have a finite support and
can be symmetric around their mean. The Binomial distribution is symmetric when
the probability parameter is 1/2.

Random variables with symmetric density functions have some nice properties.
First, for the class of distribution functions defined above, it can be shown that the

STOCHASTIC BATCH SCHEDULING 581

https://doi.org/10.1017/S0269964807000332 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000332


variance is always less than or equal to 1. The distribution with the smallest (zero)
variance is the deterministic distribution with mean 1; the distribution with the
highest variance is the distribution that takes the value 0 with probability 0.5 and
the value 2 with probability 0.5.

Assume X1, . . . , Xb are symmetric random variables with mean 1 and defined
over the support [0, 2]. From the fact that the random variable Xj has the same distri-
bution as the random variable 2 2 Xj, it follows that max(X1, . . . , Xb) has the same
distribution as 2 2 min(X1, . . . , Xb). So

E(max (X1; . . . ;Xb)) ¼ 2� E(min (X1; . . . ;Xb))

and

E(min (X1; . . . ;Xn)) ¼
ð2

0

�F1(t)� �F2(t)� � � � � �Fn(t) dt;

where F̄j (t) ¼ 12Fj (t).
A symmetric random variable X1 with distribution F1 on a support [0, 2] is said to

be symmetrically more variable than a symmetric random variable X2 with distri-
bution F2 on a support [0, 2] if F1(t) � F2(t) for 0 � t � 1 and F1(t) � F2(t) for
1 � t � 2. This form of stochastic dominance (which was used before by Pinedo
[5]) will be denoted in what follows by F1 �sv F2. Symmetric variability ordering
is a more restricted form of stochastic dominance than the more widely used conven-
tional variability ordering or convex ordering. It can be shown that if X1 is symmetri-
cally less variable than X2, then X1 is also less variable than X2 according to the
convex ordering. Since any symmetric distribution on [0, 2] is symmetrically less
variable than the distribution that takes values 0 and 2 with probability 0.5, it is there-
fore also less variable according to the convex ordering. It follows that

1
2

� �b�1

� E(min (X1; . . . ;Xb)) � 1

and

1 � E(max (X1; . . . ;Xb)) � 2� 1
2

� �b�1

when X1, . . . , Xn are symmetrically distributed with mean 1.

3. EXPECTED MAKESPAN MINIMIZATION, WEIGHTED MATCHING,
AND SET PARTITIONING

Often, it has turned out that stochastic scheduling problems are equivalent to
certain (deterministic) combinatorial problems that at first sight might seem unrelated.
This turns out to be the case here also. Some stochastic batch scheduling problems are,
under certain conditions, equivalent to certain deterministic combinatorial problems.
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We first consider the case in which b ¼ 2 and the expected makespan has to be
minimized. The processing time of job j is distributed according to an arbitrary
distribution Fj.

LEMMA 1: When b ¼ 2, the policy that minimizes the expected makespan in the class
of arbitrary batch policies is a full batch policy.

PROOF: Suppose there are two or more batches with a single job. The original
contribution of two batches with a single job to the expected makespan is E(X1) þ
E(X2). Combine these two jobs and put them in a single batch. After putting them
in a single batch their contribution is E(max(X1, X2)) which is strictly less than
E(X1) þ E(X2). B

We now show that minimizing the expected makespan in this stochastic batch
scheduling problem with b ¼ 2, and arbitrary processing time distributions F1, . . . , Fn

is equivalent to a deterministic weighted matching problem, which can be solved
in polynomial time. Assume the number of jobs n is even (if n would have been odd,
then we would have added an additional job with zero processing time). Consider
now a weighted matching problem with n nodes. Node j is connected with node k
via an arc with a weight

wjk ¼ E(max (Xj;Xk)) ¼ E(Xj)þ E(Xk)� E(min (Xj;Xk)):

Clearly, the value wjk can be determined. To find the pairs that have a minimum sum
of total weights is equivalent to the deterministic weighted matching problem for
which there exists a polynomial time algorithm (i.e., an algorithm that runs in
O(n4). So, when b ¼ 2, the problem can be solved in polynomial time even with arbi-
trary distributions F1, . . . , Fn, provided the expected minimum of two random vari-
ables can be computed easily. (Actually, Koole and Righter [4] found that when
the n distributions are stochastically ordered, an even simpler algorithm minimizes
the expected makespan.)

Consider now the case with b being an arbitrary fixed number larger than 2. It is to
be expected that the problem is now significantly harder, since now the jobs have to be
grouped in larger sets. We now have to make some additional assumptions with
regard to the processing time distributions. Assume that each one of the random pro-
cessing times has a mean of 1 and a symmetric probability density function over the
support [0, 2]. The n symmetric distribution functions do not necessarily have to be of
the same type; they just have to be symmetric. In what follows we show that the mini-
mization of the expected makespan in the class of arbitrary policies can be formulated
as a deterministic Set Partitioning problem. The Set Partitioning problem is a classical
0–1 integer program problem that is defined as follows:

min �c�x
subject to
A�x ¼ 1
xj [ f0; 1g:
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The right-hand-side vector 1̄ is a vector of n 1’s (the length of the vector being
equal to the number of jobs in the scheduling problem). Each row in the constraint
matrix corresponds to one of the jobs. The A matrix is a matrix of 0’s and 1’s.
Each column in the constraint matrix corresponds to a set of jobs that can be
put together in one batch. The maximum number of 1’s in a column is b (the
maximum size of a batch).

It remains to be shown how the c̄ vector has to be set up. If the x variable cor-
responding to a given column (batch) is made equal to 1, then the corresponding
component of the c vector must be equal to the expected time it takes to process that
batch. If batch j consists of jobs j1, j2, . . . , jk, then the expected processing time of
the batch is

E(max (Xj1 ; . . . ;Xjk )) ¼ 2� E(min (Xj1 ; . . . ;Xjk ))

¼ 2�
ð2

0
( �Fj1 (t)� � � � � �Fjk (t)) dt:

So

cj ¼ 2�
ð2

0
( �Fj1 (t)� � � � � �Fjk (t)) dt:

In general, it is well known that an arbitrary Set Partitioning problem is strongly
NP-hard. In this case also, the number of columns in the A matrix is very large; that is,

Xb

k¼1

n!

k!(n� k)!
:

However, we cannot draw the conclusion that this particular Set Partitioning problem is
strongly NP-hard, since the c̄ vector has a special structure with a fairly strong depen-
dency between the different elements of the c̄ vector.

In the next section we consider some more special cases of this problem that lead to
more elegant optimal policies.

4. SYMMETRICALLY MORE VARIABLE DISTRIBUTIONS AND THE
SMALLEST VARIANCE FIRST RULE

In this section we consider symmetric random variables with mean 1 that can be
ordered according to the symmetric variability ordering. The random variable X1

with distribution F1 is said to be symmetrically more variable than the random
variable X2 with distribution F2 if F1(t) � F2(t) for 0 � t � 1 and F1(t) � F2(t)
for 1 � t � 2.

We assume that the n processing times X1, . . . , Xn are ordered in such a way that
F1 ,sv F2 ,sv . . . ,sv Fn. We focus on both the expected makespan E(Cmax) and
the total expected completion time EðPCjÞ.
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We first consider the case b ¼ 2. In the previous section we have shown that
when b ¼ 2, a full batch policy minimizes the expected makespan in the class
of arbitrary batch policies. We now show a similar result for the total expected
completion time under the stricter distributional assumptions described earlier.

LEMMA 2: If b ¼ 2 and Fj, j ¼ 1, . . . , n, is a symmetric distribution function with
mean 1, then a full batch policy minimizes the total expected completion time in
the class of arbitrary batch policies.

PROOF: Suppose there are two or more batches with a single job. First, we show that a
single job cannot precede a batch of two jobs. An upper bound on the expected time it
takes to process a batch of two jobs is 1.5. If a single job precedes a batch with two
jobs, then these three jobs contribute a total of 1 þ 2(1 þ x) ¼ 3 þ 2x, where x is the
expected processing time of the batch with two jobs. If the batch of two jobs precedes
the single job, then the contribution is 2x þ x þ 1 ¼ 3x þ 1. If x � 1.5, then it is
always better to have the batch with two jobs go first.

This implies that all batches consisting of a single job have to appear at the end of
the schedule. Suppose now that we have two single-job batches following one
another. Their contribution to the objective function is 1 þ 2 ¼ 3. If they are put
together in one batch, then the total expected completion time of these two jobs is
at most 3, since the upper bound for a batch of two jobs is 1.5. B

Actually, the result stated in Lemma 2 can be generalized. The lemma also holds
for arbitrary distributions F1, . . . , Fn with mean 1 on support [0, 2] (the distributions
do not necessarily have to be symmetric for Lemma 2 to hold). However, in the
remaining part of this section, the symmetry assumption on the distribution functions
is crucial.

We are now ready for our main result when b ¼ 2 and F1 �sv
. . . �sv Fn.

THEOREM 1: If b ¼ 2 and F1 �sv
. . . �sv Fn, then the full batch SVF rule minimizes

both E(Cmax) and EðPCjÞ in the class of arbitrary batch policies.

PROOF: Consider a schedule with two consecutive batches with two jobs each. The two
batches consist of jobs j1, j2, j3, and j4. Assume Fj1 �sv Fj2 �sv Fj3 �sv Fj4. Assume the
first batch consists of jobs j1 and j3 and the second batch consists of jobs j2 and j4. Let
this schedule be denoted by p 0. The two batches contribute the amount

A0p ¼ E(max(Xj1 ;Xj3 ))þ E(max(Xj2 ;Xj4 ))

¼ 4� E(min(Xj1 ;Xj3 ))� E(min(Xj2 ;Xj4 ))

¼ 4�
ð2

0

�Fj1 (t) �Fj3 (t) dt �
ð2

0

�Fj2 (t) �Fj4 (t) dt

to the expected makespan. It can be shown easily that the expected processing time of
the first batch is less than the expected processing time of the second batch. Consider an
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interchange between jobs j2 and j3. We have to show that the new contribution to the
expected makespan, Ap00, is lower than the old contribution Ap0:

Ap 00 � Ap 0 ¼
ð2

0

�Fj1 (t) �Fj3 (t) dt þ
ð2

0

�Fj2 (t) �Fj4 (t) dt

�
ð2

0

�Fj1 (t) �Fj2 (t) dt �
ð2

0

�Fj3 (t) �Fj4 (t) dt

¼
ð2

0

�Fj1 (t)
�
�Fj3 (t)� �Fj2 (t)

�
dt

�
ð2

0

�Fj4 (t)
�
�Fj3 (t)� �Fj2 (t)

�
dt

¼
ð2

0

�
�Fj1 (t)� �Fj4 (t)

��
�Fj3 (t)� �Fj2 (t)

�
dt

¼
ð1

0

�
�Fj1 (t)� �Fj4 (t)

��
�Fj3 (t)� �Fj2 (t)

�
dt

þ
ð2

1

�
�Fj1 (t)� �Fj4 (t)

��
�Fj3 (t)� �Fj2 (t)

�
dt:

It is easy to see that both integrands in the last expression are negative. So the contri-
bution of the two batches to the expected makespan is reduced by pairing the two jobs
with the smaller variances with one another and by pairing the two jobs with the larger
variances with one another. So the expected makespan is reduced by the interchange.

Moreover, the expected processing time of the first batch after the interchange
(with jobs j1 and j2) is less than the expected processing time of the first batch before
the interchange (with jobs j1 and j3). This implies that the total expected completion
time is also reduced by the interchange.

Suppose that job j1 was originally paired with job j4 and job j2 was paired with j3.
One of these two batches will have a smaller expected processing time than the other
(but we might not know which one). Assume that the batch with the smaller expected
processing time goes first in the original schedule. Doing a similar pairwise interchange
as was done earlier again reduces the sum of the expected processing times of the two
batches as well as the expected processing time of the batch with the smaller expected
processing time. This implies that the makespan as well as the total expected completion
time is reduced by the interchange. This completes the proof of the theorem. B

Note that the proof of the theorem does not only show that the SVF rule minimizes
the expected makespan and the total expected completion time; it actually shows that
SVF minimizes the expected time of the kth batch completion for k ¼ 1, . . . , dn/2e.

However, the SVF rule minimizes the completion time of the kth batch in expec-
tation, but not stochastically. In order to see why this minimization is not in the stochas-
tic sense, consider the completion time of the very first batch and the probability of the
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first batch being completed at time 0. One can easily concoct examples where the Largest
Variance First rule has a higher probability of having the first batch completed by time 0.
Thus, the SVF rule does not minimize the first batch completion stochastically.

In any case, the result in Theorem 1 can be generalized in the following direction:
Assume job j has a weight wj and the objective to be minimized is the sum of the
expected weighted completion times ði:e:;EðPwjCjÞÞ. If the weights and the distri-
bution functions are “agreeable” in such a way that

w1 � w2 � � � � � wn

and

F1 �sv F2 �sv � � � �sv Fn;

then it can be easily shown that the SVF rule minimizes EðPwjCjÞ in the class of full
batch policies. Note that the SVF rule in the weighted case does not necessarily minimize
the objective in the class of arbitrary batch policies. (In the class of arbitrary batch pol-
icies, it might be advantageous to put just a single job in one batch, provided its weight is
sufficiently high.)

In the remaining part of this section we consider the case where b � 3. It can be
shown easily that when b � 3, a partial batch policy might minimize either the expected
makespan or the total expected completion time.

We consider now the class of full batch policies with b � 3. Consider two
full batches that have to be processed consecutively on the machine. Both the first
batch and the second batch have b jobs. Assume that the jobs in the first batch are
jobs j1, . . . , jb and the jobs in the second batch are jobs jbþ1, jbþ2, . . . , j2b. The total
time to produce these two batches is

E(max(Xj1 ; . . . ;Xjb ))þ E(max(Xjbþ1 ; . . . ;Xj2b ))

¼ 4� E(min(Xj1 ; . . . ;Xjb ))� E(min(Xjbþ1 ; . . . ;Xj2b )):

Assume that after these two batches have been completed, the total number of jobs remain-
ing to be processed is m. The processing of these two batches contribute the amount

(mþ 2b)(2� E(min(Xj1 ; . . . ;Xjb )))þ (mþ b)(2� E(min(Xjbþ1 ; . . . ;Xj2b )))

to the total completion time of all jobs. In the next theorem we assume that the 2b jobs
are ordered according to symmetric variability.

THEOREM 2: If two full batches follow one another in a schedule, then the schedule
that puts the b jobs with the smaller variances in the first batch and the b jobs
with the larger variances in the second batch minimizes the expected makespan as
well as the total expected completion time.

PROOF: Consider two full batches that appear one after another consecutively. The
two batches contain together 2b jobs. Assume that the expected processing time of
the first batch is less than the expected processing time of the second batch. Let Sl
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denote the set of b jobs with the lowest variances among these 2b jobs and let Sh

denote the set of b jobs with the highest variances. In the original partition of the
jobs among the two batches, the first batch contains a subset of Sl, say set S1

l , and
a subset of set Sh, say subset S1

h. The second batch contains a subset of Sl, say set
S2

l , and a subset of set Sh, say subset S2
h. Clearly, subsets S1

l and S1
h together contain

b jobs and subsets S2
l and S2

h together contain b jobs.
We now perform an interchange between subsets S2

l and S1
h. It is clear that the job

with the smallest variance in subset S1
h has a higher variance than the job with the

largest variance in subset S2
l ; in what follows, we assume that each one of these

two subsets contain k jobs. The job with the smallest variance in subset S2
h has a

larger variance than the job with the largest variance in subset S1
l ; both of these

subsets contain b 2 k jobs.
Let p 0 denote the original schedule and p 00 denote the schedule after the inter-

change; let Ap 0 and Ap 00 denote the contribution to the makespan by schedules p 0

and p 00, respectively.
Thus,

Ap 0 0 � Ap 0 ¼
ð2

0

Y
j[Sl

1

�Fj (t)
Y
j[Sh

1

�Fj (t) dt þ
ð2

0

Y
j[Sl

2

�Fj (t)
Y
j[Sh

2

�Fj (t) dt

�
ð2

0

Y
j[Sl

1

�Fj (t)
Y
j[Sl

2

�Fj (t) dt �
ð2

0

Y
j[Sh

1

�Fj (t)
Y
j[Sh

2

�Fj (t) dt

¼
ð2

0

Y
j[Sl

1

�Fj (t)
Y
j[Sh

1

�Fj (t)�
Y
j[Sl

2

�Fj (t)

0
@

1
A dt

�
ð2

0

Y
j[Sh

2

�Fj (t)
Y
j[Sh

1

�Fj (t)�
Y
j[Sl

2

�Fj (t)

0
@

1
A dt

¼
ð2

0

Y
j[Sl

1

�Fj (t)�
Y
j[Sh

2

�Fj (t)

0
@

1
A Y

j[Sh
1

�Fj (t)�
Y
j[Sl

2

�Fj (t)

0
@

1
A dt

¼
ð1

0

Y
j[Sl

1

�Fj (t)�
Y
j[Sh

2

�Fj (t)

0
@

1
A Y

j[Sh
1

�Fj (t)�
Y
j[Sl

2

�Fj (t)

0
@

1
A dt

þ
ð2

1

Y
j[Sl

1

�Fj (t)�
Y
j[Sh

2

�Fj (t)

0
@

1
A Y

j[Sh
1

�Fj (t)�
Y
j[Sl

2

�Fj (t)

0
@

1
A dt:

It can be shown easily that the integrands in the last two integrals are negative for all t.
Thus, the sum of the expected processing time of the two batches is reduced by the
interchange, implying that the interchange reduces the expected makespan.
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The fact that the expected processing time of the first one of the two batches is
also reduced by the interchange implies that the total expected completion time of
all jobs is reduced by the interchange as well. B

Theorem 2 has as an immediate consequence that if the number of jobs n is a
multiple of the batch size b, then the SVF rule minimizes the expected makespan
as well as the total expected completion time in the class of full batch policies.
Actually, the SVF rule then minimizes the expected completion time of the k th
batch for each k. If the number of jobs is one more than a multiple of the batch
size, then the SVF rule also minimizes the expected makespan as well as the
total expected completion time in the class of full batch policies (it can be
shown easily that the job with the largest variance should be processed on its own
at the very end of the process and all other jobs have to be processed according
to SVF).

When n is neither a multiple of b nor 1 plus a multiple of b, then the problem is
significantly harder. In a full batch policy, the last batch has to be a partial batch
with more than one job. However, it might now not necessarily be the case that the
jobs with the larger variances have to be grouped together in this last batch. One
can easily concoct examples in which jobs with smaller variances have to be
grouped together in the last batch (which is a partial batch).

Example: Consider the case with b ¼ 4 and n ¼ 6. Two jobs have deterministic pro-
cessing times equal to 1. The remaining four jobs are stochastic with the same distri-
bution: The processing time is zero with probability 0.5 and 2 with probability 0.5. The
scheduling policy that minimizes the total expected completion time in the class of full
batch policies as well as in the class of arbitrary batch policies is the full batch Largest
Variance First policy; that is, the four stochastic jobs are processed first in a single
batch, followed by the two deterministic jobs in a second batch. The expected total
completion time in this case is 53/4. No other arbitrary batch policy is optimal.

5. MIXTURES OF EXPONENTIALS AND ERLANGS AND THE SMALLEST
VARIANCE FIRST RULE

In the previous section we considered symmetric distributions on a finite support. The
variances of the processing time distributions in the last section have a fairly tight
upper bound (i.e., Var(Xj) �1 for all j). In this section we consider distributions
on an infinite support (i.e., [0, 1]) and the processing times can have larger
variances. We consider two classes of distributions.

The first class of distributions, which in what follows is referred to as Class I,
is a mixture of three exponentials. The random variable Xj is defined as follows:

1. exponential with mean 0 with probability pj

2. exponential with mean 1 with probability 1 2 2pj

3. exponential with mean 2 with probability pj.

STOCHASTIC BATCH SCHEDULING 589

https://doi.org/10.1017/S0269964807000332 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807000332


So the rates of the three exponential distributions are 1, 1, and 1/2, respectively. More
formally, this class of distributions can be defined as

Fj (x) ¼ 1� (1� 2pj)e
�x � pje

�x=2:

Clearly, the mean of a distribution from this class is always 1 (i.e., E(Xj) ¼ 1).
However, the variance of Xj depends on the mixing probability pj, and Var(Xj) ¼
1 þ 4pj.

The second class of distributions, which is in what follows referred to as Class II,
is a mixture of three Erlang distributions. The random variable Xj is now defined as
follows:

1. exponential with mean 0 with probability pj

2. exponential with mean 1 with probability 1 2 2pj

3. a convolution of two exponentials with means 1 with probability pj.

Formally, this distribution can be defined as

Fj (x) ¼ 1� (1� pj) e�x � pj xe�x:

Again, the mean of the distribution is 1, but now Var(Xj) ¼ 1 þ 2pj.
We have shown already in Lemma 1 that partial batches are not optimal when

b ¼ 2 and the expected makespan has to be minimized; that is, if there are two or
more jobs waiting for processing, then two jobs have to be combined in a batch
and have to start their processing together. At the end of the schedule there might
be a batch with a single job.

Suppose we combine two jobs with processing times Xj and Xk in one batch. The
expected time to process this batch is

E(max(Xj;Xk)) ¼ ðE(Xk)þ E(Xj)þ E(Djk)Þ=2;

where

E(Djk) ¼ E(max(Xj;Xk)�min(Xj;Xk))

If there are n jobs, then a total of dn/2e batches have to be scheduled. If n is even, the n
jobs have to be paired with one another in n/2 batches. If n is odd, then the last batch
will consist of a single job.

If the jobs are scheduled in the order 1,2, . . . , n and n is even, then

E(Cmax) ¼ E(max(X1;X2))þ E(max(X3;X4))þ � � � þ E(max(Xn�1;Xn));

if n is odd, then

E(Cmax) ¼ E(max(X1;X2))þ E(max(X3;X4))þ � � � þ E(max(Xn�2;Xn1))þ E(Xn):
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Since

E(max(Xj;Xk)) ¼ ðE(Xk)þ E(Xj)þ E(Djk)Þ=2;

it turns out that when n is even minimizing the expected makespan is equivalent to
minimizing

E(D12)þ E(D34)þ � � � þ E(Dn�1;n);

and when n is odd, it is equivalent to

E(D12)þ E(D34)þ � � � þ E(Dn�2;n�1):

THEOREM 3: The full batch SVF rule minimizes E(Cmax) in the class of arbitrary batch
policies when b = 2 and the n processing time distributions are either all of Class I or
all of Class II.

PROOF: We first consider the case in which all n distributions are of Class I. It can be
shown through straightforward analysis that if Xj and Xk are distributed according to
Class I distributions, then

E(Djk) ¼ 1þ 2
3

pj þ
2
3

pk �
2
3

pjpk:

In the formulas to be minimized, the E(Djk) can now be replaced by pj þ pk 2 pj pk.
We have to make a distinction between two subcases, namely the subcase with n
being even and the subcase with n being odd. When n is even, the objective to be mini-
mized is

( p1 þ p2 � p1p2)þ ( p3 þ p4 � p3p4)þ � � � þ ( pn þ pn�1 � pn�1pn);

which is equivalent to maximizing

p1p2 þ p3p4 þ � � � þ pn�1pn:

It is clear that in order to maximize this last expression, the job with the smallest pj-

has to be combined with the job that has the second smallest, and so on. So the
job with the smallest variance has to be paired with the job with the second smallest
variance, the job with the third smallest variance has to be paired with the job with
the fourth smallest variance, and so on. This implies that the SVF policy is
optimal. Clearly, SVF is not the only optimal policy. Actually, in order to minimize
the expected makespan, only the pairing of the jobs is important. After the jobs have
been paired in batches, it does not matter in which sequence the batches are processed.

When n is odd, the expression to optimize is slightly different, because now
there will be one batch (the last one) that has a single job. So the expression to be
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minimized is

( p1 þ p2 � p1p2)þ ( p3 þ p4 � p3p4)þ � � � þ ( pn�2 þ pn�1 � pn�2 pn�1):

First, we show that the job with the largest variance must be the one that goes alone in
the last batch. Suppose that the job with the largest variance has been paired with
another job in a batch and that another job with a smaller variance has been scheduled
last as the job in the batch. An interchange between these two jobs reduces the expected
makespan. This implies that the set of n 2 1 jobs that do not include the job with the
largest variance have to be paired with one another in (n 2 1)/2 batches. The
problem now reduces again to the problem of maximizing

p1p2 þ p3p4 þ � � � þ pn�2pn�1:

So again, the SVF rule minimizes the expected makespan.
We now consider the case in which all n distributions are of Class II; that is, they

are distributed according to a mixture of Erlang distributions:

Fj(x) ¼ 1� (1� pj)e
�x � pjxe�x:

It can be shown through straightforward analysis that if Xj and Xk are distributed accord-
ing to a Class II distribution, then

E(Djk) ¼ 1þ 1
2

pj þ
1
2

pk �
1
2

pjpk:

Even though the expression for E(Djk) is slightly different for Class II distributions than
they are for Class I distributions, the arguments that have to be used in order to prove
that the SVF policy is optimal are exactly the same. B

Consider now the minimization of the total expected completion time. It turns out
that if b ¼ 2, a full batch policy might not necessarily be optimal in the class of arbitrary
batch policies when the total expected completion time has to be minimized and the
processing time distributions are either all of Class I or all of Class II (this is in contrast
to the result in Lemma 2). A counterexample can be found easily: Consider the case
with b ¼ 2 and n ¼ 2. Suppose that the two jobs are both of Class I and p1 ¼ p2 ¼

1/2. It can be shown easily that the total expected completion time is less when the
two jobs are processed one after another than processed together in a single batch of
two jobs. The same is true when the two jobs are both of Class II with p1 ¼ p2 ¼ 1/2.

In the remaining part of this section we analyze scheduling policies that minimize
the total expected completion time in the class of full batch policies.

When n is even, the total expected completion time is

E
Xn

j¼1

Cj

 !
¼ nE(max(X1;X2))þ (n� 2)E(max(X3;X4))

þ � � � þ 2E(max(Xn�1;Xn)),
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and when n is odd, the total expected completion time is

E
Xn

j¼1

Cj

 !
¼ nE(max(X1;X2))þ (n� 2)E(max(X3;X4))

þ � � � þ 3E(max(Xn�2;Xn�1))þ E(Xn):

Minimizing the expected total completion time when n is even is equivalent to
minimizing

nE(D12)þ (n� 2)E(D34)þ � � � þ 2E(Dn�1;n);

and when n is odd, it is equivalent to minimizing

nE(D12)þ (n� 2)E(D34)þ � � � þ 3E(Dn�2;n�1):

THEOREM 4: If b = 2 and the n processing times are either all of Class I or all of
Class II, then the full batch SVF policy minimizes EðPCjÞ in the class of full
batch policies.

PROOF: Let E(Bji
) denote the expected completion time of the ith batch in the

sequence. We have shown already that the SVF rule minimizes the expected com-
pletion time of the last batch (which is equal to the expected makespan). This last
batch is the dn/2eth batch to be completed. In order to minimize the expected com-
pletion time of the batch immediately preceding the last batch, we proceed as follows.
In the previous theorem we showed that the expected makespan increases linearly
in each pj. That means that if we would like to minimize the expected completion time
of the batch immediately preceding the last one, then we should assign the one or two
jobs (dependent on whether n is odd or even) with the largest variances to the last
batch and keep all remaining jobs with smaller variances for the dn/2e 2 1 preceding
batches. Applying Theorem 3 to these 2(dn/2e2 1) jobs again specifies that these
jobs have to be scheduled according to the SVF rule. Proceeding in this manner
we can show that the expected time of the kth batch completion (k ¼ 1, . . . , dn/2e)
is minimized in expectation by the SVF rule. (However, the kth batch completion
is not minimized stochastically.) B

The result of Theorem 4 can be generalized to the weighted case as well (in a way
similar to the weighted case considered in Section 4). If the weights are agreeable with
the processing time distributions in such a way that w1 � w2 � . . . � wn and p1

� p2 � . . . � pn, then the full batch SVF policy minimizes the total expected
weighted completion time in the class of full batch policies.

6. CONCLUDING REMARKS

The SVF rule is not a very common rule in stochastic scheduling. SVF has turned out to
be useful in the scheduling of stochastic flow shops (see Pinedo and Wie [15]), but it
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has never been considered useful in the scheduling of parallel machines. In the sched-
uling of parallel machines it has been shown in the past that the Largest Variance
First rule minimizes several different objectives; see Pinedo and Weiss [6].

In the batch scheduling problem considered in this article, it turns out that the
SVF rule minimizes the expected makespan and the total expected completion time
at the same time. It does not occur often in scheduling theory that the same rule mini-
mizes the expected makespan as well as the total expected completion time.

The results obtained in this article suggest the following two rules of thumb for
minimizing the expected makespan and the total expected completion time, respec-
tively. In order to minimize the expected makespan, one would tend to use a minimum
number of batches. The jobs to be combined in a batch have to be as similar as pos-
sible; that is, jobs with large means and large variances have to be kept together and
jobs with small means and small variances also have to be kept together. The order
in which the batches are processed clearly does not affect the expected makespan.
In order to minimize the total expected completion time, one might not always
want to have a minimum number of batches. The order in which the batches are pro-
cessed is, of course, very important for the minimization of the total expected com-
pletion time. The early batches in the schedule have to contain jobs with small
means and small variances and the later batches have to contain jobs with large
means and large variances.

If the variances in the processing times tend to be small, then it is more likely that a
full batch policy should be adopted, whereas in the case of large variances, it is more
likely that a partial batch policy should be adopted.

One important special case has not been considered in this article: the case with
the batch size b being 1. Minimizing the expected makespan is then trival: All the
jobs have to be combined in a single batch. However, minimizing the total expected
completion time is much harder. The deterministic counterpart of this problem has a
nice structure, since it can be shown that the optimal schedule has to take the form of
a shortest processing time first batch (SPT-batch) schedule; that is, if the jobs are
indexed such that the processing times satisfy p1 � p2 � . . . � pn, then the schedule
has to be such that adjacent jobs have to be grouped in batches. However, the number
of jobs grouped in a batch might vary from one batch to the next. For example, a sche-
dule might be of the form (f1, 2, 3g, f4g, f5, 6, 7, 8g, f9, 10g). It is clear that, at
times, a batch should not be used to its fullest capacity. Consider the stochastic
version of this problem in which the processing times of the jobs are stochastic
with mean 1 and symmetrically distributed. It is easy to find examples in which
one does not combine all jobs within a single batch. However, one still might ask
the following question: If the jobs are indexed in increasing order of their variances,
is the optimal schedule of the form of an SVF batch schedule? That is, do adjacent
jobs have to be grouped in batches?

It might be of interest in the future to study generalizations of the models
described in this article. One can, for example, study generalizations in which the
jobs are subject to precedence constraints; that is, a given job can only be started
when a certain set of other jobs have already been completed. Another generalization
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could assume that the jobs are subject to compatibility constraints (or incompatibility
constraints); that is, a job can only be put together in the same batch with another job
if they are “compatible.”
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