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Abstract

We study the tail behaviour of the distribution of the area under the positive excursion of
a random walk which has negative drift and heavy-tailed increments. We determine the
asymptotics for tail probabilities for the area.

Keywords: Random walk; subexponential distribution; heavy-tailed distribution; inte-
grated random walk

2010 Mathematics Subject Classification: Primary 60G50
Secondary 60G40; 60F17

1. Introduction and statement of results

Let {Sn; n ≥ 1} be a random walk with independent and identically distributed increments
{Xk; k ≥ 1}. We shall assume that the increments have negative expected value, EX1 = −a. Let
F(x) = P(X1 > x) be the tail distribution function of X1. Let τ := min{n ≥ 1 : Sn ≤ 0} be the first
time the random walk exits the positive half-line. We consider the area under the random walks
excursion {S1, S2, . . . , Sτ−1}:

Aτ :=
τ−1∑
k=0

Sk.

Since τ is finite almost surely, the area Aτ is finite as well. In this note we will study asymp-
totics for P(Aτ > x), as x → ∞, in the case when the distribution of increments is heavy-tailed.
This paper continues the research of [14], where the light-tailed case was considered.

The area under the random walk excursion appears in a number of combinatorial problems,
for example in investigations of the asymptotic number of random trees, see [16,17,18]; some
further references may be found in [6]. Another application area is statistical physics, see, e.g.,
[8] or [3] and references therein. Applications to queuing theory for the analysis of the load in
Transmission Control Protocol networks and to risk theory are discussed in [2].

In the light-tailed case logarithmic asymptotics for P(Aτ > x) was obtained in [10], and
exact local asymptotics in [14]. Heavy-tailed asymptotics for P(Aτ > x) was previously studied
in [2], which considered the case when the increments of the random walk have a distribution
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with regularly varying tail, that is F(x) = x−αL(x), where L(x) is a slowly varying function. For
α > 1 it was shown that

P(Aτ > x) ∼EτF(
√

2ax), x → ∞. (1)

Here, note that E[τ ] < ∞ follows from the assumption E[X1] = −a < 0; see, e.g., [11, Chapter
XII.2, Theorem 2]. The asymptotics can be explained by traditional heavy-tailed one-big-jump
heuristics. In order to have a huge area, the random walk should have a large jump, say y, at
the very beginning of the excursion. After this jump the random walk goes down along the
line y − an according to the law of large numbers. Thus, the duration of the excursion should
be approximately y/a. As a result, the area will be of order y2/2a. Now, from the equality
x = y2/2a we infer that a jump of order

√
2ax is needed. Since the same strategy is valid for

the maximum Mτ := maxn<τ Sn of the first excursion, one can rewrite (1) in the following way:

P(Aτ > x) ∼ P(Mτ >
√

2ax), x → ∞.

However, the class of regularly varying distributions does not include all subexponential
distributions, excluding, in particular, the log-normal distribution and Weibull distribution with
parameter β < 1. The asymptotics for these remaining cases have been raised as an open prob-
lem in [13, Conjecture 2.2] for a strongly related workload process. We will reformulate this
conjecture as

P(Aτ > x) ∼ P

(
τ >

√
2x

a

)
, x → ∞, (2)

when F ∈ S and S is a subclass of subexponential distributions. Note that using the asymp-
totics for

P(τ > x) ∼EτF(ax) (3)

from [7] for Weibull distributions with parameter β < 1/2, we can see that in this case the
asymptotics in (2) is equivalent to (1). In this note we partially settle (2). It is not difficult to
show that the same arguments hold for the workload process and to prove the same asymptotics
for the area of the workload process, thus settling the original [13, Conjecture 2.2]. In passing,
we note that it is doubtful that (2) holds in full. The reason is that for both τ and Aτ the
asymptotics (3) and (2) are no longer valid for Weibull distributions with parameter β > 1/2.
The analysis for β > 1/2 involves a more complicated optimisation procedure leading to a
Cramér series, and it is unlikely that the answers will be the same for the area and for the
exit time.

1.1. Main results

We will now present the results. We will start with the regularly varying case. In this case the
connection between the tails of Aτ and Mτ is strong and we will be able to use the asymptotics
for P(Mτ > x) found in [12] (see also a short proof in [4]) to find the asymptotics for P(Aτ > x).

Proposition 1. The following two statements hold.

(a) If F(x) := P(X1 > x) = x−αL(x) with some α ≥ 1 and E|X1| < ∞ then, uniformly in y ∈
[ε

√
x,

√
2ax], ε ∈ (0, 1),

P(Aτ > x, Mτ > y) ∼EτF(
√

2ax). (4)
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(b) If F(x) ∼ x−κe−g(x), where g(x) is a monotone continuously differentiable function sat-
isfying g(x)

xβ ↓ for some β ∈ (0, 1/2), and E|X1|κ < ∞ for some κ > 1/(1 − β), then (4)

holds uniformly in y ∈
[√

2ax − R
√

2ax
g(

√
2ax)

,
√

2ax
]
, R > 0.

This statement obviously implies the following lower bound for the tail of Aτ :

lim inf
x→∞

P(Aτ > x)

F(
√

2ax)
≥Eτ . (5)

Furthermore, using this proposition one can give an alternative proof of (1) under the assump-
tion of the regular variation of F, which is much simpler than the original one in [2]. We first
split the event {Aτ > x} into two parts,

{Aτ > x} = {Aτ > x, Mτ > y} ∪ {Aτ > x, Mτ ≤ y}.
Clearly, {Aτ > x, Mτ ≤ y} ⊆ {τ > x/y}. Therefore,

P(Aτ > x, Mτ > y) ≤ P(Aτ > x) ≤ P(Aτ > x, Mτ > y) + P(τ > x/y). (6)

When α > 1, according to Theorem I in [9] or [7, Theorem 3.2], P(τ > t) ∼Eτ F̄ (at) as t → ∞.
Choosing y = ε

√
x and recalling that F is regularly varying, we get

P(τ > x/y) = P(τ >
√

x/ε) ∼ εα
EτF(

√
x). (7)

It follows from the first statement of Proposition 1 that

P(Aτ > x, Mτ > ε
√

x) ∼EτF(
√

2ax).

Plugging this and (7) into (6), we get, as x → ∞,

EτF(
√

2ax)(1 + o(1)) ≤ P(Aτ > x) ≤EτF(
√

2ax)

(
1 + εα

(2a)α/2
+ o(1)

)
.

Letting ε → 0, we arrive at (1).
The case of heavy-tailed distributions, which satisfy the conditions of Proposition 1(b), is

more complicated. In particular, it seems that in this case there is a regime when the asymp-
totics in (1) is no longer valid. We will treat this case by using exponential bounds similar to
Section 2.2 in [14] and asymptotics for P(τ > x) from [5] and [7].

First, we will introduce a subclass of subexponential distributions to consider. We will
assume that E[X2

1] = σ 2 < ∞. Without loss of generality we may assume that σ = 1.

Assumption 1. Let
F(x) ∼ e−g(x)x−2, x → ∞, (8)

where g(x) is an eventually increasing function such that eventually

g(x)

xγ0
↓ 0, x → ∞, (9)

for some γ0 ∈ (0, 1].
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Due to the asymptotic nature of equivalence in (8), without loss of generality we may assume
that g is continuously differentiable and that (9) holds for all x > 0. Clearly, monotonicity in
(9) implies that

g′(x) ≤ γ0
g(x)

x
(10)

for all sufficiently large x. Using the Karamata representation theorem we can show that this
class of subexponential distributions includes regularly varying distributions F(x) ∼ x−rL(x)
for r > 2. Also, it is not difficult to show that lognormal distributions and Weibull distributions
(F(x) ∼ e−xβ

, β ∈ (0, 1)) belong to our class of distributions. This class previously appeared
in [15] for the analysis of large deviations of sums of subexponential random variables on the
whole axis.

Now we are able to give rough (logarithmic) asymptotics for γ0 ≤ 1.

Theorem 1. Let E[X1] = −a < 0 and Var(X1) < ∞. Assume that Assumption 1 holds with γ0 =
1. Then, there exits a constant C > 0 such that

P(Aτ > x) ≤ Cx1/4 exp

⎧⎨
⎩−g(

√
2ax)

√
1 − 2Cg(

√
2ax)

a
√

2ax

⎫⎬
⎭ .

Furthermore, for any ε > 0 there exists C > 0 such that

lim inf
x→∞

P(Aτ > x)

F(
√

2ax + Cx1/4+ε)
≥Eτ .

In, particular, if γ0 < 1 then

lim
x→∞

ln P(Aτ > x)

ln F(
√

2ax)
= 1.

To obtain the exact asymptotics we will impose a further requirement on the function g.

Assumption 2. Let g(x) satisfy

xg′(x) → ∞, x → ∞. (11)

This assumption implies that
g(x)

log x
→ ∞. (12)

In particular, it excludes all regularly varying distributions.

Theorem 2. Let E[X1] = −a < 0 and Var(X1) < ∞. Assume that Assumption 1 holds with γ0 <

1/2 and, in addition, that Assumption 2 holds. Then

P(Aτ > x) ∼EτF(
√

2ax), x → ∞.

1.2. Discussion and organisation of the paper

The main result of this note, Theorem 2, provides tail asymptotics for Aτ in the case when
increments of the random walk have a Weibull-like distribution with the shape parameter γ0 <

1/2. We believe that P(Aτ > x) behaves differently in the case when g(x) = xγ0 with γ0 ≥ 1/2.
This change in the asymptotic behaviour appears in the analysis of the exact asymptotics for
P(τ > n) and P(Sn > an); see, correspondingly, [5,7].
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The conjecture in [13] was formulated for the workload process of a single-server queue
rather than the area under the random walk excursion. However, one can prove analogous
results for the Lévy processes by essentially the same arguments. It is well known that the
workload of the M/G/1 queue can be represent as a Lévy process, and thus our results can be
transferred to this setting almost immediately. We believe that the treatment of the workload of
the general G/G/1 queue is not that different either.

The paper is organised as follows. We will start by proving Proposition 1 in Section 2. Then
we will derive a useful exponential bound and prove Theorem 1 in Section 3. Finally, we derive
exact asymptotics for P(Aτ > x) and thus prove Theorem 2 in Section 4.

2. Proof of Proposition 1

Before giving the proof we collect some auxiliary results that we will need in this and the
following sections.

We will require the following statement, the first part of which follows from Theorem 2 in
[12] (see also [4] for a short proof), and the second part from [7, Theorem 3.2].

Proposition 2. Let E[X1] = −a and either (a) F(x) := P(X1 > x) = x−αL(x) with some α > 1 or
(b) F(x) ∼ x−κe−g(x), where g(x) is a monotone continuously differentiable function satisfying
g(x)
xβ ↓ for β ∈ (0, 1/2), and E|X1|κ < ∞ for some κ > 1/(1 − β); then, for any fixed k,

P(Mk > y) ∼ P(Sk > y) ∼ kF(y), y → ∞, (13)

P

(
max

n≤τ∧k
Sn > y

)
∼E(τ ∧ k)F(y), y → ∞, (14)

P(Mτ > y) ∼Eτ F̄(y), y → ∞ (15)

and
P(τ > n) ∼E[τ ]F(an), n → ∞. (16)

In the proof we will need some properties of the function F(x) ∼ x−κe−g(x) that we will
summarise in the following lemma, which will also be used later in the paper.

Lemma 1. Let the distribution function F(x) be such that F(x) ∼ x−κe−g(x), where g(x) is a
monotone continuously differentiable function satisfying g(x)

xβ ↓ for β ∈ (0, 1), and E|X1|κ < ∞
for some κ > 1/(1 − β). Then,

g′(x) ≤ β
g(x)

x
, x > 0, (17)

g(x) − g(y) ≤ βg(y)
x − y

y
, x > y > 0, (18)

g(x) − g(x − y) ≤ βg(y), x ≥ 2y > 0, (19)

sup
y≤x1/κ

F(x − y)

F(x)
→ 1, x → ∞. (20)

Proof. Since g(x) is continuously differentiable and g(x)
xβ is monotone decreasing then, with

necessity,

0 ≥
(

g(x)

xβ

)
′ = g′(x)xβ − βxβ−1g(x)

x2β
,
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implying (17). To prove (18), note that

g(x) − g(y) =
∫ x

y
g′(t) dt ≤ β

∫ x

y

g(t)

t
dt ≤ β

g(y)

yβ

∫ x

y

1

t1−β
dt = βg(y)

x − y

y
.

To prove (18), note that, since x − y ≥ y,

g(x) − g(x − y) =
∫ x

x−y
g′(t) dt ≤ β

∫ x

x−y

g(t)

t
dt ≤ β

g(y)

yβ

∫ x

x−y

1

t1−β
dt

≤ β
g(y)

yβ

∫ 2y

y

1

t1−β
dt ≤ βg(y)

(2y)β − yβ

βyβ
≤ βg(y),

since 2β ≤ 1 + β for β ∈ [0, 1]. To show (20), note that, uniformly in y ≤ x1/κ , as x → ∞,

1 ≤ F(x − y)

F(x)
≤ F(x − x1/κ)

F(x)
= (1 + o(1)) exp

{
g(x) − g(x − x1/κ)

}

≤ (1 + o(1)) exp

{
βg(x − x1/κ)

xκ

x − xκ

}
≤ (1 + o(1)) exp

{
C

x1/κ

(x − x1/κ)1−β

}
→ 1,

since 1/κ < 1 − β. Here, we have also made use of (18). �
Proof of Proposition 2. To prove (13), (14), and (15), by Theorem 2 of [12] it is sufficient

to show that (a) or (b) implies that F ∈ S∗, that is,
∫ ∞

0 F(y) < ∞ and∫ x

0
F(y)F(x − y) dy ∼ 2F(x)

∫ ∞

0
F(y) dy, x → ∞.

The fact that (a) implies F ∈ S∗ is well known and follows immediately from the dominated
convergence theorem, since F(x) ∼ F(x − y) for all fixed y and∫ x

0

F(y)F(x − y)

F(x)
dy = 2

∫ x/2

0

F(y)F(x − y)

F(x)
dy,

and F(x − y) ≤ CF(x) for some C > 0 when y ≤ x/2. Now, assume that (b) holds and show that
F ∈ S∗. Consider

2
∫ x/2

0

F(y)F(x − y)

F(x)
dy.

Uniformly in y ∈ [ ln x, x/2] we have, by (19),

F(y)F(x − y)

F(x)
≤ C

xκ

(x − y)κyκ
eg(x)−g(x−y)−g(y) ≤ Cy−κeβg(y)−g(y), (21)

and therefore, since κ > 1,

2
∫ x/2

ln x

F(y)F(x − y)

F(x)
dy → 0.

Next, applying (20) we see that F(x−y)
F(x)

→ 1 uniformly in y ∈ [0, ln x], which implies that

F ∈ S∗.
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The proof of (16) can be done by verification that (8) and (9) imply that the conditions of
Theorem 3.1 (and hence of Theorem 3.2) of [7] hold. We will provide the arguments in the
more complicated case (b). First, X1 + a satisfies E[|X1 + a]κ < ∞ by the assumption of this
proposition. Convergence (3.1) in Theorem 3.1 of [7] holds by (20). Let

ε(n) := sup
x≥2n1/κ

P(ξ1 > n1/κ, ξ2 > n1/κ, ξ1 + ξ2 > x)

P(ξ1 > x)
,

where ξi = Xi + a, i = 1, 2. To show (3.2) in Theorem 3.1 of [7] we need to prove that ε(n) =
o(1/n). For x ≥ 2n1/κ we have

P(ξ1 > n1/κ, ξ2 > n1/κ, ξ1 + ξ2 > x)

P(ξ1 > x)
= 2P1 + P2

:= 2
∫ x/2

n1/κ

P(ξ1 ∈ dy)
P(ξ2 > x − y)

P(ξ1 > x)
+ P(ξ1 > x/2)2

P(ξ1 > x)
.

Then, using (19),

P1 ≤
∫ x/2

n1/κ

P(ξ1 ∈ dy)
P(ξ2 > x − y)

P(ξ1 > x)

≤ C
∫ x/2

n1/κ

P(ξ1 ∈ dy)
F(x − y)

F(x)
≤ C

∫ x/2

n1/κ

P(ξ1 ∈ dy)eβg(y)

for some C. Integrating by parts,

P1 ≤ CP(ξ1 > n1/κ)eβg(n1/κ ) + C
∫ x/2

n1/κ

dyg′(y)eβg(y)
P(ξ1 > y)

≤ Cn−1e(β−1)g(n1/κ ) + C
∫ x/2

n1/κ

dyg′(y)y−κe(β−1)g(y)

≤ o(n−1) + cn−1
∫ x/2

n1/κ

dyg′(y)e(β−1)g(y) = o(n−1)

uniformly in x ≥ 2n1/κ . Using (21), P2 ≤ Cx−κe(β−1)g(x) = o(1/n) uniformly in x ≥ 2n1/κ ,
which proves that ε(n) = o(1/n). �

Define σy = inf{n < τ : Sn > y}.
Lemma 2. Under the conditions of Proposition 2,

lim
y→∞ P(σy = k | Mτ > y) =: qk, k ≥ 1;

∞∑
k=1

qk = 1.

Proof. For every k ≥ 1,

P(σy = k | Mτ > y) = P(σy = k)

P(Mτ > y)

= P
(
maxn≤τ∧k Sn > y

) − P
(
maxn≤τ∧(k−1) Sn > y

)
P(Mτ > y)

.
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It follows from (14) and (15) that

lim
y→∞ P(σy = k | Mτ > y) = Eτ ∧ k −Eτ ∧ (k − 1)

Eτ

= P(τ > k − 1)

Eτ
=: qk, k ≥ 1. (22)

It is clear that
∞∑

k=1

qk = 1

Eτ

∞∑
k=0

P(τ > k − 1) = 1. �

Lemma 3. For every fixed k,

sup
v>y

∣∣∣∣∣P(Sk > v, σy = k)

F(v)
− P(τ > k − 1)

∣∣∣∣∣ → 0 as y → ∞.

Proof. Fix some N > 0 and define the events

Dk,N = ∪k
j=1

{
Xj > v + kN, |Xl| ≤ N for all l �= j, l ≤ k

}
.

It is clear that Dk,N ⊆ {Sk > v}. Therefore,

P(Sk > v, σy = k) = P(Dk,N, σy = k) + P(Sk > v, Dc
k,N, σy = k)

= P(Xk > v + kN, |Xl| ≤ N, for all l < k, σy > k − 1)

+ P(Sk > v, Dc
k,N, σy = k).

For the first term we have (y > (k − 1)N)

P(Xk > v + kN,|Xl| ≤ N, for all l < k, σy > k − 1)

= P(τ > k − 1, |Xl| ≤ N, l < k)F(v + kN)

= P(τ > k − 1)F(v) − ε
(1)
N F(v) + o(F(v))

(23)

uniformly in v > y, where ε
(1)
N := P(τ > k − 1, |Xl| > N for some l < k) → 0 as N → ∞.

Furthermore,

P(Sk > v,Dc
k,N, σy = k) ≤ P(Sk > v, Dc

k,N) = P(Sk > v) − P(Dk,N)

= P(Sk > v) − kP(X1 > v + kN)(P(|X1| ≤ N))k−1

= ε
(2)
N F(v) + o(F(v)),

(24)

where ε
(2)
N := k

(
1 − (P(|X1| ≤ N))k−1

) → 0, as N → ∞. Combining (23) and (24) and letting
N → ∞, we get the desired relation. �

We now turn to the study of the tail behaviour of Aτ on the event {σy = k}. For the
corresponding result we need the following property of F.

Lemma 4. Assume that the conditions of Proposition 1 are fulfilled. Then

lim
y→∞

F(y + h)

F(y)
= 1 (25)
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for any h = o(y/g(y)). Furthermore, for every R > 0 there exists a constant C such that

F(y − h) ≤ CF(y) for all h ≤ R
y

g(y)
. (26)

Proof. Since F(x) ∼ x−κe−g(x) and y
y+h → 1, (25) will follow from

g(y + h) − g(y) → 0. (27)

Since g(x)
xβ is monotone decreasing and g is differentiable,

g′(x) ≤ β
g(x)

x
.

Then, for h < 0,

g(y) − g(y − h) =
∫ y−h

y
g′(t) dt ≤ β

∫ y−h

y

g(t)

t
dt ≤ β

g(y − h)

y − h
h. (28)

In the last step we have used the fact that g(t)
t is decreasing. Similarly, for h > 0,

g(y + h) − g(y) ≤ β
g(y)

y
h.

These estimates yield (27).
To prove the second claim we note that, by (28),

F(y − h)

F(y)
≤ C

(
y

y − h

)
κ

eg(y)−g(y−h) ≤ C exp

{
β

g(y − h)

y − h
h

}
.

If h ≤ R y
g(y) then

F(y − h)

F(y)
≤ C exp

{
βR

yg(y − h)

(y − h)g(y)

}
≤ C exp

{
βR

1

(1 − R/g(y))

}
.

This completes the proof. �
Lemma 5. Assume that the conditions of Proposition 1 hold. Then

P

⎛
⎝τ−1∑

j=k

Sj > z, σy = k

⎞
⎠ ∼ qkEτF(

√
2az), k ≥ 1,

uniformly in y ∈ [ε
√

z,
√

2az] for regularly varying tails F and in y ∈ [√
2ax − R

√
2ax

g(
√

2ax)
,
√

2ax
]

for tails satisfying the conditions of part (b) in Proposition 1.

Proof. By the Markov property, for every z > 0,

P

⎛
⎝τ−1∑

j=k

Sj > z, σy = k

⎞
⎠ =

∫ ∞

y
P(Sk ∈ dv, σy = k)P(Aτ > z | S0 = v).
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Let κ ∈ (1/(1 − β), 2) if F satisfies the conditions of part (b), and let κ = 1 in the case when
F is regularly varying. Fix some δ > 0 and consider the set

Bv :=
{

v − δv1/κ ≤ Sn + na ≤ v + δv1/κ for all n ≤ v + δv1/κ

a

}
.

Since E|X1|κ < ∞, it follows from the Marcinkiewicz–Zygmund law of large numbers that

lim
R→∞ P

(
−R − δ

2
n1/κ < Sn + na < R + δ

2
n1/κ for all n ≥ 1

)
= 1.

Consequently, P(Bv | S0 = v) → 1 as v → ∞. This implies that, as y → ∞,

P

(
τ−1∑
j=k

Sj > z, σy = k

)

=
∫ ∞

y
P

(
Sk ∈ dv, σy = k

)
P(Aτ > z | S0 = v)

=
∫ ∞

y
P

(
Sk ∈ dv, σy = k

)
P ({Aτ > z} ∩ Bv | S0 = v) + o

(
P(σy = k)

)
.

On the event Bv ∩ {S0 = v} one has

v − δv1/κ

a
< τ <

v + δv1/κ

a
.

Consequently,

Aτ =
τ−1∑
n=0

Sn ≥
τ−1∑
n=0

(v − δv1/κ − na) ≥ τ
(

v − δv1/κ − aτ

2

)
≥ (v − δv1/κ)2

2a

and

Aτ =
τ−1∑
n=0

Sn ≤ v +
τ−1∑
n=1

(v + δv1/κ − na) ≤ τ
(

v + δv1/κ − aτ

2

)
≤ (v + δv1/κ)2

2a

on the same event. In other words, P ({Aτ > z} ∩ Bv | S0 = v) = P(Bv | S0 = v) if v − δv1/κ ≥√
2az, and P ({Aτ > z} ∩ Bv | S0 = v) = 0 if v + δv1/κ <

√
2az. Therefore, for all v large

enough,

P

⎛
⎝τ−1∑

j=k

Sj > z, σy = k

⎞
⎠ ≤

∫ ∞
√

2az−δ(2az)1/2κ
P(Sk ∈ dv, σy = k) + o(P(σy = k))

= P

(
Sσy >

√
2az − δ(2az)1/2κ, σy = k

)
+ o(P(σy = k))

and

P

⎛
⎝τ−1∑

j=k

Sj > z, σy = k

⎞
⎠ ≥

∫ ∞
√

2az+2δ(2az)1/2κ
P(Sk ∈ dv, σy = k)P(Bv) + o(P(σy = k))

= P

(
Sσy >

√
2az + 2δ(2az)1/2κ, σy = k

)
+ o(P(σy = k)).
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By Lemma 3, P(Sσy > v, σy = k) ∼ F̄(v)P(τ > k − 1) as y → ∞ uniformly in v ≥ y and,
consequently,

P

⎛
⎝τ−1∑

j=k

Sj > z, σy = k

⎞
⎠ ≤ F̄

(
(
√

2az − δ(2az)1/2κ) ∨ y
)

(P(τ > k − 1) + o(1))

+ o(P(σy = k))

and

P

⎛
⎝τ−1∑

j=k

Sj > z, σy = k

⎞
⎠ ≥ F

(√
2az + 2δ(2az)1/2κ

)
(P(τ > k − 1) + o(1))

+ o(P(σy = k)).

Under our assumptions on F, we have

lim
δ→0

lim
z→∞

F
(√

2az + 2δ(2az)1/2κ
)

F
(
(
√

2az − δ(2az)1/2κ) ∨ y
) = 1.

Indeed, this relation is obvious for regularly varying tails, and under the conditions of part (b)
it is a particular case of (25). Therefore,

P

⎛
⎝τ−1∑

j=k

Sj > z, σy = k

⎞
⎠ = F

(√
2az

)
(P(τ > k − 1) + o(1)) + o(P(σy = k)).

Combining (15) and (22), we get P(σy = k) ∼ qkEτF(y). Thus, it remains to show that
F(y) = O(F(

√
2az)). This is obvious for regularly varying tails and y ≥ ε

√
z. For distributions

satisfying the conditions of part (b), it suffices to apply (26) with y = √
2az. �

Proof of Proposition 1. For every fixed N ≥ 1 we have

P(Aτ > x, Mτ > y)

=
N∑

k=1

P(Aτ > x, σy = k, Mτ > y) + P(Aτ > x, σy > N, Mτ > y). (29)

For the last term on the right-hand side we have

P(Aτ > x, σy > N, Mτ > y) ≤ P(σy > N, Mτ > y)

= P(Mτ > y)P(σy > N | Mτ > y).

It follows from (22) that P(σy > N | Mτ > y) → ∑∞
j=N+1 qj as y → ∞. Then, using (15), we get

P(Aτ > x, σy > N, Mτ > y) ≤ εNF̄(y), (30)

where εN → 0 as N → ∞.
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For every fixed k we have P(Aτ > x, σy = k, Mτ > y) = P(Aτ > x, σy = k). Since Sj ∈ (0, y)
for all j < k, we obtain

P(Aτ > x, σy = k) ≤ P

⎛
⎝τ−1∑

j=k

Sj > x − (k − 1)y, σy = k

⎞
⎠

and

P(Aτ > x, σy = k) ≥ P

⎛
⎝τ−1∑

j=k

Sj > x, σy = k

⎞
⎠ .

Using Lemma 5 with z = x and with z = x − ky, we conclude that P(Aτ > x, σy = k) ∼
qkEτF(

√
2ax). Consequently,

N∑
k=1

P(Aτ > x, σy = k, Mτ > y) ∼ F(
√

2ax)Eτ

N∑
k=1

qk. (31)

Plugging (30) and (31) into (29) and letting N → ∞, we obtain

P(Aτ > x, Mτ > y) = (Eτ + o(1))F(
√

2ax) + o(F(y)).

Recalling that F(y) = O(F(
√

2ax)), we finish the proof. �

3. Proof of Theorem 1

We start by proving an exponential estimate for the area An when random variables Xj are
truncated. Let Xn = max (X1, . . . , Xn). The next result is our main technical tool to investigate
trajectories without big jumps.

Lemma 6. Let E[X1] = −a and σ 2 := Var(X1) < ∞. Assume that the distribution function F of
Xj satisfies (8) and that (9) holds with γ0 = 1. Then there exists a constant C0 > 0 such that

P(An > x, Xn ≤ y) ≤ exp
{
−λ

x

n
− λ

an

2
+ C0λ

2n
}

,

where λ = g(y)
y .

Proof. We will prove this lemma by using the exponential Chebyshev inequality. For that,
we need to obtain estimates for the moment-generating function of An. First,

E

[
e

λ
n An ; Xn ≤ y

]
=E

[
e

λ
n

∑n
1 (n−j+1)Xj ; Xn ≤ y

]
=

n∏
j=1

ϕy
(
λn,j

)
,

where ϕy(t) :=E[etXj ; Xj ≤ y] and λn,j := λ
(n−j+1)

n . Then,

ϕy(λn,j) =E[eλn,jXj ; Xj ≤ 1/λn,j] +E[eλn,jXj ; 1/λn,j < Xj ≤ y] =: E1 + E2.

Using the elementary bound ex ≤ 1 + x + x2 for x ≤ 1, we obtain

E1 ≤ 1 + λn,jE[Xj] + λ2
n,jE[X2

j ] = 1 − aλn,j + (a2 + σ 2)λ2
n,j.
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Next, using integration by parts and the assumption in (8),

E2 =
∫ y

1/λn,j

eλn,jt dF(t) = −F(t)eλn,jt
∣∣∣∣
t=y

t=1/λn,j

+λn,j

∫ y

1/λn,j

eλn,jtF(t) dt

≤ eF(1/λn,j) + Cλn,j

∫ y

1/λn,j

eλn,jt−g(t)t−2 dt.

Now note that, for t ≤ y,

λn,jt − g(t) = t

(
λn,j − g(t)

t

)
≤ t

(
λn,j − g(y)

y

)
,

due to the condition in (9). Then,

λn,j − g(y)

y
≤ λ − g(y)

y
= 0

and, therefore,

E2 ≤ eF(1/λn,j) + Cλn,j

∫ y

1/λn,j

t−2 dt ≤ (C + e)λ2
n,j,

where we also used the Chebyshev inequality. As a result, for some constant C,

ϕy(λn,j) = E1 + E2 ≤ 1 − aλn,j + Cλ2
n,j.

Consequently,

E

[
e

λ
n An ; Xn ≤ y

]
≤

n∏
j=1

(
1 − aλn,j + Cλ2

n,j

)

= exp

⎧⎨
⎩

n∑
j=1

ln
(

1 − aλn,j + Cλ2
n,j

)⎫⎬
⎭

≤ exp

⎧⎨
⎩

n∑
j=1

(
−aλn,j + Cλ2

n,j

)⎫⎬
⎭

= exp

⎧⎨
⎩

n∑
j=1

(
−aλ

n − j + 1

n
+ C

(
λ

n − j + 1

n

)2
)⎫⎬
⎭

≤ exp

{
−aλ

2
n + Cλ2n

}
.

Finally,

P(An > x, Xn ≤ y) ≤ e−λ x
n E

[
e

λ
n An ; Xn ≤ y

]
≤ exp

{
−λ

x

n
− aλ

2
n + Cλ2n

}
. �

We can now obtain upper bounds for the tail of Aτ using the exponential bound in Lemma 6.
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Lemma 7. Let E[X1] = −a < 0 and Var(X1) < ∞. Assume that the distribution function F of
Xj satisfies (8), and that (9) holds with γ0 = 1. Then there exists a constant C > 0 such that

P(Aτ > x, Xτ ≤ y) ≤ Cx1/4 exp

{
−2

g(y)

y

√(
a

2
− 2C0g(y)

y

)
x

}
(32)

for all y satisfying C0g(y) ≤ ay/4, where C0 is the constant given by Lemma 6. Moreover,

P(Aτ > x) ≤ Cx1/4 exp

⎧⎪⎨
⎪⎩−g(

√
2ax)

√√√√(
1 − 2C0g(

√
2ax)

a
√

2ax

)+
⎫⎪⎬
⎪⎭ x ≥ 1,

Proof. Using Lemma 6 with y = √
2ax we obtain

P(Aτ > x, Xτ ≤ y) ≤
∞∑

n=0

P(An ≥ x, Xn ≤ √
2ax, τ = n + 1)

≤
∞∑

n=1

exp

{
−λ

x

n
− aλ

2
n + Cλ2n

}
=

∞∑
n=1

exp
{
−λ

x

n
− λIn

}
,

where λ = g(
√

2ax)√
2ax

and I = a
2 − Cλ. The assumption C0g(y) ≤ y a

4 implies that I > a
4 . Since I is

positive, we have the inequality∫ n

n−1
exp

{
−λ

x

y
− λI(y + 1)

}
dy ≥ exp

{
−λ

x

n
− λIn

}
, n ≥ 1.

With formula (25) on page 146 of [1], we have

∞∑
n=1

exp
{
−λ

x

n
− λIn

}
≤

∫ ∞

0
exp

{
−λ

x

y
− λI(y + 1)

}
dy

= e−λI

√
4x

I
K1(2λ

√
Ix).

Now, using the asymptotics for the modified Bessel function

K1(z) ∼
√

π

2z
e−z,

we obtain

∞∑
n=1

exp
{
−λ

x

n
− λIn

}
≤ Cx1/4 exp{−2λ

√
Ix}.

Therefore, (32) is proven.
The second claim in the lemma obviously holds for all x such that C0g(

√
2ax) ≥ a

√
2ax.

Assume that x is so large that C0g(
√

2ax) < a
√

2ax. Clearly,

P(Aτ > x) ≤ P(Aτ > x, Xτ ≤ √
2ax) + P(Aτ > x, Xτ >

√
2ax) =: P1 + P2.
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By (32) with y = √
2ax,

P1 ≤ Cx1/4 exp

⎧⎨
⎩−g(

√
2ax)

√
1 − 2C0g(

√
2ax)

a
√

2ax

⎫⎬
⎭ .

Next,

P2 ≤
∞∑

n=0

P(Aτ ≥ x, Mn ≤ √
2ax, Xn+1 >

√
2ax, τ > n)

≤
∞∑

n=0

P(Xn+1 >
√

2ax)P(τ > n) ≤E[τ ]F(
√

2ax) = o(P1).

Then, the claim follows. �
Now we will give a lower bound.

Lemma 8. Let E[X1] = −a < 0 and Var(X1) < ∞. Then, for any ε > 0 there exists C > 0 such
that

lim inf
x→∞

P(Aτ > x)

F(
√

2ax + Cx1/4+ε/2)
≥Eτ .

Proof. Fix N ≥ 1. Put y+ = √
2ax + Cx1/4+ε/2, where C will be picked later. Since E[X2

1] <

∞, by the strong law of large numbers,

Sl + al

l1/2+ε
→ 0, l → ∞ almost surely.

Hence, for any δ > 0 we can pick R > 0 such that

P

(
min

l≤√
2x/a

(Sl + al + R + l1/2+ε) > 0

)
> (1 − δ).

Define

E+
k :=

{
min

l≤√
2x/a

(Sk+l − Sk + al + R + l1/2+ε) > 0, τ > k, Sk > y+
}

.

If C > 1 + (2/a) then, for all x large enough, al + l1/2+ε + R ≤ √
2ax + (2x/a)1/4+ε/2 + R ≤

y+ for all l ≤ √
2x/a. Therefore, for every k ≤ N, E+

k ⊂ {τ > k + √
2x/a}. Furthermore, if τ >

k + √
2x/a then, on the event E+

k ,

Aτ >

k+√
2x/a∑

l=0

Sk+l > y+√
2x/a +

k+√
2x/a∑

l=0

(Sk+l − Sl)

> y+√
2x/a −

k+√
2x/a∑

l=0

(al + l1/2+ε + R).
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Now, we can choose C so large that, for every k ≤ N, E+
k ⊂ {Aτ > x}. Hence,

P(Aτ > x) ≥
N∑

k=1

P(Aτ > x, Xk−1 ≤ y+, Xk > y+, τ > k)

≥
N∑

k=1

P(E+
k , Xk−1 ≤ y+, Xk > y+, τ > k)

≥
N∑

k=1

P

(
Xk−1 ≤ y+, τ > k − 1, Xk > y+, min

l≤√
2x/a

(Sl+k − Sk + R + l1/2+ε) > 0

)

≥ (1 − δ)
N∑

k=1

P
(
Xk−1 ≤ y+, τ > k − 1

)
F(y+).

For every fixed k we have P
(
Xk−1 ≤ y+, τ > k − 1

) → P (τ > k − 1) as x → ∞. Furthermore,∑N
k=0 P(τ > k) →Eτ as N → ∞. Therefore, we can pick sufficiently large N such that

lim inf
x→∞

N∑
k=1

P
(
Xk−1 ≤ y+, τ > k − 1

) ≥ (1 − δ)Eτ .

Then, for all x sufficiently large, P(Aτ > x) ≥ (1 − δ)2
EτF(y+). As δ > 0 is arbitrarily small,

we arrive at the conclusion. �
Proof of Theorem 1. The upper bound follows from Lemma 7. The lower bound follows

from Lemma 8. The rough asymptotics follow immediately from the lower and upper bounds,
and from the observation that

sup
|y|≤xρ(x)

∣∣∣∣ log F(x)

log F(x + y)
− 1

∣∣∣∣ → 0, (33)

where ρ(x) → 0. To prove (33) we note that by (9) and (10)

g(x + y) − g(x) =
∫ x+y

x
g′(t) dt ≤ γ0

∫ x+y

x

g(t)

t
dt ≤ γ0

g(x)

xγ0

∫ x+y

x

1

t1−γ0
dt

≤ γ0
g(x)

xγ0

y

x1−γ0
= γ0g(x)

y

x
, y > 0.

This implies that, as x → ∞,

sup
|y|≤xρ(x)

∣∣∣∣g(x + y)

g(x)
− 1

∣∣∣∣ → 0. (34)

Recalling that log F(x) ∼ −g(x) − 2 log x, one easily obtains (33). �

4. Proof of Theorem 2

Set

h(x) :=
√

2ax

g(
√

2ax)
, y = √

2ax − Ch(x) log x,
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where C >
5/4

1−γ0
. We first split the probability P(Aτ > x) as follows:

P(Aτ > x) = P(Aτ > x, Xτ ≤ y) + P

(
Aτ > x, Xτ >

√
2ax − 1

log x
h(x)

)

+ P

(
Aτ > x, Xτ ∈

[
y,

√
2ax − 1

log x
h(x))

])
=: P1 + P2 + P3.

The first term will be estimated using the exponential bound proved in Lemma 6.

Lemma 9. Let E[X1] = −a and Var(X1) < ∞. Assume that (8) and (9) hold with some γ0 <

1/2, together with (11). Then, P1 = o(F(
√

2ax)).

Proof. According to (32),

P1 ≤ Cx1/4 exp

{
−2

g(y)

y

√(
a

2
− 2C0

g(y)

y

)
x

}
.

Since (9) holds for some γ0 < 1/2, g2(y)/y → 0, and hence

P1 ≤ Cx1/4 exp

{
−g(y)

y

√
2ax

}
.

Then,
P1

F(
√

2ax)
≤ Cx5/4 exp

{
g(

√
2ax) − g(y)

y

√
2ax

}
.

To finish the proof, it is sufficient to show that

g(
√

2ax) − g(y)

y

√
2ax + 5

4
log x → −∞, x → ∞. (35)

We first note that

d(x) := g(
√

2ax) − g(y)

y

√
2ax = g(

√
2ax) − g(y)

1 − C log x
g(

√
2ax)

= g(
√

2ax) − g(y) − (C + o(1)) log x
g(y)

g(
√

2ax)
.

Using (18), we can see that

g(
√

2ax) − g(y) ≤ γ0
g(y)

y
(
√

2ax − y) = γ0C
g(y)

y
log x

√
2ax

g(
√

2ax)
.

Hence,

d(x) ≤
(

γ0

√
2ax

y
− 1

)
(C + o(1))

g(y)

g(
√

2ax)
log x.

According to (34), g(y) ∼ g(
√

2ax). Therefore, (35) is valid for any C satisfying C(γ0 − 1) +
5
4 < 0. �

The next lemma gives the term that dominates in P(Aτ > x).
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Lemma 10. Under the assumptions of Lemma 9 we have the following estimate:

P2 ≤ (Eτ + o(1))F(
√

2ax), x → ∞.

Proof. Put

y∗ = √
2ax − h(x)

log x
.

By the total probability formula,

P2 ≤
∞∑

n=0

P(Aτ ≥ x, Xn ≤ y∗, Xn+1 > y∗, τ > n)

≤
∞∑

n=0

P(Xn+1 > y∗)P(τ > n) =E[τ ]F(y∗).

Now, note that, by (18) and (34),

F(y∗)

F(
√

2ax)
≤ (1 + o(1))eg(

√
2ax)−g(y∗) ≤ (1 + o(1)) exp

{
γ0g(y∗)

y∗ (
√

2ax − y∗)

}

≤ (1 + o(1)) exp

{
γ0g(y∗)

y∗
1

log x

√
2ax

g(
√

2ax)

}
= 1 + o(1).

Then the statement immediately follows. �

We proceed to the analysis of P3. Fix some δ > 0 and set z = 1
a

(√
2ax + δ

√
x
)

. We split P3

further as follows:

P3 ≤ P31 + P32 + P33 := P

(
Aτ > x, Xτ ∈

[
y,

√
2ax − 1

log x
h(x)

]
; J1; τ ≤ z

)

+ P

(
Aτ > x, Xτ ∈

[
y,

√
2ax − 1

log x
h(x)

]
; J≥2, τ ≤ z

)
+ P(τ > z),

where J1 = {there exists k (1,τ ) such that Xk > y and max1≤i≤τ,i �=k Xi ≤ y} and, correspond-
ingly, J≥2 = {there exist k, l ∈ (1, τ ) such that Xk > y and Xl > y}.

We start with the easier terms P32 and P33. To deal with these terms we will use
Proposition 2.

Lemma 11. Let assumptions (8) and (9) hold for γ0 < 1/2. Assume also that (11) holds as
well. Then P33 = o(F(

√
2ax)) as x → ∞.

Proof. We have, by Proposition 2, P33 = P(τ > z) ≤ (Eτ + o(1))F(az) = O
(
F(

√
2ax +

δ
√

x)
)
. Therefore,

P33

F(
√

2ax)
≤ C exp

{
g(

√
2ax) − g(

√
2ax + δ

√
x)
}

.

By the mean value theorem and by the assumption (11), g(cx) − g(x) → ∞ as x → ∞ for every
c > 1. This completes the proof. �
Lemma 12. Let E[X1] = −a and Var(X1) < ∞. Assume that (8) and (9) hold with some γ0 <

1/2, together with (11). Then P32 = o(F(
√

2ax)).
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Proof. We can use the formula of total probability to write

P32 ≤
z∑

k=1

P(τ = k, J≥2) ≤
z∑

k=1

k2

2
F(y)2.

Then,

P32

F(
√

2ax)
≤ Cx3/2 F(y)2

F(
√

2ax)
≤ Cx1/2eg(

√
2ax)−2g(y).

Using (18) we can see that, in view of (12),

P32

F(
√

2ax)
≤ Cx1/2eC ln x−g(y) → 0. �

P31 remains to be analysed. For that, introduce μ(y) := min{n ≥ 1 : Xk > y}. Now we will
complete the proof with the following lemma.

Lemma 13. Let assumptions (8), (9), and (11) hold for γ0 < 1/2. Then P31 = o(F(
√

2ax)) as
x → ∞.

Proof. First, represent event J1 as J1 = J11 ∪ J12, where

J11 := {Xk > y for exactly one k ∈ (0, τ ) and Xi ≤ xε for all other i < τ, }
J12 := {Xk > y for exactly one k ∈ (0, τ ) and Xi > xε for some i �= k, i < τ }.

Then,

Q2 := P

(
Aτ > x, Xτ ∈

[
y,

√
2ax − 1

log x
h(x)

]
; J12, τ ≤ z

)

≤
z∑

j=1

P(τ = j, J12) ≤
z∑

j=1

j2

2
F(y)F(xε) ≤ z3F(y)F(xε),

so

Q2

F(
√

2ax)
≤ Cx3/2−2εeg(

√
2ax)−g(y)−g(xε))

By (18), g(
√

2ax) − g(y) ≤ C ln x. Then, in view of the relation (12), we have g(
√

2ax) −
g(y) − g(xε) ≤ −4 ln x, which implies that Q2 = o(F(

√
2ax)).

To estimate

Q1 := P

(
Aτ > x, Xτ ∈

[
y,

√
2ax − 1

log x
h(x)

]
; J11, τ ≤ z

)

we make use of the exponential bound given in Lemma 6. Put

x+(k) = x − k

(√
2ax − h(x)

log x

)
.
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Then, we have

Q1 =
z−1∑
k=0

k∑
j=1

P

(
Ak > x, max

i �=j,i≤k
Xi ≤ xε, Xj ∈

[
y,

√
2ax − h(x)

log x

]
, τ = k + 1

)

≤
z∑

k=1

(k + 1)P(Ak > x+(k), Xk ≤ xε)F(y)

≤ Cx1/2F(y)
z∑

k=1

exp

{
−λ

x+(k)

k
− aλ

2
k + Cλ2k

}
,

where λ = g(xε)
xε . Now note that

−λ
x+(k)

k
− aλ

2
k = −λ

(
−√

2ax + h(x)

log x
+ x

k
+ ak

2

)
.

Since
x

k
+ ak

2
≥ √

2ax, k ≥ 1,

we obtain

−λ
x+(k)

k
− aλ

2
k ≤ −λ

h(x)

log x
, k ≥ 1.

Thus, Q1 ≤ Cxe−λh(x)/ log x+λ2zF(y). Next, we can pick ε = 1
4(1−γ0) to achieve

λ2z ≤ C

(
g(xε)

xε

)2

x1/2 = C

(
g(xε)

xε(1−1/(4ε))

)2

= C

(
g(xε)

xγ0ε

)2

< C sup
t

(
g(t)

tγ0

)2

< ∞

by the condition (9). Note that the assumption γ0 < 1/2 implies that ε = 1
4(1−γ0) < 1/2. Then,

using (8), we obtain

Q1

F(
√

2ax)
≤ Cxeg(

√
2ax)−g(y)−λh(x)/ log x,

and, using (18),

Q1

F(
√

2ax)
≤ CxCe−λh(x)/ log x.

Finally, noting that

λh(x) = g(xε)

xε

√
2ax

g(
√

2ax)
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grows polynomially, we obtain the required convergence to 0. The polynomial growth can be
immediately seen for g(x) = xγ0 . However, a proper proof goes as follows:

g(C
√

x) = g(xε) +
∫ C

√
x

xε

g′(t) dt ≤ g(xε) + γ0

∫ C
√

x

xε

g(t)

t
dt

≤ g(xε) + γ0

∫ C
√

x

xε

g(t)

tγ0
tγ0−1 dt ≤ g(xε) + g(xε)

xεγ0

∫ C
√

x

xε

tγ0−1 dt

≤ g(xε) + C
g(xε)

xεγ0
xγ0/2 ≤ Cg(xε)xγ0(1/2−ε).

Therefore λh(x) ≥ x1/2−εx−γ0(1/2−ε) = x(1−γ0)/2−1/4, where we have used the equality ε =
1

4(1−γ0) . �
Proof of Theorem 2. Combining the preceding lemmas give us the upper bound. The lower

bound has been shown in (5) under even weaker conditions. �
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