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SUMMARY
Higher-order derivatives of kinematic mappings give insight into the motion characteristics of complex
mechanisms. Screw theory and its associated Lie group theory have been used to find these derivatives
of loop closure equations up to an arbitrary order. In this paper, this is extended to the higher-
order derivatives of the solution to these loop closure equations to provide an approximation of the
finite motion of serial and parallel mechanisms. This recursive algorithm, consisting solely of matrix
operations, relies on a simplified representation of the higher-order derivatives of open chains. The
method is applied to a serial, a multi-DOF parallel, and an overconstrained mechanism. In all cases,
adequate approximation is obtained over a large portion of the workspace.

KEYWORDS: Higher-order kinematics; Taylor approximation; Screw theory; 5-bar mechanism;
Bennet linkage.

1. Introduction
Screw theory is frequently used to analyze the instantaneous motion of spatial kinematics. This
theory gives the instantaneous kinematic relations between the spatial angular and linear velocities
of bodies (twists) and constraint forces and moments (constraint wrenches) acting on a mechanism.
This differential analysis is only available in the pose of inspection, and in general does not give
a description of the finite motion of a mechanism. On the other hand, closed-form solutions to the
geometric closure equations are not always available or are intricate to obtain for more complex
mechanisms. This hinders the use of algebraic methods for expressing the finite motion of mechanisms.
For synthesis and analysis purposes, attempts have been made to extend the infinitesimal screw analysis
using higher-order derivatives. Bartkowiak and Woernle1 used the higher-order derivatives of screws
to find the conditions for overconstrained single loop linkages to have a single degree of freedom
(DOF). Their numerical method yields an estimated maximum number of derivatives required to
guarantee finite local mobility. Wohlhart2,3 coined the term “order of shakiness.” It defines to which
order an arbitrary input still satisfies the higher-order derivatives of the loop closure equations. In
ref. [4], several mechanisms are discussed that do not possess a finite mobility but still exhibit a
higher-order local differential mobility which in practice leads to an unexpected large range of motion.
Derivatives up to an arbitrary order of loop closure equations can be found by taking Lie brackets of
instantaneous screw axes, which can be expressed as matrix multiplications of twists.5,6 This paves
the way for algorithmic differentiation-free derivatives of the loop closure equations.7

However, higher-order derivatives and approximations of finite motion in closed loop mechanisms
were not yet reported. This involves finding the higher-order derivatives of the solution to implicit
closure equations. These solutions can be an inverse kinematic (IK) model, forward kinematic (FK)
model, or other types of mappings, relating the dependent and independent coordinates in the kinematic
loop.
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These higher-order derivatives and approximations of finite motion can be used for analysis
of the admissible motion of mechanisms. This can be extended to enhanced numerical methods
for the simulation of the kinematics. Furthermore, the derivatives of the design criteria can be
algebraically expressed as a function of geometric properties such as link lengths, potentially aiding
the synthesis of specific kinematics, such as straight line mechanisms. Another possible application
is the description of the derivatives of the dynamics of mechanisms, particularly to determine the
conditions for dynamic balance in arbitrary mechanisms. A system is dynamically balanced when all
shaking forces and moments vanish for all admissible motions.8 This implies that the angular and
linear momentum should be constant (for practical purposes usually zero) and all of their derivatives
should remain zero throughout motion. These higher-order derivatives of momentum should provide
the geometric and dynamic conditions for dynamic balancing. For path planning, a sufficient
smooth function in actuator coordinates is required, i.e., with a sufficient number of derivatives.
Therefore, the higher derivatives of kinematic mappings between the end-effector and actuators are
needed.

Unfortunately, processing these higher-order multivariate derivatives requires elaborate
bookkeeping, as can be seen in the implementation of the higher-order chain rule, the Faa di Bruno’s
rule.9 This renders it arduous to find the solution to the implicitly formulated higher-order constraints.

In this paper, a simplified representation of the higher-order derivatives of the screw systems is
presented, which directly follows from the product of exponentials of Brocket.10 With Vetter’s method
for managing matrix derivatives11 this enables us to obtain a recursive, differentiation-free algorithm
for higher-order derivatives of the solution to the closure equations. Using the resulting higher-
order derivatives of the Jacobians, a Taylor approximation of the open and closed loop kinematics is
performed. The method is exemplified with an approximation of the finite motion of three mechanisms:
(1) a serial 6 DOF manipulator, (2) a parallel 5-bar mechanism, (3) and an overconstrained but mobile
Bennet linkage. A preliminary version of this work is presented in ref. [12].

Before we introduce the higher-order derivatives of the loop closure solution, the screw algebra is
revisited and applied to an open chain in Section 2.1. Based on this, a simplified representation
of the higher-order derivatives of an open chain is presented in Section 2.2. Subsequently, the
loop closure equations and the matrix derivatives are revisited in Sections 2.3–2.4. Using these
rules, the algorithm for determining the higher-order derivatives of the loop closure and its Taylor
expansion are presented in Section 2.5 and its implementation is shown in three examples in
Sections 3.1–3.3.

2. Method

2.1. Concepts and notation
In the notation of screw theory, as used in this paper, a reference frame (ψi) is associated to each
rigid body i. Points in space (a) can be expressed with respect to this reference frame (denoted with
superscript ai). In the homogeneous representation, the ai-vector is appended with a 1. A change of
reference frame from frame i to j follows from the homogeneous transformation matrix (H j

i ) that
consists of a rotation matrix (R) and a translation vector (o).

a j = H j
i ai H =

[
R o
0 1

]

(1)

The time derivative of the transformation matrix is given by the twist (tk, j
i ), i.e., the generalized

velocity of body i with respect to body j expressed in frame k. For clarity reasons, the subscript and
second superscript are omitted when unambiguous. The twist is a vector containing the angular (ω)
and translational (v) velocity (t� = [ω�, v�]). The

[
ω×]

denotes the skew symmetric matrix of ω.

Ḣ j
i = [

t j, j
i ×]

H j
i

[
t×] =

[[
ω×]

v

0 0

]

(2)
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The twist’s “frame of expression" changes with the adjoint transformation matrices here denoted with
Ad

(
H

)
.

t j = Ad
(
H j

i

)
t i Ad

(
H

) =
[

R 0[
o×]

R R

]

(3)

The time derivative of adjoint transformation matrix is given in terms of instantaneous transformation
matrix ad

(
t
)
.

d

dt

(
Ad

(
H j

i

)) = ad
(
t j, j
i

)
Ad

(
H j

i

)
ad

(
t
) =

[[
ω×]

0[
v×] [

ω×]
]

(4)

This matrix itself can be expressed in another reference frame according to a nested transform

ad
(
t j

) = ad
(

Ad
(
H j

i

)
t i
)

= Ad
(
H j

i

)
ad

(
t i
)
Ad

(
H i

j

)
(5)

Using these twists and their exponentials, a concise formulation for the FK mapping of an open chain
is available in the form of Brockett’s product of exponentials10

H0
n =

n∏

i=0

H i−1
i (qi) =

n∏

i=0

exp(
[
qis0

i ×
]
)H0

n (0) (6)

Here, the instantaneous screw vector s0
i , specifies the amount of twist of body i generated by the velocity

of joint i expressed in global frame. This screw vector is therefore a purely geometric entity. As this
screw vector is defined according to the ordering of the chain – always with respect to the previous
body – the second superscript is omitted. This also means that the instantaneous screw vectors of lower
kinematic pairs are constant when expressed in the connecting frames, i.e., d/dt (si−1

i ) = d/dt (si
i) = 0.

2.2. Derivatives of twist systems (open chain)
For an open chain, the higher-order partial derivatives can be found using the transformations of the
previous section. A chain of transformations can be decomposed into a part which is constant and
part which is varying with respect to this particular derivative. The nested transform (5) of the twist
gives a concise formulation of the derivative of a chain, provided that i ≤ n

∂

∂qi

(
Ad

(
H0

n

)) = Ad
(
H0

i−1

) ∂

∂qi

(
Ad

(
H i−1

i

))
Ad

(
H i

n

)
(7)

= Ad
(
H0

i−1

)
ad

(
si−1

i

)
Ad

(
H i−1

i

)
Ad

(
H i

n

)
(8)

= ad
(
s0

i

)
Ad

(
H0

n

)
(9)

For the second order, such a concise representation also exists. For the consecutive derivative with
respect to joint j, there exist two possibilities, it is either after body i in the chain (case 1) or before i
in the chain (case 2), provided that j ≤ n.

1. Case 1. (i ≤ j) In the case that joint j is higher in the chain than i, the twist is unaffected
(∂/∂q j (ad

(
s0

i

)
) = 0). Therefore, the second partial derivative becomes

∂

∂q j

∂

∂qi

(
Ad

(
H0

n

)) = ad
(
s0

i

)
ad

(
s0

j

)
Ad

(
H0

n

)
(10)

2. Case 2. (i ≥ j) In the case that j is below i in the chain, we use the nested transform property to split
the chain into a dependent and independent part. It may be verified that ∂/∂q j (ad

(
s j

i

)
Ad

(
H j

n
)
) = 0.
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Therefore,

∂

∂q j

∂

∂qi

(
Ad

(
H0

n

)) = ∂

∂q j

(
Ad

(
H0

j

)
ad

(
s j

i

)
Ad

(
H j

n

))
(11)

0 = ∂

∂q j

(
Ad

(
H0

j

))
ad

(
s j

i

)
Ad

(
H j

n

)
(12)

Using (9), a matrix chain can be found and collected again using the nested transform

∂

∂q j

∂

∂qi

(
Ad

(
H0

n

)) = ad
(
s0

j

)
ad

(
s0

i

)
Ad

(
H0

n

)
(13)

This leaves us with an expression similar to (10), with the difference that the sequence of multiplication
is swapped. This also follows from the symmetry (commutativity) property of mixed partial
derivatives.

A consecutive application of (10) and (13) gives us the geometrical higher-order partial derivatives
of the adjoint transformation matrix.

Dα
q = ∂k

∂q
α1
1 ...∂qαn

n
denotes the mixed partial derivative with respect to the elements of q. Vector

α = (α1, . . . , αn) comprises the order of derivatives corresponding to q, running from the base to the
end-effector. k = α1 + · · · + αn = |α| is the total order. The mixed partial derivative of the adjoint
transformation matrix is

Dα
q

(
Ad

(
Hn

)) =
n∏

i=1

ad
(
si

)αi Ad
(
Hn

)
(14)

and similarly, for the higher partial derivatives of the instantaneous screw vectors

Dα
q

(
sn

) =
n−1∏

i=1

ad
(
si

)αi sn (15)

These results (14) and (15) are similar to that of,6 with the difference that the index ranges to
distinguish between the sequence of derivatives are taken into account by the ordering of α. From the
commutative property of mixed partial derivatives, it follows that for any sequence of differentiation
the same results are obtained.

2.3. Loop closure equations
The open-loop derivatives (14) and (15) can be used to obtain for the derivatives of loop closure
equations, as a closed loop can be seen as a connection of open loops, e.g., a simple loop can be
seen as an open chain of with the last link is fixed to the base. The loop closure equation ( f ) states
how the members of the loop are constrained. It can be written in terms of locally validly chosen
independent (u) and dependent coordinates (v), also termed input and output, respectively. The total
set of coordinates, we call r� = [

v� u�]

f (v, u) = 0 (16)

The solution to this problem is denoted by c, which can be the inverse, forward, or any other kinematic
model giving an exact relation between independent and dependent coordinates

v = c(u) (17)

The solution (c) to the loop closure equation is usually not available for complex mechanisms.
Therefore, we are looking for a Taylor expansion using higher-order derivatives of the constraint
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formulation and the open-loop derivatives of Section 2.2. We start with the first-order time derivative
of the closure equation. This reads

0 = d

dt
( f ) = Du ( f ) u̇ + Dv ( f ) v̇ = Uu̇ + V v̇ (18)

Here, Du ( f ) and Dv ( f ) denote the matrix collection of all the first-order partial derivatives (Jacobians)
of the constraint equations with respect to u and v while assuming independence of u and v. This
gives rise to the Jacobians C and K, respectively, linking v̇ and ṙ to u̇

v̇ = −V −1Uu̇ = Cu̇ = Du (c) u̇ ṙ = Ku̇ =
[
C
I

]

u̇ (19)

We already have seen that closure equations can be written as a function of transformation matrices of
the open chain. Therefore, the higher-order partial derivatives of the open-loop equivalent (Dα

r ( f )) are
available. Now, we are looking for a method of writing the higher-order derivatives of the constraint
Jacobian Ck = Dk

u (c).

2.4. Multivariate matrix derivatives using Kronecker product
The higher-order partial derivatives of matrices can be managed with the use of the Kronecker
product.11 Refer to Appendix 5 for definition and properties of the Kronecker product as used
in this paper. Different from,11 the higher-order derivatives of matrices are organized here as the
concatenation of the derivatives of the columns A = [

a1 . . . am
]

Dx (A) = [
Dx (a1) . . . Dx (am)

]
(20)

D2
x (A) = Dx

(
Dx (A)

) = [
D2

x (a1) . . . D2
x (am)

]
(21)

The partial derivatives of the product rule, the chain rule, Kronecker product, and the inverse matrix
derivative are given as follows:

• Product rule of A(x) ∈ Rn×m and B(x) ∈ Rm×q, with x ∈ Rp, in which Ip is the p × p identity
matrix

Dx (AB) = [
Dx (a1) B . . . Dx (am) B

] + ADx (B) (22)

= Dx (A) (B ⊗ Ip) + ADx (B) (23)

• Chain rule of nested variables b and c

Dc (A(b(c))) = Db (A) (Im ⊗ Dc (b)) (24)

• Derivatives of the Kronecker product can be given with the use of permutation matrices (refer to
Appendix 5)

Dx (A ⊗ B) = (Dx (A) ⊗ B)(Im ⊗ Pq,p) + A ⊗ Dx (B) (25)

• Derivative of matrix inversion

Dx

(
A−1

) = −A−1Dx (A) (A−1 ⊗ Ip) (26)

Recursive application of these rules allows the extension of these derivatives to higher orders.

2.5. Higher-order derivatives of the constraint Jacobians
Using the rules from the previous section, the second-order derivatives (Hessian) of the solution to the
constraint equations are found. This is done by consecutive application of the chain rule, the product
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rule, and the inverse matrix derivative to the constraint Jacobian (19)

C2 = Du (C1) = −[Dr

(
V −1) (U ⊗ I) − V −1Dr (U )](I ⊗ K ) (27)

= −V −1[Dr (V ) (C1 ⊗ I) + Dr (U )](I ⊗ K ) (28)

After reordering and combination of the Kronecker products, we can find a concise formulation of
the Hessian matrix

C2 = −V −1
[
Dr (V ) Dr (U )

]
(K ⊗ K ) = −V −1F2G2 (29)

in which F2 = D2
r ( f ). A further derivation is applied to show that a similar structure as the Hessian

can be found for the third derivative

C3 = Du (C2) = −V −1
[
Dr (V ) Dr (F2) F2

]
⎡

⎣
C2 ⊗ K
G2 ⊗ K
Du (G2)

⎤

⎦ = −V −1F3G3 (30)

For higher orders, this process can be repeated until the desired order is reached, giving us a recursive
algorithm

Ck = −V −1
[
Dr (V ) Dr (Fk−1) Fk−1

]
⎡

⎣
Ck−1 ⊗ K
Gk−1 ⊗ K
Du (Gk−1)

⎤

⎦ = −V −1FkGk (31)

This algorithm consists of three steps:

1. The higher-order derivatives of V and U are substituted into the proper location of Fk . These can
be found a priori by higher-order screw derivatives of the open-loop equivalent.

2. The Gk matrix is filled with precursory, lower-order results.
3. The combination of the three matrices gives the subsequent partial derivative of the constraint

Jacobian.

It is noted that repeating terms occur which could be combined to mitigate the computational burden.
The simplification of this recursive formulation is outside the scope of this paper.

2.6. Higher-order Taylor approximation of closure equation
The Taylor approximation of the loop closure solution can now be written using the partial derivatives
of the constraint Jacobians up to the kth order. We assume that at the evaluation point the closure
constraint is satisfied, and that the evaluation point is at zero such that the Taylor series becomes a
Maclaurin series. The input for the independent variables is given as a power (denoted with ⊗i) of
Kronecker products11

v(u) = v(0) + C1u + 1

2!
C2(u ⊗ u) + 1

3!
C3(u ⊗ u ⊗ u) + · · · ≈

k∑

i=0

1

i!
Ciu⊗i (32)

3. Examples
To demonstrate the performance of this procedure for single and multi-DOF mechanisms, three
examples are presented here. In the first example, the Taylor approximation along a trajectory of a
serial robot is investigated to assess its performance close to the workspace boundary. In the second
example, a multi-DOF approximation of a parallel manipulator is shown. In the third example, the
method will be applied to a Bennet linkage to compare two approaches to deal with overconstrained
mechanisms.

The computation times for these examples are recorded and reported in Table I. The time reported
is for an average over 10 trails with 200 evaluation poses each. These computations were done with
Matlab 2014b on a PC with an Intel Core i7 4800MQ running at 2.70 GHz.

Higher-order Taylor approximation of mechanisms 1195

https://doi.org/10.1017/S0263574718000462 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000462


0
1.51

y(m)
0.5

ee

q5

q6

q4

0

q3

q1

q2

-1
x(m)

-2

0.5

1

0

z(
m

)

Trajectory
Approximation

0 0.5 1 1.5 2

e p
(m

)

0

0.5

1
k = 1
k = 3
k = 5
k = 7

ydes(m)
0 0.5 1 1.5 2

e a
(d

eg
)

0

5

10

15

Fig. 1. Left The seventh-order Taylor expansion of the IK of a 6 DOF serial manipulator (solid black) over a
horizontal trajectory (ydes). The evaluation point is [0, 0, 0.3]. For clarity, the robot is shown in isometric view
at [0,0.5,0.3]. The trajectory is approximated until close to the end of the workspace at [0, 1.4, 0.3]. Right The
Position and orientation error (ep and ea, respectively) of 4 orders of the Taylor approximation. The vertical line
denotes the end of the workspace.

3.1. Approximate solution of the inverse kinematics of a 6 DOF serial manipulator
The IK models of general serial linkages are not readily available. For a 6 DOF serial manipulator, the
IK is found by Husty et al.13 by invoking algebraic methods to find and solve a univariate polynomial
of order 16. In this first example, we will show the procedure to find the higher-order derivatives and
Taylor approximation of a 6 DOF serial manipulator following a straight line, rendering it a single
DOF expansion.

This manipulator consists of six bodies with six joints and an end-effector which is to follow a
straight line in the y-direction. Therefore, the constraints are written as

f : H0
6 (q)H6

ee = H0
des(ydes)

in which H6
ee describes the location of the end-effector expressed in the sixth body fixed frame, and

H0
des the desired end-effector pose in the global frame. The independent coordinate is the the y-position

along the straight line (u = ydes). The dependent coordinates are the set of joint angles v = q.
Based on these constraint equations, the first- and second-order derivatives of the open-loop

Jacobains are given as

Du ( f ) = U = sdes Dv ( f ) = V = [
s1 · · · s6

]

Ds (U ) = 0 Ds (V ) = [
0 Dr

(
s2

) · · · Dr

(
s6

)]

in which the product of sequence (15) is used to fill the higher-order Jacobains

Dr

(
si

) =
[
0 ∂

∂q1

(
si

) · · · ∂
∂qi−1

(
si

)
0
]

= [
0 ad

(
s1

)
si · · · ad

(
si−1

)
si 0

]

This Taylor approximation is made up to the seventh order. The result of this approximation can be
seen in Fig. 1. In the initial pose – in which the end-effector is in [0,0,0.3] – the robot lies in the
XZ-plane. The desired trajectory is a motion from this initial pose until 2 m in the y-direction, which
is beyond the workspace boundary. The workspace ends at 1.4 m.

For higher orders, it can be seen that tracking converges to the desired path until the boundary of
the workspace. Beyond this point, the trajectory estimate is no longer adequate and the approximation
starts to diverge. In this case, the radius of convergence coincides with the edge of workspace.

3.2. Approximate solution of a 5-bar mechanism’s motion
The higher-order derivatives and Taylor expansion technique is applied to approximate the IK solution
of a 5-bar mechanism. We choose to describe the 5-bar as a connection of two open chains (a and
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Fig. 2. The Taylor approximation of the IK of a 5-bar (solid gray) around evaluation point at x0 = [0, 0] up to the
seventh order for four different trajectories. It shows the left (a, red) and right (b, blue) estimation of end-effector
trajectory (dashed black) for the order 1, 3, 5, and 7. The insert shows convergence for higher-order estimations
far from the evaluation point.

b) with joints q1, q2, and q3, q4, respectively. The interconnection point is the end-effector x0. This
interpoint has to satisfy the constraint equation from both sides (a and b) calculated using the local
frame (x0

a = H0
2 (q1,2)x2 and x0

b = H0
4 (q3,4)x4). The closure equation can be written as

f : 0 =
[

x0 − x0
a

x0 − x0
b

]

(33)

Using the end-effector coordinates (u = x0) as input and the four joint angles (v = [
q1 . . . q4

]�
) as

output, the first-order partial derivatives of the closure equation become

Du ( f ) = U =
[

I
I

]

Dv ( f ) = V =
[[

s0
1×

]
x0

a

[
s0

2×
]
x0

a 0 0
0 0

[
s0

3×
]
x0

b

[
s0

4×
]
x0

b

]

The higher-order partial derivatives can be found by using the twist derivatives from Section 2.2 and
recursive equations from Section 2.5.

The Taylor approximation, up to the seventh order, is computed for 200 positions of the end-effector
(x0) forming four trajectories through the workspace with the aim of finding an approximation of the
corresponding joint displacement of the joints (q1 . . . q4). For evaluation of the quality of the Taylor
approximation, the end-effector position approximation from the left (x0

a) and right (x0
b) side are

plotted together with input trajectories.
The result of the Taylor approximation (Fig. 2) shows that in a large portion of the workspace

around the evaluation point (x0 = 0) the approximation converges to the target trajectory indicating a
correct estimation of finite joint displacement. However, further from the evaluation point and closer
to workspace boundary the accuracy is less as can be seen in the insert.

3.3. The Bennet linkage: Direct kinematics of an overconstrained linkage
An overconstrained linkage has a redundant set of loop closure constraints. That is, the number of
dependent coordinates (v) is smaller than the number of constraints. This poses a problem for proposed
method – as apparent from Eq. (19) – since it requires inversion of the matrix V , which was so far
assumed to be square and non-singular. Among others, there are two ways to find the higher derivatives
of the loop closure solution: (1) by selection of a subset of constraint conditions to make a square
system (2) by replacing the inverse with a left pseudo inverse in Eq. (19). This can be done when the
columns of V are independent, otherwise the mechanism is in a singular pose where its instantaneous

Higher-order Taylor approximation of mechanisms 1197

https://doi.org/10.1017/S0263574718000462 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000462


DOF increases. Using the left pseudo inverse, the solution is then

Ck = −(V �V )−1V �FkGk = −V +FkGk (34)

The corresponding constraint equation for this subset method will be indicated with fs. A
disadvantage of method 1 is that constraint equations can be selected sub-optimally, which may
induce parameterization singularities, limiting the Taylor approximation.

An example of such an overconstrained mechanism is the Bennet linkage.14 The Bennet linkage
consists of a single spatial loop compromising four non-parallel revolute joints which do not intersect
in a single point. According to the Chebychev–Grübler–Kutzbach’s criterion such a spatial linkage
with four bodies and four joints should have a mobility of −2. However, when specific kinematic
conditions are satisfied the mechanism is mobile:1,15

1. Equality of the opposite link lengths: l1 = l2, l3 = l4
2. Equality of the opposite angles between joint axes: α1 = α3, α2 = α4

3. The Bennet condition l1/ sin(α1) = l2/ sin(α2)

The joint angles relate according to: q1 + q3 = q2 + q4 = 2π with q1 and q2 as

sin(α1/2 − α3/2) tan(q1/2) tan(q2/2) = sin(α1/2 + α3/2) (35)

To show the Taylor approximation, we assume no prior knowledge of joint angle relations, and
we will write the closure equations in terms of transformation matrices. We do need the kinematic
conditions to ensure full mobility. We use α1 = 0.6, α2 = 1, l1 = 1, and l2 = 1.5. The Bennet linkage
is treated as two open chains joined together by a body, the first chain consisting of bodies 1 till 3 and
a second chain consisting solely of body 4. Both bodies 1 and 4 are hinged to the base. For the loop
closure, body 3 is considered rigidly attached to the fourth body. Joint 1 is treated as the independent
coordinate (u = q1). There exist three dependent coordinates v = [

q2 q3 q4
]�

. Together with the six
constraints this makes the mechanism three times overconstrained. The effect of both strategies will
be shown in and around a special configuration of the robot.

With the selection strategy only the angular constraints are taken into account. For the complete
constraint also the translational constraints are used

fs : R3
0(q1−3)R0

4(q4) = const. f f : H3
0 (q1−3)H0

4 (q4) = const. (36)

For the Bennet linkage, there exist two special configurations when the mechanism is fully collapsed
onto a line. In these configurations, all the joint axes (ei) are perpendicular to the same line, as shown in
Fig. 3. As fs is selected to be consisting of the angular constraints, the system is in a parameterization
singularity and the corresponding Vs = [

e2 e3 −e4
]

matrix is singular. When the full set of constraints
is taken into account Vf = [

s2 s3 −s4

]
has a rank of 3 and its left pseudo inverse exists.

Also close to this special configuration the Taylor approximation using the selection strategy ( fs)
on angular constraints suffers from this parameterization singularity as can be seen in Fig. 3. Here, a
Taylor approximation up to the tenth order is made for both strategies. The evaluation pose is close
(+0.4 deg of input joint) to the special configuration. It can be seen that the Taylor expansion using
the selected constraints follows until roughly 6 deg. With the full set of constraints an approximation
up to 30 deg could be obtained. This regression can be explained by numerical round off errors
accumulating due to the ill-conditioned matrix inverse of Vs.

It should be noted that although the Bennet linkage has no singularities, there is a radius of
convergence around its evaluation point. This is due to the fact that the relation between the input and
the output angle follows a arctan relation (35).

4. Discussion
In all the three examples, it can be seen that the Taylor approximation is confined to a region of
convergence. One limiting cause is the existence of the singularities. Additionally – as seen in the
Bennet linkage – the underlying closure solution can pose boundaries on the Taylor approximation.
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Table I. The mean execution time in [sec] of Taylor expansion for the
three examples. For the overconstrained Bennet linkage, the results of

the selection ( fs) and full ( f f ) method are given.

Order Serial 5-bar Bennet ( fs) Bennet ( f f )

1 0.56 × 10−3 49 × 10−6 2.1 × 10−3 2.1 × 10−3

2 6.9 × 10−3 1.5 × 10−3 3.6 × 10−3 3.4 × 10−3

3 11 × 10−3 3.1 × 10−3 4.7 × 10−3 3.4 × 10−3

4 28 × 10−3 11 × 10−3 11 × 10−3 11 × 10−3

5 85 × 10−3 47 × 10−3 27 × 10−3 19 × 10−3

6 0.35 0.47 38 × 10−3 48 × 10−3

7 2.6 5.4 81 × 10−3 85 × 10−3
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Fig. 3. Comparison between Taylor approximation (tenth order) of the Bennet linkage using two methods of
constraining. (1) using a subset of constraints, and (2) the pseudo inverse of the full set. Left shows the Bennet
linkage as used, in gray the reference pose and in black the evaluation pose, which is close to co-linearity. The
blue arrows indicate the joint axes (ei). Right shows a comparison between the theoretical angles (qt ), and the
approximation using selection (qs) and pseudo inverse method (q f ) of the passive joint angles (q2, q3, q4) as a
function of the input angle q1.

Therefore, in the case the closure solution is not known beforehand, one cannot discriminate between
both causes of bounded convergence, based on a single Taylor approximation.

This method is restricted to lower kinematic pairs by the assumption that the screw vector associated
with the joints is constant when expressed in the frames of the connecting bodies. For most practical
applications, this is sufficient.

For the calculation of higher-order partial derivatives, the proposed method uses Kronecker products
of matrices, which can lead to very large matrices for larger systems and higher orders, as can be
seen in Table I. This possibly poses practical limits on applicability of this procedure. Sparse matrices
and the aggregation of mixed partial derivatives can be used to mitigate computer memory usage and
reduce the number of matrix operations. Also, as seen in the Bennet linkage example, an expansion
close to singularity leads to ill-conditioned matrices reducing the numerical accuracy significantly.

The method presented here generates higher-order derivatives of motion by matrix multiplications
without the need of taking derivatives analytically. This method allows to investigate the finite
motion of open and closed loop linkages without the need to solve the closure equations while
maintaining algebraic insight between the geometrical parameters. This opens up a potential of
algebraic investigation and synthesis of motion of closed loop linkages.
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5. Conclusion
In this paper, a recursive method was presented that gives the higher-order partial derivatives of open
and closed loop mechanisms with lower kinematic pairs. This method relies on a combination of a
simplified representation of the higher-order twist derivatives, also presented here, and the matrix
derivatives of Vetter. This enables the Taylor approximation of a kinematic mapping over a given
trajectory and workspace, as exemplified by three examples. The method showed to be applicable
to multi-DOF open and closed loop mechanisms and to overconstrained mechanisms, yielding an
algebraic expression for the derivatives and the approximation of finite motion over a large portion of
the workspace.
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Appendix: A selection of Kroncker product identities
Consider the following set of matrices: A ∈ Rn×m, B ∈ Rp×q. The Kronecker product is defined as
the collection of the element-wise multiplication of all elements in the respective matrices

A ⊗ B =

⎡

⎢
⎣

a11B . . . a1mB
...

. . .
...

an1B . . . anmB

⎤

⎥
⎦ (A1)

The mixed-product property is used to combine Kronecker products

AB ⊗ CD = (A ⊗ C)(B ⊗ D) (A2)
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The sequence of the Kronecker product can be swapped with pre- and post- multiplication of
permutation matrices

A ⊗ B = Pp,nB ⊗ APm,q (A3)

These permutation matrices are binary, orthogonal, square nm × nm matrices consisting of m × n
submatrices. These submatrices (Pi, j

n,m ∈ Nm×n) have only one 1 on a specific location (Pi, j
n,m( j, i) = 1).
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