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The study of the distributions of sums of dependent risks is a key topic in actuarial
sciences, risk management, reliability and in many branches of applied and theoretical
probability. However, there are few results where the distribution of the sum of dependent
random variables is available in a closed form. In this paper, we obtain several analyt-
ical expressions for the distribution of the aggregated risks under dependence in terms
of copulas. We provide several representations based on the underlying copula and the
marginal distribution functions under general hypotheses and in any dimension. Then, we
study stochastic comparisons between sums of dependent risks. Finally, we illustrate our
theoretical results by studying some specific models obtained from Clayton, Ali-Mikhail-
Haq and Farlie-Gumbel-Morgenstern copulas. Extensions to more general copulas are also
included. Bounds and the limiting behavior of the hazard rate function for the aggregated
distribution of some copulas are studied as well.

Keywords: convolution, c-convolution, distorted distributions, hazard rate, stochastic orders

1. INTRODUCTION

Risk theory has become nowadays a crucial theory in actuarial and financial sciences. The
aggregated risks are functions representing the total amount of risk for a company or a
portfolio. Internationally banks are required to set aside capital to offset various types of
risks, such as market, credit and operational risks. The study of the distribution of the sum
of random variables is a key topic in this science. The representations for the distribution of
a sum of independent random variables (i.e., a convolution) are well known in probability.
However, in many applications in actuarial sciences and risk analysis, these random variables
are dependent because the risks share the same environment. For example, in Herrmann
[27], they are used to determine the optimal Expected-Shortfall in a portfolio selection. The
same happen in the reliability theory where the sums of random lifetimes represent standby
mechanisms in systems.

This topic has had an increasing interest from the 2000s and several distributions have
been studied obtaining models for the sums of dependent and independent random variables.
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Some recent references include: [2,5,9,16,21,25,26,34,36,41,43] , among others. Recently,
some results have been obtained for the limiting behavior of the hazard rate functions
of these sums in Block et al. [7,8] .

In the case of aggregation of risks assuming dependence, we have available some results
using different copula structures (see, e.g., [2,15,24,45] ). For Farlie-Gumbel-Morgenstern
(FGM) copulas and mixed Erlang marginal distributions, Cossette et al. [16] have obtained
closed expressions for the distribution of the aggregated risk and for capital allocation
problems. Following and extending this research, Hashorva and Ratovomirija [26] have con-
sidered an extension of the previous model using the Sarmanov distribution to represent the
dependence structure, demonstrating that the aggregated distribution belongs to the class
of Erlang mixtures. More recently, Vernic [48] uses the Sarmanov’s distribution to define
the dependence structure, obtaining some formulas assuming marginals with exponential
distributions. For the case of a Clayton copula with classical Pareto marginals, Sarabia et
al. [44] have studied aggregation in multivariate-dependent Pareto distributions, providing
analytical formulas in the cases of individual risk models and collective risk models, assum-
ing several usual distributions as primary distributions. As an extension to previous results,
Sarabia et al. [45] have considered aggregation of risks in the case of Archimedean copulas
modeled in terms of mixtures of exponential distributions. For the case of a Pareto copula
and log-normal marginals, Bølviken and Guillén [9] also considered the risk aggregation
problem, improving the accuracy of the model by updating the skewness recursively. A
flexible methodology in terms of tree structures was recently proposed by Côté and Genest
[19]. Several copula-based representations for the sum of two-dependent random variables
were obtained in Refs. [12]. There some applications to econometrics are provided as well.

On the other hand, bounds for the distribution and the Value-at-Risk (VaR) of such
sums were obtained (under different assumptions) in Refs. [23,30,49] and references therein.
Bounds for the hazard rate and reversed hazard rate functions of dependent sums were
given recently in Belzunce and Mart́ınez-Riquelme [6].

In this paper, we obtain several analytical expressions for the distribution of the sum
under dependence by using copulas. We provide several representations in terms of the
underlying copula and the marginal distributions under general hypotheses. Then, we study
stochastic comparisons between the distributions of aggregations of dependent risks. Specif-
ically, we study the following orderings: the stochastic order, the hazard rate order, the
reversed order and the likelihood ratio order. Finally, we study some specific models with
copulas of the type Clayton, Ali-Mikhail-Haq and Farlie-Gumbel-Morgenstern. Extensions
to more general copulas are also included. We also study stochastic comparisons between
different sums and the limiting behavior of the hazard rate functions of the sums for some
copulas. In particular, we obtain sharp bounds for the distribution of dependent aggregated
risks in terms of independent aggregated risks.

The rest of the paper is organized as follows. In Section 2, we include the representations
for the distributions of the sums of two and n dependent random variables. The comparison
results are placed in Section 3. Some models with relevant copulas and specific marginals are
studied in Section 4 and an application to real data is included in Section 5. The conclusions
are given in Section 6.

2. COPULA-BASED REPRESENTATIONS

In this section, we obtain and discuss the distribution of the sum of dependent random
variables (risks) in terms of the corresponding copula. We begin with some definitions
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and preliminary results (next subsection) and with the general case (sums of n dependent
random variables). Then, we study in detail the particular case of two dependent risks.

2.1. Some Previous Definitions and Basic Results

Throughout the paper, we say that a function g is increasing (resp. decreasing) if g(x) ≤ g(y)
(≥) for all x ≤ y. The partial derivative of a real-valued function G with respect to its ith
variable will be represented by ∂iG (assuming that it exists). Moreover, ∂i∂jG will be shortly
represented as ∂i,jG, and so on. Whenever we consider a conditional random variable, we
are tacitly assuming that it exists. If its distribution is not unique, then we just consider
one of them.

We say that a function F is a distorted distribution if F (t) = q(G(t)) for all t, where G
is a distribution function and q : [0, 1] → [0, 1] is a distortion function (i.e., q is increasing,
continuous and satisfies q(0) = 0 and q(1) = 1). In this case, a similar representation holds
for the respective survival (or reliability) functions F̄ (t) = q̄(Ḡ(t)), where q̄(u) = 1 − q(1 −
u) is another distortion function, called dual distortion function. For further results on
distorted distributions, see [32,38] and the references therein.

Let X1, . . . , Xn be n random variables with the absolutely continuous joint distribution
function (cdf)

F (x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn)

and marginal distributions Fi(x) = Pr(Xi ≤ xi) for i = 1, . . . , n. It is well known from
copula theory (see, e.g., [42] p. 18) that F can be written as

F (x1, . . . , xn) = C(F1(x), . . . , Fn(xn)),

where C is a copula (i.e., a multivariate distribution function with uniform marginals over
the interval (0, 1)). Then, the joint probability density function (pdf) f of (X1, . . . , Xn) can
be written as

f(x1, . . . , xn) = f1(x1) · · · fn(xn)∂1,...,nC(F1(x1), . . . , Fn(xn)),

where fi = F ′
i is the pdf of Xi for i = 1, . . . , n and ∂1,...,nC is the pdf of C.

Analogously, the joint survival function can be written as

F̄(x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn) = Ĉ(F̄1(x1), . . . , F̄n(xn)), (2.1)

where F̄i is the survival function of Xi for i = 1, . . . , n and Ĉ is a copula called the survival
copula.

Finally, we introduce some distributions that will be used in the following sections. A
random variable X is said to have a Pareto (type II) distribution with parameters a, σ > 0
(shortly written as X ∼ P (a, σ)) if its pdf is given by

fP (t; a, σ) =
a

σ(1 + t/σ)a+1
, t ≥ 0. (2.2)

A random variable X is said to have a Gamma distribution with parameters b, λ > 0 (shortly
written as X ∼ G(b, λ)) if its pdf is

fG(t; b, λ) =
tb−1 e−t/λ

λbΓ(b)
, t ≥ 0.
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The Erlang distribution corresponds to the case G(k, 1/β) with β > 0, k ∈ N. It is denoted
as X ∼ E(k, β) and its density is given by

fE(t; k, β) =
βktk−1 e−βt

(k − 1)!
, t > 0.

A random variable X has a mixed Erlang distribution if its pdf can be written as

fME(t; p, β) =
∞∑

k=1

pkf(t; k, β), (2.3)

where p = {pk, k = 1, 2, . . .} are nonnegative weights with
∑∞

k=1 pk = 1. This case is
denoted as X ∼ ME(p, β).

2.2. Sum of n Random Variables

First, we obtain the general expression for the distribution of a sum of n possibly dependent
random variables.

Theorem 2.1: If X1, . . . , Xn have an absolutely continuous joint distribution with marginal
distribution functions F1, . . . , Fn with pdf f1, . . . , fn, and copula C, then the distribution
function Hn of Sn = X1 + · · · + Xn is equal to

Hn(t) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
f1(x1) · · · fn−1(xn−1)

· ∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), Fn(t − x1 − · · · − xn−1)) dxn−1 . . . dx1,
(2.4)

when limu→0+ ∂1,...,n−1C(u1, . . . , un−1, u) = 0 for all u1, . . . , un−1 ∈ (0, 1).

Proof: The pdf of (Xn |X1 = x1, . . . , Xn−1 = xn−1) is

fn|1,...,n−1(xn |x1, . . . , xn−1) =
f(x1, . . . , xn)

f1,...,n−1(x1, . . . , xn−1)
,

where

f(x1, . . . , xn) = f1(x1) . . . fn(xn)∂1,...,nC(F1(x1), . . . , Fn(xn))

is the pdf of (X1, . . . , Xn) and f1,...,n−1 is the pdf of (X1, . . . , Xn−1). The copula of
(X1, . . . , Xn−1) is C(u1, . . . , un−1, 1). So, its pdf is

f1,...,n−1(x1, . . . , xn−1) = f1(x1) · · · fn−1(xn−1)∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), 1)
(2.5)

and we get

fn | 1,...,n−1(xn |x1, . . . , xn−1) = fn(xn)
∂1,...,nC(F1(x1), . . . , Fn(xn))

∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), 1)
.
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Hence, the distribution function of (Xn |X1 = x1, . . . , Xn−1 = xn−1) is

Fn|1,...,n−1(xn |x1, . . . , xn−1) =
∫ xn

−∞
fn(t)

∂1,...,nC(F1(x1), . . . , Fn−1(xn−1), Fn(t))
∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), 1)

dt

=
[
∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), Fn(t))

∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), 1)

]xn

t=−∞

=
∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), Fn(xn))

∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), 1)
(2.6)

when limu→0+ ∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), u) = 0.
The distribution function Hn(t) = Pr(Sn ≤ t) of Sn = X1 + · · · + Xn is equal to

Hn(t) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
Fn|1,...,n−1(t − x1 − · · · − xn−1 |x1, . . . , xn−1)f1,...,n−1(x1, . . . , xn−1)

dxn−1 . . . dx1.

Therefore, by using (2.5) and (2.6) in the above expression for Hn, we obtain (2.4). �

A similar representation can be stated from the survival copula (see the following
subsections). The exponential distribution plays a central role in reliability theory and
survival studies (representing units without aging). If one marginal distribution is an expo-
nential distribution, then we have the following explicit representation for Hn as a distorted
distribution.

Theorem 2.2: If X1, . . . , Xn are random variables with copula C and marginal distribu-
tion functions F1, . . . , Fn, where Fn is an exponential distribution with mean μ, then the
distribution function Hn of X1 + · · · + Xn can be written as Hn(t) = qn(Fn(t)) for all t,
where

qn(u) =
∫ ∞

−∞
· · ·
∫ ∞

−∞

∫ −μ ln(1−u)−x1−···−xn−2

−∞
f1(x1) · · · fn−1(xn−1)

· ∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), 1 − (1 − u) ex1/μ . . . exn−1/μ)

dxn−1 dxn−2 . . . dx1. (2.7)

Proof: The exponential distribution with mean μ is given by Fn(x) = 1 − exp(−x/μ) for
x ≥ 0 (0 otherwise). Hence,

Fn(t − x1 − · · · − xn−1) = 1 − e−t/μ ex1/μ · · · exn−1/μ

for t − x1 − · · · − xn−1 ≥ 0, that is, for xn−1 ≤ t − x1 − · · · − xn−2.
Moreover, if u := Fn(t) = 1 − exp(−t/μ), then t = −μ ln(1 − u). So,

Fn(t − x1 − · · · − xn−1) = 1 − (1 − u) ex1/μ · · · exn−1/μ

for xn−1 ≤ −μ ln(1 − u) − x1 − · · · − xn−2. Finally, if we use this expression in (2.4), we get
(2.7). �
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If X1, . . . , Xn−1 are nonnegative random variables, then (2.7) can be written as

qn(u) =
∫ −μ ln(1−u)

0

∫ −μ ln(1−u)−x1

0

· · ·
∫ −μ ln(1−u)−x1−···−xn−2

0

f1(x1) · · · fn−1(xn−1)

· ∂1,...,n−1C(F1(x1), . . . , Fn−1(xn−1), 1 − (1 − u) ex1/μ · · · exn−1/μ)

dxn−1 . . . dx2 dx1. (2.8)

The explicit expression of qn depends on C and on the other marginals F1, . . . , Fn−1. Some
examples are given in Section 4.

2.3. Sums of Two Random Variables

In this subsection, we consider S = X + Y , where X and Y have distribution functions F
and G, pdf f and g and a bivariate copula C. Note that the acronym pdf is used both for
singular and plural cases. The main theorem can be stated as follows (it is a consequence
of the result for the general case).

Theorem 2.3: The distribution function H of S = X + Y can be written as

H(t) =
∫ ∞

−∞
f(x)∂1C(F (x), G(t − x)) dx, (2.9)

provided that limv→0+ ∂1C(u, v) = 0 for all u ∈ (0, 1).

If F−1 is the inverse function of F , then (2.9) can be written as

H(t) =
∫ 1

0

∂1C(u,G(t − F−1(u))) du, (2.10)

which is expression (3) in Cherubini et al. [12] (see also (4.2) in [14]). However, in some
models, F−1 does not have an explicit expression or it is quite complicated. In these cases,
it is better to use (2.9) instead of (2.10). In that paper, this distribution is called the C-

convolution and it is represented as H = F
C∗ G. We can do the same in (2.9) with the

following definition for the C -convolution

F
C∗ G(t) :=

∫ ∞

−∞
∂1C(F (x), G(t − x)) dF (x).

Note that the distribution function H in (2.9) is a mixture of the distorted distribution
functions Hx(t) := ∂1C(F (x), G(t − x)) = qx(G(t − x)), where qx(u) := ∂1C(F (x), u), with
mixing pdf f(x). Both the distortion function qx and the baseline distribution G(t − x)
depend on x. Here, Hx is the distribution function of (Y + x |X = x) (we will use this
representation later to obtain comparison results). Hence, the pdf of (Y + x |X = x) is
hx(t) = H ′

x(t) = g(t − x)∂1,2C(F (x), G(t − x)). Therefore, the pdf h of S is

h(t) = f
C∗ g(t) =

∫ ∞

−∞
f(x)g(t − x)∂1,2C(F (x), G(t − x)) dx. (2.11)

Now, we consider some particular cases of interest.
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Remark 2.4: Of course, if X and Y are independent, then C(u, v) = uv, ∂1C(u, v) = v and

H(t) = F ∗ G(t) =
∫ ∞

−∞
f(x)G(t − x) dx,

which is the very well-known formula for the convolution of F and G.

Remark 2.5: If X and Y have a copula C and are nonnegative (a usual assumption in
many economic and actuarial random variables), then (2.9) can be written as

H(t) = F
C∗ G(t) =

∫ t

0

f(x)∂1C(F (x), G(t − x)) dx

and its pdf as

h(t) = H ′(t) =
∫ t

0

f(x)g(t − x)∂1,2C(F (x), G(t − x)) dx. (2.12)

Remark 2.6: Similar expressions can be obtained from the survival copula (see Corollary
2.1 in [13]). Thus, by using representation (2.1), the survival function H̄(t) := Pr(S > t) of
S can be expressed as

H̄(t) =
∫ ∞

−∞
f(x)∂1Ĉ(F̄ (x), Ḡ(t − x)) dx. (2.13)

In particular, for nonnegative random variables, we have

H̄(t) = F̄ (t) +
∫ t

0

f(x)∂1Ĉ(F̄ (x), Ḡ(t − x)) dx.

In the case of exponential marginals, we can obtain an explicit expression. Thus, if F (t) =
G(t) = 1 − e−t for t ≥ 0, then

H̄(t) = F̄ (t) +
∫ t

0

f(x)∂1Ĉ(F̄ (x), F̄ (t)/F̄ (x)) dx = F̄ (t) +
∫ 1

F̄ (t)

∂1Ĉ(v, F̄ (t)/v) dv = q̄(F̄ (t)),

where q̄(u) = u +
∫ 1

u
∂1Ĉ(v, u/v) dv for u ∈ [0, 1], that is, S has a distorted distribution

from F .

3. COMPARISON RESULTS

We will study the following orderings: the stochastic order (≤st), the hazard rate order (≤hr),
the reversed hazard rate (≤rh) and the likelihood ratio order (≤lr). For their definitions,
basic properties and applications we refer the reader to [4,47] . It is well known that

X ≤st Y ⇐ X ≤rh Y ⇐ X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.

For the sums of n dependent random variables with a common copula, we have the following
result (see [47] Thm. 6.B.14). Its proof can also be obtained from (2.4).

Theorem 3.1: If (X1, . . . , Xn) and (X∗
1 , . . . , X∗

n) have a common copula C and Xi ≤st X∗
i

for i = 1, . . . , n, then X1 + · · · + Xn ≤st X∗
1 + · · · + X∗

n.
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This result can be extended to get φ1(X1) + · · · + φn(Xn) ≤st φ1(X∗
1 ) + · · · + φn(X∗

n)
for all strictly increasing real-valued functions φ1, . . . , φn since (φ1(X1), . . . , φn(Xn)) and
(φ1(X∗

1 ), . . . , φn(X∗
n)) also have the same copula C.

Remark 3.2: If we assume common marginals, that is, Xi =st X∗
i for i = 1, . . . , n and

different copulas satisfying ∂1,...,n−1C ≥ ∂1,...,n−1C
∗, from (2.4), we obtain X1 + · · · +

Xn ≤st X∗
1 + · · · + X∗

n. However, as E(X1 + · · · + Xn) = E(X∗
1 + · · · + X∗

n), then X1 +
· · · + Xn =st X∗

1 + · · · + X∗
n from Theorem 1.A.8 in [47]. Hence, this condition implies

C = C∗ and so it is not useful, that is, the sums of random variables with the same
marginal distributions and different copulas cannot be strictly st-ordered. Results for the
weaker stop-loss (icx) order were obtained in Baüerle and Müller [5].

For sums of n dependent random variables with different copulas and different
distributions, we can state the following theorem which is the main result of this section.

Theorem 3.3: If (X1, . . . , Xn) and (X∗
1 , . . . , X∗

n) have the copulas C and C∗, respectively,
Xi ≤st X∗

i for i = 1, . . . , n − 1, and the distribution functions Fn and F ∗
n of Xn and X∗

n

satisfy

∂1,...,n−1C(u1, . . . , un−1, Fn(x)) ≥ ∂1,...,n−1C
∗(u1, . . . , un−1, F

∗
n(x)) (3.1)

for all u1, . . . , un−1 ∈ [0, 1] and all x, then X1 + · · · + Xn ≤st X∗
1 + · · · + X∗

n.

Proof: Let us consider a random vector (X̃1, . . . , X̃n) with copula C and marginals
F ∗

1 , . . . , F ∗
n−1 and Fn. Then, from Theorem 3.1, we have X1 + · · · + Xn ≤st X̃1 + · · · + X̃n.

Now, by applying (3.1), we have

f∗
n(x)∂1,...,n−1C(u1, . . . , un−1, Fn(x)) ≥ f∗

n(x)∂1,...,n−1C
∗(u1, . . . , un−1, F

∗
n(x))

for all t, x. Hence, from (2.4), the distribution function H̃ of X̃1 + · · · + X̃n satisfies H̃(t) ≥
H∗(t) for all t, that is, X̃1 + · · · + X̃n ≤st X∗

1 + · · · + X∗
n. Therefore,

X1 + · · · + Xn ≤st X̃1 + · · · + X̃n ≤st X∗
1 + · · · + X∗

n.

�

Remark 3.4: Note that if C∗ is the product copula, then ∂1,...,n−1C
∗(u1, . . . , un−1, F

∗
n(x)) =

F ∗
n(x). Hence, this theorem can be used to obtain upper sharp bounds (in the st order) for

the distribution of dependent aggregated risks in terms of independent aggregated risks. To
this goal, we need to determine

G0(x) := inf
u1,...,un−1∈[0,1]

∂1,...,n−1C(u1, . . . , un−1, Fn(x)) (resp. sup)

and to assume F ∗
n ≤ G0. If G0 is a distribution function and the above infimum value is

obtained at u∗
1, . . . , u

∗
n−1 ∈ [0, 1], then the bound is attained in the limit with F ∗

n ≤ G0 and
F ∗

i = Fi → u∗
i for i = 1, . . . , n − 1. In a similar way, the preceding theorem can also be used

to obtain lower sharp bounds by choosing C as the product copula. Some examples are given
in Section 4.
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The result for the bivariate case is given as follows. If X ≤st X∗ and the distribution
functions G and G∗ of Y and Y ∗ satisfy

∂1C(u,G(x)) ≥ ∂1C
∗(u,G∗(x)) for all u ∈ [0, 1] and all x, (3.2)

then X + Y ≤st X∗ + Y ∗. In the following section, we show how to apply this result to
Clayton copulas. These conditions can also be written in terms of the survival copula from
(2.13). The result can be stated as follows.

Corollary 3.5: If X and Y have the survival copula Ĉ, X∗ and Y ∗, the survival copula
Ĉ∗, X ≤st X∗ and the survival functions Ḡ and Ḡ∗ of Y and Y ∗ satisfy

∂1Ĉ(u, Ḡ(x)) ≥ ∂1Ĉ
∗(u, Ḡ∗(x)) for all u ∈ [0, 1] and all x, (3.3)

then X + Y ≥st X∗ + Y ∗.

As above, the preceding result can also be used to get sharp bounds (based on Ĉ) for the
C -convolution in terms of the usual convolution. Some examples are provided in Section 4..

If one variable has an exponential distribution, then we have the following results as
direct consequences of Theorem 2.2 and the results for distorted distributions obtained in
[39,40]. Note that here we can compare sums with different numbers of addends.

Proposition 3.6: Let X1, . . . , Xn and X∗
1 , . . . , X∗

m be random variables with copulas C
and C∗ and marginal distributions F1, . . . , Fn and F ∗

1 , . . . , F ∗
m, respectively, where Fn and

F ∗
m are exponential distributions with mean μ. Let qn and q∗m be the respective distortion

functions obtained from (2.7) and let q̄n and q̄∗m be the respective dual distortion functions.
Then, the following properties hold:

(i) X1 + · · · + Xn ≤st X∗
1 + · · · + X∗

m iff qn ≥ q∗m.
(ii) X1 + · · · + Xn ≤hr X∗

1 + · · · + X∗
m iff q̄∗m/q̄n is decreasing.

(iii) X1 + · · · + Xn ≤rh X∗
1 + · · · + X∗

m iff q∗m/qn is increasing.
(iv) X1 + · · · + Xn ≤lr X∗

1 + · · · + X∗
m iff (q̄∗m)′/q̄′n is decreasing.

Moreover, we can obtain preservation results for the IFR (Increasing Failure Rate), DFR
(Decreasing Failure Rate) and DRFR (Decreasing Reversed Failure Rate) aging classes.
Their definitions and main properties can be seen in, e.g., [47].

Proposition 3.7: Let X1, . . . , Xn be random variables with copula C and marginal dis-
tributions F1, . . . , Fn, where Fn is an exponential distribution with mean μ. Let qn be the
distortion function obtained from (2.7) and let q̄n be the respective dual distortion function.
Let α(u) = uq̄′n(u)/q̄n(u) and β(u) = uq′n(u)/qn(u). Then, the following properties hold:

(i) X1 + · · · + Xn is IFR iff α is decreasing.
(ii) X1 + · · · + Xn is DFR iff α is increasing.
(iii) X1 + · · · + Xn is DRFR iff β is decreasing.

The two preceding propositions are applied to a Clayton copula in the following section.
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4. MODELS

The aim of this section is to show how to use the theoretical results obtained above to
study aggregations of models defined by different copulas. In particular, we consider the
copulas of Clayton, Ali-Mikhail-Haq and Farlie-Gumbel-Morgenstern. Some extensions to
polynomials copulas are also discussed. In some models, the limiting behavior of the hazard
rate function of the sum is studied as well. Other copula models can be studied in a similar
way.

4.1. Clayton Copulas

The Clayton copula is defined as

C(u1, . . . , un) =

(
n∑

i=1

u
−1/α
i − n + 1

)−α

, u1, . . . , un ∈ [0, 1], (4.1)

where α > 0. The dependence increases with the parameter α and the independence case
is obtained when α → 0. The Fréchet upper bound copula is attained when α → ∞. This
copula is specially relevant in risk analysis and actuarial sciences since it is the copula
associated with the multivariate Pareto of type II (see [3]). If we consider the distribution
of Sn, with copula (4.1) and identically distributed marginals of Pareto type II, it can
be proved (see [44]) that the distribution of the aggregated risk is a second kind beta
distribution. As well, Sarabia et al. [44] obtained closed expressions for the cdf and pdf of
the aggregated distribution in the collective model, assuming dependence among risks (see
also [25]).

First, we show how to calculate the distribution of a sum of two-dependent random vari-
ables with a fixed Clayton copula and exponential marginal distributions. This model shows
that the sums of ordered random variables with different copulas (dependence structures)
are not necessarily ordered.

Example 4.1: Let us consider the following Clayton copula

C(u, v) =
uv

u + v − uv
, u, v ∈ [0, 1]

(n = 2 and α = 1) and exponential marginals with mean 1, that is, F (t) = G(t) = 1 − e−t

for t ≥ 0. Then,

∂1C(u, v) =
v2

(u + v − uv)2

and, from (2.9), the distribution function H of S = X + Y is

H(t) =
∫ t

0

e−x∂1C(1 − e−x, 1 − ex−t) dx =
∫ t

0

e−x (1 − ex−t)2

(1 − e−t)2
dx =

1 − 2te−t − e−2t

1 − 2e−t + e−2t

for t ≥ 0. If X∗ and Y ∗ are independent random variables (i.e., C∗(u, v) = uv for u, v ∈
[0, 1]) with exponential distributions with mean 1, then the distribution function H∗ of S∗ =
X∗ + Y ∗ is

H∗(t) =
∫ t

0

e−x∂1C
∗(1 − e−x, 1 − ex−t) dx =

∫ t

0

e−x(1 − ex−t) dx = 1 − e−t − te−t

for t ≥ 0 (a well-known result). By plotting the distribution functions H and H∗ (see Figure
1, left), we see that they are not ordered and so X + Y and X∗ + Y ∗ are not st-ordered
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Figure 1. Distribution functions for the sum of two standard exponential distributions
(left) with a Clayton copula (continuous black line) and a product copula (dashed red line);
see Example 4.1. Note that they are not ordered. However, they are ordered (right) if, in
the product copula, we use F ∗ = F and the distribution function G0 given in (4.2). The
bound is sharp when F ∗ = F → 1.

(as expected from Remark 3.2 since they have the same marginals). Note that ∂1C(u, v)
and ∂1C

∗(u, v) = v are not ordered since ∂1C(1, v) = v2 < v and ∂1C(0, v) = 1 > v for v ∈
(0, 1).

However, if we assume different distributions, from Theorem 3.3, S ≤st S∗ holds if
X ≤st X∗ and the distribution functions G and G∗ of Y and Y ∗, respectively, satisfy

∂1C(u,G(x)) =
G2(x)

(u + G(x) − uG(x))2
≥ G∗(x) = ∂1C

∗(u,G∗(x))

for all u ∈ [0, 1] and all x. As the denominator is increasing in u, this condition is equivalent
to

inf
u∈[0,1]

G2(x)
(u + G(x) − uG(x))2

= ∂1C(1, G(x)) = G2(x) ≥ G∗(x),

that is, S ≤st S∗ holds whenever F ∗ ≤ F and G∗ ≤ G0 where G0 := G2. For example, if
G(t) = 1 − e−t for t ≥ 0, then it holds when

G∗(t) ≤ G0(t) = (1 − e−t)2 (4.2)

for x ≥ 0 (see Figure 1, right). The bound is attained when G∗ = G0 and F = F ∗ → 1.
If F (t) = G(t) = 1 − e−t for t ≥ 0, then, from Theorem 2.2, H(t) = q(F (t)) with

q(u) =
2 ln(1 − u) − 2u ln(1 − u) + 2u − u2

u2

for u ∈ [0, 1]. Analogously, the survival functions satisfy H̄(t) = q̄(F̄ (t)) for all t, where

q̄(u) = 1 − q(1 − u) =
2u2 − 2u − 2u ln(u)

1 − 2u + u2
.

Hence, from Proposition 3.7, S is IFR (DFR) iff the following function

α(u) =
−2 + 4u − 2u2 − ln(u) + u2 ln(u)

(u − 1 − ln(u))(1 − 2u + u2)
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Figure 2. Alpha (left) and hazard rate (right) functions for the sum of two standard
exponential distributions with a Clayton copula (continuous black line) and a product copula
(dashed red line); see Example 4.1. Note that the hazard rate functions are not ordered and
that both are increasing to 1.

is decreasing (increasing). As α is strictly decreasing (see Figure 2, continuous black line,
left), then S is IFR (and not DFR). Even more, from Proposition 4.1 in Burkschat and
Navarro [10], the hazard rate rS of S satisfies

lim
t→+∞ rS(t) = lim

u→0+
α(u) = 1.

The plot of rS can be seen in Figure 2 (continuous black line, right). From this plot, we see
that X ≤hr X + Y . This result can also be obtained from Proposition 3.6(ii), since q̄(u)/u
is decreasing in [0, 1] (see Figure 3, continuous black line, left). Even more, as q̄′(u) is
decreasing in [0, 1] (see Figure 3, continuous black line, right), from Proposition 3.6(iv), we
get X ≤lr X + Y .

A similar reasoning can be used for S∗, obtaining q̄∗(u) = u − u ln(u) and

α∗(u) =
− ln(u)

1 − ln(u)
.

As α∗ is strictly decreasing in [0, 1] (see Figure 2, dashed red line, left), S∗ is IFR (and not
DFR). It can also be seen that as limu→0+ α∗(u) = 1, then the hazard rate rS∗ of S∗ satisfies
limt→+∞ rS∗(t) = 1 as expected from Theorem 1 in Block et al. [8]. The plot can be seen in
Figure 2 (dashed red line, right). Note that the hazard rate functions of S and S∗ are not
ordered. However, they are ordered with the hazard rate of X (the constant line at 1) since
q̄∗(u)/u is decreasing (see Figure 3, dashed red line, left). Even more, as (q̄∗)′(u) = − ln(u)
is decreasing in [0, 1] (see Figure 3, dashed red line, right), from Proposition 3.6(iv), we get
X ≤lr X∗ + Y ∗.

In a similar way, for a general Clayton copula, we can obtain the following result from
Theorem 3.3.

Proposition 4.2: If X1, . . . , Xn have distribution functions F1, . . . , Fn and the Clayton
copula defined in (4.1) and X∗

1 , . . . , X∗
n are independent and satisfy Xi ≤st X∗

i for i =
1, . . . , n − 1 and Y0 ≤st X∗

n where the distribution function of Y0 is G0(x) = F
1+(n−1)/α
n (x)
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Figure 3. Plots of functions q̄(u)/u (left) and q̄′(u) (right) for the sums of two standard
exponential distributions with a Clayton copula (continuous black line) and a product copula
(dashed red line); see Example 4.1. Note that all of them are decreasing.

for all x, then X1 + · · · + Xn ≤st X∗
1 + · · · + X∗

n. The bound is attained when F ∗
n = G0 and

F ∗
i = Fi → 1 for i = 1, . . . , n − 1.

4.2. Ali-Mikhail-Haq Copula

Let us consider now the Ali-Mikhail-Haq (AMH) copula defined by,

C(u, v) =
uv

1 − θ(1 − u)(1 − v)
, u, v ∈ [0, 1] (4.3)

for θ ∈ (−1, 1). Since

∂1C(u, v) =
(1 − θ)v + θv2

[1 − θ(1 − u)(1 − v)]2
,

the distribution function of the sum is

H(t) =
∫ ∞

−∞
f(x)

G(t − x)[1 − θḠ(t − x)]
[1 − θF̄ (x)Ḡ(t − x)]2

dx. (4.4)

Then, we consider two relevant models:

• AMH copula with standard exponential distributions:

H(t; θ) =
1 − e−t + θ e−t − θ e−2t − (θ + 1)t e−t

(1 − θ e−t)2
, t ≥ 0. (4.5)

If we set θ = 0 in (4.5), we obtain the usual exponential convolution.
• AMH copula with Pareto marginals P (1, 1) with pdf (2.2),

H(t; θ) =
−t(2 + t)

4θ − (2 + t)2
− 4[2 + θ(t − 2) + t]

[4θ − (2 + t)2]3/2
arctan

(
t√

4θ − (2 + t)2

)
, t ≥ 0.
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For general distributions, we can obtain the following result.

Proposition 4.3: If X and Y have distribution functions F and G and the AMH copula
(4.3), then X + Y ≤st X∗ + Y ∗ when X∗ and Y ∗ are independent and satisfy X ≤st X∗

and Y0 ≤st Y ∗, where the distribution function of Y0 is G0(x) = (1 − θ)G(x) + θG2(x) when
θ ≥ 0 and G0(x) = G(x)/(1 − θ + θG(x)) when θ < 0, for all x. The bounds are sharp.

Proof: The first partial derivative ∂1C of C obtained above is decreasing in u when θ > 0
and increasing in u when θ < 0. Hence,

inf
u∈[0,1]

∂1C(u, v) = ∂1C(1, v) = (1 − θ)v + θv2

when θ ≥ 0 and

inf
u∈[0,1]

∂1C(u, v) = ∂1C(0, v) =
v

1 − θ + θv

when θ < 0. Then, the result holds from Theorem 3.3. �

4.3. Farlie-Gumbel-Morgenstern Copula

In this section, we obtain the distribution of the sum of two random variables under the
Farlie-Gumbel-Morgenstern copula with arbitrary marginals. For the case of mixed Erlang
marginals, we have the work by Cossette et al. [16] and the other references quoted in the
Introduction.

We will obtain a new simple formula in terms of the pdf of convolutions of order
statistics. This formulation permits to get explicit expressions for the pdf of the sum in the
case of working with two very “different” risks with Pareto and Erlang distributions. The
bivariate FGM copula is defined as

C(u, v) = uv[1 + α(1 − u)(1 − v)], u, v ∈ [0, 1] (4.6)

for −1 ≤ α ≤ 1. The independent case is represented by α = 0.
We consider two nonnegative and absolutely continuous random variables X and Y

with pdf f and g, respectively. If X1 and X2 are two i.i.d. (independent and identically dis-
tributed) copies from X, the minimum and maximum are denoted by X1:2 = min(X1,X2)
and X2:2 = max(X1,X2), respectively. The pdf of the minimum X1:2 and Y1:2 will be
denoted by f1:2 and g1:2, respectively.

Theorem 4.4: Let (X,Y ) be a random vector having the FGM copula (4.6) and marginal
distributions with pdf f and g. Then, the pdf of the aggregated risk S = X + Y is

fS(x;α) = (1 + α) f ∗ g(x) − α f1:2 ∗ g(x) − α f ∗ g1:2(x) + α f1:2 ∗ g1:2(x), (4.7)

for all −1 ≤ α ≤ 1, where ∗ denotes the (usual) convolution operator.

Proof: If α ∈ [−1, 1], the joint pdf c = ∂1,2C of the bivariate FGM copula is

c(u, v) = 1 + α − 2α(1 − u) − 2α(1 − v) + 4α(1 − u)(1 − v)

for u, v ∈ [0, 1]. Hence, by using (2.11), we obtain (4.7) directly. �

Taking the n-dimensional version of the FGM copula, it is also possible to get a formula
similar to (4.7) in higher dimensions.

https://doi.org/10.1017/S0269964820000649 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000649


334 J. Navarro and J. M. Sarabia

Remark 4.5: From (4.7), the distribution of the sum under the FGM copula is a linear
combination of usual convolutions. Note that this linear combination contains negative coef-
ficients when α �= 0. In this case, it is also called “negative mixture” (see, e.g., [37]). Hence,
we can use here the results obtained for generalized mixtures (which include both positive and
negative mixtures) to determine the asymptotic behaviour of the hazard rate of S = X + Y
(see [37] and the references therein) extending the results for the usual convolutions given in
Block et al. [7,8] . Thus, Lemma 3.3 in [37] can be used jointly with (4.7) to prove that the
limit behavior of the hazard of the FGM-convolution coincides with that of the usual convo-
lution (the leading term in (4.7)) when α �= −1. For completeness, we include this lemma
after this remark. If α = −1, then the leading term in (4.7) is either f1:2 ∗ g or f ∗ g1:2. For-
mula (4.7) can also be written in terms of pdf of the maximum using that f2:2 = 2f − f1:2.
The cross moments αr,s = E(XrY s) can be obtained easily from (4.7). Moreover, the Tail
Value-at-Risk (TVaR) of a linear combination of pdf is a linear combination of the TVaR
of the components.

Lemma 4.6 (Navarro and Shaked [37]): Let Ḡ =
∑k

i=1 wiḠi be a survival function obtained
as a generalized mixture of the absolutely continuous survival functions Ḡ1, . . . , Ḡk for some
weights w1, . . . , wk ∈ R. Let r, r1, . . . , rk be the respective hazard rate functions. If

1 < lim inf
t→∞

ri(t)
r1(t)

and lim sup
t→∞

ri(t)
r1(t)

< ∞

for i = 2, . . . , k, then w1 > 0 and limt→∞ r(t)/r1(t) = 1.

As we have mentioned before, the exponential distribution is very important in relia-
bility theory where the hazard rate is used to describe the aging process. It is well known
that the exponential model has a constant hazard rate. Ross [43] p. 299 (see also [7]) proved
that if X and Y are independent and have exponential distributions with hazard rates λ
and μ, then the survival function of S = X + Y is

F̄S(t) = F̄ ∗ Ḡ(t) =
μ

μ − λ
e−λt − λ

μ − λ
e−μt (4.8)

for t ≥ 0, when μ �= λ. Note that it is a negative mixture of exponential distributions. Hence,
its pdf is

fS(t) = f ∗ g(t) =
λμ

μ − λ
e−λt − λμ

μ − λ
e−μt

for t ≥ 0. However, if λ = μ, then

F̄S(t) = F̄ ∗ Ḡ(t) = (1 + λt) e−λt (4.9)

and fS(t) = f ∗ g(t) = λ2t e−λt for t ≥ 0, that is, it has a Gamma (or Erlang) distribution.
Let us consider now that X and Y are dependent with an FGM copula and let S =

X + Y . If X and Y have exponential distributions with hazard rates λ and μ, then X1:2 and
Y1:2 also have exponential distributions with hazard rates 2λ and 2μ, respectively. Then,
the different options for the survival function of S can be reduced to the following three
cases:
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Case I: μ > λ and μ �= 2λ. Here, the distributions in (4.7) can be obtained from (4.8).
Then,

F̄S(t) = (1 + α)
μ e−λt − λ e−μt

μ − λ
− α

μ e−2λt − 2λ e−μt

μ − 2λ

− α
2μ e−λt − λ e−2μt

2μ − λ
+ α

μ e−2λt − λ e−2μt

μ − λ
(4.10)

for t ≥ 0. Note that it is a generalized mixture of exponential distributions (since some
weights are negative).

Case II: μ > λ and μ = 2λ. In this case, the second distribution in (4.7) is computed
from (4.9) and the others from (4.8). Then,

F̄S(t) = (1 + α)
μ e−λt − λ e−μt

μ − λ
− α(1 + μt) e−μt

− α
2μ e−λt − λ e−2μt

2μ − λ
+ α

μ e−2λt − λ e−2μt

μ − λ

for t ≥ 0. Note that it is a generalized mixture of exponential and Gamma (Erlang)
distributions.

Case III: μ = λ. In this case, the second and the fourth distributions in (4.7) are
computed from (4.9) and the others from (4.8). Then,

F̄S(t) = (1 + α)(1 + λt) e−λt − 2α
(
2e−λt − e−2λt

)
+ α(1 + 2λt) e−2λt

for t ≥ 0. Again it is a generalized mixture of exponential and Gamma (Erlang) distribu-
tions.

In a similar way, by using formula (4.7), we can obtain the distribution of the sum
of two random variables with Pareto and Erlang distributions assuming an FGM copula.
As a previous step, we need the convolution of Pareto and Erlang distributions and the
distribution of the minimum of Pareto and Erlang distributions. The following theorem
provides the convolution of Pareto and Gamma distributions (see [36]).

Theorem 4.7 (Nadarajah and Kotz [36]): The pdf of S = X + Y for two-independent
random variables with X ∼ P (a, σ) and Y ∼ G(b, λ) is

fS(t; a, σ, b, λ) =
atb exp(−t/λ)
σλbΓ(1 + b)

Φ1

(
1, a + 1, b + 1;− t

σ
,− t

λ

)
, t > 0, (4.11)

where Φ1 denotes the Humbert series function (degenerate Appell hypergeometric function)
defined as,

Φ1(α, β, γ;x, y) =
∞∑

m,n=0

(α)m+n(β)m

(γ)m+n

xmyn

m!n!
, (4.12)

where (α)n = α . . . (α + n − 1) is the ascending factorial.

The distribution obtained in the preceding theorem will be denoted as PGC(a, σ, b, λ)
(Pareto-Gamma convolution) and its pdf by fPGC(x; a, σ, b, λ).

In order to use formula (4.7), we need the distributions of the minimum of Pareto and
Erlang distributions in samples of size two. The proofs of these lemmas are straightforward
and so they will be omitted.
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Lemma 4.8: Let X1, . . . , Xn be i.i.d. with X1 ∼ P (a, σ). Then, X1:n ∼ P (an, σ).

Lemma 4.9: Let X1 and X2 be i.i.d. random variables with X1 ∼ E(k, β). Then,

f1:2(t) =
k−1∑
j=0

1
2j+k−1

(
j + k − 1

k − 1

)
fE(t; j + k, 2β), (4.13)

that is, it is a finite mixture of Erlang distributions.

Now, we are ready to state the following result.

Theorem 4.10: Let (X,Y ) having the FGM copula in (4.6) and marginal distributions
X ∼ P (a, σ) and Y ∼ E(k, β), with a, σ, β > 0 and k ∈ N. Then, the pdf of S = X + Y is a
linear combination of 2k + 2 Pareto-Erlang convolutions with pdf

f(t;α, a, σ, k, β) = (1 + α)fPGC(t; a, σ, k, 1/β) − αfPGC(t; 2a, σ, k, 1/β)

− α

k−1∑
j=0

wj,kfPGC(t; a, σ, j + k, 2/β) + α

k−1∑
j=0

wj,kfPGC(t; 2a, σ, j + k, 2/β),

(4.14)

where wj,k =
(
j+k−1

k−1

)
2−j−k+1, −1 ≤ α ≤ 1, and fPGC denotes the pdf of the Pareto-Erlang

convolution given in (4.11).

Proof: The proof is direct using Theorem 4.4, Lemmas 4.9 and 4.8 and taking into account
that the convolution operator is closed under linear combinations of densities. �

Remark 4.11: The moments E(Sr) can be obtained easily since the moments of Pareto
and Erlang distributions are available (see [29]). Moreover, the TVaR of S is a linear
combination of the TVaR of the PGC components in (4.14).

4.4. More General Copulas

In this section, we work with more general copulas included in the following polynomial
family.

Definition 4.12: A copula C(u1, . . . , up) is said to be a polynomial copula if it can be
written as

C(u1, . . . , up) =
n∑

i=1

αiu
r1,i

1 · · ·urp,i
p , u1, . . . , up ∈ [0, 1] (4.15)

where n ∈ N and {(αi, r1,i, . . . , rp,i), i = 1, . . . , n} are real numbers such that (4.15) is a
genuine copula.

A lot of copulas fit to the previous definition which includes the following well-known
copulas: Drouet-Mari and Kotz [22], FGM and its extensions, Ibragimov [28], cubic (see
[42]), Mai and Scherer [33] and Nadarajah [35]. For the bivariate polynomial copula, (4.15)
becomes in:

C(u, v) =
n∑

j=1

aiu
rivsi , u, v ∈ [0, 1]. (4.16)

For this copula, we have the following result. The proof is straightforward from (2.11) and
will be omitted.
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Theorem 4.13: Let (X,Y ) be a random vector having the polynomial copula (4.16) with
parameters {(ai, ri, si), i = 1, . . . , n} and marginal distributions with pdf f and g. Then, the
pdf of S = X + Y is

fS(t;a, r, s) =
n∑

i=1

ai fri:ri
∗ gsi:si

(t), (4.17)

where a = (a1, . . . , an), r = (r1, . . . , rn), s = (s1, . . . , sn), ∗ is the convolution operator and
fri:ri

and gsi:si
, i = 1, . . . , n, represent the pdf of the maximum of {X1, . . . , Xri

} and
{Y1, . . . , Ysi

}, respectively, where Xi are Yj are i.i.d. random variables with pdf f and g,
respectively.

We consider the following example. Note that we obtain again a negative mixture of
usual convolutions.

Example 4.14: For the Drouet-Mari and Kotz [22] copula with pdf

c(u, v) = 1 + θ

(
ur − 1

r + 1

)(
us − 1

s + 1

)
, u, v ∈ [0, 1], (4.18)

for r, s ∈ N and 0 < θ ≤ min{ (r+1)(s+1)
s , (r+1)(s+1)

r }, the pdf of S = X + Y is

fS(t; θ, r, s) = (1 + w) f ∗ g(t) − w fr+1:r+1 ∗ g(t) − w f ∗ gs+1:s+1(t)

+ w fr+1:r+1 ∗ gs+1:s+1(t),

being w = θ/[(r + 1)(s + 1)].

5. APPLICATION

Applications of the distribution of the sum of dependent risks can be found in actuarial
sciences, risk management and in many other scientific disciplines. In this section, we present
an application in actuarial science.

We consider the set of bivariate data of loss and alae (allocated loss adjustment
expenses), which can be found in Klugman et al. [31] Chap. 12. We are interested in mod-
eling the distribution of the total expense, that is, the sum of loss and alae assuming two
different structures of dependence. We begin by considering the distribution of the sum of
two exponentials with the FGM copula in Eq. (4.10). The data are a set of 24 bivariate
observations and present a limited degree of dependence, in concordance with the FGM
copula (see [46]), which presents a linear relation with the Pearson correlation coefficient
ρ with ρ ∈ [−1/3, 1/3]. In particular, for exponential distributions ρ = α/4. The data are
quite concentrated, except for some extreme values, which is a usual situation in this kind
of data (see [11] Chap. 2).

For estimating the parameters, we proceed in two steps (see [1]). In a first step, we esti-
mate the dependence parameter α, using the estimator α̂ := min(4ρ̂, 1) for ρ̂ ≥ 0 (see [20]),
obtaining α̂ = 0.33. Then, we estimate the marginal exponential distributions by maximum-
likelihood obtaining λ̂ = 0.0436 for the loss variable and μ̂ = 0.1884 for the alae variable
(both in thousand dollars).

On the other hand, we have considered the Clayton copula (4.1) with Pareto marginals
(see also [44]). If all the marginal distributions are identically distributed Pareto, the
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Figure 4. VaR quantities for q = 0.9, 0.95, 0.99 and 0.995 for the empirical distribution
of the sum, for the distribution (4.10) and for second kind beta distribution defined in (5.1).

distribution of the sum is a second kind beta distribution with pdf,

h(x; p, α, β) =
xp−1

βpB(p, α)(1 + x/β)p+α
, x ≥ 0, (5.1)

where p = n is the number of marginal distributions and α, β are the shape and scale
parameters in the Pareto distribution. In this case, since the marginals are not identically
distributed, we approximated the distribution of the sum by Eq. (5.1), where we fit the three
parameters p, α and β. For this task, we have considered maximum-likelihood estimation
and we have used the R libraries actuar and fitdistrplus. In the actuar library, the second kind
beta distribution is called generalized Pareto distribution. We have obtained the estimations
p̂ = 2.5978, α̂ = 1.8816 and β̂ = 1.0000.

For comparing the two models, we have obtained the VaR quantities (Value-at-Risk,
i.e., VaRX(q) = F−1

X (q)), for q = 0.9, 0.95, 0.99 and 0.995 for the distribution of the sum
(4.10) with FGM copula and exponential marginals, for the empirical distribution and for
the second kind beta distribution. The results are presented in Figure 4. Model (4.10)
underestimates the empirical values for q = 0.99 and 0.995. However, model (5.1) presents
more realistic estimates for extreme values of VaR, which is a more credible situation for
loss data with heavy tails.

6. CONCLUSIONS

We have obtained several representations for the distributions of the sums of dependent
random variables with a given copula. These representations allow us to obtain explicit
expressions for them in specific models (copulas and/or marginals). They are also used
to compare stochastically two sums with different models. In particular, we obtain sharp
bounds for the distribution of the sum of dependent random variables based on that of
independent random variables (Theorem 3.3). Particular results are obtained for sums of
an exponential distribution with other distributions. We also determine, in some models,
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the asymptotic behavior of the hazard rate function of the sum extending the results given
in preceding papers for independent random variables (convolutions).

The results given here can be used to solve other models by using a similar procedure.
They can also be used to establish more comparison results, to obtain bounds and to
determine the behavior of the hazard rate of the sum of dependent random variables.
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