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Abstract
In the last two decades the study of random instances of constraint satisfaction problems (CSPs) has flour-
ished across several disciplines, including computer science, mathematics and physics. The diversity of the
developed methods, on the rigorous and non-rigorous side, has led to major advances regarding both the
theoretical as well as the applied viewpoints. Based on a ceteris paribus approach in terms of the density
evolution equations known from statistical physics, we focus on a specific prominent class of regular CSPs,
the so-called occupation problems, and in particular on r-in-k occupation problems. By now, out of these
CSPs only the satisfiability threshold – the largest degree for which the problem admits asymptotically a
solution – for the 1-in-k occupation problem has been rigorously established. Here we determine the sat-
isfiability threshold of the 2-in-k occupation problem for all k. In the proof we exploit the connection of an
associated optimization problem regarding the overlap of satisfying assignments to a fixed point problem
inspired by belief propagation, a message passing algorithm developed for solving such CSPs.

Keywords: Occupation problems; satisfiability thresholds; second moment method; small subgraph conditioning;
contraction coefficient; configuration model
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1. Introduction
Inspired by the pioneering work [16] of Erdős and Rényi in 1960, random discrete structures have
been systematically studied in literally thousands of contributions. One of the initial motivations
of this research was to study open problems in graph theory and combinatorics. In the following
decades, however, the application of such models proved useful as a unified approach to treat
a variety of problems in several fields. To mention just a few, random graphs turned out to be
valuable in solving fundamental theoretical and practical problems, such as the development of
error correcting codes [29], the study of statistical inference through the stochastic block model
[1], and the establishment of lower bounds in complexity theory [18, 21].

The results of the past years of research suggest the existence of phase transitions in many
classes of random discrete structures, i.e. a specific value of a given model parameter at which the
properties of the system in question change dramatically. Random constraint satisfaction prob-
lems are one specific type of such structures that tend to exhibit this remarkable property and
that are of particular interest in too many areas to mention, covering complexity theory, com-
binatorics, statistical mechanics, artificial intelligence, biology, engineering and economics. An
instance of a CSP is defined by a set of variables that take values in – typically finite – domains
and a set of constraints, where each constraint is satisfied for specific assignments of the sub-
set of variables it involves. A major computational challenge is to determine whether such an
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instance is satisfiable, i.e. to determine if there is an assignment of all variables that satisfies all
constraints. Since the 1980s non-rigorous methods have been introduced in statistical physics
that are targeted at the analysis of phase transitions in random CSPs [28, 31, 32]. Within this
line of research, a variety of exciting and unexpected phenomena were discovered, for example
the existence of multiple phase transitions with respect to the structure of the solution space;
these transitions may have a significant impact on the hardness of the underlying instances. Since
then these methods and the description of the conjectured regimes have been heavily supported
by several findings, including the astounding empirical success of randomized algorithms like
belief and survey propagation [5], as well as rigorous verifications, most prominently the phase
transition in k-SAT [13] (for large k) and the condensation phase transition in many important
models [9]. However, a complete rigorous study is still a big challenge for computer science and
mathematics.

Usually, the relevant model parameter of a random CSP is a certain problem specific density
as illustrated below. The main focus of research is to study the occurrence of phase transitions in
the solution space structure and in particular the existence of (sharp) satisfiability thresholds, i.e.
critical values of the density such that the probability that a random CSP admits a solution tends
to one as the number of variables tends to infinity for densities below the threshold, while this
limiting probability tends to zero for densities above the threshold.

1.1 Random CSPs
Two important types of random CSPs are Erdős-Rényi (ER) type and random regular CSPs. In
both cases the number n of variables and the number k of variables involved in each constraint is
fixed. In ER type CSPs we further fix the numberm of constraints and thereby the density α =m/n,
i.e. the average number of constraints that a variable is involved in. In the regular case we only
consider instances where each variable is involved in the same number d of constraints, which fixes
the density d as well as the numberm= dn/k of constraints. In a second step we randomly choose
the sets of satisfying assignments for each constraint depending on the problem. For example, in
the prominent k-SAT problem one forbidden assignment is chosen uniformly at random from all
possible assignments of the involved binary variables for each constraint independently. Another
example is the colouring of hypergraphs, where the constraints are attached to the hyperedges and
the variables to the vertices, i.e. the variables involved in a constraint correspond to the vertices
incident to a hyperedge. In this case a constraint is violated iff all involved vertices take the same
colour.

In our work we focus on a class of random regular CSPs in which the choice of satisfying assign-
ments per constraint is fixed in advance, i.e. a class that contains the aforementioned colouring of
(d-regular k-uniform) hypergraphs and occupation problems amongst others, but that does not
include problems with further randomness in the constraints, like k-SAT and k-XORSAT. The
lack of randomness on the level of constraints makes this class particularly accessible for an analy-
sis of the asymptotic solution space structure and significantly simplifies simulations based on the
well-known population dynamics. Using such simulations, non-rigorous results for this class have
been mostly established for the case where the variables are binary valued, so-called occupation
problems, or restricted to variants of hypergraph colouring for non-binary variables. Besides the
extensive studies on the colouring of simple graphs, i.e. k= 2, the only rigorous results derived
so far consider the arguably most simple type of occupation problems where each constraint is
satisfied if exactly one involved variable evaluates to true, which we refer to as d-regular 1-in-k
occupation problem. In our current work we strive to extend these results to general d-regular r-
in-k occupation problems, i.e. problems where each constraint is satisfied if r out of the k involved
variables evaluate to true.
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(a) (b)

Figure 1. On the left we see a solution of the 4-regular 2-in-3 occupation problem on a 4-regular 3-factor graph, where the
rectangles and circles depict the constraints (factors) and variables (filled if they take the value one in the solution). Thefigure
on the right shows a 2-factor in a 3-regular 4-uniform hypergraph, where the circles, solid and dashed shapes represent the
vertices, hyperedges in the 2-factor and the other hyperedges respectively.

1.2 Occupation problems
We continue with the formal definition of the class of problems we consider. Let k, d ∈Z≥2 and
r ∈ [k− 1]:= {1, . . . , k− 1} be fixed. Additionally, we are given non-empty setsV of variables and
constraints F. We will use the convention to index elements of V with the letter i and elements of
F with the letter a (and subsequent letters) in the remainder. Then an instance o of the d-regular
r-in-k occupation problem is specified by a sequence o= (v(a))a∈F of m= |F| subsets v(a)⊆V
of size k such that each of the n= |V| variables is contained in d of the subsets. In graph theory
the instance o has a natural interpretation as a (d, k)-biregular graph (or d-regular k-factor graph)
with disjoint node sets V ∪̇ F and edges {i, a} if i ∈ v(a). By the handshaking lemma, such objects
only exist if dn= km, which we assume in the following.

Given an instance o as just described, an assignment x ∈ {0, 1}V satisfies a constraint a ∈ F if∑
i∈v(a) xi = r, otherwise x violates a. If x satisfies all constraints a ∈ F, then x is a solution of o.

Notice that d times the number of 1’s in x matches the total number rm= rdn/k of 1’s observed
on the factor side, so k has to divide rn, which we also assume in the following. We write z(o)
for the number of solutions of o. Figure 1a shows an example of a 4-regular 2-in-3 occupation
problem.

Further, for given m, n ∈Z>0 let O denote the set of all instances o with variables V = [n] and
constraints F = [m]. If O is not empty, then the random d-regular r-in-k occupation problem O
is uniform onO and Z = z(O) the number of solutions of O.

1.3 Examples and related problems
A problem that is closely related and can be reduced to the d-regular r-in-k occupation problem
is the d-regular positive r-in-k SAT problem, a variant of k-SAT.We consider a Boolean formula

f =
∧
a∈F

ca, ca =
∨
i∈v(a)

i, a ∈ F,

in conjunctive normal form with m clauses over n variables i ∈V , such that no literal appears
negated (hence positive r-in-k SAT), and where each clause ca is the disjunction of k literals and
each variable appears in exactly d clauses (hence d-regular). The decision problem is to determine
if there exists an assignment x such that exactly r literals in each clause evaluate to true (hence
r-in-k SAT). In [34] the satisfiability threshold for this problem was determined for r = 1, i.e.
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the case where exactly one literal in each clause evaluates to true. Our Theorem 1.1 solves this
problem for r = 2 and k ∈Z≥4.

Our second example deals with a problem from graph theory.A k-regular d-uniform hyper-
graph h is a pair h= (F, E) with m= |F| vertices and n= |E| (hyper-)edges such that each edge
contains d vertices and the degree of each vertex is k. An r-factor E′ is a subset of the hyperedges
such that each vertex a ∈ F is incident to r hyperedges ei ∈ E′. In this case the problem is to deter-
mine if h has an r-factor. For example, the case r = 1 is the well-known perfect matching problem
and the threshold was determined in [11]. An example of a 2-factor in a hypergraph is shown in
Figure 1b. Theorem 1.1 solves also this problem for r = 2 and k ∈Z≥4.

Several other problems in complexity and graph theory are closely related to the examples
above. The satisfiability threshold in Theorem 1.1 also applies to a variant of the vertex cover
problem (or hitting set problem from set theory perspective), where we choose a subset of the
vertices (variables with value one) in a d-regular k-uniform hypergraph such that each hyperedge
is incident to exactly two vertices in the subset. Analogously, Theorem 1.1 also establishes the
threshold for a variant of the set cover problem in set theory corresponding to 2-factors in hyper-
graphs, i.e. given a family of d-subsets (hyperedges) and a universe (vertices) with each element
contained in k subsets, the problem is to find a subfamily of the subsets such that each element of
the universe is contained in exactly two subsets of the subfamily. Further, Theorem 1.1 can, e.g.
also be used to give sufficient conditions for the (asymptotic) existence of Euler families in regular
uniform hypergraphs as discussed in [2].

1.4 Main results
The satisfiability threshold for the d-regular 1-in-k occupation problem has been established in
[11, 34], which also covers the d-regular 2-in-3 occupation problem due to colour symmetry. Our
main result pins down the location of the satisfiability threshold of the random d-regular 2-in-k
occupation problem for k ∈Z≥4. For this purpose let

d∗ = d∗(k)= kH(2/k)
kH(2/k)− ln

(k
2
) , k ∈Z≥4, (1)

where H(p)= −p ln (p)− (1− p) ln (1− p) is the entropy of p ∈ [0, 1]. The following theorem
establishes the location of the threshold at d∗.
Theorem 1.1 (2-in-k Occupation Satisfiability Threshold). Let k ∈Z≥4, d ∈Z≥2, and let Z be the
number of solutions from Section 1.1. There exists a sharp satisfiability threshold at d∗, i.e. for any
increasing sequence (ni)i∈Z>0 ⊆N= {n:dn, 2n ∈ kZ>0} and mi = dni/k we have

lim
i→∞ P(Z > 0)=

⎧⎨
⎩1 , d < d∗

0 , d ≥ d∗ .

We provide a self-contained proof for Theorem 1.1 using the first and second moment method
with small subgraph conditioning for Z. In particular, a main technical contribution in proving
Theorem 1.1 is the optimization of a certainmultivariate function that appears in the computation
of the secondmoment, which encodes the interplay between the ‘similarity’ of various assignments
and the change in the corresponding probability of being satisfying that they induce. A direct
corollary of this optimization step at the threshold d∗ is the confirmation of the conjecture by the
authors in [36]. Among other things, at the core of our contribution we take a novel and rather
different approach to tackle the optimization, inspired by [37] and [41] as well as other works
relating the fixed points of belief propagation to the stationary points of the Bethe free entropy,
respectively to the computation of the annealed free entropy density; see Section 5.6 for details.
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Finally, we show that d∗ is not an integer in Lemma 3.1 below, so as opposed to the case r = 1 [34],
for r = 2 there is no need for a dedicated analysis at criticality.

1.5 Related work
The regular version of the random 1-in-k occupation problem (and related problems) has been
studied in [11, 34] using the first and second moment method with small subgraph conditioning.
The paper [37] shows that limi→∞ P(Z > 0)= 1 for d = 2 and k ∈Z≥2 in the d-regular 2-in-k
occupation problem, i.e. the existence of 2-factors in k-regular simple graphs. A recent discus-
sion of 2-factors (and the related Euler families) that does not rely on the probabilistic method
is presented in [2]. Further, randomized polynomial time algorithms for the generation and
approximate counting of 2-factors in random regular graphs have been developed in [19].

The study of Erdős-Rényi (hyper-)graphs was initiated by the groundbreaking paper [16] in
1960 and turned into a fruitful field of research with many applications, including early results
on 1-factors in simple graphs [17]. On the contrary, results for the random d-regular k-uniform
(hyper-)graph ensemble were rare before the introduction of the configuration (or pairing) model
by Bollobás [4] and the development of the small subgraph conditioning method [23, 24]. While
the proof scheme facilitated rigorous arguments to establish the existence and location of satisfi-
ability thresholds of random regular CSPs [3, 7, 10, 14, 15, 27, 33], the problems are treated on a
case by case basis, while results on entire classes of random regular CSPs are still outstanding.

One of the main reasons responsible for the complexity of a rigorous analysis of random (regu-
lar) CSPs seems to be a conjectured structural change of the solution space for increasing densities.
This hypothesis has been put forward by physicists, verified in parts and mostly for ER ensembles,
further led to new rigorous proof techniques [8, 10, 13] and to randomized algorithms [5, 30] for
NP-hard problems that are not only of great value in practice, but can also be employed for precise
numerical (though non-rigorous) estimates of satisfiability thresholds. An excellent introduction
to this replica theory can be found in [28, 31, 40]. Specifically, numerical results indicating the
satisfiability thresholds for d-regular r-in-k occupation problems (more general variants, and for
ER type hypergraphs) based on this conjecture were discussed in various publications [6, 12, 20,
22, 39, 42, 43], where occupation problems were introduced for the first time in [35].

Another fundamental obstacle in the rigorous analysis is of a very technical nature and directly
related to the second moment method as discussed in detail in our current work. In the case of
regular 2-in-k occupation problems (amongst others) this optimization problem can be solved
by exploiting a connection to the fixed points of belief propagation. This well-studied message
passing algorithm is thoroughly discussed in [31].

1.6 Open problems
In this work we rigorously establish the threshold for r = 2 and k ∈Z≥4 for the random regular r-
in-k occupation problem. A rigorous proof for general r (and k) seems to be involved, but further
assumptions may significantly simplify the analysis. For example, as an extension of the current
work one may focus on r-in-2r occupation problems, where the constraints are symmetric in
the colours. As can be seen from our proof, this yields useful symmetry properties. Further, as
suggested by the literature [8, 9] such balanced problems [42, 43] are usually more accessible to
a rigorous study. On the other hand, the optimization usually also significantly simplifies if only
carried out for k≥ k0(r) for some (large) k0(r).

Apart from the generalizations discussed above, results for the general r-in-k occupation prob-
lems are also still outstanding for Erdős-Rényi type CSPs, the only exception being the satisfiability
threshold for perfect matchings which was recently established by Kahn [25]. Further, there only
exist bounds for the exact cover problem [26] on 3-uniform hypergraphs, i.e. r = 1 and k= 3.
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1.7 Outline of the Proofs
In Section 2 we present the proof strategy on a high level. Then, we turn to the notation and do
some groundwork, in particular the analysis of d∗(k), in Section 3. The easy part of the main result
is established in Section 4 using the first moment method. The remainder is devoted to the proof
that solutions exist below the threshold with probability tending to one, starting with the second
moment method in Section 5. Most of the twenty pages in this section are devoted to the solution
of the optimization problem and related conjecture from [36] using a belief propagation inspired
approach.

Finally, we complete the small subgraph conditioning method in Section 6, using the proof of
Lemma 2.8 in Appendix A as a blueprint.

2. Proof techniques
In this section we give a high-level overview of our proof. We make heavy use of the so-called
configuration model for the generation of random instances in the form used by Moore [34].

2.1 The configurationmodel
Working with the uniform distribution on d-regular k-uniform hypergraphs directly is chal-
lenging. Instead, we show Theorem 1.1 for occupation problems on so-called configurations. A
d-regular k-configuration is a bijection g:[n]× [d]→ [m]× [k], where the v-edges (i, h′) ∈ [n]×
[d] represent pairs of variables i ∈ [n] and so-called i-edges, i.e. half-edge indices h′ ∈ [d]. The
image (a, h)= g(i, h′) is an f-edge, i.e. a pair of a constraint (factor) a ∈ [m] and an a-edge (or half-
edge) h ∈ [k], indicating that the i-edge h′ of the variable i is wired to the a-edge h of a and thereby
suggesting that i is connected to a in the corresponding d-regular k-factor graph. Notice that we
can represent g by an equivalent, four-partite, graph with (disjoint) vertex sets given by the vari-
ables V = [n], constraints (factors) F = [m], v-edges H′ = [n]× [d] and f -edges H = [m]× [k],
where each variable i ∈ [n] connects to all its v-edges (i, h′) ∈H′, each constraint a ∈ [m] to all its
f -edges (a, h) ∈H and a v-edge (i, h′) connects to an f -edge (a, h) if g(i, h′)= (a, h).

Let G be the set of all d-regular k-configurations on n variables, and notice that |G| = ∅ iff
dn �= km and |G| = (dn)! = (km)! for m= dn/k ∈Z, which we assume from here on. Further, the
occupation problem on factor graphs directly translates to configurations, i.e. an assignment x ∈
{0, 1}n is a solution of g ∈ G if for each constraint a ∈ [m] there exist exactly two distinct a-edges
h, h′ ∈ [k] such that xi(a,h) = xi(a,h′) = 1, where i(a, h)= (g−1(a, h))1 denotes the h-th neighbour of
a. Say, the occupation problem on a configuration corresponding to the example in Figure 1a is
shown in Figure 2a.

Let Z(g) be the number of solutions of g ∈ G. As before, Z = 0 almost surely unless 2n ∈ kZ.
Theorem 1.1 is a straightforward consequence of the following result.

Theorem 2.1 (Satisfiability Threshold for Configurations). Theorem 1.1 also holds for Z as defined
in this section.

Theorem 2.1 translates to the models in Section 1.1 and Section 1.2 using standard arguments,
namely symmetry, the discussion of parallel edges, contiguity, and the fact that both the vari-
able and the factor neighbourhoods are unique with probability tending to one. Hence, in the
remainder of this contribution we exclusively consider the occupation problem on configurations.

2.2 The first moment method
In the first step we apply the first moment method to the occupation problem on configurations,
yielding the following result.
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(a) (b)

Figure 2. The figure on the left shows the solution on a configuration corresponding to the solution in Figure 1. We only
denoted a-edges (small boxes, filled if they the a-edge takes the value one) and i-edges (small circles, filled if the i-edge takes
the value one) instead of f -edges and v-edges for brevity (e.g. ha1,1 instead of (a1, ha1,1)).The figure on the right illustrates the
corresponding 2-in-3 vertex cover (given by the filled circles).

Lemma 2.2 (First Moment Method). Let k ∈Z≥4, d ∈Z≥2. For n ∈N tending to infinity

E[Z]∼ √
denφ1 , where φ1 = d

k
ln
(
k
2

)
− (d − 1)H

(
2
k

)
.

In particular, E[Z]→ ∞ for d < d∗ and E[Z]→ 0 for d > d∗ with d∗ as in (1). So, Markov’s
inequality implies P(Z > 0)→ 0 for d > d∗. The map φ1 is known as annealed free entropy density.

2.3 The secondmoment method
Let k ∈Z≥4 and d ∈Z≥2. We denote the set of distributions on a finite set S by P(S) and identify
p ∈P(S) with its probabilitymass function,meaningP(S)= {p ∈ [0, 1]S:

∑
x∈S p(s)= 1}. Further,

let P�(S)= {p ∈P(S):�p ∈Z
S} be the empirical distributions over � ∈Z>0 trials.

In order to apply the second moment method we will consider a (new) CSP with m factors
on n variables with the larger domain {0, 1}2, and where the constraint a ∈ [m] is satisfied by an
assignment x ∈ ({0, 1}2)n if∑i∈v(a) xi,1 =∑i∈v(a) xi,2 = 2. Here, there are qualitatively three types
of satisfying assignments for the constraints, namely with 0, 1 or 2 overlapping ones. We will anal-
yse the empirical overlap distributions p ∈Pm({0, 1, 2}) of assignments satisfying all constraints,
which determine the empirical distributions pe ∈Pkm({0, 1}2) of the values {0, 1}2 over the km
edges, given by

pe(11)= 1
k
p(1)+ 2

k
p(2) and pe(10)= pe(01)= 1

k
p(1)+ 2

k
p(0).

So, if p ∈Pm({0, 1, 2}) is an achievable empirical overlap distribution on the m factors, then pe is
necessarily an empirical distribution on the n variables; thus the achievable overlap distributions
are contained in Pn = {p ∈Pm({0, 1, 2}) : pe ∈Pn({0, 1}2)

}
.

In the first – combinatorial – part we establish that the second moment can be written as a sum
of all contributions over all achievable overlap distributions.

Lemma 2.3 (Second Moment Combinatorics). For any n ∈N we have

E[Z2]=
∑
p∈Pn

E(p), where E(p)=
(
m
mp

) ∏
s∈{0,1,2}

(
k

s, 2− s, 2− s, k− 4+ s

)mp(s)( n
npe

)(
dn
dnpe

)−1
.
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Here, we use the notation
( m
mp
)
, p ∈Pm({0, 1, 2}), for multinomial coefficients.

To study further the second moment in Lemma 2.3, we identify the maximal contributions.
For this purpose, let p∗ ∈P({0, 1, 2}) be the hypergeometric distribution with

p∗(s)=
(2
s
)(k−2

2−s
)

(k
2
) for s ∈ {0, 1, 2}, and p∗

e (1, 1)=
4
k2

, p∗
e (1, 0)=

2(k− 2)
k2

. (2)

The overlap distribution p∗ is a natural candidate for maximizing E(p). Indeed, we obtain p∗ when
we consider two independent uniformly random assignments in {0, 1}k with 2 ones each, and
p∗
e is exactly the marginal probability if we jointly consider two independent uniformly random
assignments in {0, 1}n to the variables with 2n/k ones each. In the next step, we derive the limits
of the log-densities 1

n ln (E(p)). Recall that the K(ullback)-L(eibler) divergence DKL(p ‖ q) of two
distributions p, q ∈P(S), such that p is absolutely continuous with respect to q, is

DKL(p ‖ q)=
∑
x∈S

p(x) ln
(
p(x)
q(x)

)
.

Lemma 2.4 (Second Moment Asymptotics). For any fully supported p ∈P({0, 1, 2}) and any
sequence (pn)n∈N ⊆Pn with limn→∞ pn = p we have limn→∞ 1

n ln (E(pn))= φ2(p), where

φ2(p)= 2φ1 − d
k
�d(p) and �d(p)=DKL(p ‖ p∗)− (d − 1)k

d
DKL(pe ‖ p∗

e ).

The following proposition is the main contribution of this work.

Proposition 2.5 (Second Moment Minimizers). For k= 4 the global minimizers of �d∗(4) are p∗,
p(0) given by p(0)(0)= 1 and p(2) given by p(2)(2)= 1. For k ∈Z≥5 the global minimizers of �d∗(k)
are p∗ and p(2).

With Proposition 2.5, we easily verify that p∗ is the unique minimizer of �d for any d < d∗(k),
since the KL divergence is minimized by its unique root and (d − 1)k/d is increasing in d. This
conclusion then allows us to compute the limit of the scaled second moment using Laplace’s
method for sums. More than that, we confirm the conjecture by the authors in [36] as an
immediate corollary.

Proposition 2.6 (Second Moment Limit). For any k ∈Z≥4 and d < d∗(k)

E[Z2]
E[Z]2

∼
√
k− 1
k− d

, as n ∈N tends to infinity.

Proposition 2.6 and the Paley-Zygmund inequality yield lim infn→∞P(Z > 0)≥
√

k−d
k−1 . While

this bound suggests that a threshold exists, we need to show that the threshold at d∗ is sharp.

2.4 Small subgraph conditioning
We complete the proof of Theorem 2.1 using the small subgraph conditioning method. For this
purpose let ab =∏b−1

c=0 (a− c) denote the falling factorial.

Theorem 2.7 (Small Subgraph Conditioning, [34, Theorem 2]). Let Zn and Xn,1, Xn,2, . . . be non-
negative integer-valued random variables. Suppose that E[Zn]> 0 and that for each � ∈Z>0 there
are λ� ∈R>0, δ� ∈R>−1 such that for any L ∈Z>0
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a) the variables Xn,1, . . . , Xn,L are asymptotically independent and Poisson with E[Xn,�]∼ λ�,
b) for any sequence r1, . . . , rL of non-negative integers,

E

[
Zn
∏L

�=1 X
r�
n,�

]
E[Zn]

∼
L∏

�=1
[λ�(1+ δ�)]r� ,

c) we explain the variance, i.e.

E[Z2
n]

E[Zn]2
∼ exp

⎛
⎝∑

�≥1
λ�δ

2
�

⎞
⎠ and

∑
�≥1

λ�δ
2
� < ∞.

Then limn→∞ P(Zn > 0)= 1.

We will apply Theorem 2.7 to the number Z of solutions from Section 2.1 and the numbers X�

of small cycles in the configuration G. In order to understand what a cycle in a configuration is,
we recall the representation of a configuration g as a four-partite graph from Section 2.1.

Since we are mostly interested in the factor graph associated with a configuration we divide
the lengths of paths by three, e.g. what we call a cycle of length four in the bijection, is actually a
cycle of length twelve in its equivalent four-partite graph representation. Figures 1a and 2a show
an example of a factor graph and the corresponding configuration in its graph representation.
Showing the following statement, which establishes Assumption 2.7a), is rather routine.

Lemma 2.8 (Small Cycles). For � ∈Z>0 let X� be the number of 2�-cycles in G, and set

λ� = [(k− 1)(d − 1)]�

2�
.

Then X1, . . . , XL are asymptotically independent and Poisson with E[X�]∼ λ� for all L ∈Z>0.

We give a self-contained proof of Lemma 2.8 in the appendix, which we build upon to argue
that Assumption 2.7b) in Theorem 2.7 holds. With Lemma 2.8 in place, we consider the base
case in Assumption 2.7b), i.e. for � ∈Z>0 we let r� = 1 and r�′ = 0 otherwise, to determine δ� =
(1− k)−�. We easily verify that

∑
�≥1 λ�δ

2
� = 1

2 ln (
k−1
k−d ) and thereby establish Assumption 2.7c)

using Proposition 2.6. Finally, we follow the proof of Lemma 2.8 to complete the verification of
Assumption 2.7b) and thereby complete the proof of Theorem 1.1.

3. Preliminaries and notation
After introducing notation in Section 3.1, we establish a few basic facts in Section 3.2.

3.1 Notation
We use the notation [n]= {1, . . . , n} and [n]0 = {0} ∪ [n] for n ∈Z>0, denote the falling factorial
with nk for n, k ∈Z≥0, k≤ n, and multinomial coefficients with

(n
k
)
for n ∈Z≥0 and k ∈Z

d≥0, d ∈
Z>1, such that

∑
i∈[d] ki = n. For functions f , g on integers with limn→∞ f (n)/g(n)= 1 we write

f (n)∼ g(n). We make heavy use of Stirling’s formula [38], i.e.
√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤ √

2πn
(n
e

)n
e

1
12n , n ∈Z>0,

and in particular n! ∼ √
2πn(ne )

n. If a random variable X has law P we write X ∼ P and use
Po(λ) to denote the Poisson distribution with parameter λ. Distributions p ∈P(S) in the con-
vex polytope P(S) of distributions with finite support S are identified with their probability mass
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functions p ∈ [0, 1]S. Further,Pn(S)= {p ∈P(S) : np ∈ [n]0} denotes the set of empirical distribu-
tions obtained from n ∈Z≥1 trials. Let vt denote the transpose of a vector v. Finally, we use ‘iff’ for
‘if and only if’.

3.2 Basic observations
We briefly establish the claims in Section 1.1 for the configuration version, and the claim that d∗
is not an integer.

Lemma 3.1. The set G is empty iff dn �= km, so let dn= km. Then, we have Z = 0 almost surely if
n1 = 2n/k �∈Z. Finally, d∗ ∈ (1,∞) \Z.
Proof. Since g ∈ G is a bijection g:[n]× [d]→ [m]× [k], the set G is empty for dn �= km and
|G| = (dn)! = (km)! otherwise, which proves the first assertion. Next, we fix a solution x ∈ {0, 1}n
of g ∈ G with n′

1 ones. Then two a-edges h have to take the value one, i.e. xi(a,h) = 1, for each
a ∈ [m] and hence 2m f -edges (a, h) ∈ [m]× [k] in total. On the other hand, there are dn′

1 v-edges
(i, h) ∈ [n]× [d] that take the value one. Since g is a bijection, dn′

1 = 2m, so n1 = n′
1 ∈Z.

For the last assertion, we first focus on the denominator of d∗, i.e.

kH
(
2
k

)
− ln

(
k
2

)
= − ln

((
k
2

)(
2
k

)2 (k− 2
k

)k−2
)

> 0,

so d∗ > 0 for k ∈Z≥3. Next, notice that d∗ is a solution of f (d)= 1 with

f (d)= e(d−1)(kH(2/k)−ln (k2))−ln (k2) = 2
k(k− 1)

(
kk−1

2(k− 2)k−2(k− 1)

)d−1

,

which directly implies that d∗ > 1 and further, since gcd (k, k− 1)= 1, that d∗ ∈ (1,∞) \Z. �

4. The first moment method – proof of Lemma 2.2
This short section is dedicated to the proof of Lemma 2.2. We write the expectation in terms of
the number |E| of pairs (g, x) ∈ E such that x ∈ {0, 1}n satisfies g ∈ G, i.e.

E[Z]= |E|
|G| = 1

(dn)!
(
n
n1

)(
k
2

)m
(2m)!(dn− 2m)!,

with n1 = 2n/k and for the following reasons. First, we choose the n1 variables with value one in
x, then we choose the two a-edges for each constraint a ∈ [m] with value one, wire the v-edges and
f -edges with value one and finally wire the edges with value zero. In particular, this implies that
E[Z]> 0 for all n ∈N.

Using Stirling’s formula, the asymptotics are given by

E[Z]=
( n
n1
)(k

2
)m

(km
2m
) ∼

√√√√2πkm 2
k (1− 2

k )
2πn 2

k (1− 2
k )

exp
(
nH
(
2
k

)
− kmH

(
2
k

)
+m ln

((
k
2

)))
= √

denφ1 .

5. The secondmoment method
In this section we consider the case d < d∗. We prove Lemma 2.3, Lemma 2.4, Proposition 2.5 and
Proposition 2.6, the main contribution of this work.

https://doi.org/10.1017/S0963548324000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000440


Combinatorics, Probability and Computing 11

5.1 How to square a constraint satisfaction problem
In order to facilitate the presentation we introduce the squared d-regular 2-in-k occupation prob-
lem. As before, an instance of this problem is given by a bijection g : [n]× [d]→ [m]× [k].
Now, for an assignment x ∈ ({0, 1}2)n let yg,x = (xi(a,h))a∈[m],h∈[k] be the corresponding f -edge
assignment under g, where we recall from Section 2.1 that i(a, h)= (g−1(a, h))1 ∈ [n] is the vari-
able i(a, h) wired to the f -edge (a, h) under g. A constraint a ∈ [m] is satisfied by a constraint
assignment x ∈ ({0, 1}2)k iff x ∈ S(2), where

S(2) =
⎧⎨
⎩x ∈ ({0, 1}2)k:

∑
h∈[k]

xh,1 =
∑
h∈[k]

xh,2 = 2

⎫⎬
⎭ .

An f -edge assignment x ∈ ({0, 1}2)m×k is satisfying if xa = (xa,h)h∈[k] satisfies a for all a ∈ [m].
Finally, an assignment x ∈ ({0, 1}2)n is a solution of g if yg,x is satisfying. Notice that the pairs
of solutions x, x′ ∈ {0, 1}n of the standard problem on g are in one to one correspondence with
the solutions y ∈ ({0, 1}2)n of the squared problem on g via y= (xi, x′

i)i∈[n]. So, z(2)(g)= z(g)2 for
the number z(2)(g) of solutions of the squared problem, hence Z(2) = Z2 for Z(2) = z(2)(G) and in
particular E[Z(2)]=E[Z2]. This equivalence allows us to entirely focus on the squared problem.

5.2 Proof of Lemma 2.3
As before, we can write E[Z(2)]= 1

(dn)! |E|, where |E| is the number of pairs (g, x) ∈ E such that
x ∈ ({0, 1}2)n solves g. Set

Y=
{
y ∈ ({0, 1}2)m×k : ya ∈ S(2) for all a ∈ [m]

}
.

For y ∈Y let the overlap distribution py ∈Pm({0, 1, 2}) be given by

py(s)= 1
m

|{a ∈ [m] : |y−1
a (1, 1)| = s}|, s ∈ {0, 1, 2}.

Further, let the edge distribution qy ∈Pkm({0, 1}2) be given by

qy(x)= 1
km

|{(a, h) ∈ [m]× [k] : ya,h = x}| = 1
km

|y−1(x)|, x ∈ {0, 1}2.

Using that |y−1
a (1, 0)| = |y−1

a (0, 1)| = 2− |y−1
a (1, 1)| and hence |y−1(0, 0)| = k− 4+ |y−1(1, 1)|

we directly get

qy(1, 1)= 1
km

∑
a∈[m]

|y−1
a (1, 1)| = 1

km
∑

s∈{0,1,2}
s|{a ∈ [m] : |y−1

a (1, 1)| = s}| =
∑

s∈{0,1,2}

s
k
py(s),

qy(1, 0)= qy(0, 1)= 1
km

∑
s∈{0,1,2}

(2− s)|{a ∈ [m] : |y−1
a (1, 1)| = s}| =

∑
s∈{0,1,2}

2− s
k

py(s),

qy(0, 0)=
∑

s∈{0,1,2}

k− 4+ s
k

py(s).

Hence, let pe =Wp ∈P({0, 1}2) denote the edge distribution of any (not necessarily empirical)
overlap distribution p ∈P({0, 1, 2}), whereW ∈ [0, 1]{0,1}2×{0,1,2} is given by

W11,s = s
k
, W10,s =W01,s = 2− s

k
and W00,s = k− 4+ s

k
, s ∈ {0, 1, 2}. (3)
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Now, notice that for any (g, x) ∈ Ewe have yg,x,a,h = xi(a,h) for all a ∈ [m], h ∈ [k], hence g(x−1(z)×
[d])= y−1

g,x (z) and by that

qyg,x(z)=
|y−1
g,x (z)|
km

= d|x−1(z)|
km

= 1
n
|x−1(z)| = qx(z) for z ∈ {0, 1}2,

i.e. the relative frequencies of the values in the f -edge assignment yg,x coincide with the relative
frequencies qx ∈Pn({0, 1}2) of the values in the variable assignment x. In particular, this shows
that a satisfying f -edge assignment y ∈Y is only attainable if qy ∈Pn({0, 1}2), and thereby

E[Z(2)]= 1
(dn)!

∑
p∈Pn

|{(g, x) ∈ E:pyg,x = p}|.

Now, fix an attainable satisfying f -edge assignment y ∈Y and an assignment x ∈ ({0, 1}2)n with
qy = qx, i.e. |x−1(z)× [d]| = |y−1(z)| for all z ∈ {0, 1}2. Any bijection g with y= yg,x needs to
respect g(x−1(z)× [d])= y−1

g,x (z) for z ∈ {0, 1}2 and can hence be uniquely decomposed into its
restrictions gz : x−1(z)× [d]→ y−1

g,x (z). On the other hand, any choice of such restrictions gz gives
a bijection g with y= yg,x, and so

|Ex,y| =
∏

z∈{0,1}2
(dnqx(z))! =

∏
z∈{0,1}2

(dnpy,e(z))! , where Ex,y = {(g, x) ∈ E:yg,x = y}.

Notice that Ex,y ∩ Ex′,y′ = ∅ for any (x, y) �= (x′, y′), which is obvious for x �= x′, and also for y �= y′,
since yg,x = y �= y′ = yg′,x implies that g �= g′. But since |Ex,y| only depends on py (actually only on
py,e) this completes the proof, because for any fixed attainable overlap distribution p ∈Pn, we can
now independently choose the satisfying f -edge assignment y and variable assignment x, subject
to qx = pe and py = p (which implies qy = qx). So we have E[Z(2)]=∑p E(p) with p ∈Pn and

E(p)= 1
(dn)!

(
n
npe

)(
m
mp

) ∏
s∈{0,1,2}

(
k

s, 2− s, 2− s, k− 4+ s

)mp(s) ∏
x∈{0,1}2

(dnpe(z))!,

where we choose a variable assignment x with qx = pe, an f -edge assignment y with py = p by
first choosing one of the

( m
mp
)
options for (|y−1

a (1, 1)|)a∈[m] and then independently one of the( k
s,2−s,2−s,k−4+s

)
satisfying constraint assignments for each of the mp(s) constraints with overlap

s ∈ {0, 1, 2}, and finally choosing a bijection g with (g, x) ∈ Ex,y.

5.3 Empirical overlap distributions
This section is dedicated to deriving properties of the set Pn for n ∈N. In the following we
will use the canonical ascending order on {0, 1, 2} to denote points in R

{0,1,2} and the ascend-
ing lexicographical order on {0, 1}2 to denote points in R

{0,1}2 . Recall that p(s) ∈P({0, 1, 2}) given
by p(s)(s)= 1 for s ∈ {0, 1, 2} denote the corners of the convex polytope P({0, 1, 2}) and further
consider the vectors in R

{0,1,2}

b1 = (−d, d, 0)t, b2 = (1,−2, 1)t. (4)

Finally, let

X=
{
x ∈R

2 : (b1, b2)x≥ −p(0)
}
, Xn =X∩ (m−1

Z)2.

Lemma 5.1. The map ιn :Xn →Pn, x �→ p(0) + (b1, b2)x is a bijection.
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Proof. We use the shorthands 1{0,1,2} = (1)s∈{0,1,2} and

1⊥{0,1,2} =
{
x ∈R

{0,1,2}:1t{0,1,2}x= 0
}

=
⎧⎨
⎩x ∈R

{0,1,2}:
∑

s∈{0,1,2}
xs = 0

⎫⎬
⎭ .

Note that P({0, 1, 2})⊆ p(0) + 1⊥{0,1,2} = {p(0) + x:x ∈ 1⊥{0,1,2}}. On the other hand, (b1, b2) is a basis
of 1⊥{0,1,2}, and hence

ι :R2 → p(0) + 1⊥{0,1,2}, x �→ p(0) + (b1, b2)x, (5)

is bijective. This gives that ι(X)=P({0, 1, 2}) and that ιn is the restriction of ι to Xn, so ιn is
a bijection from Xn to P({0, 1, 2})∩ ι

(
(m−1

Z)2
)
. Consequently, it remains to show that Pn =

P({0, 1, 2})∩ ι
(
(m−1

Z)2
)
, where

ι
(
(m−1

Z)2
)= {p(0) + i1

m
b1 + i2

m
b2:i ∈Z

2
}

is a grid anchored at p(0) and spanned bym−1b1 andm−1b2. Note that

p(0)e =
(
k− 4
k

,
2
k
,
2
k
, 0
)t

,

so np(0)e ∈Z
{0,1}2 since n ∈N, and hence p(0) ∈Pn by the definition of Pn. Next, we show that

Pn is on the grid, i.e. Pn ⊆ ι
(
(m−1

Z)2
)
. For this purpose fix p ∈Pn and let x= ι−1(p), i.e. mp ∈

Z
{0,1,2}, n(Wp) ∈Z

{0,1}2 and p= p(0) + x1b1 + x2b2. This directly givesmx2 =mp(2) ∈Z. Further,
we notice that b2 is in the kernel of W from Equation (3), i.e. Wb2 = 0{0,1}2 , and Wb1 = d

kw with
w= (1,−1,−1, 1)t. This directly gives pe(1, 1)= 0+ d

k x1 + 0 and hence mx1 = npe(1, 1) ∈Z, i.e.
x ∈ (m−1

Z)2 and hence p= ι(x) ∈ ι
(
(m−1

Z)2
)
. Conversely, for any x ∈Xn and with p= ι(x) we

have p ∈P({0, 1, 2}) since x ∈X, further mp=mp(0) + (b1, b2)(mx) ∈Z
{0,1,2} since mx ∈Z

2 and
the other terms on the right-hand side are integer valued by definition, and finally npe = np(0)e +
mx1w ∈Z

{0,1}2 . �
Using Lemma 5.1 we have E[Z(2)]=∑x∈Xn E(ιn(x)), where Xn ⊆R

2 may be considered as a
normalization of the grid Pn ⊆ p(0) + 1t{0,1,2}. In order to prepare the upcoming asymptotics of
the second moment, we give a complete characterization of the convex polytope X and the image
of X under W(b1, b2), i.e. the image pe =Wp of p ∈P({0, 1, 2}) under W from Equation (3). Let
w= (1,−1,−1, 1)t from the proof of Lemma 5.1, and set

W=
{
p(0)e + yw : y ∈ [0, 2/k]

}
⊆P({0, 1}2), Xp =

{
x ∈X:x1 = k

d
p(1, 1)

}
for p ∈W.

Moreover, recall the definition of p∗ from (2) and the bijection ι from (5), and let

x(0) =
⎛
⎝0
0

⎞
⎠ , x(1) = d−1

⎛
⎝1
0

⎞
⎠ , x(2) = d−1

⎛
⎝2
d

⎞
⎠ ∈R

2 and x∗ = ι−1(p∗).

Lemma 5.2. The set X is a two-dimensional convex polytope with corners x(0), x(1), x(2), and x∗ is
in the interior ofX. The image ofX underW(b1, b2) is the one-dimensional convex polytopeW with
corners p(0)e and p(2)e . Further, the preimage of p ∈W under W(b1, b2) is Xp, where Xp(s)e

= {p(s)} for
s ∈ {0, 2} and the intersection of Xp with the interior of X is non-empty otherwise.
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Proof. Notice that ι(x(s))= p(s) for s ∈ {0, 1, 2}, so sinceP({0, 1, 2}) is the convex hull of its corners
p(s), s ∈ {0, 1, 2}, we have thatX is the convex hull of x(s), s ∈ {0, 1, 2}, i.e. a two-dimensional convex
polytope with corners x(s), since ι is an affine transformation. In particular this also directly yields
that x∗ is in the interior of X. Further, this shows that for any x ∈X we have x1 ≥ 0 with equality
iff x= x(0) and further x1 ≤ 2

d with equality iff x= x(2). UsingWb2 = 0{0,1}2 andWb1 = d
kw from

the proof of Lemma 5.1 we directly get that

W(b1, b2)x= p(0)e + d
k
x1w with

d
k
x1 ∈ [0, 2/k],

hence the image of X under W(b1, b2) is a subset of W. Conversely, for y ∈ [0, 2/k] and
x= k

2yx
(2) ∈X we have W(b1, b2)x= p(0)e + yw, which shows that W is the image of X under

W(b1, b2). This also shows that Xp is the preimage of p ∈W, since for y ∈ [0, 2/k] and p=
p(0)e + ywwe have p(1, 1)= y. This in turn directly yields thatXp(s)e

= {p(s)} for s ∈ {0, 2}. To see that
Xp contains interior points of X otherwise, we can consider non-trivial convex combinations of
x∗ and x(0) for k

dp(1, 1)< x∗
1 and non-trivial convex combinations of x∗ and x(2) for k

dp(1, 1)> x∗
1 ,

which are points in the interior of X. �
Notice that in the two-dimensional case at hand, the proof of Lemma 5.2 is overly formal. The

set X is simply (the convex hull of) the triangle given by x(s), s ∈ {0, 1, 2}, with Xp given by the
vertical lines in X with x1 = d

k p(1, 1). Further, the set Xn is a canonical discretization of X in that
it is given by the points of the grid (m−1

Z)2 contained in the triangle X.

5.4 Proof of Lemma 2.4
We derive Lemma 2.4 from the following stronger assertion.

Lemma 5.3. Let U⊆P({0, 1, 2}) be a subset with non-empty interior and such that the closure of U
is contained in the interior of P({0, 1, 2}). Then there exists a constant c= c(U) ∈R>0 such that for
all n ∈N and all p ∈Pn ∩ U we have Ẽ(p)e−c/n ≤ E(p)≤ Ẽ(p)ec/n, where

Ẽ(p)=
√

d3
(2π)2m2∏

s p(s)
enφ2(p).

Proof. Let C denote the closure of U and πs : C→ [0, 1], p �→ p(s) the projection for s ∈ {0, 1, 2}.
Since C is compact, the continuous map πs attains its maximum p+(s) and its minimum p−(s),
which directly gives 0< p−(s)< p+(s)< 1 since all p ∈ C are fully supported and the interior of C
is non-empty (that gives the second inequality). Using Lemma 5.2, the continuous map π : C→
[0, 2/k], p �→ pe(1, 1), and the same reasoning as above we obtain the maximum pe,+(1, 1) and
minimum pe,−(1, 1) of π with 0< pe,−(1, 1)< pe,+(1, 1)< 2/k, which directly give the bounds
pe,−(x), pe,+(x)> 0 for x ∈ {0, 1}2 as functions of pe,+(1, 1) and pe,−(1, 1). Now, we can use these
bounds with the Stirling bound to obtain a constant c ∈R>0 such that for all n ∈N and p ∈Pn ∩ C
we have E′(p)e−c/n ≤ E(p)≤ E′(p)ec/n, where

E′(p)=
√

2πmd3∏
s (2πmp(s))

∏
s∈{0,1,2}

(
k

s, 2− s, 2− s, k− 4+ s

)mp(s)
emH(p)−(d−1)nH(pe)

=
√

d3
(2π)2m2∏

s p(s)
e2m ln (k2)−mDKL(p‖p∗)−(d−1)nH(pe).

To see that E′(p)= Ẽ(p), we observe that DKL(pe ‖ p∗
e )= 2H(2/k)−H(pe), since H(p∗

e )=
2H(2/k), pe(1, 0)= pe(0, 1), and pe(1, 1)+ pe(1, 0)= 2/k for any p ∈P({0, 1, 2}). �
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Now, Lemma 2.4 is an immediate corollary. To see this, fix a fully supported over-
lap distribution p ∈P({0, 1, 2}) and a sequence (pn)n∈N ⊆Pn converging to p, e.g. pn =
ι(m−1�mx1�,m−1�mx2�) with ι(x)= p and n sufficiently large. Further, fix a neighbourhood U
of p as described in Lemma 5.3, which is possible since p is fully supported. Then we have pn ∈ U
for sufficiently large n, hence with the continuity of φ2 we have

lim
n→∞

1
n
ln (E(pn))= lim

n→∞
1
n
ln (Ẽ(pn))= lim

n→∞ φ2(pn)= φ2(p).

5.5 Proof of Proposition 2.6
We postpone the proof of Proposition 2.5 and continue with Laplace’s method for sums using the
result. We obtain that

E[Z2]
E[Z]2

=
∑
p

e(p), e(p)= E(p)
E[Z]2

=
( 2n/k
npe(1,1)

)((k−2)n/k
npe(0,1)

)( dn
2dn/k

)( m
mp
)∏

s p∗(s)mp(s)( 2dn/k
dnpe(1,1)

)((k−2)dn/k
dnpe(0,1)

)( n
2n/k
) ,

where the sum is over p ∈Pn. First, we use Proposition 2.5 to show that Laplace’s method of sums
is applicable. While we have already established that �d∗ is non-negative, we still need to ensure
that p∗ is the unique minimizer of�d for d < d∗ and that the Hessian at p∗ is positive definite. We
will need the second order Taylor approximation of the KL divergence. To be specific, let μ∗ have
finite non-trivial support S and let f :P(S)→R≥0, μ �→DKL(μ ‖ μ∗), be the corresponding KL
divergence. Then

f (2) :P(S)→R≥0, μ �→ 1
2
Dχ2 (μ ‖ μ∗)= 1

2
∑
s

(μ(s)− μ∗(s))2

μ∗(s)
= 1

2
(μ − μ∗)tD−1

μ∗ (μ − μ∗),

is the second order Taylor approximation of f at μ∗, where Dχ2 (μ ‖ μ∗) denotes Pearson’s χ2

divergence, Dμ∗ = (δi,jμ∗(i))i,j∈S the matrix with μ∗ on the diagonal, and δi,j = 1 if i= j and 0
otherwise; this can be easily seen by considering the extension of f to R

S≥0. On the other hand,
we would like to consider �d as a function over the suitable domain X from Section 5.3, however
relative to the base point p∗. Hence, let X∗ = {x− x∗:x ∈X} be the triangle X centred at x∗ instead
of x(0), and ι∗ :X∗ →P({0, 1, 2}) the bijection given by

ι∗(x)= ι(x+ x∗)= p(0) + (b1, b2)x+ (b1, b2)x∗ = ι(x∗)+ (b1, b2)x= p∗ + (b1, b2)x
for x ∈X∗, with b1, b2 from Equation (4). Now, let γd :X∗ →R≥0, x �→ �d(ι∗(x)), denote the
corresponding parametrization of �d. Then, using the chain rule for multivariate calculus as
indicated above for both (b1, b2) andW from (3), we derive the Hessian

Hd = (b1, b2)t
(
D−1
p∗ − (d − 1)k

d
WtD−1

p∗
e
W
)
(b1, b2) (6)

of γd at 0[2] ∈R
2, using the shorthand Dμ∗ = (δi,jμ∗(i))i,j. The properties of the KL divergence

imply that γd(0[2])= 0 and γd has a stationary point at 0[2]. Now, the second order Taylor
approximation γ

(2)
d :X∗ →R, x �→ 1

2x
tHdx, of γd at 0[2] can be written as γ

(2)
d = �

(2)
d ◦ ι∗ with

�
(2)
d (p)= 1

2

[
Dχ2 (p ‖ p∗)− (d − 1)k

d
Dχ2 (pe ‖ p∗

e )
]
. (7)

Further, for any neighbourhood U of 0[2] such that the closure of U is contained in the interior of
X∗, Taylor’s theorem yields a constant c ∈R>0 such that

γ
(2)
d (x)− c‖x‖32 ≤ γd(x)≤ γ

(2)
d (x)+ c‖x‖32 (8)
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16 K. Panagiotou and M. Pasch

for all x ∈ U. Since Hd is symmetric, let λ1, λ2 ∈R with λ1 ≤ λ2 denote its eigenvalues and fix a
corresponding orthonormal basis of eigenvectors v1, v2 ∈R

2, i.e. Hdv1 = λ1v1 and Hdv2 = λ2v2.
Formally and analogously to the KL divergence we will take the liberty to identify �d and

�
(2)
d with their extensions to the maximal domainsD⊆R

{0,1,2} andD(2) =R
{0,1,2} respectively. In

particular, Lemma 5.2 shows that for any fully supported p ∈P({0, 1, 2}) the edge distribution pe
also has full support, hence we can use the Lipschitz continuity of W on R

{0,1,2} to find ε ∈R>0
such that both p′ > 0 andWp′ > 0 for any p′ ∈ Bε(p)⊆R

{0,1,2}
>0 and thereby�d is well-defined and

smooth on Bε(p).

Lemma 5.4. Let k ∈Z≥4 and d ∈ (0, d∗). Then the unique minimizer of γd is 0[2] and Hd is positive
definite.

Proof. Using Proposition 2.5 we know that Hd∗ is positive semidefinite since 0[2] is a global
minimum of γd∗ . This in turn yields that γ

(2)
d∗ ≥ 0 or equivalently �

(2)
d∗ ≥ 0. Now, for any d < d∗

the unique minimizer of �d is p∗ since �d(p∗)= 0, further �d(p)> 0 for any p �= p∗ with pe = p∗
e

and

�d(p)=DKL(p ‖ p∗)−
(
1− 1

d

)
kDKL(pe ‖ p∗

e )> �d∗(p)≥ 0

for any pwith pe �= p∗
e . But the same argumentation shows that p∗ is the unique minimizer of�(2)

d ,
sinceDχ2 (μ ‖ μ∗) is also minimal with value 0 iff μ = μ∗. This in turn shows that γ (2)

d is uniquely
minimized at 0[2] and hence Hd is positive definite. �

Let ηKL = supp�=p∗
DKL(pe‖p∗

e )
DKL(p‖p∗) denote the contraction coefficient with respect to the KL diver-

gence. Notice that by Proposition 2.5 we have d∗
(d∗−1)k ≥ DKL(pe‖p∗

e )
DKL(p‖p∗) for all p �= p∗ with equality for

p= p(2), hence ηKL = d∗
(d∗−1)k (so Proposition 2.5 indeed confirms the conjecture by the authors

in [36]). Further, let ηχ2 = supp�=p∗
D

χ2 (pe‖p∗
e )

D
χ2 (p‖p∗) denote the contraction coefficient with respect to

the χ2 divergence. The proof of Lemma 5.4 suggests that ηχ2 ≤ ηKL, a result known from the
literature.

In the rest of this section we discuss the straightforward (but cumbersome) application of
Laplace’s method for sums. For convenience, we first show that the boundaries can be neglected
and derive the asymptotics of the sum on the interior using the uniform convergence established
in Lemma 5.3.

Lemma 5.5. Let d ∈ (0, d∗) and let U be a neighbourhood of p∗ such that its closure is contained in
the interior of P({0, 1, 2}). Then

E[Z2]
E[Z]2

=
∑
∈Pn

e(p)∼
∑

p∈Pn∩U

√
d

(2π)2m2∏
s p(s)

e−m�d(p).

Proof. Let �min > 0 denote the global minimum of �d on P({0, 1, 2}) \ U. Now, we can use
the well-known bounds 1

a+1 exp (aH( ba ))≤
(a
b
)≤ exp (aH( ba )) for binomial coefficients and the

corresponding upper bound for multinomial coefficients (using the entropy of the distribution
determined by the weights bi

a ) to derive∑
p�∈U

e(p)≤ ρ(n)
∑
p�∈U

e−m�d(p) ≤ ρ(n)e−m�min |Pm({0, 1, 2})| = ρ(n)
(
m+ 1
2

)
e−m�min , where

ρ(n)= (n+ 1)
(
2dn
k

+ 1
)(

(k− 2)dn
k

+ 1
)
.
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Here, we used the form of e(p) introduced at the beginning of this section and further notice that
the bounds used are tight for the log-densities, i.e. the exponent is �d(p) by the computations in
Section 5.4. The right-hand side vanishes for n tending to infinity, hence we have

E[Z2]
E[Z]2

∼
∑
p∈U

e(p).

Now, the result directly follows using Lemma 5.3 and Lemma 2.2. �
Lemma 5.5 shows that the overlap distributions pwithmaterial contributions e(p) to the second

moment are concentrated around p∗. Hence, instead of considering a fixed neighbourhood U of
p∗ we consider a sequence (Un)n∈N of decreasing neighbourhoods. First, we choose a scaling that
improves the assertion of Lemma 5.5 and further allows to simplify the asymptotics of the right-
hand side, in the sense that the leading factor collapses to a constant and γd(x)= �d(ι∗(x)) can be
replaced by its second order Taylor approximation γ

(2)
d (x)= �

(2)
d (ι∗(x))= 1

2x
tHdx from above (7).

For this purpose let U∗ ⊆X∗ be a sufficiently small neighbourhood of 0[2] (in particular bounded
away from the boundary of X∗), further

U∗
n =

{
x ∈X∗ : ‖x‖2 <

ln (m)√
m

}
and X∗

n = {x− x∗ : x ∈Xn
}∩ U∗

n for n ∈N.

In the following we restrict to n≥ n0 where n0 ∈N is such that U∗
n0 ⊆ U∗.

Lemma 5.6. For d ∈ (0, d∗) we have

E[Z2]
E[Z]2

∼
√

d
(2π)2m2∏

s p∗(s)
∑
x∈X∗

n

e−
m
2 x

tHdx.

Proof. First, notice that we can apply Lemma 5.5 to ι∗(U∗). So, we need to show that the sum over
U∗ \ U∗

n is negligible. Then we proceed to derive the asymptotics of the sum over U∗
n. Obviously,

we have γmin(n)→ 0 for n→ ∞ with γmin(n)=minx �∈U∗
n γd(x)> 0, since γd(x)= �d(ι∗(x)) is

continuous and γd(0[2])= 0. The main objective of the proof is to show that γmin(n) converges to
zero sufficiently slow. But with γ

(2)
d (x)= 1

2x
tHdx from above (7) and for any x ∈R

2 we have

γ
(2)
d ((v1, v2)x)= 1

2
(λ1x21 + λ2x22)≥

λ1
2

‖x‖22 = λ1
2

‖(v1, v2)x‖22
since (v1, v2) is an orthonormal basis, so γ

(2)
d (x)≥ λ1

2 ‖x‖22 for all x ∈R
2. Now, for any sufficiently

small ε ∈ (0, 1) let c ∈R>0 be the constant for Bε(0[2]) from Taylor’s theorem applied to γd at 0[2],
then for any x ∈ U∗ = Bε(0[2])∩ Bδ(0[2]), with δ = ελ1

2c , we have γd(x)≥ (1− ε)γ (2)
d (x) since

γd(x)− (1− ε)γ (2)
d (x)≥ εγ

(2)
d (x)− c‖x‖32 ≥

(
ελ1
2

− cδ
)

‖x‖22 = 0.

In combination we have γd(x)≥ (1−ε)λ1
2 ‖x‖22 and using p= ι∗(x) hence

lim
n→∞

∑
x �∈U∗

n

e(p)= lim
n→∞

∑
x∈U∗\U∗

n

√
d

(2π)2m2∏
s p(s)

e−mγd(x) ≤ lim
n→∞ Cme−

(1−ε)λ1
2 ln (m)2 = 0,

by using (the proof of) Lemma 5.5 and some sufficiently large constant C. With this we have

E[Z2]
E[Z]2

∼
∑
x∈X∗

n

e(ι∗(x))∼
√

d
(2π)2m2∏

s p∗(s)
∑
x∈X∗

n

e−mγ
(2)
d (x),

https://doi.org/10.1017/S0963548324000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000440


18 K. Panagiotou and M. Pasch

where the last equivalence follows from the fact that the leading factor converges to the respective
constant uniformly on U∗

n and by (8) on U∗. �
Lemma 5.6 completes the analytical part of the proof. For the last, measure theoretic, part

we recall the bijection ιn from Lemma 5.1. The translation of the sum on the right-hand side of
Lemma 5.6 into a Riemann sum and further into the integral

∫
g∞(x)dx, where

g∞ :R2 →R>0, y �→
√

d
(2π)2

∏
s p∗(s)

exp
(

−1
2
ytHdy

)
,

is essentially given by the grid Xn ⊆ (m−1
Z)2 ⊆R

2. We make this rigorous in the following.

Lemma 5.7. We have

E[Z2]
E[Z]2

∼
∫

g∞(x)dx.

Proof. We start with the partition of R2 into the squares

Qn,x =
⎧⎨
⎩x+ α1

⎛
⎝1
0

⎞
⎠+ α2

⎛
⎝0
1

⎞
⎠ :α ∈

[
− 1
2m

,
1
2m

)2
⎫⎬
⎭ , x ∈ (m−1

Z)2.

Next, we need a suitable selection of squares to cover the disc

x∗ + U∗
n =

{
x∗ + x:x ∈R

2, ‖x‖2 <
ln (m)√

m

}
⊆R

2

corresponding to the disc U∗
n. For this purpose let xmin, xmax ∈ (m−1

Z)2 be given by

xmin,1 =m−1
⌊
m
(
x∗
1 − ln (m)√

m

)⌋
, xmin,2 =m−1

⌊
m
(
x∗
2 − ln (m)√

m

)⌋
,

xmax,1 =m−1
⌈
m
(
x∗
1 + ln (m)√

m

)⌉
, xmax,2 =m−1

⌈
m
(
x∗
2 + ln (m)√

m

)⌉
.

Further, let Gn = (m−1
Z)2 ∩ ([xmin,1, xmax,1]× [xmin,2, xmax,2]

)
. By the definition of xmin and xmax

the points on the boundary are not in x∗ + U∗
n, which ensures that x∗ + U∗

n ⊆Qn with Qn =⋃
x∈Gn Qn,x. Further, we haveQ− ⊆Qn ⊆Q+ with

Q− =
{
x ∈R

2:‖x− x∗‖∞ ≤ ln (m)√
m

}
,Q+ =

{
x ∈R

2:‖x− x∗‖∞ ≤ ln (m)√
m

+ 3
2m

}
,

which ensures that Qn ⊆X for n ∈N sufficiently large. Now, we translate the notions back to X∗
using the bijection τ :R2 →R

2, x �→ x− x∗, i.e. let G∗
n = τ (Gn), Q∗

n,x = τ (Qn,τ−1(x)) for x ∈ G∗
n,

Q∗
n = τ (Qn),Q∗− = τ (Q−) andQ∗+ = τ (Q+). This directly gives

Q∗
n,x =

⎧⎨
⎩x+ α1

⎛
⎝1
0

⎞
⎠+ α2

⎛
⎝0
1

⎞
⎠ :α ∈

[
− 1
2m

,
1
2m

)2
⎫⎬
⎭ , x ∈ G∗

n,Q∗
n =

⋃
x∈G∗

n

Q∗
n,x,

Q∗− =
{
x ∈R

2 : ‖x‖∞ ≤ ln (m)√
m

}
,Q∗+ =

{
x ∈R

2 : ‖x‖∞ ≤ ln (m)√
m

+ 3
2m

}
,
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and U∗
n ⊆Q∗− ⊆Q∗

n ⊆Q∗+ ⊆X∗ for n ∈N sufficiently large. Further, with Lemma 5.6 and the
definition of γ (2)

d we now have

E[Z2]
E[Z]2

∼
∑
x∈G∗

n

√
d

(2π)2m2∏
s p∗(s)

exp
(

−1
2
mxtHdx

)
.

Finally, we need to adjust the scaling to turn the sum on the right-hand side into a Riemann sum.
For this purpose let σ :R2 →R

2, x �→ √
mx, further G′

n = σ (G∗
n), Q′

n,x = σ (Q∗
n,σ−1(x)) for x ∈ G′

n,
Q′

n = σ (Q∗
n),Q′− = σ (Q∗−) andQ′+ = σ (Q∗+). This directly gives

Q′
n,x =

⎧⎨
⎩x+ α1

⎛
⎝1
0

⎞
⎠+ α2

⎛
⎝0
1

⎞
⎠ :α ∈

[
− 1
2
√
m
,

1
2
√
m

)2
⎫⎬
⎭ , x ∈ G′

n,Q′
n =

⋃
x∈G′

n

Q′
n,x,

Q′− = {x ∈R
2:‖x‖∞ ≤ ln (m)

}
,Q′+ =

{
x ∈R

2 : ‖x‖∞ ≤ ln (m)+ 3
2
√
m

}
,

andQ′− ⊆Q′
n ⊆Q′+. Using thatmxtHdx= σ (x)tHdσ (x) for all x ∈ G∗

n and further that the area of
Q′

n,x ism−1 for all x ∈ G′
n we have

E[Z2]
E[Z]2

∼
∑
x∈G′

n

√
d

(2π)2m2∏
s p∗(s)

exp
(

−1
2
xtHdx

)
=
∫

gn(y)dy,

gn(y)=
∑
x∈G′

n

1{y ∈Q′
n,x}
√

d
(2π)2

∏
s p∗(s)

exp
(

−1
2
xtHdx

)
, y ∈R

2.

In order to show that
∫
gn(y)dy converges to

∫
g∞(y)dy we recall from Lemma 5.4 that Hd is

positive definite, which ensures that
∫
g∞(y)dy exists and is finite. Now, using Taylor’s theorem

with order 0 and the Lagrange form of the first order remainder with the fact that the absolutes
of the first derivatives of g∞ are bounded from above yields a constant c ∈R>0 such that for all
n ∈N and all y ∈Q′

n, with x ∈ G′
n such that y ∈Q′

n,x, we have

‖g∞(y)− gn(y)‖∞ = ‖g∞(y)− g∞(x)‖∞ ≤ c√
m
.

This bound directly suggests that∣∣∣∣
∫

1{y ∈Q′
n,x}g∞(y)dy−

∫
1{y ∈Q′

n,x}gn(y)dy
∣∣∣∣≤ cm− 3

2 ,∣∣∣∣
∫

1{y ∈Q′
n}g∞(y)dy−

∫
1{y ∈Q′

n}gn(y)dy
∣∣∣∣≤ c√

m

(
2 ln (m)+ 3√

m

)2
and

∣∣∣∣
∫

g∞(y)dy−
∫

gn(y)dy
∣∣∣∣≤ c√

m

(
2 ln (m)+ 3√

m

)2
+
∫

1{y �∈Q′
n}g∞(y)dy.

In particular the last bound suggests that
∫
gn(y)dy→ ∫

g∞(y)dy since the error on the right-hand
side tends to zero as n tends to infinity. �

The only remaining part of the proof is to compute
∫
g∞(x)dx.

Lemma 5.8. We have
∫
g∞(x)dx=

√
k−1
k−d .
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Proof. The Gaussian integral gives

∫
g∞(x)dx=

√
d

(2π)2
∏

s p∗(s)

√
(2π)2

det (Hd)
=
√

d
det (Hd)

∏
s p∗(s)

.

Recall that the HessianHd ∈R
2×2 from (6) is a 2× 2 matrix and all entries are given explicitly, so

a straightforward calculation asserts that det (Hd)= (k− d)d/[(k− 1)
∏

s p∗(s)]. �
Finally, combining Lemma 5.7 with Lemma 5.8 completes the proof of Proposition 2.6.

5.6 Proof of Proposition 2.5
This section is dedicated to the identification of the minimizers of �d. First, we show that the
stationary points of �d including their characterization are in one to one correspondence with
the fixed points of a ratio of belief propagation messages for the constraint satisfaction problem
defined in Section 5.1, cf. Lemmas 5.9 to 5.12 below. Considering the ratio turns out to be sufficient
and allows to consider a one-dimensional problem. For more background on the correspondence
of stationary points of �d and fixed points of belief propagation we refer the reader to [31, 41].

The major advantage of this equivalent fixed point problem, cf.Equation (9) below, is that the
base function ι∗BP is a simple rational function and the target function ιBP is obtained from ι∗BP by
a single exponentiation. Thus, in the second step we discuss ι∗BP and introduce a piecewise linear
bound on ι∗BP on [1, k] given by g∗

1 and g∗
k , cf.Lemma 5.13 below. The piecewise function given by

g∗
1 and g

∗
k on [1, k] and ι∗BP on [k,∞) is increasing and piecewise convex, which allows to establish

the unique fixed point of ιBP on (1,∞) (and for reasonable choices of d) in Lemmas 5.16 and 5.17.
For symmetry reasons this also completes the discussion for k= 4.

In the last step, we establish that ιBP has no fixed points on (0, 1), for reasonable d and k> 4,
cf.Lemma 5.19 below. By combining the results we obtain that ιBP has two fixed points (three
for k= 4), one at 1 corresponding to the desired interior minimum of �d and one in [k,∞)
corresponding to a saddle point of�d (two for k= 4, and for reasonable d). This allows to identify
the two minimizers of �d∗ (three for k= 4) and completes the proof.

We begin with characterizing the stationary points of �d for any d ∈R>0.
In order to pin them down we first determine the stationary points of the restriction of �d

to overlap distributions with the same fixed edge distribution. For this purpose, recall the line
W⊆P({0, 1}2) of attainable edge distributions and the lines Pq = ι(Xq)= {p ∈P({0, 1, 2}) : pe =
q} of overlap distributions with fixed edge distribution q ∈W from Lemma 5.2. Further, let
�d,q :Pq →R denote the restriction of �d to Pq. For x ∈R>0 let px ∈P({0, 1, 2}) be given
by px(s)= p∗(s)xs/

∑
s p∗(s)xs, s ∈ {0, 1, 2}, further let p0 = p(0), p∞ = p(2), and Pmin = {px : x ∈

[0,∞]}. Finally, let ιrp : [0,∞]→Pmin, x �→ px, denote the induced map and ιpe :Pmin →W,
p �→ pe, the corresponding edge distributions.

Lemma 5.9. For all q ∈W \ {p(0)e , p(2)e } the map �d,q has a unique stationary point pq ∈Pq that is
a global minimum. The unique global minimizer of �d,p(s)e

is pp(s)e = p(s) for s ∈ {0, 2}. Further, we
have Pmin = {pq:q ∈W} and the maps ιrp, ιpe are bijections.

Proof. Recall from Lemma 5.2 that Pq is one-dimensional for q ∈W \ {p(0)e , p(2)e }. Further, the
map �d,q is strictly convex since the KL divergence DKL(p ‖ p∗) (respectively x ln (x)) is and fur-
ther DKL(pe ‖ p∗

e )=DKL(q ‖ p∗
e ) is constant. Now, fix an interior point p◦ ∈Pq and let a boundary

point pb ∈Pq be given. Then pb is not fully supported since it is on the boundary of P({0, 1, 2}
and hence the derivative of DKL(αp◦ + (1− α)pb ‖ p∗) tends to −∞ as α tends to 0, which shows
that �d,q is not minimized on the boundary. Hence, we know that there exists exactly one sta-
tionary point pq ∈Pq and that �d,q(p) is minimal iff p= pq. As discussed in Lemma 5.2 we have
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Pq = {p(s)} for q= p(s)e and s ∈ {0, 2}, so pq = p(s) is obviously the unique global minimizer of �d,q
in this case and further �d,q has no stationary points (since Pq has empty interior). This shows
that the map q �→ pq for q ∈W is a bijection.

Further, for q in the interior ofW the stationary point pq is fully supported and the unique root
of the first derivative of �d,q in the direction b2 from (4), i.e.

ln
(pq(0)
p∗(0)

)
+ ln

(pq(2)
p∗(2)

)
= 2 ln

(pq(1)
p∗(1)

)
or equivalently

pq(2)/p∗(2)
pq(1)/p∗(1)

= pq(1)/p∗(1)
pq(0)/p∗(0)

.

Let P′
min denote the set of all fully supported p ∈P({0, 1, 2}) satisfying p(2)/p∗(2)

p(1)/p∗(1) = p(1)/p∗(1)
p(0)/p∗(0) , i.e.

our set of candidates for stationary points. Now, for p ∈P′
min let q= pe, then we obviously have

p ∈Pq and p is a root of the first derivative of �d,q in the direction b2, so p is the unique root
and p= pq. Hence, the map ι′pe :P′

min →W, p �→ pe, is a bijection (up to the corners of W) with
inverse q �→ pq. Now, let ιpr:P′

min →R>0, p �→ xp, with xp = p(1)p∗(0)
p∗(1)p(0) . Notice that ιpr is surjective

since for any x ∈R>0 we have

px(2)/p∗(2)
px(1)/p∗(1)

= x2

x
= x= px(1)/p∗(1)

px(0)/p∗(0)
and hence px ∈P′

min. To show that ιpr is injective let p ∈P′
min and x= xp. Using the definition of

xp and the defining property of P′
min we get

p(0)= p∗(0) p(0)
p∗(0)

, p(1)= p∗(1)x p(0)
p∗(0)

, p(2)= p∗(2)x p(1)
p∗(1)

= p∗(2)x2 p(0)
p∗(0)

, so

p(s)= p(s)
p(0)+ p(1)+ p(2)

= p∗(s)xs∑
s p∗(s)xs

= px(s), s ∈ {0, 1, 2}.

This shows that Pmin =P′
min ∪ {p0, p∞}, that ιrp is a bijection with inverse ιpr (canonically

extended to the endpoints), and finally that ιpe = ι′pe is a bijection as well. �
Lemma 5.9 has a few immediate consequences. For one, the only minimizers of �d in the

direction b2, from (4), on the boundary are p(0) and p(2), while all other boundary points are
maximizers in the direction b2, hence if p is a global minimizer of �d on the boundary, we have
p ∈ {p(0), p(2)}. Further, all stationary points of�d are either local minima or saddle points. Finally,
we have p ∈Pmin for any stationary point p ∈P({0, 1, 2}) of �d since then also the derivative in
the direction of b2 vanishes.

For the upcoming characterization of the stationary points of �d let

ιrr :R>0 →R>0, ιrr(x)= ι∗rr(x)
d−1
d , ι∗rr(x)=

px,e(1, 1)px,e(0, 0)
px,e(1, 0)px,e(0, 1)

.

Notice that ιrr(x) ∈R>0 for x ∈R>0 since then px is fully supported and hence px,e is fully sup-
ported by Lemma 5.2. Finally, let Xst = {x ∈R>0 : ιrr(x)= x} denote the fixed points of ιrr and
Pst = {px : x ∈Xst} the corresponding distributions. Notice that px = p∗ for x= 1 and further
ι∗rr(1)= 1, i.e. ιrr(1)= 1 for all d ∈R>0, hence 1 ∈Xst and p∗ ∈Pst for all d ∈R>0.

Lemma 5.10. The stationary points of �d are given by Pst.

Proof. Using Lemma 5.9, a fully supported distribution p ∈P({0, 1, 2}) is a stationary point of�d
iff there exists x ∈R>0 such that p= px and the derivative of �d at px in the direction b1 vanishes,
i.e. px is a solution of

0=
((

ln
(
px(s)
p∗(s)

))t

s∈{0,1,2}
− (d − 1)k

d

(
ln
(
px,e(y)
p∗
e (y)

))t

y∈{0,1}2
W

)
b1,
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where we used the chain rule for multivariate calculus, that W is column stochastic and that
b1 ∈ 1⊥{0,1,2}. Recall from Section 5.3, e.g. from the proof of Lemma 5.1, that Wb1 = d

kw, hence
computing the dot product with b1 gives

0= d ln (x)− (d − 1) ln
(
px,e(1, 1)px,e(0, 0)
px,e(1, 0)px,e(0, 1)

)
.

Obviously, equality holds if and only if x ∈Xst, hence p is a stationary point of �d iff p ∈Pst. �
Lemma 5.10 does not only allow to translate the stationary points of �d into fixed points of ιrr,

it also allows to translate the types as follows.

Lemma 5.11. Fix x ∈R>0. Then we have ιrr(x)< x iff (�d ◦ ιrp)′(x)> 0, ιrr(x)> x iff (�d ◦
ιrp)′(x)< 0, and ιrr(x)= x iff (�d ◦ ιrp)′(x)= 0.

Proof. Fix x ∈R>0. The proof of Lemma 5.10 directly suggests that the first derivative of �d at
px in the direction b1 is strictly positive iff

0< ln (x)− d − 1
d

ln (ι∗rr(x)),

which holds iff ιrr(x)< x. We’re left to establish that the direction of ιrp is consistent with b1.
Intuitively, using Lemma 5.2 and Lemma 5.9 we can argue that x �→ px,e(1, 1) is a bijection and
hence either increasing or decreasing. Taking the limits x→ 0 and x→ ∞ suggests that it is
increasing, hence with c ∈R

2 given by ι′rp(x)= (b1, b2)c, we know that c1 ≥ 0.
Formally, we quantify the direction of ιrp. For this purpose we compute the derivative of ιrp at

x ∈R>0, given by

ι′rp(x)=
⎛
⎜⎝ sp∗(s)xs−1∑

s′∈{0,1,2} p∗(s′)xs′ − p∗(s)xs
∑

s′∈{0,1,2} s′p∗(s′)xs′−1(∑
s′∈{0,1,2} p∗(s′)xs′

)2
⎞
⎟⎠

s∈{0,1,2}

.

Notice that v= ι′rp(x) ∈ 1⊥{0,1,2}, since ιrp(R>0)⊆P({0, 1, 2}) or by computing
∑

s vs = 0 directly.
Now, let c ∈R

2 be given by v= (b1, b2)c. This directly gives c2 = v2 and hence c1 = d−1(v1 +
2v2)= d−1∑

s svs. Now, notice that

S= dxc1 =
∑

s,s′∈{0,1,2}
px(s)px(s′)s(s− s′)

=
∑
s>s′

px(s)px(s′)s(s− s′)−
∑
s>s′

px(s)px(s′)s′(s− s′)=
∑
s>s′

px(s)px(s′)(s− s′)2 > 0,

which directly gives c1 = S
dx ∈R>0. Now, with ∇ =

(
∂�d
∂p(s) (px)

)
s∈{0,1,2} ∈R

{0,1,2} denoting the
partial derivatives of �d at px and using the chain rule we have

(�d ◦ ιrp)′(x)= ∇tι′rp(x)= c1∇tb1 + c2∇tb2 = c1∇tb1,

since the derivative ∇tb2 of �d at px in the direction b2 is zero, hence we have (�d ◦ ιrp)′(x)> 0
iff the derivative ∇tb1 of �d at px in the direction b1 is strictly positive, which is the case
iff ιrr(x)< x. �

Lemma 5.11 with Lemma 5.10 shows that control over ιrr gives complete control over the loca-
tion and characterization of the stationary points of �d. However, instead of solving the fixed
point equation given by ιrr directly, we use a slight modification inspired by the belief propaga-
tion algorithm applied to the constraint satisfaction discussed in Section 5.1 and initialized with
uniform messages.
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For this purpose let N ∈Z≥0, further N1, N2 ∈ [N]0 and the hypergeometric distribution
pN,N1,N2 ∈P(Z) be given by

pN,N1,N2 (s)=
(N1
s
)(N−N1

N2−s
)

(N
N2

) =
( N
N−N1−N2+s,N1−s,N2−s,s

)
(N
N1

)(N
N2

) for s ∈Z.

The latter form directly shows that pN,N1,N2 = pN,N2,N1 . Now, for y ∈ {0, 1}2 let p∗
y ∈P({0, 1, 2}) be

given by p∗
(1,1)(s)= pk−1,1,1(s− 1), p∗

(1,0)(s)= pk−1,1,2(s), p∗
(0,1)(s)= pk−1,2,1(s), p∗

(0,0)(s)= pk−1,2,2(s)
for s ∈ {0, 1, 2}. On the other hand, for y ∈ {0, 1}2 let p′

y ∈P({0, 1, 2}) be given by p′
(1,1)(s)=

pk−1,1,1(s) for s ∈ {0, 1, 2} and further p′
y = p∗

y for y ∈ {0, 1}2 \ {(1, 1)}. Finally, for a distribution
p ∈P({0, 1, 2}) let fp :R≥0 →R≥0, x �→∑

s∈{0,1,2} p(s)xs, be its probability generating function,
and further ιBP :R>0 →R>0 given by

ιBP(x)= ι∗BP(x)d−1, ι∗BP(x)=
fp′

(1,1)
(x)fp′

(0,0)
(x)

fp′
(1,0)

(x)fp′
(0,1)

(x)
, for x ∈R>0. (9)

Lemma 5.12. Fix x ∈R>0. Then we have ιrr(x)< x iff ιBP(x)< x, ιrr(x)> x iff ιBP(x)> x, and
ιrr(x)= x iff ιBP(x)= x.

Proof. First, notice that the normalization constant of px cancels out in ι∗rr, as does the normaliza-
tion constant

(k
2
)2

of p∗. Further, with v= (k− 4+ s, 2− s, 2− s, s)t ∈R
{0,1}2 we have Wy,s

(k
v
)=

vy
k
(k
v
)= ( k−1

v−(δy,z)z
)
for y ∈ {0, 1}2, s ∈ {0, 1, 2}, and thereby

ι∗rr(x)=
(∑

s
( k−1
k−4+s,2−s,2−s,s−1

)
xs
) (∑

s
( k−1
k−5+s,2−s,2−s,s

)
xs
)

(∑
s
( k−1
k−4+s,2−s,1−s,s

)
xs
) (∑

s
( k−1
k−4+s,1−s,2−s,s

)
xs
) for x ∈R>0.

Now, since the normalization constants cancel out in total, this directly gives

ι∗rr(x)=
fp∗

(1,1)
(x)fp∗

(0,0)
(x)

fp∗
(1,0)

(x)fp∗
(0,1)

(x)
= xι∗BP(x) for x ∈R>0,

using that p∗
(1,1)(s)= p′

(1,1)(s− 1) for s ∈ {0, 1, 2}, hence fp∗
(1,1)

(x)= xfp′
(1,1)

(x), and p∗
y (s)= p′

y(s) for

y �= (1, 1). Now, we have x= ιrr(x) iff x= x
d−1
d ιBP(x)

1
d , which holds iff x

1
d = ιBP(x)

1
d , which then

again is equivalent to x= ιBP(x). Equivalence of the inequalities follows analogously. �
The following part is dedicated to the identification of the fixed points of ιBP. We start with a

discussion of ι∗BP. For this purpose let g∗
1 , g

∗
k :R≥1 →R≥1 be given by

g∗
1 (x)=

1
k− 1

(x− 1)+ 1 and g∗
k (x)=

13k− 12
27(k− 1)(k− 2)

(x− k)+ 2(7k− 12)
9(k− 2)

, x ∈R≥1.

Lemma 5.13. For any k ∈Z≥4 we have

lim
x→0

ι∗BP(x)=
k− 4
k− 3

, ι∗BP(1)= 1= g∗
1 (1) and ι∗BP(k)= g∗

k (k).

For the first derivative we have

ι∗′
BP(1)= g∗′

1(1), ι∗′
BP(k)= g∗′

k(k) and lim
x→∞ ι∗′

BP(x)=
1

2(k− 2)
.
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Moreover, for the second derivative we have

ι∗′′
BP(x)< 0 for x ∈ (0, k), ι∗′′

BP(k)= 0, ι∗′′
BP(x)> 0 for x ∈R>k.

For k= 4 and x ∈R>0 we have ι∗BP(x−1)= (ι∗BP(x))−1.

Proof. Using fp(1)= 1 for the moment generating function of any finitely supported law p, we
have ι∗BP(1)= 1. Further, using that the first moment of a hypergeometric distribution pN,N1,N2 is
N1N2
N and that f ′p(1) is the first moment of p, we have ι∗′

BP(1)= 1
k−1 + 4

k−1 − 2 · 2
k−1 = 1

k−1 . The
symmetry of ι∗BP for the special case k= 4 can be seen as follows. First, recall that pN,N1,N2 (s)=
pN,N−N1,N2 (N2 − s) for any hypergeometric distribution pN,N1,N2 . For s ∈ {0, 1, 2} this gives

p′
(0,0)(s)= p3,2,2(s)= p3,1,2(2− s)= p′

(1,0)(2− s)
= p′

(0,1)(2− s)= p3,2,1(2− s)= p3,1,1(s− 1)= p′
(1,1)(s− 1).

These relations can be directly translated to the moment generating functions, i.e.

fp′
(0,0)

(x)= x2fp′
(1,0)

(x−1)= x2fp′
(0,1)

(x−1)= xfp′
(1,1)

(x)

for x ∈R>0. Using these transformations we have

ι∗BP(x−1)=
fp′

(1,1)
(x−1)fp′

(0,0)
(x−1)

fp′
(1,0)

(x−1)fp′
(0,1)

(x−1)
=

x−1fp′
(1,0)

(x)x−2fp′
(0,1)

(x)

x−1fp′
(1,1)

(x)x−2fp′
(0,0)

(x)
= (ι∗BP(x))−1 .

For k ∈Z≥4 and x ∈R>0 direct computation gives

ι∗BP(x)=
1

2(k− 2)
x+ 2k− 5

2(k− 2)
+ (k− 1)(k− 3)(x− 1)

2(k− 2)(2x+ k− 3)2
,

ι∗′
BP(x)=

1
2(k− 2)

+ (k− 1)(k− 3)(−2x+ k+ 1)
2(k− 2)(2x+ k− 3)3

,

ι∗′′
BP(x)=

4(k− 1)(k− 3)(x− k)
(k− 2)(2x+ k− 3)4

.

The remaining assertions follow immediately or with routine computations. �
Lemma 5.13 has the following immediate consequences.

Corollary 5.14. For any d ∈ (0, 2] we have ι∗BP ∈ (x, 1) for x ∈ (0, 1) and ι∗BP(x) ∈ (1, x) for x ∈R>1.
In particular, p∗ is the unique minimizer of �d.

Proof. Using Lemma 5.13 we notice that ι∗′
BP(x) ∈ [ι∗′

BP(k), 1
k−1 ]⊂ (0, 1) for x ∈R≥1 and

ι∗BP(x)= x for x= 1, hence we have ι∗BP(x) ∈ (1, x) for x ∈R>1. For k= 4 this gives ι∗BP(x) ∈
(x, 1) using the symmetry result. For k ∈Z>4 we have limx→0 ι∗BP(x)> 0, which gives x∗ =
inf{x ∈R>0:ι∗BP(x)≤ x} ∈ (0, 1] using ι∗BP(1)= 1. Assume that x∗ < 1, then using the continuity
of x− ι∗BP(x) we directly get ι∗BP(x∗)= x∗, and further ι∗′

BP(x∗)≤ 1 since ι∗BP(x)> x for x ∈ (0, x∗).
But then, since ι∗′′

BP(x)< 0 for x ∈ (0, k), this implies that ι∗′
BP(x)< 1 for x ∈ (x∗, 1] which yields

that ι∗BP(1)< 1 and hence a contradiction. This shows that ι∗BP(x) ∈ (x, 1) for x ∈ (0, 1). Now,
for any d ∈ (0, 2] we have ιBP(x)≥ ι∗BP(x) ∈ (x, 1) for x ∈ (0, 1) and ιBP(x)≤ ι∗BP(x) ∈ (1, x) for
x ∈R>1. Hence, using Lemma 5.11 and Lemma 5.12 we immediately get that p∗ = p1 is the unique
minimizer of �d. �

Corollary 5.14 covers the case of simple graphs that was discussed in [37]. On the other hand,
Corollary 5.14 suggests that Proposition 2.5 can only hold if d∗ > 2.

Corollary 5.15. For all k ∈Z≥4 we have d∗ ∈R>2.
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Proof. For d ∈R>0 let f (d)= (�d ◦ ιrp)(∞) and notice that f (d)= k
dφ1. Corollary 5.14 shows

that f (d)> 0 for all d ∈ (0, 2]. On the other hand, as derived in Section 4 we know that d∗ is the
unique root of f , which shows that d∗ > 2. �

Based on Corollary 5.14 we can restrict to d ∈R>2, while Corollary 5.15 motivates the discus-
sion of this interval. Further, the restriction d ∈R>2 ensures that xd−1 is increasing and convex
onR>0. In the following we will consider the intervals R≥k, [x̄, k], [1, x̄] and (0, 1] independently,
where x̄= 1

7 (k+ 6) ∈ (1, k) is the intersection of g1 and gk with g1(x̄)= gk(x̄)= 8
7 .

Lemma 5.16. For d ∈ (2, dk), with dk = ln (k)
ln (ι∗BP(k))

+ 1, there exists xmax ∈R>k such that ιBP(x)< x
for x ∈ [k, xmax), ιBP(xmax)= xmax and ιBP(x)> x for x ∈R>xmax .

Proof. Let f (d)= (ι∗BP(k))d−1 for d ∈R≥2, i.e. f (d)= ιBP(k) is the value of ιBP at k under a vari-
ation of d. We know from Lemma 5.13 that ι∗BP(k) ∈R>1, hence f (d) is strictly increasing, and
further direct computation gives f (dk)= k, so we have ιBP(k)< k for any d ∈ (2, dk). Now, since ι∗BP
is strictly increasing and convex on R>k by Lemma 5.13 and further the function xd−1 is increas-
ing and convex for d ∈ (2, dk), we know that ιBP is convex and increasing on R>k, or formally

ι′BP(x)= (d − 1)ι∗BP(x)d−2ι∗′
BP(x)= (d − 1)ιBP(x)

ι∗′
BP(x)

ι∗BP(x)
> 0,

ι′′BP(x)= (d − 1)ιBP(x)

[
(d − 2)

(
ι∗′
BP(x)

ι∗BP(x)

)2
+ ι∗′′

BP(x)
ι∗BP(x)

]
> 0.

Using Lemma 5.13 and for x→ ∞ we have ι∗BP(x)→ ∞ since ι∗′
BP(x)→ 1

2(k−2) and hence
ι′BP(x)→ ∞ by the above, i.e. ιBP(x)− x→ ∞, which suggests the existence of xmax ∈R>k with
ιBP(xmax)= xmax since ιBP(k)< k. Now, let x+ = inf{x ∈R≥k:ιBP(x)≥ x}, then we have x+ ∈
(k, xmax]. Since ιBP(x)< x for x ∈ [k, x+) we need ι′BP(x+)≥ 1, which gives ι′BP(x)> 1 for x> x+
since ι′′BP(x)> 0, hence ιBP(x)> x, thereby x+ = xmax, and in summary ιBP(x)< x for x ∈ [k, xmax),
ιBP(xmax)= xmax and ιBP(x)> x for x ∈R>xmax . �

The proof of Lemma 5.16 serves as a blueprint for the next two cases, where we do not con-
sider ιBP directly since ι∗′′

BP(x)< 0 on (1, k), but work with gk(x)= g∗
k (x)

d−1 and g1(x)= g∗
1 (x)d−1

instead, which are convex, increasing and upper bounds for ιBP on [1, k] since ι∗′′
BP(x)< 0 on

(1, k). In the spirit of Lemma 5.16 we continue to consider the maximal domain for d ∈R>2. Let

dx̄ = ln (x̄)
ln
(
g1(x̄)

) + 1 and dmax =min
(
dx̄, dk

)
.

We postpone the proof that d∗ ≤ dmax, instead we focus on the interval (1, k).

Lemma 5.17. For any d ∈ (2, dmax)⊆ (2, k) and all x ∈ (1, k] we have ιBP(x)< x.

Proof. Fix d ∈ (2, dmax). Since ι∗′′
BP(x)< 0 for x ∈ [1, k), we know that ι∗BP(x)≤ g∗

k (x) for x ∈ [x̄, k]
and ι∗BP(x)≤ g∗

1 (x) for x ∈ [1, x̄], so using that xd−1 is increasing we have that ιBP(x)≤ gk(x) for x ∈
[x̄, k] and ιBP(x)≤ g1(x) for x ∈ [1, x̄]. Analogous to Lemma 5.16 we notice that gk(k)= ιBP(k)<
k since d < dk, that gk(x̄)= g1(x̄)< x̄ since d < dx̄ and that g1(1)= 1. Further, since g∗

1 , g
∗
k are

increasing and convex, using that xd−1 is increasing and convex yields that g1, gk are increasing
and convex. In particular, we can upper bound gk with the line lk:[x̄, k]→ [gk(x̄), gk(k)] connecting
(x̄, gk(x̄)) and (k, gk(k)), which is entirely and strictly under the diagonal. Analogously, we can
upper bound g1 with the line l1:[1, x̄]→ [1, g1(x̄)] connecting (1, 1) and (x̄, g1(x̄)), which is also
entirely and strictly under the diagonal except for (1, 1) where the two lines intersect. In total,
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ιBP(x)≤min (g1(x), gk(x))≤min (l1(x), lk(x))< x for all x ∈ (1, k]. Finally, another implication is
that d−1

k−1 = g′
1(1)≤ l′1(1)< 1 since l1 is below the diagonal, which suggests that dmax ≤ k. �

Combining Lemma 5.16 and Lemma 5.17 shows for any d ∈ (2, dmax) that �d ◦ ιrp has exactly
one stationary point xmax on R>1 which is the unique maximizer of �d ◦ ιrp on this interval.
Further, since dmax ≤ k and using ι′BP(1)= d−1

k−1 we also know that x= 1 is an isolated minimizer
of�d ◦ ιrp. Aside, notice that this argumentation can be used to show thatHd as defined in Section
5.5 is positive semidefinite for all d < k, hence with the arguments from the proof of Lemma 5.4
we see that Hd is positive definite for all d < k and finally with Lemma 5.8 that ηχ2 = 1

k−1 .
For the low overlap region x ∈ (0, 1) we need a significantly different approach, since ι∗BP is

increasing and concave, but ιBP(x)< ι∗BP(x) and we need to show that ιBP(x)> x. This means that
first order approximations as used for (1, k) are useless since they are upper bounds to ι∗BP and
there are no immediate implications for ι′′BP as was the case for R>k. However, the symmetric case
k= 4 can be discussed easily.

Corollary 5.18. For k= 4 and d ∈ (2, dmax) we have ιBP(x)< x for x ∈ (0, x−1
max), ιBP(x−1

max)= x−1
max,

and ιBP(x)> x for x ∈ (x−1
max, 1).

Proof. Combining Lemma 5.17 and Lemma 5.16 we have ιBP(x)< x for x ∈ (1, xmax) and ιBP(x)>
x for x ∈ (xmax,∞), hence using the symmetry from Lemma 5.13 directly gives the result. �

Corollary 5.18 allows to restrict to k ∈Z>4 in the remainder. Now, we basically reverse the
method used for the interval (1, k), i.e. instead of using tangents g∗

1 , g
∗
k to ι∗BP and scaling them

with (d − 1), we scale ι∗BP such that the diagonal is a tangent, meaning we consider ιk = ιBP for
d = k since ι′BP(1)= d−1

k−1 , and show that ιk is sufficiently convex to ensure ιk(x)> x for x ∈ (0, 1).
The next lemma ensures that this approach is applicable for all k≥ 5.

Lemma 5.19. For any k ∈Z≥5, d ∈ (2, k] and all x ∈ (0, 1) we have ιBP(x)> x.

Proof. Let k ∈Z≥5. As derived in the proof of Lemma 5.17 we have ιk(1)= 1 and ι′k(1)= 1, i.e.
the diagonal is a tangent to ιk at x= 1. Further, as discussed in the proof of Lemma 5.16,

ι′′k(x)= (k− 1)
ιk(x)

ι∗BP(x)2
[
(k− 2)ι∗′

BP(x)
2 + ι∗BP(x)ι∗

′′
BP(x)

]
for x ∈ (0, 1).

Since the leading factor is clearly strictly positive, we may focus on the term in the square brack-
ets. Further, using that moment generating functions are strictly positive for strictly positive real
numbers we can extract the strictly positive denominator of the term and normalize to get

f (x)=
ι∗BP(x)2

[
(k− 1)fp′

(1,0)
(x)
]6

(k− 2)2ι′′k(x)

(k− 1)ιk(x)
=
∑
i∈[6]0

aixi,

where

a6 = 16(k− 2),
a5 = 48(k− 2)(k− 3),
a4 = 4(k− 3)

[
9(k− 2)(k− 3)+ 4(k− 2)(k− 4)+ 2(k− 1)

]
,

a3 = 8(k− 3)
[
3(k− 2)3 + (k− 2)(k2 − 3k+ 4)+ 2(k− 1)(k− 4)

]
,

a2 = 4(k− 3)b2, b2 = (k− 2)2
[
(k− 4)2 + 3(k2 − 3k+ 4)

]− (k− 1)(k2 + 11k− 36),
a1 = 4(k− 3)2b1, b1 = (k− 2)(k− 4)(k2 − 3k+ 4)− 2(k− 1)(2k2 − 3k− 4),
a0 = (k− 2)(k− 3)2b0, b0 = (k2 − 3k+ 4)2 − 4k(k− 1)(k− 4).
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We can easily verify that ai > 0 for 3≤ i≤ 6 using that x2 − 3x+ 4> 0 for all x ∈R. Viewing the
bi, i ∈ {0, 1, 2}, as polynomials bi(x), x ∈R, of degree 4 and evaluated at x= k, we have

b′′
2(x)= 48x2 − 228x+ 254, b2(5)= 82, b′

2(5)= 225,

hence b′′
2(x)> 0 for x> x2 with x2 = 19

8 +
√
201
24 < 3 and by that b2(x)> 0 for all x ∈R≥5, so

in particular b2 = b2(k)> 0 since k ∈Z≥5 and thereby a2 > 0. Using the same technique for
the degree four polynomials b1(x) we obtain that b′′

1(x)> 0 for x> x1 with x1 = 13
4 +

√
561
12 < 6,

b1(10)= 564, b′
1(10)= 854, and hence that b1 > 0 if k≥ 10. For b0(x) we have b′′

0(x)> 0 for x> x0
with x0 = 5

2 +
√
3
6 < 3, b′

0(3)= 20, b0(3)= 40, so b0 > 0 for all k ∈Z≥5.
Hence, for k ∈Z≥10 we know that ai > 0 for all i ∈ [6]0, which directly implies that f (x)> 0 for

all x ∈R>0, so ι′′k(x)> 0, further ι′k(x)< 1 for x ∈ (0, 1), ι′k(x)> 1 for x ∈R>1 and thereby ιk(x)> x
for x ∈R>0 \ {1}.

For 5≤ k≤ 9 we still have ai > 0 for i ∈ [6]0 \ {1}. For 6≤ k≤ 9 we consider the quadratic
function gk(x)=

∑
i∈{0,1,2} aixi explicitly, given by

g6(x)= 6120x2 − 11664x+ 8784, g7(x)= 24960x2 − 25344x+ 41600,
g8(x)= 72560x2 − 34400x+ 156000, g9(x)= 172944x2 − 9504x+ 484848.

It turns out that gk(x)> 0 for all x ∈R and 6≤ k≤ 9, which in particular yields f (x)> 0 for all
x ∈R>0. Using the same argumentation as for k ∈Z≥10 shows that ιk(x)> x for all x ∈R>0 \ {1}
and k ∈Z≥6.

As opposed to the previous cases the function ιk is not convex for k= 5, and while this slightly
complicates the computation, we will show that this does not affect the overall picture. Now, we
consider the complete sixth order polynomial

f (x)= 48x6 + 288x5 + 592x4 + 1088x3 + 656x2 − 3296x+ 1392.

We notice that f ′′(x)> 0 for all x ∈R≥0 since ai > 0 for i ∈ [6] \ {1}, hence f ′(x) is strictly increas-
ing for x ∈R≥0, which shows the existence of a unique root xmin ∈ (0, 1), using f ′(0)< 0 and
f ′(1)> 0, i.e. xmin is the unique minimizer of f on R≥0. Computing f (x1−)> 0, f (x1+)< 0
and f (1)> 0 with x1− = 0.581 and x1+ = 0.582 ensures the existence of exactly two roots x1 ∈
(x1−, x1+) and x2 ∈ (x1+, 1) of f , hence ιk is convex on (0, x1), concave on (x1, x2) and convex
on R>x2 . Let g :R→R, x �→ ι′k(x1−)(x− x1−)+ ιk(x1−) denote the tangent of ιk at x1−. Since we
can write both ιk and ι′k as the ratio of polynomials with integer coefficients, we can compute
ιk(x1−) ∈ (0.584, 0.585), ι′k(x1−) ∈ (0.99, 0.991) and g(x1+) ∈ (0.585, 0.586) exactly. Using the con-
vexity of ιk on (0, x1), g′ = ι′k(x1−)< 1 and g(x1+)> x1+ immediately gives that ιk(x)≥ g(x)> x
for x ∈ (0, x1]. The fact that ιk(x)> x for x ∈ [x2, 1) immediately follows from the convexity of ιk
on (x2, 1) and that the diagonal is a tangent to ιk at x= 1. But now, since (x1, ιk(x1)) and (x2, ιk(x2))
are above the diagonal, so is the line connecting the two, which is a lower bound to ιk on (x1, x2)
since ιk is concave on this interval. By that we have finally showed that the overall picture is also
the same for k= 5, i.e. ιk(x)> x for x ∈R>0 \ {1}.

The fact that ιk(x)> x, i.e. ιBP(x)> x with d = k, for x ∈R>0 \ {1} shows that the only sta-
tionary point of �k is a saddle at p∗ (respectively a maximum of �k ◦ ιrp at x= 1). But more
importantly, since xd−1 is decreasing in d for x ∈ (0, 1) and ι∗BP(x) ∈ (0, 1), we have ιBP(x)≥ ιk(x)>
x for all d ∈ (2, k]. �

The combination of Lemma 5.16, Lemma 5.17 and Lemma 5.18 shows that for k= 4 and all
d ∈ (2, dmax) there exist exactly three fixed points x− < x0 < x+ of ιBP, with x0 = 1, x+ ∈ (k,∞)
and x− = x−1+ , hence Lemma 5.12 and Lemma 5.11 suggest that x0 is a minimizer of�d ◦ ιrp while
x− and x+ are maximizers. In particular, we have the three minimizers {0, 1,∞} of �d ◦ ιrp in
total.
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The combination of Lemma 5.16, Lemma 5.17 and Lemma 5.19 shows that for k ∈Z≥5 and
all d ∈ (2, dmax)⊆ (0, k) there exist exactly two fixed points x0 < x+ of ιBP, with x0 = 1 and x+ ∈
(k,∞), hence Lemma 5.12 and Lemma 5.11 suggest that x0 is a minimizer of �d ◦ ιrp while x+ is
a maximizer. In particular, we have the two minimizers {1,∞} of �d ◦ ιrp in total, while x= 0 is a
maximizer in these cases.

The last step is to show that we have d∗ ∈ (2, dmax), which then directly establishes that the
unique minimizers of�d∗ ◦ ιrp are given by {0, 1,∞} for k= 4 and {1,∞} for k ∈Z≥5 as required.
On the other hand, direct computation as in the proof of Corollary 5.15 shows that all minimizers
are roots of �d∗ ◦ ιrp, i.e. all minimizers are global minimizers and the global minimum of �d∗ ◦
ιrp is 0. Lemma 5.9 directly suggests that the global minimizers of �d∗ ◦ ιrp are in one to one
correspondence with the global minimizers of �d∗ via x �→ px, which then completes the proof of
Proposition 2.5.

Lemma 5.20. For all k ∈Z≥4 we have 2< d∗ < dk < dx̄.

Proof. Recall from Corollary 5.15 that d∗ > 2. For convenience, we consider the extensions of
d∗ − 1, dx̄ − 1 and dk − 1 to the real line, i.e. for x ∈R≥3 let

f0(x)= ln (x(x− 1)/2)
xH(2/x)− ln (x(x− 1)/2)

, f1(x)= ln
(
(x+ 6)/7

)
ln (8/7)

, f2(x)= ln (x)

ln
(
2(7x−12)
9(x−2)

) ,
i.e. d∗ = f0(k)+ 1, dx̄ = f1(k)+ 1 and dk = f2(k)+ 1 for all k ∈Z≥4. We start with the asymptotic
comparison of f1 and f2. The corresponding rearrangement gives

f1(x)=m1 ln (x)+ t1(x),m1 = 1
ln (8/7)

, t1(x)= − ln (7)
ln (8/7)

+ ln
(
1+ 6

x
)

ln (8/7)
,

f2(x)=m2(x) ln (x),m2(x)= 1

ln (14/9)+ ln
(
1+ 2

7(x−2)

) .
Notice that ln (x)> 0 since x≥ 3, further t1(x) is decreasing whilem2(x) is increasing, and thereby
we have f1(x)≥ f1∞(x) and f2(x)≤ f2∞(x) with

f1∞(x)=m1∞ ln (x)+ t1∞,m1∞ =m1, t1∞ = − ln (7)
ln (8/7)

,

f2∞(x)=m2∞ ln (x),m2∞ = 1
ln (14/9)

.

Notice that m1∞ >m2∞, t1∞ < 0 and further f1∞(x)> f2∞(x) iff x> x12 with x12 =
exp

( −t1∞
m1∞−m2∞

)
∈ (16, 17), so f1(x)> f2(x) for all x ∈R≥17 and hence dk < dx̄ for k ∈Z≥17. We

check by hand that dk < dx̄ also holds for 4≤ k≤ 16.
We are left to show that 1< f0(x)< f2(x) for x ∈Z≥4. Again, we start with the asymptotic

comparison, where the corresponding rearrangement f0(x)=m0(x) ln (x)+ t0(x) is given by

m0(x)=
1+ ln

(
1− 1

x
)

n0(x)
, t0(x)= − ln (2)

n0(x)
, n0(x)= −(x− 2) ln

(
1− 2

x

)
− ln

(
1− 1

x

)
− ln (2).

Recall that for given c ∈R we have ln (1+ c
x )∼ c

x and ln (1+ c
x )≤ c

x for all x ∈R>|c|, since ln (x)
is concave and the tangent at 1 is x− 1. Hence, for all x ∈R≥3 we have n0(x)≥ n+(x)> 0 since
x> 2 and x> x1, where

n+(x)= ln
(
e2/2

)− 3
x
and x1 = 3

ln
(
e2/2

) ∈ (2, 3).
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(a) (b)

Figure 3. The left figure shows a sequence γ = (γ1, γ2) of two directed (intersecting) four-cycles with base variables i1 and
i3 and directions indicated by the arrows respectively. Analogously to Figure 2a we only denoted the i-edges and a-edges
instead of the v-edges and f -edges. The relative positions ρ = (ρ1, ρ2) corresponding to γ are depicted in the right fig-
ure. Here, the variables, constraints, i-edges and a-edges are labelled according to the order of first traversal (where γ1 is
traversed before γ2). The numbers n(ρ)= 3,m(ρ)= 3, e(ρ)= 7 of variables, constraints and edges in ρ are equal to the cor-
responding numbers in γ , further the degree dj(ρ) of the variable j ∈ [3] equals the degree of ij in γ , and analogously for the
degrees kb(ρ) of the constraints b ∈ [3] in ρ. The absolute values α = (αv , αf , (αv,j)j∈[3], (αf ,b)b∈[3]) are given by αv = (ij)j∈[3],
αf = (ab)b∈[3], αv,j = (hij ,e)e∈[dj (ρ)], j ∈ [3], and αf ,b = (hab ,e)e∈[kb(ρ)], b ∈ [3], i.e. they store the (initial) labels of γ corresponding
to the labels of ρ.

Since t0(x)< 0 andm0(x)≤m+(x) we have f0(x)≤ f+(x)=m+(x) ln (x) with

m+(x)=
(
ln
(
e2/2

)− 3
x

)−1
.

Now, since m+(x) is decreasing in x and m2(x) is increasing in x, we numerically determine x∗ ∈
R>0 such that m+(x∗)=m2(x∗) and find that x∗ ∈ (4, 5). In particular, we have f0(x)≤ f+(x)<
f2(x) for x ∈R≥5, and check that d∗ < dk for k= 4 by hand. �

Lemma 5.20 concludes the proof of Proposition 2.5 as discussed before.

6. Small subgraph conditioning
In this section we prove the remaining parts of Theorem 2.7, thereby establishing Theorem 2.1.
The first part of the proof heavily relies on Section A and illustrates the correspondences. We start
with the derivation of δ� by computing E[ZX�]. For this purpose we fix � ∈Z>0, n ∈N sufficiently
large, and let c̄� denote the canonical 2�-cycle, i.e. the cycle with variables i, constraints a in [�] and
i-edges, a-edges in {1, 2} with labels ordered by first traversal, see e.g. the left cycle in Figure 3b.
Analogous to the previous sections we rewrite the expectation and count the number |E| of triplets
(g, c, x) ∈ E such that c is a 2�-cycle and x a solution in g, i.e.

E[ZX�]= |E|
|G| =

∑
y∈{0,1}�

e1e2e3
2�(dn)! ,

where

e1 = e1(y)=
(
n
n1

)
(n1)r1 (n− n1)�−r1 (d(d − 1))�,

e2 = e2(y)=
(
k
2

)m
m�2r2 (2(k− 2))2(r1−r2)((k− 2)(k− 3))�−2r1+r2 ,

e3 = e3(y)= (dn1 − 2r1)!(d(n− n1)− 2(� − r1))!,
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and r = r(y)= (r1, r2) is defined as follows. For y ∈ {0, 1}� we let r1 = r1(y) denote the number
of ones in y. Further, let r2 = r2(y) denote the number of constraints b ∈ [�] in c̄� such that both
b-edges take the value one under the assignment y of the variables j ∈ [�] in c̄�. With y fixed we
can compute the number of suitable triplets (g, c, x) as follows. The denominator in the first line
reflects |G|−1 and the compensation 2� as we will count directed cycles γ in g. The sum over
y ∈ {0, 1}� implements the choice of the assignment of the variables visited by γ such that the
variables i1, . . . , i� traversed by γ correspond to the variables 1, . . . , � in c̄� in this order, i.e.
xi1 = y1, . . . , xi� = y�. The first term in e1 chooses the variables that take the value one under the
solution x. Then we choose the r1 variables out of the n1-variables that participate in the directed
cycle γ and take the value one consistent with y (hence an ordered choice). Analogously, we then
choose the variables in γ taking zero under x. Finally, we choose the two i-edges traversed by γ

for each of the � variables i in the cycle.
The first term in e2 is the usual choice of the two a-edges taking one under x for each a ∈ [m].

Then we choose the constraints visited by γ . The remaining terms account for the ordered choice
of the two a-edges that are traversed by γ and that is consistent with the assignments y and x in
the following sense. The (already chosen) variables i1, . . . , i� and constraints a1, . . . , a� traversed
by γ correspond to the variables 1, . . . , � and constraints 1, . . . , � in c̄� in this order respectively.
Further, the assignment of these variables is already fixed by y and the a-edges taking the value
one for each of these constraints are also fixed by our previous choice. Hence, if y1 = y2 = 1, then
we have only two choices for the a1-edge connecting to i1, while the a1-edge connecting to i2 is
fixed afterwards. For y1 = 1 and y2 = 0 we have two choices for the a1-edge connecting to i1 and
(k− 2) choices for the a1-edge connecting to i2. The case y1 = 0, y2 = 1 is symmetric and we see
that we have (k− 2) and (k− 3) choices for the remaining case y1 = y2 = 0 analogously. To derive
the number of constraints for each of the cases above we recall that we have r1(y) ones in total
and r2(y) ones whose successor is one (i.e. the constraint a between the two ones takes the value
one on both a-edges, and where the successor of y� is y1). But then (r1 − r2) ones in y do not have
the successor one, i.e. they have the successor zero. Complementarily we see that since r2 ones are
succeeded by a one there are r2 ones that are preceded by a one, hence there are (r1 − r2) ones that
are preceded by zero. Then again, this means that there are (r1 − r2) zeros that are succeeded by
a one, hence the remaining (� − 2r1 + r2) zeros out of the (� − r1) zeros are succeeded by a zero.
This fixes γ , so in particular 2r1 v-edges that take the value one and 2(� − r1) v-edges that take the
value zero. The two terms in e3 then wire the remaining edges.

We divide by E[Z] to match the left hand side of Theorem 2.7b), i.e.

E[ZX�]
E[Z]

=
∑

y∈{0,1}�

e1e2e3
2�(2m)!(dn− 2m)! , where

e1 = e1(y)= nr11 (n− n1)�−r1 (d(d − 1))�,
e2 = e2(y)=m�2r2 (2(k− 2))2(r1−r2)((k− 2)(k− 3))�−2r1+r2 ,
e3 = e3(y)= (dn1 − 2r1)!(d(n− n1)− 2(� − r1))!,

and using Stirling’s formula we easily derive that

E[ZX�]
E[Z]

∼ λ�

∑
y∈{0,1}�

Mr2
11M

r1−r2
01 Mr1−r2

10 M�−2r1+r2
00 = λ�(1+ δ�), M =

⎛
⎝1− 2

k−1 1− 1
k−1

2
k−1

1
k−1

⎞
⎠ .

The matrixM has a nice interpretation as a (column stochastic) transition probability matrix in a
two state Markov process, with
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1+ δ� =
∑

y∈{0,1}�
y1=0

Mr2
11M

r1−r2
01 Mr1−r2

10 M�−2r1+r2
00 +

∑
y∈{0,1}�
y1=1

Mr2
11M

r1−r2
01 Mr1−r2

10 M�−2r1+r2
00

reflecting the probabilities that we return to the starting point given that the starting point is zero
and one respectively. Let us consider the first partial sum restricted to sequences y (of Markov
states) such that y1 = 0, i.e. we start in the state zero. Then M0y2 reflects the probability that we
move from the initial state zero to the state y2 given that we are in state zero (which is the case
because we know that y1 = 0). As discussed above we will move from a one to a one in y exactly
r2 times, from a one to a zero (r1 − r2) times, from a zero to a one (r1 − r2) times and from a zero
to a zero (� − 2r1 + r2) times. Hence the contribution to the first partial sum for given y exactly
reflects the probability that we start in the state zero and (with this given) return to the state zero
after � steps (since the successor of y� is y1 = 0). Since we sum over all such sequences y the first
sum reflects the probability that we reach state zero after � steps given that we start in the state
zero. The discussion of the second sum is completely analogous. This directly yields

1+ δ� = (M�)00 + (M�)11 = Tr(M�)= λ′
1 + λ′

2 = λ�
1 + λ�

2, λ1 = 1, λ2 = − 1
k− 1

,

where we used the Kolmogorov-Chapman equalities in the first step, i.e. that the �-step transition
probability matrix is the �-th power of the one step transition probability matrix, which allow to
translate the first sum into the transition probability (M�)00 that we reach the state zero after �

steps given that we start in the state zero and analogously for the second sum. In the second step
we use the definition of the trace, while in the third step we use that the trace is the sum of the
eigenvalues λ′

1, λ
′
2 ofM�. In the next step we use that the eigenvalues λ′

1 λ′
2 of the �-th powerM�

of the matrix M are the �-th powers of the eigenvalues λ1, λ2 of M. In particular this also yields
that δ� > −1 for all k> 3 and establishes δ� = (1− k)−�.

Following the strategy of Section A we turn to the case of disjoint cycles. Similarly, the present
case is a canonical extension of the single cycle case discussed above. We fix L ∈Z>0, r ∈Z

L≥0 and
n ∈N sufficiently large. Further, as in the previous sections we rewrite the expectation and count
the number |E| of triplets (g, c, x) ∈ E such that c= (cs)s∈[r̄] is a sequence of r̄ =∑�∈[L] r� distinct
2�s-cycles cs in the configuration g sorted by their length �s in ascending order (as described in
Section A) and x is a solution of g. This yields

E

⎡
⎣Z ∏

�∈[L]
(X�)r�

⎤
⎦= |E|

|G| = |E0|
|G| + |E1|

|G| ,

where E0 ⊆ E is the set over all triplets (g, c, x) ∈ E involving sequences c of disjoint cycles and
E1 = E \ E0. We begin with the first contribution, which can be regarded as a combination of the
discussion of disjoint cycles in Section A and the single cycle case above, i.e.

|E0|
|G| =

∑
y∈{0,1}l

e1e2e3
(dn)!∏s∈[r̄] (2�s)

,

e1 = e1(y)=
(
n
n1

)
nr11 (n− n1)l−r1 (d(d − 1))l,

e2 = e2(y)=
(
k
2

)m
ml2r2 (2(k− 2))2(r1−r2)((k− 2)(k− 3))l−2r1+r2 ,

e3 = e3(y)= (dn1 − 2r1)!(d(n− n1)− 2(l− r1))!,
l=
∑
s∈[r̄]

�s, ri =
∑
s∈[r̄]

ri(ys), i ∈ [2],
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where y= (ys)s∈[r̄] is the subdivision of y corresponding to the definition of c, and r1, r2 are
the notions defined above. The combinatorial arguments are now fairly self-explanatory, e.g. we
make an ordered choice of the r1(y1) variables taking one for γ1, then an ordered choice of r1(y2)
variables taking one for γ2 out of the remaining n1 − r1(y1) variables taking one and so on.

The asymptotics are also completely analogous to the single cycle case and Section A. First,
we notice that the sum is still bounded, i.e. we can also use the asymptotic equivalences for the
corresponding ratio here. Then, the sum can be decomposed into the product of the r̄ factors that
correspond to the single cycle case above, analogously to Section A, which yields

|E0|
|G|E[Z] ∼

∏
�∈[L]

λ
r�
� (1+ δ�)r� .

Now we turn to the proof that the second contribution involving E1 is negligible, which is a
combination of the above and the discussion of intersecting cycles in Section A. We let

E2 = {(g, γ , x) : (g, c(γ ), x) ∈ E1},R= {ρ(γ ) : (g, γ , x) ∈ E2} and
Eρ = {(g, γ , x) ∈ E2 : ρ(γ )= ρ} for ρ ∈R

denote the sets that match the corresponding sets in Section A. For relative positions ρ ∈R we
consider an assignment y ∈ {0, 1}n(ρ) of the variables V = [n(ρ)] in the corresponding union of
cycles c= c(ρ) and let

r1 = r1(ρ, y)= |{j ∈V : yj = 1}|,
o(b)= oρ,y(b)= |{h ∈ [kb(ρ)] : yic(b,h) = 1}| for b ∈ [m(ρ)] and

o= o(ρ, y)=
∑

b∈[m(ρ)]

o(b)

denote the number of variables j ∈V in c that take the value one under y, the number of b-edges
for a constraint b ∈ [m(ρ)] in c that take the value one under y and the number of f -edges in c that
take the value one under y respectively. Since c is a configuration the number of v-edges in c that
take the value one under y is also o. We are particularly interested in the assignments

y ∈Y=Y(ρ)= {z ∈ {0, 1}n(ρ) : ∀b ∈ [m(ρ)]o(b) ∈ [2+ kb − k, 2]}
that do not directly violate a constraint b ∈ [m(ρ)] in c(ρ) in the sense that o(b)≤ 2 and also do
not indirectly violate b in that 2− o(b)≤ k− kb, i.e. there are sufficiently many b-edges left to take
the remaining (2− o(b)) ones. With this slight extension of our machinery we can derive

|E1|
|G| =

∑
ρ∈R

|Eρ |
(dn)!∏s∈[r] (2�s)

, |Eρ | =
∑
y∈Y

e1e2e3,

e1 = e1(ρ, y)=
(
n
n1

)
nr11 (n− n1)n(ρ)−r1

∏
j∈[n(ρ)]

ddj(ρ),

e2 = e2(ρ, y)=
(
k
2

)m
mm(ρ)

∏
b∈[m(ρ)]

(2o(b)(k− 2)kb(ρ)−o(b)),

e3 = e3(ρ, y)= (dn1 − o)!(d(n− n1)− (e(ρ)− o))!,
for the following reasons. With ρ ∈R and y ∈Y(ρ) fixed we choose the n1 variables out of the n
variables in the configuration g that should take the value one under x. Out of these n1 variables
we choose the r1 variables (ordered by first traversal) that take the value one in the directed cycles
γ under x, corresponding to the r1 variables in ρ that take one under y (more precisely we choose
the values i ∈ [n] of the absolute values αv for the r1 variables j ∈ [n(ρ)] in ρ that take the value
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one under y) and analogously for the variables that take zero. Then, for each variable j ∈ [n(ρ)] in
ρ and corresponding variable i= αv(j) in γ we choose the i-edges that participate in γ (meaning
that we choose αv,j). On the constraint side we first choose the two a-edges that take the value one
under x in g for each a ∈ [m]. Then we select the m(ρ) constraints that participate in γ (i.e. we
fix αf ). Further, for each constraint b ∈ [m(ρ)] in ρ and its corresponding constraint a= αf (b) in
γ we choose the o(b) a-edges that take the value one in γ under x consistent with ρ and y out
of the two a-edges that take the value one in g under x and analogously for the a-edges that take
the value zero (which means that we fix αf ,b for b ∈ [m(ρ)] consistent with the choice of y and the
choice of the two a-edges that take the value one for each a ∈ [m]). This fixes the sequence of the
directed cycles (i.e. the isomorphism α and further γ ). The remaining terms wire the (dn1 − o)
remaining v-edges that take the value one and the v-edges taking zero respectively.

As opposed to the rather demanding combinatorial part the asymptotics are still easy to derive
since both sums are bounded, so the procedure analogous to Section A yields

|E1|
|G|E[Z] ∼

∑
ρ∈R

∑
y∈Y

c1(ρ, y)nn(ρ)+m(ρ)−e(ρ),

where c1(ρ, y) is a constant compensating the bounded terms. The right hand side tends to zero
by the argumentation in Section A, so this contribution is indeed negligible. This shows that |E|

|G| ∼
|E0||G| and thereby establishes Theorem 2.7 (2).

With d ∈ [1, d∗)⊆ [1, k) as discussed in Lemma 5.17 and Lemma 5.20, λ� as derived in
Lemma 2.8, δ� = (1− k)−�, the asymptotics of the second moment discussed in Lemma 2.6 and
the Taylor series ln (1− x)= −∑�≥1 x�/�, x ∈ (0, 1), we establish Theorem 2.7 (3) by applying
our results to the sum

∑
�≥1

λ�δ
2
� =

∑
�≥1

1
2�

(
d − 1
k− 1

)�

= −1
2
ln
(
1− d − 1

k− 1

)
= ln

⎛
⎝
√
k− 1
k− d

⎞
⎠ .

This concludes the proof of Theorem 2.7 and further the proof of Theorem 1.1.
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[16] Erdős, P. and Rényi, A. (1960) On the evolution of random graphs.Magyar Tud. Akad. Mat. Kutató Int. Közl 5 17–61.
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Appendix
A. Proof of Lemma 2.8

We present the proof of Lemma 2.8 in detail so as to facilitate the presentation of the small sub-
graph conditioning method in Section 6. Lemma 2.8 can be shown by a direct application of the
method of moments, which is discussed, for example, in [24] (Theorem 6.10).

Theorem A.1 (Method of Moments). Let L ∈Z>0 and ((X�,i)�∈[L])i∈Z>0 be a sequence of a vector
of random variables. If λ ∈R

L≥0 is such that, as i→ ∞,

E

[ L∏
�=1

(X�,i)r�

]
→

L∏
�=1

λ
r�
�

for every r ∈Z
L≥0, then (X�,i)�∈[L] converges in distribution to (Z�)�∈[L], where the Z� ∼ Po(λ�) are

independent Poisson distributed random variables.

First, we notice that G=Gk,d,n,m and further X� = Xk,d,n,� is only defined for m= dn/k ∈Z as
stated in Lemma 3.1, hence Lemma 2.8 only applies to such sequences of configurations. Fix k,
d ∈Z>1. Before we turn to the general case we consider the E[X�] for � ∈Z>0. For this purpose
let n andm(n) be sufficiently large. Let C�,g be the set of all 2�-cycles in g ∈ G. Then

E[X�]=
∑
g∈G

X�(g)
|G| = |G|−1

∑
g∈G

|C�,g | = |E|
|G| , where E= {(g, c):g ∈ G, c ∈ C�,g}.

With this at hand we obtain that

E[X�]= 1
2�(dn)!n

�m�(d(d − 1))�(k(k− 1))�(dn− 2�)!
using the following combinatorial arguments. Instead of counting pairs (g, c) of configurations g
and 2�-cycles c ∈ C�,g we count pairs (g, γ ) of configurations g and directed 2�-cycles γ (based at a
variable node) in g. There are exactly 2� directed cycles γ corresponding to each (undirected) cycle
c of length 2� since we can choose the base from the � variables in c and γ is then determined by
one of the two possible directions. The denominator reflects the compensation for this counting
next to the probability |G|−1. Further, the term n� reflects the ordered choice of the variables for
the directed cycle, as doesm� for the constraints. The next two terms account for the choice of the
two i-edges and a-edges traversed by the cycle for each of the � variables i and constraints a. This
fixes the directed cycle γ and further the corresponding undirected cycle c(γ ). In particular, the
2� edges of the cycle c in g are fixed, i.e. the corresponding restriction of g to c. This leaves us with
(dn− 2�) half-edges in dom(g) and (km− 2�) half-edges in im(g) that have not been wired yet.
The last term gives the number of such wirings.

Next, we turn to asymptotics. Extracting λ� and expanding the falling factorials yields

E[X�]= λ�d�k� n!m!(dn− 2�)!
(dn)!(n− �)!(m− �)! .

Using Stirling’s formula we readily obtain that

E[X�]∼ λ�d�k�

√
nm(dn− 2�)

dn(n− �)(m− �)
nnmm(dn− 2�)dn−2�

(dn)dn(n− �)n−�(m− �)m−�
,
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and so

E[X�]∼ λ�d�k�

√√√√ (1− 2�
dn )

(1− �
n )(1− �

m )
n�m�(1− 2�

dn )
dn−2�

(dn)2�(1− �
n )n−�(1− �

m )m−�
∼ λ�d�k� n�m�

(dn)2�
.

Using that dn= km leads to

E[X�]∼ λ�d�k� n�(dk−1n)�

(dn)2�
= λ�,

as claimed. We turn to the general case. For this purpose let L ∈Z>0, r ∈Z
L≥0 and let n and m be

sufficiently large. Then

X�(g)r� =
r�−1∏
s=0

(|C�,g | − s)= |C�,r�,g | , where C�,r�,g = {c ∈ Cr��,g :∀s ∈ [r�]∀s′ ∈ [s− 1] cs �= cs′ }

for g ∈ G, since this corresponds to an ordered choice of 2�-cycles in g without repetition. The
product can then be directly written as

L∏
�=1

X�(g)r� = |Cr,g | , where Cr,g =
L∏

�=1
C�,r�,g .

To avoid double indexed sequences we use the equivalent representation c= (cs)s∈[r] ∈ Cr,g where
r=∑1≤�≤L r�. From the above we see that the cycles cs are ordered by their length �s in ascending
order and are pairwise distinct. We obtain that

E

[ L∏
�=1

Xr�
�

]
= |E|

|G| , where E= {(g, c):g ∈ G, c ∈ Cr,g}.

Since we have �s distinct variables and constraints in each cycle cs respectively, we can have at most
l=∑s∈[r] �s distinct variables and constraints in c. Specifically, we only have |V(c)| = l variables
and |F(c)| = l constraints iff all cycles cs are disjoint. So, let

E0 = {(g, c) ∈ E:|V(c)| = |F(c)| = l}
denote the set of pairs (g, c) ∈ E with disjoint cycles and further E1 = E \ E0 the remaining pairs.
Then we have

|E0|
|G| = 1

(dn)!∏r
s=1 (2�s)

nlml(d(d − 1)l(k(k− 1))l(dn− 2l)!
for the following reasons. For each cycle cs in c counting the 2�s directed cycles facilitates the
computation, hence we find the corresponding product in the denominator. Since the variables
within each directed cycle and the cycles in the sequence are ordered we have an ordered choice of
all variables. Further, since the �s variables within each cycle are distinct and the cycles are pairwise
disjoint we choose all variables without repetition. This explains the first falling factorial. The next
term for the constraints follows analogously. But since variables and constraints are disjoint the
edges are too, hence we choose two edges for each of the l variables and constraints respectively.
Then we wire the remaining edges.

The asymptotics are derived analogously to the base case, i.e.

|E0|
|G| ∼ (d − 1)l(k− 1)l∏r

s=1 (2�s)
=

r∏
s=1

λ�s =
L∏

�=1
λ
r�
� ,

using the definition of c= (cs)s∈[r] in the last step. Since the contribution of the disjoint cycles
already yields the desired result, we want to show that the contribution of intersecting cycles is
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negligible. As before, we count directed cycles γs and adjust the result accordingly, so let

E2 = {(g, γ ):(g, c(γ )) ∈ E1}, i.e. |E2| = |E1|
∏
s∈[r]

(2�s).

In the next step we consider the relative position representations (α, ρ) of sequences γ of directed
cycles. Instead of a formal introduction we illustrate this concept in Figure 3. The corresponding
decomposition of the contributions to the expectation according to ρ is

|E1|
|G| =

∑
ρ∈R

|Eρ |
|G|∏s∈[r] (2�s)

, Eρ = {(g, γ ) ∈ E2:ρ(γ )= ρ},R= {ρ(γ ):(g, γ ) ∈ E2}.

For the following reasons we can then derive

|Eρ | = nn(ρ)mm(ρ)
∏

j∈[n(ρ)]
ddj(ρ)

∏
b∈[m(ρ)]

kkb(ρ)(dn− e(ρ))!.

Since ρ is fixed, we have to fix the absolute values α, thereby the directed cycle γ , and wire the
remaining edges. But the first four terms exactly correspond to the number of choices for the
index vectors in α. This fixes γ , further the union c(γ ) of cycles and in particular e(ρ) edges. The
remaining term counts the number of choices to wire the remaining edges.

For the asymptotics we notice that n(ρ), m(ρ)≤ l and that also the two products are bounded
in both the multiplication region and values. But this further implies that |R| is bounded, i.e. the
summation region is also finite in the limit and hence we can consider the asymptotics of each
term separately, which yields

|E1|
|G| =

∑
ρ∈R

∏
i∈[n(ρ)] d

di(ρ)∏
a∈[m(ρ)] k

ka(ρ)∏
s∈[r] (2�s)

nn(ρ)mm(ρ)(dn− e(ρ))!
(dn)!

=
∑
ρ∈R

c1(ρ)
nn(ρ)mm(ρ)(dn− e(ρ))!

(dn)!

∼
∑
ρ∈R

c1(ρ)
(
1
e

)n(ρ) ( d
ke

)m(ρ) ( e
d

)e(ρ)
nn(ρ)+m(ρ)−e(ρ)

=
∑
ρ∈R

c2(ρ)nn(ρ)+m(ρ)−e(ρ),

where we summarized the terms that only depend on ρ into constants. Now, let ρ ∈R and let
c= c(ρ) be the graph of ρ as introduced in Section 2.4. Since ρ is a sequence of directed cycles
that are not all disjoint, its graph c is the union of the corresponding (undirected) cycles that are
not all disjoint. But then c has more edges than vertices, i.e. 3e(ρ)> n(ρ)+m(ρ)+ 2e(ρ), and
hence

|E1|
|G| ∼

∑
ρ∈R

c2(ρ)nn(ρ)+m(ρ)−e(ρ) ≤ n−1
∑
ρ∈R

c2(ρ)= c3n−1,

which shows that this contribution is negligible. This establishes the asymptotic equivalence

E

⎡
⎣∏

�∈[L]
Xr�

�

⎤
⎦∼

∏
�∈[L]

λ
r�
�

and allows to apply the method of moments, which directly yields Lemma 2.8.
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