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Abstract. This paper presents an extended version of the Quantified Argument Calculus (Quarc).
Quarc is a logic comparable to the first-order predicate calculus. It employs several nonstandard
syntactic and semantic devices, which bring it closer to natural language in several respects. Most
notably, quantifiers in this logic are attached to one-place predicates; the resulting quantified con-
structions are then allowed to occupy the argument places of predicates. The version presented here
is capable of straightforwardly translating natural-language sentences involving defining clauses.
A three-valued, model-theoretic semantics for Quarc is presented. Interpretations in this semantics
are not equipped with domains of quantification: they are just interpretation functions. This reflects
the analysis of natural-language quantification on which Quarc is based. A proof system is presented,
and a completeness result is obtained. The logic presented here is capable of straightforward trans-
lation of the classical first-order predicate calculus, the translation preserving truth values as well as
entailment. The first-order predicate calculus and its devices of quantification can be seen as resulting
from Quarc on certain semantic and syntactic restrictions, akin to simplifying assumptions. An
analogous, straightforward translation of Quarc into the first-order predicate calculus is impossible.

§1. Introduction. Interest in extensional logics whose quantificational devices are
closer to those of natural languages than are the ones of the standard first-order predi-
cate calculus has existed for some time (see, e.g., Barwise & Cooper, 1981; Ben-Yami,
2014; Francez, 2014, see Francez 2014 for further references). Ben-Yami (2014) presents a
quantified argument calculus (Quarc).1 An earlier version of this logic is presented in
(Lanzet & Ben-Yami, 2004). The quantified argument calculus is a logic in which quan-
tifiers attach to one-place predicates rather than to open formulas; the resulting quantified
constructions, expressions of the forms ∀P and ∃P , where P is a one-place predicate,
are allowed to occupy the argument places of predicates. This is similar to what we find
in natural languages: consider the syntactic positions occupied by the expressions ‘every
professor’ and ‘some courses’ in ‘Every professor teaches some courses’.

The logic of (Ben-Yami, 2014) is arguably closer to natural languages, in several syntac-
tic and semantic respects, than any of the various versions of the predicate calculus. There
are, however, three points on which Ben-Yami’s treatment of Quarc can be improved: first,
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his semantics relies on what I will call a global nonemptiness requirement: all one-place
predicates are required, as part of the semantic framework, to have instances.2 Counter-
intuitive consequences of this requirement are mentioned in §2 below. Second, Ben-Yami
does not incorporate into the logic a treatment of defining clauses, which often modify
predicates in natural languages. Consequently, while sentences such as

Every person is rich (1)

can be straightforwardly formalized in his logic, there is no straightforward way to formal-
ize sentences such as

Every person who owns a private jet is rich (2)

(More on this in §2). Third, although Ben-Yami writes that he intends to provide in a
different paper a proof of the completeness of the system he develops, such a proof has not
yet been provided.

In this paper, an extended and improved version of Quarc is developed. (Unless other-
wise indicated, the term ‘Quarc’ will henceforth be used for the version presented here.)
The logic presented in this paper has the syntactic and semantic resources to treat defining
clauses, and can straightforwardly translate sentences such as (2). The semantics pre-
sented here is model-theoretic and three-valued (unlike that of (Ben-Yami, 2014), which is
truth-valuational and bivalent). A proof-system is formulated, and a completeness result is
obtained. As explained below, the three-valued semantic framework adopted here makes it
possible to dispense with the global nonemptiness requirement mentioned above.

The notion of interpretation employed here differs from the standard one: in Quarc
semantics, interpretations are not equipped with a domain of quantification; rather, they
are just interpretation functions. As will be seen below, this feature of Quarc reflects the
analysis of natural-language quantification on which this logic is based. It will also be seen
that the development of a domain-free semantics for Quarc does not require any special
technical effort: the need for domains of quantification in Quarc simply does not arise.
More on this will be said in §2, §4 and §8.

The devices allowing the translation of defining clauses into Quarc will also enable a
straightforward translation of the sentences of standard first-order predicate calculus (PC).
These will be translated into Quarc in much the same way as they are ordinarily translated
into English. The translation will be shown to preserve truth values, as well as entailment.
Quarc will thus be seen to offer not only formalization options unavailable in PC, but
also a PC-style formalization of whatever can be formalized in PC. It will also be shown
that, while an entailment-preserving translation of Quarc into PC is possible, no such
translation can be straightforward. The relevant notion of a straightforward translation—on
which PC is straightforwardly translatable into Quarc but not vice versa—will be explained
in §7.

§2 contains a semi-formal presentation of Quarc. This presentation covers both the
aspects in which the current version of Quarc differs from that of (Ben-Yami, 2014) and
the ones in which the two versions overlap. The latter are covered in order to make the
presentation self-contained. §3 and §4 contain the exact definitions of Quarc: syntactic
definitions in the former, and semantic ones in the latter. §5 contains a proof system
for Quarc; and §6—a proof of the completeness of this system. §7 treats the translation
of PC-sentences into Quarc and vice versa. In §8 it is explained how PC can be seen as

2 The same principle was relied on in (Lanzet & Ben-Yami, 2004).
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resulting from Quarc on certain restrictions, akin to simplifying assumptions. The way
in which quantification is achieved in PC—by attaching quantifiers to open formulas and
by reference to a fixed, presupposed domain—emerges as a result of those restrictions
rather than as a necessary consequence of treating quantification in logic and in
model-theory.

§2. A semi-formal presentation. The analysis on which Quarc is based can be illus-
trated with respect to the following pair of sentences:3

All students are polite (1)

Some students are polite (2)

In each of these two sentences, a quantifier—‘all’ or ‘some’—is attached to a noun—
‘students’. The role of this noun is to introduce the plurality required for the operation of
the attached quantifier: it introduces all the students.4 The role of the attached quantifier, in
turn, is to determine to how many of the individuals introduced by ‘students’ the predicate
‘polite’ is applied. Both (1) and (2) involve, on the current analysis, the presupposition
that the extension of ‘students’ is nonempty; if that extension is empty, then the plurality
required for the operation of the attached quantifier is not introduced, and the sentence fails
to express a true or false proposition.5

This analysis differs from the Frege-Russell analysis of sentences such as (1) and (2):
unlike on the Frege-Russell account, we do not analyze ‘students’ in (1) and (2) as predica-
tive; and we do not consider those sentences to refer to every element of some fixed domain,
of which the extension of ‘students’ is a proper subclass. Sentence (1), for instance, does
not state of everything that if it is a student then it is polite. Rather, the sentence asserts of
the students alone that all of them are polite.6

The above analysis will be reflected in Quarc in the following way: first, nouns such
as ‘students’ will be represented by one-place predicates, and quantifiers will attach to
such predicates rather than to open formulas. (1) and (2) will be formalized in Quarc,
respectively, as:7

(∀S) P (3)

(∃S) P (4)

The expressions ∀S and ∃S, occupying the argument place of P , will be called quantified
arguments, or QAs. One-place predicates will thus have two distinct uses in Quarc: they
will be employed both in the ordinary, predicative role and as parts of QAs.

Second, the predicates to which quantifiers attach—such as S in (3) and (4)—will be
interpreted as introducing the plurality over which we quantify. For this reason, we will

3 The analysis is close to the ones of (Strawson, 1950) and (Geach, 1962). For a detailed version of
it, see (Ben-Yami, 2004).

4 More precisely: it introduces all the students that are under consideration in the context in which
the sentence is uttered; but we will not try to capture such contextual features of sentence-
utterances here.

5 This is not meant as an analysis of presupposition in general.
6 Cf. (Francez, 2014, 1164).
7 I follow (Ben-Yami, 2014) in writing the arguments to the left of the predicate. This will help

distinguishing the formulas of Quarc from those of PC in contexts in which both systems are
discussed.
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have no need for a fixed, presupposed plurality, in the form of a domain of quantification:
interpretations in Quarc-semantics will be just interpretation functions, assigning sets of
n-tuples to n-place predicates, and assigning any objects whatsoever to individual con-
stants. Third, we will employ a three-valued framework, and let (3) and (4) be neither true
nor false in interpretations M in which the extension SM of S is empty.

Quarc will thus differ from PC in at least three respects: (i) the employment of quantified
arguments; (ii) the domain-free notion of interpretation; and (iii) the three-valued semantics
and the presuppositional approach (on which (3), for instance, is neither true nor false in
interpretations in which the extension of S is empty). Moreover, (i)–(iii) can be said to be
mutually-independent, in the following sense: we can decide, for each of them, whether to
adopt it or not; and a logic can be developed based on each of the possible combinations
of such decisions. I will make two comments here: first, I believe that in developing a
logic that differs from PC in (i)–(iii), I will not be mixing up three unrelated issues. For
the choice to adopt (i)–(iii) is not arbitrary: it is motivated by a single account of natural-
language quantification. Second, pointing out the independence (in the above sense) of
(i)–(iii) is not, by itself, an objection to Quarc any more than it is an objection to PC; for
the latter, just like former, is based on one particular combination of decisions with respect
to (i)–(iii).

Formally, (3) and (4) will be assigned a third value, U (‘undefined’) in interpretations in
which the extension of S is empty. We will thus have the following, where ϕM is the value
assigned to the formula ϕ in the interpretation M:

[(∀S)P]M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if SM �= ∅ and (x)P is true in M of every element

of SM,

F if SM �= ∅ and (x)P is false in M of some element

of SM,

U otherwise.

[(∃S)P]M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if SM �= ∅ and (x)P is true in M of some element

of SM,

F if SM �= ∅ and (x)P is false in M of every element

of SM,

U otherwise.

Note that the need for a fixed domain of quantification does not arise here: the plurality
over which we quantify is supplied by S.

As a consequence of this semantic treatment, (3)—the translation of ‘All students are
polite’—will entail (4)—‘Some students are polite’. In this, Quarc is similar to Aristotelian
logic, and diverges from PC, as well as from, e.g., the generalized-quantifier logic of
(Barwise & Cooper, 1981).8 The ordinary PC approach to this matter seems to fit the
standard use of sentences of the relevant forms in mathematics. In ordinary contexts,
however, the PC rendering of the relevant sentences seems highly counterintuitive, at least

8 Cf. (Strawson, 1950, 343–344), where an analysis similar to the one relied on in this paper is put
forward in defense of the Aristotelian Square of Opposition.
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when we limit ourselves to an extensional fragment of English (which is where PC is
supposed to apply).9

The truth or falsity of

(x)P (‘x is polite’) (5)

of a given object in a given interpretation will be defined in the following, straightforward
way: (5) will be true of α in M iff

(c)P (6)

is true in Mα
c , the interpretation resulting from M on replacing cM (the denotation in M

of c) with α. The falsity of (5) of α will be defined similarly.
Atomic, or basic formulas such as (6) will be treated classically: (6) will be true in an

interpretation M if cM ∈ PM and false otherwise. Basic formulas of the form

(c1, . . . , cn) R, (7)

where ci are individual constants and R is an n-place predicate, will be treated similarly.
Truth-functional compounds will be constructed in the usual manner; semantically, they

will be treated using Kleene’s strong three-valued truth tables.10 Despite the reliance on
Kleene’s truth tables, there will be a significant difference between Quarc and Kleene’s
strong three-valued logic: unlike in Kleene’s logic, the (only) source of truth-value gaps
in Quarc will be the empty extensions of one-place predicates occurring within QAs. As
stated above, atomic, or basic, formulas will be treated classically in Quarc, and will not
give rise to such gaps.

9 Thus, for instance, few would take the sentence

All my children work in the coal mines (i)

as expressing a truth, when uttered by a childless person.
Other examples may seem to suggest that sentences of the forms ‘All As are Bs’, or ‘Any

A is B’, do not presuppose the nonemptiness of the term A, and are thus better captured by their
PC-formalizations. The following, discussed in (Kneale & Kneale, 1971, 61), is a typical
example:

Any person who thinks he can swim the Atlantic is a fool. (ii)

Intuitively, this sentence is true even if no one thinks he can swim the Atlantic. This shows that
(ii) lacks the relevant presupposition, and allegedly supports the standard first-order formalization
of that sentence. On closer examination, however, the formalization of (ii) and similar sentences
as ∀x (Ax → Bx) is totally inadequate. For consider the sentence

Any person who thinks he can swim the Atlantic can swim the Atlantic. (iii)

This sentence is intuitively false, even if no one thinks he can swim the Atlantic; and this is
incompatible with the translation of (iii) in the form ∀x (Ax → Bx). What these examples in fact
suggest is that the semantics of sentences such as (ii) and (iii)—universal sentences expressing
a general law—is not extensional. If this is so, then, as long as we limit the discussion to an
extensional fragment of English, examples such as (ii) and (iii) will be irrelevant.

10 This is not to say that Kleene’s strong truth-tables are the last word on presupposition projection.
I do not claim here that they offer more than a rough model of how presuppositions are transferred,
or projected, from truth-functional components to the relevant compounds. However, since the
projection problem is not the focus of this paper, since Kleene’s strong truth-tables have been
employed in formal work on presupposition, and since they are relatively familiar and simpler
than some other treatments of presupposition projection, I adopt them for the purposes of this
work. Different versions of Quarc can, of course, be developed based on other approaches to
presupposition.
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It would have been possible, of course, to allow truth-value gaps already at the level
of basic formulas, thus departing from classical PC at an additional point. The decision
whether or not to do so is independent of the three-valued treatment of quantification
described above. I chose not to allow this second source of truth-value gaps in Quarc
in order to keep the focus on quantification, in order to avoid unnecessary deviations
from classical PC (and thus, perhaps, to increase familiarity and facilitate an easier com-
parison between Quarc and PC), and in order to avoid unnecessary complication of the
semantics.

Variables in Quarc will function somewhat differently than in PC: they will be employed
as anaphors. An anaphor here is a expression whose basic function is to refer to whatever
is referred to by its source: an individual constant occurring earlier in the same formula.
To correlate variable occurrences with their sources, we will write the variable in subscript
to the right of its source. We will thus have formulas such as:

( jx , x)L (‘John loves himself’). (8)

We will say that the second occurrence of x in (8) is an anaphor of (the occurrence of) j in
that formula. Semantically, (8) will be treated as equivalent to

( j, j)L (‘John loves John’). (9)

To illustrate the interaction of variables with quantifiers in Quarc, consider the sentence

Every man loves himself. (10)

This sentence results from ‘John loves himself’ on replacing ‘John’ with ‘every man’. The
same will happen in Quarc: (10) will be represented by a formula resulting from (8) on
replacing j with ∀M :

(∀Mx , x)L . (11)

The source of the second occurrence of x in this formula will be said to be the quantified
argument ∀M .

Semantically, (11) will be treated along the lines already indicated in the case of (3)
above:

[(∀Mx , x)L]M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if MM �= ∅ and (yx , x)L is true in M of every element

of MM,

F if MM �= ∅ and (yx , x)L is false in M of some element

of MM,

U otherwise.

Also, similarly to what we saw with (5), the expression (yx , x)L (‘y loves himself’) will
be true of α in M iff (8) is true in Mα

j .
The truth conditions of quantified formulas such as (11) will thus in effect be determined

on the basis of the truth conditions of their instances—formulas such as (8). This is similar
to what we saw above in the case of (∀S) P (formula (3)) and its instances—formulas
such as (c)P (formula (6)). It can also be seen that, unlike in PC and related systems,
variables enter the quantified formulas of Quarc only in cases where they occur already in
the formula’s instances: a variable is employed in (11), just as it was employed in (8); but
no variable is employed in either the quantified (3) or its instance (6). Quarc is arguably
closer to natural language on this point. For consider the English sentences represented by
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(11), (8), (3), and (6): while the reflexive pronoun ‘himself’ is employed in both ‘Every
man loves himself’ and ‘John loves himself’, no such device is employed in either ‘Every
student is polite’ or ‘John is polite’.

This interaction of quantifiers, variables, and individual constants will be reflected in
the exact definitions presented in §3 and §4 below: variables, whose basic function is as
anaphors of individual constants, will be introduced into formulas by a syntactic oper-
ation transforming, e.g., (9) into (8). Quantified formulas will be generated by another
syntactic operation, replacing an occurrence of an individual constant—whether or not it
has anaphors—by a QA. This second operation will take us from (8) to (11) and from
(6) to (3).

The same principles illustrated above will be applied in cases where the variable
(anaphor) and its source are separated by connectives. The sentences

If John loves Mary, then she loves him (12)

If a man loves Mary, then she loves him (13)

will be formalized, respectively, as

( jx ,my)L → (y, x)L (14)

(∀Mx ,my)L → (y, x)L . (15)

Note that the formalization of (13) as (15) involves rewriting ‘a man’ as the universally
quantified ∀M . This is simlar to what we find in the PC formalization of such donkey
sentences.11

Semantically, (15) will be treated by the principles already outlined above. We will thus
have:

[(∀Mx ,my)L → (y, x)L]M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if MM �= ∅ and (zx ,my)L → (y, x)L is

true in M of every element of MM,

F if MM �= ∅ and (zx ,my)L → (y, x)L is

false in M of some element of MM,

U otherwise.

The expression (zx ,my)L → (y, x)L will be true of α in M if (14) is true in Mα
j ; and

(14) will be treated as equivalent to ( j,m)L → (m, j)L .
Multiply quantified sentences, such as

Every man loves some women, (16)

have been claimed to involve scope ambiguity. According to Ben-Yami (2014, 127), the
prevalence of this ambiguity has been exaggerated; and even in cases in which ambiguity
does exist, sentences of the form of (16) usually have a default reading, on which the first
(leftmost) quantified phrase, (‘every man’, in the case of (16)), has wider scope than the
second (‘some women’). This default reading is rejected, according to Ben-Yami, only in
case it does not make sense in the context. This analysis is reflected in the logical system of
(Ben-Yami, 2014) by the adoption of a uniform principle for quantifier scope, or priority,

11 This rewriting is avoided on dynamic treatments, such as those of DRT and DPL. Although I will
not pursue this direction here, Quarc is sufficiently similar to PC to allow the development of a
dynamic semantics along the lines of (Groenendijk & Stokhof, 1991).
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designed to capture the default reading. This principle takes into account the order in which
the QAs occur in the given formula, as well as other syntactic features.

I consider Ben-Yami’s approach to multiply quantified sentences in natural language
plausible. It also has the advantage of being able to explain the semantic role of the passive
voice, as well as of converse relation expressions, in multiply quantified sentences: these
function as reordering devices, enabling us to change the quantifiers’ order of priority in a
sentence (this is illustrated below). I will here follow Ben-Yami and develop Quarc around
a uniform principle for determining the priority of QAs. Correspondingly, I will incorporate
into Quarc reordering devices that imitate the ones found (on Ben-Yami’s approach) in
natural language.

An alternative approach would be that of (Francez, 2014): attachment of numerical
indices to quantified expressions and determination of quantifier priority in accordance
with those indices. Francez’s approach has the advantage of enabling a straightforward
representation of more than one reading of sentences of the form of (16) in cases that do
involve scope ambiguity. A downside of this approach, however, is that the resulting logic
no longer reflects the semantic role of natural language devices such as converse relation
expressions (Ben-Yami, 2014).

A third formal approach, more flexible than either Ben-Yami’s (and the one adopted
here) or Francez’s would be the following: (i) employ a uniform principle for quantifier
priority based on the QAs’ order of occurrence in the formula, and treat the reading of
multiply quantified formulas resulting from this principle as a default reading; (ii) allow
the attachment of numerical indices to QAs, and let the reading dictated by those indices
override the default reading whenever such indices are present. If Ben-Yami’s view of
multiple quantification in natural language is correct, then this would bring Quarc even
closer to natural language. I will not apply this approach here, in order not to overly
complicate the syntax. It should be noted, however, that Quarc can be easily modified
so as to incorporate this third approach.

Let us now present, in some detail, the way in which quantifier priority will be deter-
mined in Quarc. Consider again the sentence (16) (‘Every man loves some women’). This
will be represented in Quarc as

(∀M, ∃W ) L . 12 (17)
Quantifier priority in this formula will be determined in accordance with the order of QA
occurrences. The main quantified argument of (17)—the one governing that formula—will
be ∀M : the formula will be true in an interpretation M iff MM is nonempty and

(x, ∃W ) L (‘x loves some women’)

is true in M of every element of MM.
The general principle determining quantifier-priority in Quarc will take into considera-

tion more than just the order in which quantifiers occur in a given formula. I will explain

12 Compare (17) with the formalization of (16) in the logic L(GQ) of (Barwise & Cooper, 1981):

every (M) x̂
[
some (W) ŷ

[
L (x, y)

]]
. (i)

Although L(GQ) is syntactically closer to natural languages such as English than PC is, there
are aspects in which Quarc is yet closer to natural languages. In the L(GQ) formalization (i), the
quantifiers are applied from the outside to expressions resembling open formulas (Barwise and
Cooper’s ‘set terms’, such as x̂

[
some (W) ŷ

[
L (x, y)

]]
). Since this is how quantification works

in L(GQ), the need for variables arises already in examples such as (16). No similar syntactic
device is employed in either the English (16) or the Quarc formalization (17).
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this principle using the following example:

If all forum members complain about a post, then it gets deleted. (18)

In PC this becomes:

∀x
([

Px ∧ ∀y (Fy → Cyx)
] → Dx

)
. (19)

Indeed, the main quantified phrase of (18) seems to be ‘a post’, not ‘all forum members’.
In Quarc, (18) will be formalized as

(∀F, ∀Px )C → (x)D. (20)

Given our understanding of (18), we would like ∀P , and not ∀F , to be the governing QA
of (20). To accomplish this, we will rely on the notion of a distributed occurrence: an
occurrence o of a QA is distributed in a given formula ϕ if no subformula of ϕ contains
both o and all its anaphors.13 The notion of subformula will be given an exact definition
in §3. The occurrence of ∀P in (20), for example, is distributed, while that of ∀F is
not. We now define the main, or governing, QA of a formula not as the leftmost QA-
occurrence in that formula, but as the leftmost distributed QA-occurrence. This principle
yields the intuitively-correct truth conditions in the case of (20), as well as in many other,
similar cases. It also yields the correct truth-conditions in simpler cases, such as that
of (16).14

Governance is defined here somewhat differently than in (Ben-Yami, 2014). The princi-
ple adopted by Ben-Yami makes ∀F the governing QA of (20). Consequently, (18) cannot
be formalized as (20) in his logic. I consider this an advantage of the current approach.
Other examples seem to fit Ben-Yami’s notion of governance better than the one defined
here. Technically, Quarc can be developed using either of the two principles of governance
(and also, as indicated above, using numerical indices to override the relevant principle of
governance).

In PC, the quantifiers’ order of priority can be reversed simply by reversing their order
of occurrence in the formula. This is what happens when we move from

∀x∃yLxy (‘Everyone loves someone’) (21)

to

∃y∀x Lxy (‘Someone is loved by everyone’). (22)

Since quantifiers in Quarc do not attach to formulas from the outside, a similar effect cannot
be obtained in Quarc by simply reversing the order of quantified arguments. As indicated
above, the device that will be used for this purpose in Quarc resembles what we find in
the English translations of (21) and (22). In English sentences, a change in the quantifiers’
order of priority is ordinarily obtained by reversing the order of quantified noun phrases
and switching between the passive and the active voices (e.g., using ‘loved by’ instead
of ‘loves’), or between converse relation expressions (e.g., ‘shorter than’ instead of ‘taller
than’). In Quarc, we will associate, with any two-place predicate R, another two-place
predicate R2,1, that will serve as the converse of R. The predicate R2,1 will be called a
reordered form of R. It will be interpreted, in every interpretation M, as the inverse of the

13 We use ‘all’ in ‘all its anaphors’, as elsewhere in the metalanguage, not as it is used in ordinary
discourse (according to the analysis presented above), but as it is standardly used in mathematics.

14 This is not to say that the principle stated above gives the only possible reading of each quantified
English sentence; indeed, in some cases involving ambiguity of scope our principle may not yield
the most natural, or plausible, reading.
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relation RM (where RM is the denotation in M of R). In other words: R2,1M = {〈y, x〉 :
〈x, y〉 ∈ RM}.

To see how reordered forms enable changes in the quantifiers’ order of priority, consider
again the sentence ‘Every man loves some women’. If this sentences is formalized as

(∀M, ∃W ) L ,

then ‘Some women are loved by every man’ will be formalized as

(∃W, ∀M) L2,1.

It can be verified that the semantic principles already indicated yield the correct truth-
conditions when applied to the latter formula.

Many-place predicates in general will be treated similarly. With any n-place predicate
R, with n ≥ 2, we will correlate a set of n! − 1 reordered forms: n-place predicates of
the form R p1,...,pn , where p is a nontrivial permutation (i.e., not the identity function) of
{1, . . . , n} and p(i) = pi . Reordered forms will be interpreted in any interpretation M in
accordance with the following scheme:

R p1,...,pnM = {〈x p1 , . . . , x pn 〉 : 〈x1, . . . , xn〉 ∈ RM}.
In PC, the negation symbol can either precede a quantifier, or occur between the quanti-

fier and the rest of the formula. We thus have both

¬∃x H x (‘It is not the case that someone is happy’) (23)

and

∃x¬H x (‘Someone isn’t happy’). (24)

Since quantifiers in Quarc do not attach to formulas from the outside, the position occupied
by the negation symbol in (24) is unavailable. An effect similar to that of (24) can, however,
be obtained in Quarc, and in a way similar to what we find in natural languages. The
sentence

Some people aren’t happy

will be formalized as

(∃P)¬H. (25)

Semantically, a formula

(c1, . . . , cn)¬R,

where ci are individual constants, will be treated as equivalent to

¬ (c1, . . . , cn) R.

This, together with the semantic principles governing quantification in Quarc, will yield
the correct truth conditions of formulas such as (25).

As noted in the introduction, Quarc will be capable of straightforward translation of
sentences involving defining clauses. The following are two examples of such sentences. In
each of them, a noun (the underlined word) is modified by a defining clause (the italicized
expression).

John is a man who knows Mary (26)

Every man who knows Mary knows John (27)

The modified noun, together with the defining clause modifying it, will be represented in
Quarc by a compound predicate: an expression of the form
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Px :ψ(x), (28)

where P is a one-place predicate and where x is a variable.15 Intuitively, (28) is to be read
as ‘P that satisfies the condition ψ(x)’. Like primitive one-place predicates, compound
predicates will be allowed both in the predicate position and as parts of QAs. Sentences
(26) and (27), for instance, will be translated by the following respective formulas:

( j) Mx :[(x,m) K ] (29)

(∀ Mx :[(x,m) K ], j) K . (30)

The semantic treatment of formulas such as (29) is straightforward. Intuitively, a formula
of the form

(c) Px :ψ(x)

states that ‘c is a P that satisfies the condition ψ(x)’. Accordingly, that formula will be
treated as equivalent to the conjunction

(c)P ∧ ψ(c).

Formula (30) involves the quantified argument ∀ Mx : [(x,m) K ] (‘every man who knows
Mary’). To define the truth conditions of formulas involving such QAs, we will first cor-
relate an extension with every compound predicate. This is, again, straightforward: if C is
the compound predicate Px :ψ(x), then the extension CM of C in M will be the set of all
elements of PM of which ψ(x) is true in M. Once extensions are assigned in this way, we
can extend the semantic principles discussed thus far to formulas such as (30). The latter
formula will be true in M if the extension of

Mx : [(x,m) K ] (‘man who knows Mary’) (31)

in M is nonempty and if

(y, j) K (‘y knows John’) (32)

is true in M of every element of that extension. Formula (30) will be false in M if (32) is
false in M of some element of the extension of (31), and undefined (U) in M in case that
extension is empty.

The following sentence contains a nested defining clause:

John is a student who knows every professor whom Mary knows. (33)

This will be translated as

( j) Sx : [ (x, ∀ Py :[(m, y)K ]) K ]. (34)

Note that the semantic principles outlined thus far suffice for the treatment of (34): first,
that formula is equivalent to

( j)S ∧ ( j, ∀ Py :[(m, y)K ]) K . (35)

15 In English sentences such as (26) and (27) an argument place in the defining clause is occupied
by a word of a special syntactic category: a relative pronoun. It would have been possible to
make Quarc resemble English in this respect by introducing a special category of symbols for this
role. I believe, however, that there is not much point in doing so. My main reasons are that, first,
the employment of relative pronouns in defining clauses is not universal: personal pronouns are
sometimes employed in defining clauses in English; and they are often employed in other languages.
Second, the introduction of a separate category of symbols to reflect the employment of relative
pronouns in defining clauses in English would unnecessarily complicate the syntax of Quarc.
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Second, the right conjunct of (35) is true in an interpretation M iff the extension in M of

Py :[(m, y)K ] (‘Professor whom Mary knows’) (36)

is nonempty and

( j, z)K (‘John knows z’) (37)

is true in M of every element of that extension. The right conjunct of (35) is false in M
if (37) is false in M of some element of the extension in M of (36). Third, the extension
in M of (36) is the set of all elements of PM of which (m, y)K is true in M.

As indicated in the introduction, sentences such as (27) (‘Every man who knows Mary
knows John’) cannot be straightforwardly translated into Ben-Yami’s (2014) version of
Quarc. To translate (27) into Ben-Yami’s logic, we need to paraphrase that sentence,
probably as

If a man knows Mary, then he knows John, (38)

and only then formalize it, as

(∀Mx ,m) K → (x, j) K . 16 (39)

Our translation (30) arguably reflects the syntactic structure of (27) better than Ben-Yami’s
(39). And assuming the semantic analysis on which Quarc is founded is correct, (30) cap-
tures the truth- and falsity-conditions of (27), while Ben-Yami’s (39) does not: according
to that analysis, (27) cannot be true in case ‘man who knows Mary’ is empty. But if ‘man
who knows Marry’ is empty while ‘man’ is not, then (39) is true.

I will close this section with a few comments on anaphors in donkey sentences and on
the three-valued framework of Quarc.

Our exact definition of ‘formula’ will allow anaphors only in cases covered by the
principles thus far surveyed. In English, however, there are cases not covered by those
principles. As an example, consider the donkey sentence

Every man who digs a hole falls into it. (40)

A straightforward translation of (40) into Quarc would require a formula such as(∀ Mx :
[(

x, ∃Hy
)
D

]
, y

)
F. (41)

Expressions such as (41), however, will not be allowed as formulas in Quarc. To translate
(40) we will need to paraphrase it first, in one of the following forms, depending on our
understanding of the original sentence:

Every man who digs a hole falls into every hole he digs (42)

Every man who digs a hole falls into some hole that he digs. (43)

The last two sentences can be formalized, respectively, as(∀ [
Mx : [(x, ∃H)D]

]
y , ∀Hz :

[
(y, z) D

] )
F (44)(∀ [

Mx : [(x, ∃H)D]
]

y , ∃Hz :
[
(y, z) D

] )
F. (45)

The three-valued framework adopted in this paper results in complications in both the
model-theory and the proof-system that will be introduced below. This framework,
however, allows Quarc to straightforwardly reflect the basic analysis of quantification on

16 I am ignoring, for the purpose of the current discussion, certain typographic differences between
Ben-Yami’s version of Quarc and the current one. Those differences are inconsequential in the
present context.
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which it is based. According to that analysis, recall, sentences of the forms ‘Some As are
Bs’ and ‘All As are Bs’ involve the presupposition that the extension of A is nonempty. As
explained above, this will be reflected in Quarc by letting the translations of such sentences
receive the value U (‘undefined’) whenever A has an empty extension.

Ben-Yami (2014) takes a different approach. Since his semantics is bivalent, the above
analysis cannot be reflected in his logic in the same way as here. As explained in the intro-
duction, Ben-Yami imposes a global nonemptiness requirement: one-place predicates are
simply required to be nonempty, as part of the semantic framework. A consequence of this
approach is that (∃P) P (‘Some philosophers are philosophers’) is—in Ben-Yami’s logic—
a logical truth. Another consequence is that ¬ (∃W )C (‘It is not the case that some women
are witches’) logically entails (∃C)¬W (‘Some witches are not women’). Whether or not
such consequences are tolerable, the global nonemptiness approach becomes completely
inapplicable as soon as we allow (as we do here) defining clauses: since a predicate may
be modified by an unsatisfiable defining clause, as in Mx: x �= x (‘a man not identical with
himself’), the nonemptiness requirement cannot be imposed. We thus seem to have no real
alternative to the three-valued framework—if we want the logic to reflect the analysis of
quantification on which we rely.

§3. Syntax. As can be seen from the previous section, Quarc is syntactically and
semantically more complex than PC. This will also be evident from the current and next
sections. Since Quarc employs devices similar to those of natural languages, which are
absent from PC—devices such as negative predication, reordered forms, and defining
clauses—the added complexity is to be expected. Additional complexity will result from
our employment of a three-valued framework, as will be noticeable in the next two sections.
We now proceed to the exact syntactic definitions.

The logical symbols are the following:

1. Identity and nonidentity symbols: =, �=.

2. Variables: x, y, z, u, v, . . . , x1, x2, . . .

3. A subscript version of each of the variables: x ,y ,z , . . .

4. Superscript indices: 1,2 ,3 , . . .

5. Connectives: ¬,∧,∨,→ .

6. Quantifiers: ∀, ∃.
7. Parentheses, square brackets, colon, comma, and superscript comma:
(, ) , (, ), [, ], :, , ,, .

As can be seen, we officially employ two sorts of parentheses, as well as square brackets.
Bold parentheses will be used in the construction of truth-functional compounds, square
brackets in the construction of compound predicates, and ordinary parentheses for all
other purposes. The use of bold parentheses will facilitate a straightforward definition
of ‘subformula’ (Definition 3.7 below). In displaying formulas we will, in general, not
distinguish between the three kinds of brackets. Additional notational conventions will be
specified at the end of the current section.

The nonlogical symbols are:

1. Individual constants: a, b, c, d, . . . , c1, c2, . . .

2. For every integer n ≥ 1, denumerably many primitive n-place predicates:
P, Q, R, . . . , P1, P2, . . .

A language L is a set whose elements are: (i) all the logical symbols; (ii) denumer-
ably many individual constants; and (iii) some, or none, of the primitive predicates. The
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elements of a language are its symbols. We assume that, for every language L, there are
denumerably-many individual constants not in L. The ability to add to every given lan-
guage denumerably-many new individual constants will be relied on in the completeness
proof presented in §6.

The language, L, will be held fixed throughout the rest this section. Unless otherwise
stated, by ‘symbol’, ‘individual constant’, and ‘primitive predicate’ we will mean a symbol
of L, an individual constant of L and a predicate of L, respectively. The notions defined
below are to be understood as relative to L despite the omission of explicit reference to the
language.

By an expression we mean any finite string of symbols. Expressions of length 1 will be
identified with their single component. To emphasize the fact that an expression ϕ includes
as a substring an expression E we may display ϕ as ϕ(E). If o is an occurrence of some ex-
pression within an expression ϕ, and E is any expression, then by ϕ[o/E] we will mean the
expression resulting from ϕ on replacing o with E . In case several expression-occurrences
o1, . . . , on are replaced by E1, . . . , En , respectively, we will write ϕ[o1/E1, . . . , on/En].
Sometimes we would like to replace all the occurrences of an expression E1 in ϕ with
another expression E2. We refer to the expression resulting in this way as ϕ[E1/E2]. The
same notation (ϕ[E1/E2]) will also have the following use: it will denote the expression
resulting from ϕ(E1) on replacing one particular occurrence of E1 with E2, where the
relevant occurrence of E1 is clear from the context.

DEFINITION 3.1 (Reordered form). If R is an n-place primitive predicate, n ≥ 2, p is a
nontrivial permutation (i.e., not the identity permutation) of {1, . . . , n}, and p(i) = pi for
all i , then the expression R p1,...,pn is a reordered form of R.

Thus, if R is a 3-place primitive predicate, its reordered forms are R1,3,2, R2,1,3, R2,3,1,
R3,1,2, and R3,2,1.

DEFINITION 3.2 (Basic formula). An expression ϕ is a basic formula if it has one of the
following forms, where ci are individual constants, and R is a k-place primitive predicate
(k ≥ 1) or a reordered form of such:

1. c1 = c2

2. c1 �= c2

3. (c1, . . . , ck) R

4. (c1, . . . , ck)¬R

Basic formulas are formulas. We will define the set of all formulas as the closure
of the set of basic formulas under certain syntactic operations that will be introduced
below. The following seven definitions will be relied on in the definition of those
operations.

We start with the definition of compound predicate. Officially, compound predicates will
have the form Px : [ψ(x)], where ψ(x) results from a formula ψ(c) on replacing c with x .
The square brackets will be relied on in the definitions below, but will usually be omitted
when displaying formulas. Since the notion of formula is not yet available at this stage, we
will first define a more general notion of compound predicate, where ψ(c) is an expression
containing c, but not necessarily a formula. The notions of predicate and of quantified
argument will then be treated in the same way.

DEFINITION 3.3 (Compound ψ-predicate). If ψ(c) is an expression containing an individ-
ual constant c, P is a one-place primitive predicate, x is a variable not occurring in ψ(c),
ψ(x) is ψ[c/x], and in the expression [ψ(x)] the displayed square brackets constitute a
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matching pair,17 then the expression Px : [ψ(x)] is a compound ψ-predicate, and ψ(x) is
its defining clause.

Example. If ψ(c) is (cy, y)L (‘Charlie loves himself’), then Mx : [(xy, y)L] (‘man who
loves himself’) is a compound ψ-predicate.

DEFINITION 3.4 (ψ-predicate). An expression Q is a k-place ψ-predicate if either
(i) Q is a primitive k-place predicate; or (ii) k = 1 and Q is a compound ψ-predicate; or
(iii) k ≥ 2 and Q is a reordered form of a primitive k-place predicate.

DEFINITION 3.5 (Quantified ψ-argument; ψ-argument). If P is a one-place ψ-predicate
(either primitive or compound) then the expressions ∀P and ∃P are quantifiedψ-arguments.
An expression α is a ψ-argument if it is either a quantified ψ-argument or an individual
constant.

DEFINITION 3.6 (Anaphor). An occurrence ox of a variable x in an expression ϕ is
anaphoric on an occurrence oα of a ψ-argument α in ϕ if the following conditions hold:

1. oα is to the left of ox .

2. The subscript variable x immediately succeeds oα .

3. The subscript variable x does not immediately succeed any ξ -argument ( for any
expression ξ ) between oα and ox .

In this case we may also say that ox is an anaphor of oα , and that oα is the source of ox ,
in ϕ. In cases where no confusion would arise, we may also say that ox is an anaphor of
α in ϕ.

DEFINITION 3.7 (Subformula). If ϕ is any expression, then by a subformula of ϕ we will
mean any expression ψ such that the expression (ψ) is part of ϕ, and the displayed bold
parentheses constitute a matching pair.

DEFINITION 3.8 (Distributed occurrence). An occurrence oα of a ψ-argument α in an
expression ϕ is distributed in ϕ if the following conditions hold:

1. oα does not lie within any defining clause.

2. No subformula of ϕ contains both oα and all its anaphors.

DEFINITION 3.9 (Governance). An occurrence oκ of a quantified ψ-argument κ in an
expression ϕ governs ϕ if oκ is the leftmost distributed occurrence of such an argument in
ϕ (in other words: if oκ is distributed in ϕ and it is not the case that for some expression ξ ,
there is in ϕ a distributed occurrence of a quantified ξ -argument to the left of oκ).

The following four syntactic operations, O1–O4, will be relied on in the definition of
formula:

17 The relation ‘p and q constitute a matching pair’, on occurrences of square brackets in a given
expression, can be defined by induction on the number n of additional occurrences of square
brackets between p and q: (i) if n = 0, then p and q constitute a matching pair iff (*) the leftmost
of p, q is an occurrence of the symbol [ and the rightmost of p, q is an occurrence of the symbol ].
(ii) If n> 0, then, assuming the relation to be defined for every k< n, p and q constitute a
matching pair iff the condition (*) is met and for every square-bracket occurrence p′ between
p and q there is another square-bracket occurrence q ′ between p and q such that p′ and q ′
constitute a matching pair.
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O1 (Compound predicates). From an expression ψ(c1) obtain the expressions
(c2) Px : [ψ(x)] and (c2)¬Px : [ψ(x)], where:

1. c1, c2 are individual constants.

2. ψ(x) is ψ[c1/x].

3. Px : [ψ(x)] is a compound ψ-predicate.

Example. The expression (in fact: formula) (d) Mx : [(x,m) L] (‘David is a man who loves
Mary’) is obtained from ( j,m)L (‘John loves Mary’) by the operation O1.

O2 (Truth-functional compounds). From a pair ϕ, ψ of expressions, none of which con-
tains anaphors of individual constants, obtain the expressions: ¬(ϕ), (ϕ)∧(ψ), (ϕ)∨(ψ),
(ϕ) → (ψ).

O3 (Constant anaphors). From an expression ψ(c) obtain the expression
ψ[o1/cx , o2/x, . . . , om/x], where:

1. c is an individual constant; x is a variable not occurring in ψ .

2. m ≥ 2.

3. o1, o2, . . . , om are occurrences of c in ψ , ordered from left to right.

4. None of o1, o2, . . . , om has anaphors in ψ .

Example. The expression ( jx , x,m)¬I (‘John did not introduce himself to Mary’) is
obtained from ( j, j,m)¬I (‘John did not introduce John to Mary’) by O3.

O4 (Quantified arguments). From expressions ϕ(c) and ψ obtain the expression ϕ(q P),
where:

1. c is an individual constant occurring in ϕ(c) exactly once.

2. q is either ∀ or ∃.

3. q P is a quantified ψ-argument (P is either a primitive one-place predicate or a
compound ψ-predicate of the form Fx : [ψ(x)]).

4. The expression ϕ(q P) results from ϕ(c) on replacing c with q P.

5. The occurrence of q P replacing c governs the expression ϕ(q P).

6. No individual constant has anaphors in ϕ(q P).

7. No variable occurs both in ϕ(c) and in q P.

Example. If M is a primitive one-place predicate, then the expression ∀M is a quanti-
fied ψ-predicate for every expression ψ . Hence, for every expression ψ , the expression
((∀Mx , ∀Wy)L) → ((y, x)L2,1) (‘If a man loves a women, then she is loved by him’)
results from (( jx , ∀Wy)L) → ((y, x)L2,1) (‘If John loves a women, then she is loved by
him’) and ψ by O4.

DEFINITION 3.10 (Formula). The set of formulas is the closure under O1–O4 of the set of
basic formulas.

Now that the notion of formula has been defined, we can easily define restricted notions
of compound predicate, predicate, quantified argument, and argument, removing the rela-
tivization to an expression ψ :

DEFINITION 3.11 (Compound predicate; predicate; quantified argument; argument). An ex-
pression E is a compound predicate (predicate, quantified argument, argument) if there is
a formula ψ such that E is a compound ψ-predicate (ψ-predicate, quantified ψ-argument,
ψ-argument).
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In displaying formulas, it will be convenient to adopt the following conventions:

1. By ϕ(q P) we will mean a formula ϕ generated by the operation O4 and governed
by an occurrence oq P of q P . Also, by ϕ[q P/β], and sometimes just ϕ(β), we will
mean ϕ[oq P/β].

2. We may use parentheses of different kinds, as well as add parentheses, to increase
readability.

3. We will not write parentheses in bold font, and will omit parentheses where this is
unlikely to cause confusion. We will also usually omit the square brackets around
the defining clauses of compound predicates.

§4. Semantics. As noted in §2, interpretations in Quarc will not be equipped with a
domain of quantification; rather, they will simply be interpretation functions. The need for
domains of quantification will not arise here, since the pluralities needed for quantification
will always be introduced by the predicates to which quantifiers attach. When reference is
made to the domain of an interpretation M, what will be meant is the domain of M as a
function. The language L remains fixed throughout this section.

The following definition relies on the notions of function, domain of a function, and
k-tuple. Note that these three notions are set-theoretically definable without prior specifi-
cation of a set, or domain, from which the values of a function, or the components of a
k-tuple, are to be taken.18

DEFINITION 4.1 (Interpretation). An interpretation for L is a function M for which the
following conditions hold (where EM is the image under M of E):

1. The domain of M (as a function) is the set of all individual constants, primitive
predicates, and reordered forms of predicates in L.

2. For every k-place predicate R in L, RM is a set of k-tuples.

3. For every reordered form R p1,...,pk in L (k ≥ 2), R p1,...,pkM = {〈x p1 , . . . , x pk 〉 :
〈x1, . . . , xk〉 ∈ RM}.19

DEFINITION 4.2 (Truth-value in an interpretation). We now inductively define the truth-
value ϕM of a formula ϕ in an interpretation M. The truth-value ϕM will always be
either T (true), F ( false), or U (undefined).

DEFINITION 4.2.1 (Basic formulas).

[c1 = c2]M =
{

T if c1
M = c2

M,

F otherwise.

[c1 �= c2]M =
{

T if c1
M �= c2

M,

F otherwise.

18 A function is a set f of ordered pairs such that, for every x , y, and z, if 〈x, y〉, 〈x, z〉 ∈ f , then
y = z. The domain of a function f is the set {x : for some y, 〈x, y〉 ∈ f }. A k-tuple is a function
whose domain is the set {1, . . . , k}.

19 In ordinary model-theory, the denotations of individual constants are required to belong to the
domain of quantification of the relevant interpretation. Nothing of this sort needs to (or can) be
required here, as Quarc-interpretations lack domains of quantification.
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[(c1, . . . , ck)R]M =
{

T if 〈c1
M, . . . , ck

M〉 ∈ RM,

F otherwise.

[(c1, . . . , ck)¬R]M =
{

T if 〈c1
M, . . . , ck

M〉 /∈ RM,

F otherwise.

ci here are any individual constants, k ≥ 1, and R is any primitive k-place predicate or a
reordered form of such.

DEFINITION 4.2.2 (Compound predicates). [(c)Px :ψ(x)]M = [(c)P ∧ ψ(c)]M, where,
for some individual constant d, the expression ψ(x) is ψ[d/x] and ψ(c) is ψ[d/c].
[(c)¬Px :ψ(x)]M is the opposite of the truth value in M of (c)P ∧ψ(c): F if the latter is
T, T if it is F, and U otherwise.20

DEFINITION 4.2.3 (Truth-functional compounds). The truth-values of these in every inter-
pretation are determined in accordance with Kleene’s strong truth-tables:

[¬ϕ]M =

⎧⎪⎨
⎪⎩

T if ϕM = F,

F if ϕM = T,

U otherwise.

[ϕ ∧ ψ]M =

⎧⎪⎨
⎪⎩

T if ϕM = ψM = T,

F if at least one of ϕM, ψM is F,

U otherwise.

[ϕ ∨ ψ]M =

⎧⎪⎨
⎪⎩

T if at least one of ϕM, ψM is T,

F if ϕM = ψM = F,

U otherwise.

[ϕ → ψ]M =

⎧⎪⎨
⎪⎩

T if ϕM = F or ψM = T,

F if ϕM = T and ψM = F,

U otherwise.

DEFINITION 4.2.4 (Constant anaphors). If a formula ϕ results from a formula ψ by the
operation O3 of §3, then ϕM = ψM.

To define the truth conditions of quantified formulas we will rely on the following three
definitions:

DEFINITION 4.2.5 (αc -variant). For any object α, any interpretation M, and any individual
constant c, the α

c -variant of M, or: Mα
c , is the interpretation that sends c to α and that

coincides with M on any other input.

DEFINITION 4.2.6 (True of, false of, undefined for). If ψ(c) is a formula not containing x
and ψ(x) is the expression ψ[c/x], then: ψ(x) is true of (false of, undefined for) α in M
if ψ(c) is true (false, undefined) in Mα

c . 21

20 It is straightforward to verify that the definition is independent of the choice of d .
21 It is straightforward to verify that the definition, for a given ψ(x), is independent of the choice

of c.
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DEFINITION 4.2.7 (Extensions of compound predicates). The extension in M of a com-
pound predicate Px :ψ(x) is the set {α ∈ PM : ψ(x) is true of α in M}. The extension
in M of a compound predicate C will be referred to as CM.

Example. If BM is the set of all integers and LM is the set {〈x, y〉 ∈ R
2 : x + y = xy},

then the extension of Bx : (xy, y)L in M is the set of all integers n such that n + n = nn
(i.e., the set {0, 2}).
DEFINITION 4.2.8 (Quantifiers). If P is any one-place predicate, q is a quantifier, ϕ(q P)
does not contain x and results from ϕ(c) and a formula ψ by the operation O4 of §3, and
ϕ(x) is ϕ[c/x], then:

1. In case q is ∀:

ϕ(∀P)M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if PM �= ∅ and ϕ(x) is true in M of every element

of PM,

F if PM �= ∅ and ϕ(x) is false in M of some element

of PM,

U otherwise.

2. In case q is ∃:

ϕ(∃P)M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T if PM �= ∅ and ϕ(x) is true in M of some element

of PM,

F if PM �= ∅ and ϕ(x) is false in M of every element

of PM,

U otherwise.

DEFINITION 4.3 (Models). An interpretation M is a model of a formula ϕ if ϕ is true
in M. M is a model of a set � of formulas if it is a model of each ϕ ∈ �.

DEFINITION 4.4 (Entailment). A set � of formulas entails a formula ϕ in L (in symbols:
� �L ϕ) if every model of � is a model of ϕ.

Example. (∀S) P entails (∃S) P .

Proof. If M is a model of (∀S) P then SM is nonempty and (x)P is true of all its
elements. It follows that (x)P is true of at least one element of SM, and thus—that (∃S) P
is true in M. �

The inference from (∀S) P to (∃S) P is part of the Aristotelian Square of Opposition
(when ‘Every S is P’ is translated as (∀S) P and ‘Some S is P’ – as (∃S) P). It is straight-
forward to verify that all the inferences of the Square are similarly validated in Quarc.22

§5. Proof system. The proof system presented below operates on sequents, but is more
similar to a natural deduction system in its inference rules than to a sequent calculus. The

22 Unlike the inferences of the Square of Opposition, not all conversion principles of Aristotelian
logic are preserved in Quarc. Consider, for instance, the inference from ‘No S is P’ (or, in Quarc:
(∀S)¬P) to ‘No P is S’ (in Quarc: (∀P)¬S). Any interpretation M with SM �= ∅ and PM = ∅
is a model of this inference’s premise, but not of its conclusion.
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system is considerably more complex than the ones usually given for PC. The complexity
results in large part from the three-valued framework adopted here. In that framework, the
classical ¬-introduction rule cannot be employed; instead, we use separate introduction and
elimination rules for various combinations of ¬ with other symbols. Thus, for instance, in the
case of conjunction, we will employ not a single introduction rule and a single elimination
rule, but introduction and elimination rules for each of ϕ ∧ ψ and ¬ (ϕ ∧ ψ).23

The language, L, is held fixed throughout this section.
Our proof system will operate on sequents of the form � ⇒ ϕ, where � is a (possibly

empty) set of formulas, and ϕ is a single formula. The elements of � (if there are any)
are the antecedent formulas of the sequent; ϕ is the sequent’s succedent. The antecedent
formulas may be written in any of the usual forms, e.g., �,ψ ⇒ ϕ, or ψ1, ψ2, ψ3 ⇒ ϕ.

5.1. Inferences; deductions. An inference in L is an array of sequents of the form

�1 ⇒ ϕ1 . . . �n ⇒ ϕn

� ⇒ ϕ

conforming to one of the inference rules specified below. The sequents �i ⇒ ϕi are called
the inference’s upper sequents; � ⇒ ϕ is called its lower sequent.

A deduction in L is an array of inferences arranged in the usual tree form. Each de-
duction starts with finitely many initial sequents (see below) and ends with a single end
sequent. A sequent � ⇒ ϕ is deducible in L if there is a deduction in L of which that
sequent is the end sequent. Such a deduction will be called a deduction in L of � ⇒ ϕ.
Instead of saying that � ⇒ ϕ is deducible in L, we may say that ϕ is deducible from � in
L, and write � �L ϕ.

5.1.1. Initial sequents.

1. � ⇒ ϕ, where ϕ ∈ �;

2. � ⇒ c = c, where c is any indidivual constant;

3. � ⇒ ϕ ∨ ¬ϕ, where ϕ is a basic formula.

5.1.2. Inference rules. Throughout this subsection, unless otherwise specified, c, ci ,
and d are any individual constants; Q is any one-place predicate (either primitive or com-
pound); P is any one-place primitive predicate; R is any n-place predicate, n ≥ 2; ϕ, ψ ,
and ξ are formulas; and �, �i are sets of formulas.

Identity:

(SV)
�1 ⇒ ϕ(c) �2 ⇒ c = d

�1, �2 ⇒ ϕ(d)
,

where ϕ(d) results from ϕ(c) on replacing some, or all, of the occurrences of c with d.

Reordered forms:

(RF1)
� ⇒ (cp1 , . . . , cpn )R

p1,...,pn

� ⇒ (cr1 , . . . , crn )R
r1,...,rn

(RF2)
� ⇒ ¬(cp1 , . . . , cpn )R

p1,...,pn

� ⇒ ¬(cr1 , . . . , crn )R
r1,...,rn

,

where p and r are any two permutations of {1, . . . , n}, and where R1,...,n is just R.

23 A similar thing happens with proof systems for Kleene’s first-order logic. See (Kearns, 1979).
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Negative predication:

(NPI1)
� ⇒ ¬(c = d)

� ⇒ c �= d

(NPE1)
� ⇒ c �= d

� ⇒ ¬(c = d)

(NPI2)
� ⇒ ¬(c1, . . . , cn)R

� ⇒ (c1, . . . , cn)¬R

(NPE2)
� ⇒ (c1, . . . , cn)¬R

� ⇒ ¬(c1, . . . , cn)R

(NPI3)
� ⇒ (c1, . . . , cn)R

� ⇒ ¬(c1, . . . , cn)¬R

(NPE3)
� ⇒ ¬(c1, . . . , cn)¬R

� ⇒ (c1, . . . , cn)R
,

where n ≥ 1 and R is any n-place predicate (possibly compound, in case n = 1, and
possibly a reordered form, in case n> 1).24

Compound predicates:

(CPI1)
� ⇒ (c)P ∧ ψ(c)
� ⇒ (c)Px :ψ(x)

(CPE1)
� ⇒ (c)Px :ψ(x)

� ⇒ (c)P ∧ ψ(c)
(CPI2)
� ⇒ ¬[(c)P ∧ ψ(c)]
� ⇒ ¬[(c)Px :ψ(x)]

(CPE2)
� ⇒ ¬[(c)Px :ψ(x)]

� ⇒ ¬[(c)P ∧ ψ(c)] ,

where ψ(c) and ψ(x) result from a formula ψ(d) on substituting c and x (respectively) for
every occurrence of d.

Anaphors:

(AI)
� ⇒ ψ(c)

� ⇒ ψ[o1/cx , o2/x, . . . , om/x]

(AE)
� ⇒ ψ[o1/cx , o2/x, . . . , om/x]

� ⇒ ψ(c)

where ψ[o1/cx , o2/x, . . . , om/x] results from ψ(c) by the operation O3 of §3.

Conjunction:

(∧I1)
�1 ⇒ ϕ �2 ⇒ ψ

�1, �2 ⇒ ϕ ∧ ψ

(∧E1)
� ⇒ ϕ ∧ ψ
� ⇒ ϕ

(∧E2)
� ⇒ ϕ ∧ ψ
� ⇒ ψ

(∧I2)
� ⇒ ¬ϕ

� ⇒ ¬(ϕ ∧ ψ)

(∧I3)
� ⇒ ¬ψ

� ⇒ ¬(ϕ ∧ ψ)

(∧E3)
� ⇒ ¬(ϕ ∧ ψ)
� ⇒ ¬ϕ ∨ ¬ψ

Implication:

(→I1)
� ⇒ ¬ϕ ∨ ψ
� ⇒ ϕ → ψ

(→E1)
� ⇒ ϕ → ψ

� ⇒ ¬ϕ ∨ ψ

(→I2)
� ⇒ ϕ ∧ ¬ψ
� ⇒ ¬(ϕ → ψ)

(→E2)
� ⇒ ¬(ϕ → ψ)

� ⇒ ϕ ∧ ¬ψ

24 Given the rest of the inference rules, (NPI3) and (NPE3) are redundant whenever R is a primitive
predicate: their lower sequents can be derived from their upper sequents using the relevant initial
sequents involving R. This, however, is not so in case R is a compound (one-place) predicate.
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Disjunction:

(∨I1)
� ⇒ ϕ

� ⇒ ϕ ∨ ψ

(∨E1)
� ⇒ ¬(ϕ ∨ ψ)
� ⇒ ¬ϕ

(∨I2)
� ⇒ ψ

� ⇒ ϕ ∨ ψ

(∨E2)
� ⇒ ¬(ϕ ∨ ψ)
� ⇒ ¬ψ

(∨I3)
�1 ⇒ ¬ϕ �2 ⇒ ¬ψ
�1, �2 ⇒ ¬(ϕ ∨ ψ)

(∨E3)
�1, ϕ ⇒ ξ �2, ψ ⇒ ξ �3 ⇒ ϕ ∨ ψ

�1, �2, �3 ⇒ ξ

(DS)
�1 ⇒ ¬ϕ ∨ ψ �2 ⇒ ϕ

�1, �2 ⇒ ψ

Double negation:

(¬I)
� ⇒ ϕ

� ⇒ ¬¬ϕ

(¬E)
� ⇒ ¬¬ϕ
� ⇒ ϕ

Quantifiers:

In the following quantifier rules, ϕ(∀Q) is a formula generated by O4 and governed by an occurrence
of ∀Q, and ϕ(c) results from that formula on replacing the governing occurrence of ∀Q with c.
Similarly for ϕ(∃Q) and ϕ(c).

The next two rules express the following idea: whatever can be inferred from the assumption that
an arbitrary, particular, Q is such and such can be inferred from the assumption that some Qs are
such and such, or that all Qs are such and such. This principle, in turn, reflects the basic analysis of
quantification on which Quarc is founded (see §2). The need for two such rules, rather than just one,
is due to the three-valued framework.

(qE1)
�1, (c)Q, ϕ(c) ⇒ ψ �2 ⇒ ϕ(q Q)

�1, �2 ⇒ ψ

(qE2)
�1, (c)Q,¬ϕ(c) ⇒ ψ �2 ⇒ ¬ϕ(q Q)

�1, �2 ⇒ ψ
,

where q is a either ∀ or ∃, and c does not occur in ϕ(q Q), in ψ , or in any element of �1.
∀:

(∀I1)
�1, (c)Q ⇒ ψ ∨ ϕ(c) �2 ⇒ (∃Q)Q

�1, �2 ⇒ ψ ∨ ϕ(∀Q)

(∀E)
�1 ⇒ ϕ(∀Q) �2 ⇒ (c)Q

�1, �2 ⇒ ϕ(c)

(∀I2)
�1 ⇒ (c)Q �2 ⇒ ¬ϕ(c)

�1, �2 ⇒ ¬ϕ(∀Q)
,

where, in (∀I1), c does not occur in ϕ, in ψ , or any element of �1.
∃:

(∃I1)
�1 ⇒ (c)Q �2 ⇒ ϕ(c)

�1, �2 ⇒ ϕ(∃Q)

(∃E)
�1 ⇒ ¬ϕ(∃Q) �2 ⇒ (c)Q

�1, �2 ⇒ ¬ϕ(c)
(∃I2)
�1, (c)Q ⇒ ψ ∨ ¬ϕ(c) �2 ⇒ (∃Q)Q

�1, �2 ⇒ ψ ∨ ¬ϕ(∃Q)
,
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where, in (∃I2), c does not occur in ϕ, in ψ , or any element of �1.

Structural rules:

(CUT)
�1 ⇒ ϕ �2, ϕ ⇒ ψ

�1, �2 ⇒ ψ

(THIN)
�1 ⇒ ϕ

�1, �2 ⇒ ϕ

We close this subsection with a simple example. Consider the sequent:

(∀Mx , x)L , ( j)M ⇒ ( jx , x)L ,

representing the argument

Every man loves himself; John is a man; hence, John loves himself.

This sequent can be deduced by a single application of the rule (∀E):

(∀Mx , x)L ⇒ (∀Mx , x)L ( j)M ⇒ ( j)M

(∀Mx , x)L , ( j)M ⇒ ( jx , x)L

The upper sequents here are, of course, initial sequents.

5.2. Derived rules. A derived inference rule is a scheme of the form

�1 ⇒ ϕ1 . . . �n ⇒ ϕn

� ⇒ ϕ

such that, whenever the sequents �i ⇒ ϕi are deducible in L, then so is � ⇒ ϕ.

The following are derived inference rules:

(SYM)
� ⇒ c = d

� ⇒ d = c

(TRA)
�1 ⇒ c = d �2 ⇒ d = e

�1, �2 ⇒ c = e

(MP)
�1 ⇒ ϕ �2 ⇒ ϕ → ψ

�1, �2 ⇒ ψ

(EFQ)
�1 ⇒ ϕ �2 ⇒ ¬ϕ

�1, �2 ⇒ ψ

(DIS)
� ⇒ ϕ ∨ ϕ
� ⇒ ϕ

(∀/∃)
� ⇒ ϕ(∀Q)

� ⇒ ϕ[∀Q/∃Q]

(∃/∀)
� ⇒ ¬ϕ(∃Q)

� ⇒ ¬ϕ[∃Q/∀Q]

5.3. Additional definitions.

DEFINITION 5.3.1 (Consistency). A set � of formulas is inconsistent if there is some formula ϕ such
that both � �L ϕ and � �L ¬ϕ; if there is no such formula ϕ, the set � is consistent.

By the derived rule (EFQ), a set � of formulas is inconsistent iff every formula is deducible in
L from �.

DEFINITION 5.3.2 (Height). The height of a deduction D is its height as a tree, i.e., the maximal
length of a branch of D.

§6. Soundness and completeness. We start with the statement, without proof, of several ele-
mentary propositions. Soundness and completeness theorems will follow these.

FACT 6.1 (Extensionality). Suppose a formula ϕ′ in a language L results from another formula ϕ
in L on replacing some occurrences of individual constants by some other individual constants of L.
Suppose also that an interpretation M′ for L interprets every constant and predicate of ϕ′ in the
same way an interpretation M interprets the respective symbol in ϕ. Then: ϕ′M′ = ϕM.
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FACT 6.2. If c does not occur in a formula ϕ, then the truth value of ϕ in Mα
c is the same as

in M.

FACT 6.3. If a language L2 is obtained from L1 on adding new constants, M is an interpretation
for L2, and ϕ is a formula in L1, then:

1. The restriction of M (as a function) to expressions of L1 is an interpretation for L1;

2. ϕ is true in the restriction of M to L1 iff it is true in M.

FACT 6.4. If M is an interpretation for a language L, Q is a (possibly compound) one-place
predicate of L, and c is an individual constant of L, then: [(c)Q]M = T iff cM ∈ QM.

FACT 6.5. If D is a deduction in L whose end sequent is � ⇒ ϕ, then there is a deduction D′ in
L satisfying the following conditions:

1. The end sequent of D′ is �′ ⇒ ϕ, where �′ is a finite subset of �.

2. Every sequent in D′ has finitely many antecedent formulas.

FACT 6.6. If a language L2 results from L1 on adding new individual constants, then any sequent
in L1 is deducible in L1 iff it is deducible in L2.

FACT 6.7. If � �L ϕ and � ⊆ 	, then 	 �L ϕ.

FACT 6.8. If � �L ϕ, and 	 �L ψ for every ψ ∈ �, then 	 �L ϕ.

DEFINITION 6.9 (Valid sequent). A sequent � ⇒ ϕ in L is valid in L if � �L ϕ.

THEOREM 6.10 (Soundness). If a sequent is deducible in a language L, then it is valid in L.

Proof. Straightforward, using induction on the height of deductions. �

THEOREM 6.11 (Completeness). If a sequent is valid in L, then it is deducible in L.

The proof of Theorem 6.11 is in the style of (Kearns, 1979) and (Aoyama, 1994). We first note
that Theorem 6.11 is an immediate consequence of the following lemma:

LEMMA 6.12. If � �L α, then there is an interpretation for L in which � is true but α is not.

To prove this lemma, we show that sets with certain properties are ‘model-inducing’: every set 

with those properties has a model M such that, for every formula ϕ in the language of 
 we have:

1. ϕM = T iff ϕ ∈ 
.

2. ϕM = F iff ¬ϕ ∈ 
.

We then show that, if � �L α, then � can be extended into a model-inducing set 
 with α /∈ 
.
We will use the following definitions, facts, and propositions:

DEFINITION 6.13. A set
 of formulas in a language L is closed under deducibiliy in L if it contains
all the formulas deducible from it in L.

DEFINITION 6.14 (Closure under deducibility). The closure under deducibility in L of a set 
 of
L-formulas is the set ClL(
) = {ϕ : 
 �L ϕ}.

FACT 6.15. If 
 is any set of formulas in L, then ClL(
) is closed under deducibility in L and
includes 
 as a subset.

DEFINITION 6.16 (Henkin set). A set 
 of formulas in L is a Henkin set (or just Henkin, for short)
if it satisfies the following conditions for every one-place predicate Q:

1. If ϕ(∃Q)∈
, then (c)Q, ϕ(c)∈
 for at least one individual constant c. (ϕ(c) here is
ϕ[∃Q/c].)

2. If ¬ϕ(∀Q)∈
, then (c)Q,¬ϕ(c)∈
 for at least one individual constant c.
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PROPOSITION 6.17. If a set 
 of L-formulas is Henkin and closed under deducibility in L, then,
for every one-place predicate Q and quantifier q:

1. If ϕ(q Q) ∈ 
, then (c)Q, ϕ(c) ∈ 
 for some individual constant c.

2. If ¬ϕ(q Q) ∈ 
, then (c)Q,¬ϕ(c) ∈ 
 for some individual constant c.

Proof. We prove (1) and (2) for the case where q is ∃. The proof for ∀ is similar. (1) is immediate
from Definition 6.16. For (2), suppose that ¬ϕ(∃Q) ∈ 
. By the derived inference rule (∃/∀), we
have ¬ϕ(∃Q) �L ¬ϕ(∀Q). Since ¬ϕ(∃Q) ∈ 
 and 
 is closed under deducibility in L, it follows
that ¬ϕ(∀Q) ∈ 
. Hence, by Definition 6.16, (c)Q,¬ϕ(c) ∈ 
 for some individual constant c. �

DEFINITION 6.18 (Prime set). A set 
 of formulas is prime if it satisfies the following condition: if
ϕ ∨ ψ ∈ 
, where ϕ and ψ are formulas without any anaphors of individual constants, then either
ϕ ∈ 
 or ψ ∈ 
.

DEFINITION 6.19 (The counterexample property). A set 
 of formulas in L has the counterexample
property if the following conditions hold:

1. If ϕ(∀Q) /∈ 
, then: either (c)Q /∈ 
 for every individual constant c of L, or there is a
constant d of L such that (d)Q ∈ 
 but ϕ(d) /∈ 
.

2. If ¬ϕ(∃Q) /∈ 
, then: either (c)Q /∈ 
 for every individual constant c, or there is a constant
d such that (d)Q ∈ 
 but ¬ϕ(d) /∈ 
.25

DEFINITION 6.20 (Model-inducing set). A set 
 of formulas in L is model-inducing if it is
(i) consistent, (ii) Henkin, (iii) prime, (iv) closed under deducibility in L, and (v) has the coun-
terexample property.

LEMMA 6.21. Let 
 be a set of formulas in a language L. If 
 is model-inducing, then there is
an interpretation M for L such that, for every formula ϕ in L:

1. ϕM = T iff ϕ ∈ 
;

2. ϕM = F iff ¬ϕ ∈ 
;

3. ϕM = U iff ϕ,¬ϕ /∈ 
.

Proof. Condition (3) is entailed by (1) and (2). It is thus sufficient to construct an interpretation
M satisfying (1) and (2). To obtain such an interpretation, we first define a relation ∼ on the set of
all individual constants of L in the following way: c ∼ d iff c = d ∈ 
. It is easily verified that ∼ is
an equivalence relation on the set of all L-constants. For every constant c, let [c] be the equivalence
class under ∼ of c. Since 
 is closed under deducibility in L, we have the following:

For every n-place predicate R, with n ≥ 1, and any constants c1, . . . , cn, d1, . . . , dn,
if [ci ] = [di ] for i = 1, . . . , n, then: (c1, . . . , cn)R ∈ 
 iff (d1, . . . , dn)R ∈ 
.

This fact allows the following definition of M:

• If c is an individual constant of L, then cM = [c].
• If R is an n-place predicate, n ≥ 1, then

RM = {〈[c1], . . . , [cn]〉 : (c1, . . . , cn)R ∈ 
}.
It can now be proved, by induction, that conditions (1) and (2) hold, for every L-formula ϕ, with
respect to the interpretation M just defined. As part of the induction base, consider a basic for-
mula of the form c = d . Condition (1) holds for this formula: [c = d]M = T ⇔ cM = dM ⇔
[c] = [d] ⇔ c ∼ d ⇔ c = d ∈ 
. As for condition (2), note, first, that exactly one of c = d ,

25 Condition (1) can be thought of, intuitively, as follows: 
 “thinks ϕ(∀Q) is not true” (
 fails to
contain ϕ(∀Q)) only if it “thinks the extension of Q is empty” (
 does not contain any formula
of the form (c)Q), or “thinks that some element of that extension fails to satisfy ϕ(x)”. Condition
(2) can be intuitively construed in a similar way.
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¬(c = d) belongs to
: this follows from the deducibity in L of the sequent
 ⇒ (c = d)∨¬(c = d)
(this is, in fact, an initial sequent), and from the fact that 
 is closed under deducibility in L, as well
as prime and consistent. We therefore have: [c = d]M = F ⇔ [c = d]M �= T ⇔ c = d /∈ 
 ⇔
¬(c = d)∈
. Basic formulas of other forms are treated similarly. As for the induction step,
we will consider here in some detail just two examples, associated with the syntactic operations O3
(anaphors) and O4 (quantifiers). As our first example, we prove that condition (1) holds for a formula
ϕ = ψ[o1/cx , o2/x, . . . , om/x] resulting from a formula ψ by O3. In this case: ϕM = T ⇔
ψM = T ⇔ (by the induction hypothesis) ψ ∈
 ⇔ (by the rules (AI) and (AE), and since 

is closed under deducibility in L) ϕ ∈
. As our second example, we prove that the left-to-right
direction of condition (1) holds for a formula ϕ(∀Q), resulting from formulas ϕ(c) and ψ by O4.
Suppose that ϕ(∀Q)M = T. Suppose for reductio that ϕ(∀Q) /∈ 
. Since
 has the counterexample
property, either (i) (a)Q /∈ 
 for every individual constant a of L, or (ii) there is some constant d of
L such that (d)Q ∈ 
 but ϕ(d) /∈ 
. In case (i), it is straightforward to verify that QM = ∅; but
this contradicts the truth in M of ϕ(∀Q). In case (ii), by the induction hypothesis, [(d)Q]M = T
and ϕ(d)M �= T. Let x be a variable not in ϕ(∀Q). By Fact 6.4, [d] ∈ QM; and we can also see
that ϕ(x) is not true of [d] in M. This, again, contradicts the truth in M of ϕ(∀Q). �

Proof of Lemma 6.12. Suppose that � �L α. We prove that there is an interpretation M for L
in which every element of � is true but α is not. We start by introducing denumerably many new
individual constants:

c0,0,0, c0,0,1, c0,0,2, . . .; c0,1,0, c0,1,1, c0,1,2, . . .; c0,2,0, c0,2,1, c0,2,2, . . .; . . .
c1,0,0, c1,0,1, c1,0,2, . . .; c1,1,0, c1,1,1, c1,1,2, . . .; c1,2,0, c1,2,1, c1,2,2, . . .; . . .
c2,0,0, c2,0,1, c2,0,2, . . .; c2,1,0, c2,1,1, c2,1,2, . . .; c2,2,0, c2,2,1, c2,2,2, . . .; . . .
. . .

Let L0,0 = L ∪ {c0,0,0, c0,0,1, c0,0,2, . . .}. For every n ∈ω, let L0,n+1 = L0,n ∪ {c0,n+1,0,
c0,n+1,1, c0,n+1,2, . . .}. Let L0,ω = ⋃

n∈ω L0,n . Let L1,0 = L0,ω ∪ {c1,0,0, c1,0,1, c1,0,2, . . .},
and let L1,n+1 = L1,n ∪ {c1,n+1,0, c1,n+1,1, c1,n+1,2, . . .}. Let L1,ω = ⋃

n∈ω L1,n . We similarly
define L2,ω, L3,ω , L4,ω, . . . , and then: Lω,ω = ⋃

n∈ω Ln,ω . In what follows, by ‘the new constants
of Lm,n’ we will mean all the constants of Lm,n that do not belong to any of the preceding languages.

We assume there to be a fixed enumeration of the symbols and formulas of Lω,ω , which also
yields (on deleting the relevant symbols and formulas) an enumeration of the symbols and formulas
of Ln,ω, for each n ∈ω, and also of Lm,n , for every n and m. We extend � into a model-inducing
set by performing the following two steps, each of which possibly involves the addition of infinitely
many formulas.

• Step 1. We first define an increasing sequence �0,0,0 ⊆ �0,0,1 ⊆ �0,0,2 ⊆ . . . of sets of
formulas of L0,0. The set �0,0,0 is defined as the closure of � under deducibility in L. We
then proceed by induction: for every n ∈ ω, we let �0,0,n+1 be the set obtained from �0,0,n
in the following way, where γn+1 is the (n + 1)th formula in L0,0:

(i) If γn+1 belongs to �0,0,n and has the form ϕ(∃Q), then �0,0,n+1 = �0,0,n ∪
{(c)Q, ϕ(c)}, where c is the first new constant of L0,0 that does not occur in any
element of �0,0,n .

(ii) If γn+1 belongs to �0,0,n and has the form ¬ϕ(∀Q), then �0,0,n+1 = �0,0,n ∪
{(c)Q,¬ϕ(c)}, where c is the first new constant of L0,0 that does not occur in any
element of �0,0,n .

(iii) If γn+1 belongs to �0,0,n and has the form ϕ ∨ ψ , where neither ϕ nor ψ contains
any anaphors of individual constants, then:

�0,0,n+1 =
{
�0,0,n ∪ {ϕ} if �0,0,n, ϕ �L0,0

α,

�0,0,n ∪ {ψ} otherwise.

(iv) If γn+1 does not belong to �0,0,n , or if it is not of any of the forms specified above,
then �0,0,n+1 = �0,0,n .
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Let �0,0,ω = ⋃
n∈ω �0,0,n . This is a set of formulas of L0,0. Let �0,1,0 be the closure of

�0,0,ω under deducibility in L0,0.

Starting with �0,1,0, we repeat the procedure (i)–(iv), this time with respect to the language
L0,1. We thus obtain a sequence �0,1,0, �0,1,1, �0,1,2, . . . . Let �0,1,ω = ⋃

n∈ω �0,1,n , and
let �0,2,0 be the closure of �0,1,ω under deducibility in L0,1.

We repeat this process to obtain an infinite sequence �0,0,0, �0,1,0, �0,2,0, . . . .We conclude
Step 1 by defining 0 = ⋃

n∈ω �0,n,0. Since each �0,i,0 is a set of formulas of L0,i−1, 0
is a set of formulas of L0,ω.

• Step 2. We Now move to the language L1,0. We start by correlating formulas of L0,ω with
new constants of L1,0. To do this, we go over all the formulas of L0,ω , in their order in the
enumeration of the formulas of that language, and:

If the i th formula is ϕ(∀Q) or ¬ϕ(∃Q), we correlate the formula with the constant
c1,0,2i ; we call c1,0,2i the distinguished constant in L1,0 of that formula (we thus
ensure that denumerably many constants of L0,ω are not distinguished constants of
any L1,0-formula).

We now define:

B1 = {β : β is a formula in L0,ω and β /∈ 0}
C1 = {ϕ(c∗) : ϕ(∀Q) ∈ B1; for some constant c of L0,ω, (c)Q ∈ 0;

and c∗ is the distinguished constant in L1,0 of ϕ(∀Q)} ∪
{¬ϕ(c∗) : ¬ϕ(∃Q) ∈ B1; for some constant c of L0,ω , (c)Q ∈ 0;

and c∗ is the distinguished constant in L1,0 of ¬ϕ(∃Q)}
A1 = the closure of B1 ∪ C1 under disjunction.

Let �1,0,0 be the set resulting from0 on adding all the formulas (c∗)Q where c∗ is the dis-
tinguished constant in L1,0 either of a formula ϕ(∀Q) ∈ B1 or of a formula ¬ϕ(∃Q) ∈ B1,
and (c)Q ∈ 0 for some constant c of L0,ω. Let �1,0,n+1 be the set obtained from �1,0,n
in the following way, where γn+1 is the (n + 1)th formula in L1,0 (the following (i)–(iv)
resemble the corresponding clauses of Step 1 above, but—unlike the latter—involve the
set A1):

(i) If γn+1 belongs to �1,0,n and has the form ϕ(∃Q), then �1,0,n+1 = �1,0,n ∪
{(c)Q, ϕ(c)}, where c is the first new constant of L1,0 that does not occur in any
element of �1,0,n ∪ A1. (It is easy to verify that such a constant has to exist.)

(ii) If γn+1 belongs to �1,0,n and has the form ¬ϕ(∀Q), then �1,0,n+1 = �1,0,n ∪
{(c)Q,¬ϕ(c)}, where c is the first new constant of L1,0 that does not occur in any
element of �1,0,n ∪ A1.

(iii) If γn+1 belongs to �1,0,n and has the form ϕ ∨ ψ , where neither ϕ nor ψ contains
anaphors of constant occurrences, then:

�1,0,n+1 =
{
�1,0,n ∪ {ϕ} if �1,0,n, ϕ �L1,0

γ for every γ ∈ A1,

�1,0,n ∪ {ψ} otherwise.

(iv) If γn+1 does not belong to �1,0,n , or if it is not of any of the forms specified above,
then �1,0,n+1 = �1,0,n .

Let �1,0,ω = ⋃
n∈ω �1,0,n , and let �1,1,0 be the closure of �1,0,ω under deducibility in

L1,0. We now move to the next language, L1,1, and repeat the procedure (i)–(iv) above
to obtain �1,1,1, �1,1,2, �1,1,3, . . . . Similarly to what we did before, we take �1,1,ω =⋃

n∈ω �1,1,n , and define �1,2,0 as the closure of �1,1,ω under deducibility in L1,1. We
continue in the same way indefinitely, to obtain the sequence �1,0,0, �1,1,0, �1,2,0, �1,3,0,
�1,4,0, . . . . Each �1,i,0 is a set of formulas of L1,i−1. Let 1 = ⋃

n∈ω �1,n,0. 1 is a set
of formulas of L1,ω.
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Step 2, by which we obtained 1 is now repeated indefinitely, to obtain 2, 3, 4, . . . . Every
i is a set of formulas in Li,ω. Finally, we define  = ⋃

n∈ω n .  is a set of formulas of Lω,ω.
We obviously have � ⊆ . It will now suffice to show that  is model-inducing and that α /∈ .

(This, together with Lemma 6.21 and Fact 6.3, will entail that there is an interpretation for L in which
� is true but α is not.) The required result follows from the next three claims:

Claim 1. Each n , as well as , is prime and Henkin.

Claim 2. Each n is closed under deducibility in Ln,ω, and  is closed under deducibility in Lω,ω .

Claim 3.  is consistent, has the counterexample property, and α /∈ .

The proofs of claims (1) and (2) are straightforward. The proof of (3) relies on three additional
claims:

Claim 3.1. For each n ∈ ω and β ∈ A1, the sequent �1,0,n ⇒ β is not deducible in L1,0.

Claim 3.2. For each n ∈ω and β ∈ An+1, the sequentn+1 ⇒ β is not deducible in Ln+1,ω .

Claim 3.3. α ∈ A1 ⊆ A2 ⊆ . . . .

We omit the proofs of claims (3.1)–(3.3), as well as the detailed proof of claim (3). �

§7. Quarc and PC. This section treats the translation of PC into Quarc and vice versa. We first
show, in §7.1, that PC-sentences can be straightforwardly translated into Quarc, and that the transla-
tion preserves truth-in-an-interpretation and falsity-in-an-interpretation, as well as entailment. Later,
in §7.2, we show that, although an entailment-preserving translation of Quarc into PC is possible, no
such translation can be straightforward, in a sense that we make clear, and which is applicable to the
PC-to-Quarc translation of §7.1.

7.1. PC-to-Quarc translation. We will start by presenting the basic idea employed in the
translation of PC into Quarc; a more precise treatment will then follow. Quantification in PC is
always in one of the following forms:

∀xϕ(x). (1)

∃xϕ(x). (2)

Intuitively, these can be thought of as ‘everything is ϕ’ and ‘something is ϕ’, respectively; or:

Everything is a thing x such that ϕ(x) (3)

Something is a thing x such that ϕ(x). (4)

Now, (3) and (4) can be straightforwardly translated into Quarc: representing ‘thing’ by a one-place
predicate T , we can translate ‘Everything’ and ‘Something’ as the quantified arguments ∀T and
∃T ;26 (3) and (4) can then be translated, respectively, as:

(∀T ) Tx :ϕ(x) (5)

(∃T ) Tx :ϕ(x). (6)

Under a suitable restriction on the extension of T (‘thing’), the semantics of (5) and (6) becomes
essentially the same as that of (1) and (2). The restriction is this: the extension of T should never be
empty, and should, moreover, contain the denotations of all individual constants.

To make this more rigorous, we will define a translation function from the formulas of PC to those
of Quarc. We will then correlate models of a certain axiom scheme—a scheme expressing the above
restriction on the extension of T —with interpretations of PC.

26 We are thus treating ‘everything’ and ‘something’ as equivalent to ‘every thing’ and ‘some thing’,
respectively. Comparison to analogs in other languages of ‘everything’ and of ‘something’, as
well as to other quantified expressions in English, such as ‘two things’ and ‘many things’, supports
the plausibility of this treatment. I am indebted to an anonymous referee for this point.
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The version of PC that will be employed here is one with identity and without function symbols.
‘PC’ will henceforth be used as a name for that specific version. Any language LP of PC contains
denumerably many individual constants, and may also contain finitely or denumerably many n-place
predicates for each n ≥ 1. The atomic formulas of LP are all the expressions of the forms c1 = c2
and R(c1, . . . , cn), where ci are individual constants and where R is an n-place predicate, n ≥ 1.
The set of formulas of LP is the closure of the set of atomic formulas under negation, disjunction,
conjunction, and implication, and under the operation ϕ(c) �→ ∀xϕ[c/x], ∃xϕ[c/x], where c is an
individual constant, x is a variable that does not occur in ϕ(c), and ϕ[c/x] results from ϕ(c) on
replacing all the occurrences of c with x .

An interpretation M for LP is defined in the usual way. Every interpretation M for LP has
a nonempty set |M| as its domain. An interpretation M assigns an element cM of |M| to every
individual constant c of LP , and a subset RM of |M|n to every n-place predicate R, n ≥ 1.
The truth-value, T or F, of atomic formulas in M is defined in the usual way; truth-functional
compounds are treated classically. If α ∈ |M|, then Mα

c is the interpretation for LP obtained from
M on replacing cM with α. And an element α of |M| satisfies ϕ[c/x] in M if ϕ(c) is true in Mα

c .
The truth conditions of quantified formulas are now defined as follows: [∀xϕ[c/x]]M = T if all the
elements of |M| satisfy ϕ[c/x] in M, and F otherwise. [∃xϕ[c/x]]M = T if at least one element of
|M| satisfies ϕ[c/x] in M, and F otherwise. Entailment is defined as usual.

DEFINITION 7.1.1 (Language-correlation). With each PC-language LP we correlate the unique
Quarc-language LQ that satisfies the following requirements:

1. The individual constants of LQ are the ones of LP .

2. For each n > 1, the n-place predicates of LQ are those of LP .

3. The one-place predicates of LQ are those of LP together with one additional one-place
predicate T . (Intuitively, T will stand for ‘thing’.)

DEFINITION 7.1.2 (Translation). The translation t (ϕ) of a formula ϕ in LP is defined as follows (by
induction on the complexity of ϕ):

1. Atomic formulas:

t (R(c1, . . . , cn)) = (c1, . . . , cn)R
t (c1 = c2) = c1 = c2.

2. Truth functional compounds:

t (¬ϕ) = ¬t (ϕ)
t (ϕ ∗ ψ) = t (ϕ) ∗ t (ψ), where ∗ is ∨, ∧, or →.

3. Quantifiers:

t (∀xϕ[c/x]) = (∀T ) Tx : t (ϕ)[c/x]
t (∃xϕ[c/x]) = (∃T ) Tx : t (ϕ)[c/x].

DEFINITION 7.1.3 (CDT). CDT (constants denote things) is the set of all formulas of the form (c)T ,
where c is an individual constant of LQ.

We will now associate PC-interpretations with (Quarc-) models of CDT. The translation t will be
shown to preserve truth-values in the following sense: a PC-formula ϕ will be true (false) in a given
PC-interpretation iff its Quarc-translation, t (ϕ), is true (false) in the associated Quarc-interpretation.
Entailment will be preserved in the following way: the entailment of an LP -formula ϕ by a set � of
LP -formulas will be equivalent to the entailment of t (ϕ) by t (�) and CDT.

DEFINITION 7.1.4 (Induced interpretation). Let M be a (Quarc) model of CDT. The interpreta-
tion induced by M is the unique interpretation M∗ for LP that satisfies the following
requirements:
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1. |M∗| = TM.

2. cM∗ = cM for every individual constant c.

3. RM∗ = RM ∩ (TM)n for every n-place predicate R (n ≥ 1) of LP .

For the rest of this subsection we will use the term ‘M∗’ as designating the interpretation induced
by M.

FACT 7.1.5. If c and d are any individual constants of LQ (and thus also of LP ) and ϕ(c) is a
formula of LP , then [t (ϕ)][c/d] = t (ϕ[c/d]).

FACT 7.1.6. If M is a model of CDT and α ∈ TM, then:

1. Mα
c is a model of CDT.

2. [Mα
c ]∗ = [M∗]αc .

FACT 7.1.7. Every interpretation for LP is induced by some model of CDT.

THEOREM 7.1.8 (Invariance of truth-values under t). If ϕ is a formula in LP and M is a model of
CDT, then [t (ϕ)]M = [ϕ]M∗

.

Proof. By induction on the complexity of ϕ. �
COROLLARY 7.1.9. Let ϕ be a formula of LP , and let M, M′ be models of CDT. Then:

1. [t (ϕ)]M, [t (ϕ)]M′ ∈ {T,F}
2. If M∗ = M′∗, then [t (ϕ)]M = [t (ϕ)]M′

.

Proof. Clause (1) is immediate from Theorem 7.1.8. For (2), note that [t (ϕ)]M = [ϕ]M∗
=

[ϕ]M′∗
= [t (ϕ)]M′

. �
Clause (2) of the last Corollary means that translations into LQ of LP -formulas cannot distinguish

between any two models of CDT that induce the same interpretation for LP . This, in turn, means
that, whenever the discussion is restricted to translations of LP -formulas, what is essential is not
whole Quarc-interpretations, but only the PC-interpretations that they induce.

THEOREM 7.1.10 (Invariance of entailment under t). Let � ∪ {ϕ} be a set of formulas in LP . Then:
� � ϕ iff t (�),C DT � t (ϕ).

Proof. Suppose, first, that � �ϕ. Then there is a model M′ of � in which ϕ is not true. By
Fact 7.1.7, there is a (Quarc-) model M of CDT such that M∗ =M′. By Theorem 7.1.8,
[t (ψ)]M = [ψ]M∗

for every ψ ∈ � ∪ {ϕ}. Thus, M is a model of t (�) ∪ CDT, but not of t (ϕ).
Hence, t (�),CDT � t (ϕ), as required. Suppose, conversely, that t (�),CDT � t (ϕ). Then, there
is a model M of t (�) ∪ C DT in which t (ϕ) is not true. By Theorem 7.1.8, [t (ψ)]M = [ψ]M∗

for every ψ ∈� ∪ {ϕ}. The interpretation M∗ is thus a model of � in which ϕ is not true.
Hence, � � ϕ. �

7.2. Quarc-to-PC translation. The translation of PC into Quarc defined in the previous sub-
section is straightforward in the following sense: it can be obtained by translating PC-sentences into
English in a standard way, and then formalizing the resulting English translations in Quarc, again—in
a standard way. I will not define ‘standard’ here. I submit, however, that there is an intuitive under-
standing of that notion, on which: (i) the above holds; and (ii) any standard translation from PC or
Quarc to English (or vice versa) involves the translation of ¬, ∧, ∨, and → by (respectively) ‘it is
not the case that’, ‘and’, ‘or’, and ‘if... then...’ (or vice versa).

It is perhaps natural to ask whether a similar translation is possible in the opposite direction—
namely, from Quarc to PC. Obviously, the truth-values of Quarc-formulas cannot in general be
preserved by any translation into PC; for Quarc is a three-valued logic while PC is two-valued.
We can still ask, however, if there is a straightforward translation from Quarc to PC that preserves
the truth-value T and entailment. As I will explain below: (i) there is a translation from Quarc to
PC that preserves the truth-value T, as well as entailment; however, (ii) no such translation can be
straightforward in the sense specified above.
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To construct a translation as described in (i), we begin, as before, with a correlation between
Quarc- and PC-languages. The correlation will be slightly different from that of §7.1; for we will
now not need to designate a special predicate for ‘thing’:

DEFINITION 7.2.1 (Language-correlation). With each Quarc language LQ we correlate the unique
PC-language LP for which:

1. The individual constants of LP are the ones of LQ.

2. For every n, the n-place predicates of LP are the primitive n-place predicates of LQ.

To track the truth of formulas, we will supply, for every Quarc-formula ϕ, a PC-translation t̂(ϕ),
as well as a separate translation t̂(¬ϕ) of ¬ϕ, which will in general be distinct from ¬t̂(ϕ). The
formula t̂(ϕ) can be thought of as expressing the truth-conditions of ϕ, while t̂(¬ϕ) can be thought
of as expressing its falsity-conditions.

DEFINITION 7.2.2 (Translation). The PC-translation t̂(ϕ) of a formula ϕ in LQ is defined as follows
(by induction on the complexity of ϕ):

1. Basic formulas:

t̂(c1 = c2) = c1 = c2
t̂(c1 �= c2) = ¬(c1 = c2)
t̂((c1, . . . , cn)R) = R(c1, . . . , cn)
t̂((c1, . . . , cn)¬R) = ¬R(c1, . . . , cn)
t̂(¬(c1 = c2)) = ¬(c1 = c2)
t̂(¬(c1 �= c2)) = c1 = c2
t̂(¬(c1, . . . , cn)R) = ¬R(c1, . . . , cn)
t̂(¬(c1, . . . , cn)¬R) = R(c1, . . . , cn)

2. Compound predicates:

t̂((c) Px :ψ(x)) = t̂((c)P) ∧ t̂(ψ(c))
t̂((c) ¬Px :ψ(x)) = t̂(¬(c)P) ∨ t̂(¬ψ(c))
t̂(¬(c) Px :ψ(x)) = t̂(¬(c)P) ∨ t̂(¬ψ(c))
t̂(¬(c) ¬Px :ψ(x)) = t̂((c)P) ∧ t̂(ψ(c))

3. Truth-functional compounds:

t̂(ϕ ∧ ψ) = t̂(ϕ) ∧ t̂(ψ)
t̂(ϕ ∨ ψ) = t̂(ϕ) ∨ t̂(ψ)
t̂(ϕ → ψ) = t̂(¬ϕ) ∨ t̂(ψ)
t̂(¬(ϕ ∧ ψ)) = t̂(¬ϕ) ∨ t̂(¬ψ)
t̂(¬(ϕ ∨ ψ)) = t̂(¬ϕ) ∧ t̂(¬ψ)
t̂(¬(ϕ → ψ)) = t̂(ϕ) ∧ t̂(¬ψ)
t̂(¬¬ϕ) = t̂(ϕ)

4. Constant anaphors: if ϕ results from ψ by the operation O3 of §3, then:

t̂(ϕ) = t̂(ψ)
t̂(¬ϕ) = t̂(¬ψ)

5. Quantified arguments:

t̂(ϕ(∀P)) = ∃x[t̂((x)P)] ∧ ∀x[t̂((x)P) → t̂(ϕ(x))]
t̂(ϕ(∃P)) = ∃x[t̂((x)P) ∧ t̂(ϕ(x))]
t̂(¬ϕ(∀P)) = ∃x[t̂((x)P) ∧ t̂(¬ϕ(x))]
t̂(¬ϕ(∃P)) = ∃x[t̂((x)P)] ∧ ∀x[t̂((x)P) → t̂(¬ϕ(x))]

By t̂(ϕ(x)) here we mean t̂(ϕ[x/c])[c/x], where c is a constant that does not occur in ϕ(x), and
similarly for t̂((x)P).
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DEFINITION 7.2.3 (Induced interpretation). Let M be an interpretation for LP . The interpretation
induced by M is the unique interpretation M∗ for LQ that satisfies the following requirements:

1. cM∗ = cM for every individual constant c.

2. RM∗ = RM for every primitive predicate R, of any arity.

We will henceforth use ‘M∗’ to designate the interpretation induced by M.

FACT 7.2.4. Every interpretation for LQ is induced by some interpretation for LP .

FACT 7.2.5. If M is an interpretation for LP and α ∈ |M|, then [Mα
c ]∗ = [M∗]αc .

THEOREM 7.2.6 (Invariance of truth under t̂). If ϕ is a formula in LQ and M is an interpretation

for LP , then [t̂(ϕ)]M = T iff [ϕ]M∗ = T.

Proof. To prove this theorem, we prove, by induction on the complexity of ϕ that (i) [t̂(ϕ)]M = T
iff [ϕ]M∗ = T and (ii) [t̂(¬ϕ)]M = T iff [¬ϕ]M∗ = T. We suppress the details. �

THEOREM 7.2.7 (Invariance of entailment under t̂). Let � ∪ {ϕ} be a set of formulas in LQ. Then
� � ϕ iff t̂(�) � t̂(ϕ).

Proof. Similar to that of Theorem 7.1.10. �

The following theorem, with which we close this subsection, ensures that no translation of Quarc
into PC is both entailment-preserving and straightforward (in the sense specified above).

THEOREM 7.2.8. There is no function t̄ from the formulas of LQ to those of LP for which the
following conditions hold:

1. t̄(¬ϕ) = ¬t̄(ϕ) for every formula ϕ in LQ.

2. There is a set 	 of LP -sentences such that, for every pair ϕ, ψ of LQ-formulas,
t̄(ϕ),	 � t̄(ψ) iff ϕ � ψ .

Proof. Suppose for reductio that there is such a function t̄ . Let ϕ = (∀S)P , and let ψ = (∃S)S.
Then:

(*) ϕ � ψ and ¬ϕ � ψ ;

(**) It is not the case that χ � ψ for every formula χ in LQ .

From (*) and (2): t̄(¬ϕ),	 � t̄(ψ). And by (1): ¬t̄(ϕ),	 � t̄(ψ). From (*) and (2) it also follows
that t̄(ϕ),	 � t̄(ψ). Hence, 	 � t̄(ψ), and so t̄(χ),	 � t̄(ψ) for every LQ -formula χ . By (2),
χ � ψ for every such χ , contradicting (**). �

§8. Concluding remarks. As was seen in the previous section, the first-order predicate calcu-
lus (PC) can be translated into Quarc in much the same way as it is translated into English. The
translation was shown to preserve truth-values and entailment. Given these results, the following
perspective on PC becomes available. PC can be viewed as a restricted logic: it results from Quarc
on limiting quantification to constructions of the forms

(∀T ) Tx :ϕ(x) (‘Everything is a thing x such that ϕ(x)’) (1)

and

(∃T ) Tx :ϕ(x) (‘Something is a thing x such that ϕ(x)’), (2)

where T is a particular, fixed-in-advance, one-place predicate, and on limiting the denotations of
individual constants to elements of the extension of T .27 These restrictions, in turn, can be viewed as

27 We may also disallow the following syntactic devices of Quarc: negation in the form
(c1, . . . , cn)¬R, compound predicates in the predicate positions (the restrictions formulated in
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akin to simplifying assumptions, and can be motivated by practical considerations:28 if T is the only
predicate to which quantifiers are allowed to attach, and if this predicate is assumed to be nonempty,
then truth-value gaps are guaranteed not to occur. This simplifies the semantics considerably, and
allows the employment of much simpler proof-systems than the one introduced in §5.

There is, however, a price to pay for the simplicity gained by the above restrictions. First, those
restrictions bring with them a considerable measure of prolixity in formalization: a sentence such as

All human beings are mortal (3)

can no longer be represented as

(∀H)M ; (4)

it now has to be paraphrased, as something like

Everything is a thing x such that, if x is a human being, then x is mortal, (5)

and only then translated, as

(∀T ) Tx : [(x)H → (x)M]. (6)

Second, to the extent that the analysis on which Quarc is founded is correct, the rendering of
sentences such as (3) in the forms (5) and (6) distorts their semantics, and misrepresents entailment
relations between them.29

A related consequence of the above restrictions is that the extension of T gains a special log-
ical status: our restricted formulas quantify only over the elements of that extension; and nothing
outside that extension is relevant to the truth-values of those formulas in any interpretation (see §7,
Corollary 7.1.9). The extension of T thus comes to play the role of the domain of quantification of
ordinary model-theoretic semantics: a fixed, nonempty, set over which the variables of quantification
are allowed to range.

The above restrictions—the ones by which PC results from Quarc—may or may not be desir-
able, depending on what one is trying to achieve with one’s logic. But it is important to note,
I think, that those restrictions are optional. The syntactic and semantic devices by which quantifi-
cation is achieved in PC—attachment of quantifiers to open formulas and reference to a presupposed
domain—are not necessary components of logic or of model-theory: from the perspective suggested
here, this way of achieving quantification is merely a byproduct of the above restrictions. If we
choose not to impose those restrictions, then we are left with a logic at least as capable as PC
(and, arguably, more capable) in representing inferences made in natural language; and we still
have a model-theory, as well as a sound and complete proof-system, for this logic. All this may
have some interesting implications for philosophical discussions in which the notion of a domain of
quantification is assumed; a case in point would be the Quinean approach to ontology. But I leave the
discussion of such philosophical implications to another occasion.
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29 See §2.
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