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ABSTRACT

Systemic risk (SR) is considered as the risk of collapse of an entire system,
which has played a significant role in explaining the recent financial turmoils
from the insurance and financial industries. We consider the asymptotic behav-
ior of the SR for portfolio losses in the model allowing for heavy-tailed primary
losses, which are equipped with a wide type of dependence structure. This
risk model provides an ideal framework for addressing both heavy-tailedness
and dependence. As some extensions, several simulation experiments are con-
ducted, where an insurance application of the asymptotic characterization to
the determination and approximation of related SR capital has been proposed,
based on the SR measure.
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1. INTRODUCTION

In the wake of the financial crisis and the collapses of Lehman Brother
and AIG, systemic risk (SR), considered as the risk of collapse of an entire
financial system, has been widely used to explain the recent financial turmoils
for insurance/actuarial and financial industries; some recent papers include
Acharya et al. (2012, 2017), Adrian and Brunnermeier (2016), Brownlees and
Engle (2017), and Asimit and Li (2018), among many others. This topic is
of particular relevance to insurers who play a significant role in the economy
as suppliers of protection against financial and economic risks. Moreover,
insurers share some general characteristics with banks, such as the manage-
ment of cash flows over different risk horizons to meet claims arising from
providing financial services. After the global 2007–2009 financial crisis, many
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macro-prudential policies have been promoted by regulatory bodies in the
insurance industry. A list of global systemically important insurers were pub-
lished by the Financial Stability Board who intends to carry out special policy
measures for these institutions by January 2019. In the same direction, the US
regulatory reform, known as the Dodd-Frank Act, imposed a new form of
regulation on non-bank holding companies (including insurance companies),
who were considered as “Systemically Important Financial Institutions”. SR
and reform proposals have led academics to focus on evaluating the financial
distress of a system as a result of the failure of an individual in the entire
system. Nevertheless, measuring SR has been a challenging task in insurance
and financial industries. One challenge behind SR is modeling the extreme
risks, which generally arise from individuals’ large losses. Larger losses exhibit
higher systemic importance, see Gravelle and Li (2013). Fortunately, the study
of extreme risks has recently attracted increasing attention in insurance and
finance. The presence of heavy-tail phenomena in data resulting from a wide
range of application spanning finance, insurance, and risk management is
well-documented. Gabaix et al. (2006) and Gabaix (2009) offered theoretical
results and empirical estimators supporting the heavy-tailedness for financial
returns on many stocks and stock indices in different markets. Acharya
(2009) emphasized that joint risks rather than individual risks should be taken
into considerations of regulating the SRs, which reminds us that modeling
dependency among individual institutions, or between the individual and the
economy (or the financial system) poses a few challenges.

Generally, there are two major approaches employed for measuring SRs
in the literature. One consists of taking a structural approach using network
analysis and works directly on the structure and the nature of relationships
between institutions in the market; see e.g. Ledford and Tawn (1996), and Gray
et al. (2011). Another reduced-form approach is to investigate the contagion
effect of one institution on the market and its contribution to the entire SR.
De Jonghe (2010) applied extreme value analysis to estimate tail indices for
European financial institutions as their SR measure. Balla et al. (2014) inves-
tigated the extreme loss tail dependence between stock returns and derived
extremal dependence-based SR indicators. Adrian and Brunnermeier (2016)
introduced the CoVaR measure to quantify an institution’s contribution to SR
or to the risk of another institution.

Acharya et al. (2017) bridged the gap between the structural and reduced-
form approaches by introducing the systemic expected shortfall into a sim-
ple economic model, which revisited the widely popular measure Marginal
Expected Shortfall (MES). A comprehensive discussion was presented by
Idierb et al. (2014), where the practical advantages ofMES in detecting extreme
risk exposure of a financial institution to SR were empirically explained.
Nonparametric inferences for MES were provided in Cai et al. (2015) by a
statistic extreme value approach. Asymptotic evaluations of the MES were
investigated in Asimit and Li (2016). A variate of variants on MES including
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Conditional Tail Expectation, Marginal Mean Excess, and their asymptotic
approximations have appeared in the insurance and actuarial science literature,
see Asimit et al. (2011), Hua and Joe (2011), Das and Fasen (2018), Asimit and
Li (2018). The determinants found in the literature provide us a guidance for
dependent heavy-tailed losses in our model. Accordingly, we follow the precise
methodology from Acharya et al. (2012), see also Acharya et al. (2017) and
Brownlees and Engle (2017), where SR represents the expected capital shortfall
of a system when one component is in financial distress.

The design of this paper is to offer a methodological framework for
modeling SRs with extreme risks taken into account. Specifically, we model
extreme risks by some regularly varying-tailed random variables possessing
tail asymptotic independence, and study the asymptotic behavior of the condi-
tional expectations of the system’s under-capitalization when one component
is under-capitalized. The expected capital shortfall of the system is regarded as
a definition for insurance but not for corporate finance, although we do not
purpose, it is sufficiently general to be applied to financial and insurance indus-
tries. The asymptotic tail independence indicates that the cooccurrence of very
high values is extremely unlikely for two jointly heavy-tailed random variables.
A classical example for asymptotic tail independence can be found in Das et al.
(2013) in which Pareto-type risk factors are dependent according to a Gaussian
copula. Recently, Hua and Joe (2014) studied the behavior of conditional tail
expectation in an asymptotic tail independence case. Das and Fasen (2018)
investigated the asymptotic behavior of certain risk contagion measures with
multivariate regularly varying, hidden regularly varying, or tail asymptotically
independent risk vectors. In this paper, we address asymptotically independent
risks via the tail asymptotic independence when investigating SRs.

Our main results provide asymptotic results for the SR as well as the sys-
temic risk contagion with heavy-tailed losses in extreme regions, which are
relevant to a large array of financial institutions, particularly insurance com-
panies. An immediate application of the obtained results is to determine and
approximate the related SR capital for such institutions, since it aims at esti-
mating the capital shortfall in a potential future failure. We observe that
although in our model the tail asymptotic independence is considered, the
aggregate SR converges to infinity under some mild conditions, which implies
that the aggregate SR remains significant with the underlying weak-dependent
risks. In addition, the empirical estimator is no longer as effective when data
are scarce or even unavailable in the tail region of interest, which is usually
a challenging task for both insurance/financial institutions and regulators. In
that case, our results provide better estimators when data are hardly available
in the tail regions.

The rest of this paper is organized as follows. Section 2 introduces our SR
model, Section 3 prepares some preliminaries. Our main results and two special
cases for refinements are given in Section 4. Section 5 presents our numerical
results.
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2. MODELING SYSTEMIC RISK

In this section, we use a transparent definition by Acharya et al. (2012) to model
the SR, see also Acharya et al. (2017), Brownlees and Engle (2017), Asimit
and Li (2018). Assume that there are n lines of businesses or legal entities with
potential net loss variables Z1, ...,Zn, which may depend on each other since
these n lines operate in similar macroeconomic environments. Each line i gener-
ates a net loss variable Zi incurred by a primary loss variable Xi at the terminal
time and a stochastic discount factor θi over the period. Then,

Sθ
n =

n∑
i=1

Zi =
n∑
i=1

θiXi

represents the total amount of discounted losses potentially incurred from risky
investments. For more detailed discussions on Sθ

n , three examples in insur-
ance, finance, and risk management can be found in Tang and Yuan (2014),
where the system could be referred to the entire industry or a group of compa-
nies, whereas the individual components could be a single company within the
industry, a legal entity, or even a line of business.

For some regulated business, such as banks or insurance companies, a risk
capital Ci allocated to each entity is usually held as a buffer to protect them
from large losses. Hence, the regulator sets a total capital

∑n
i=1 Ci. Note that Ci

given above could be nonpositive, in other words, no capital or even a negative
amount of capital is allocated to line i in this case, which means that such
a line should be rewarded with risk capital. See Erel et al. (2013) for related
discussions.

Without loss of generality, we assume that the first line of business or legal
entity is in financial distress. Therefore, the aggregate SR becomes

SR :=E

[(
Sθ
n −

n∑
i=1

Ci

)+∣∣∣∣∣ θ1X1 >C1

]
,

where x+ =max{x, 0}. The individual systemic contribution to the kth compo-
nent, known as the SR contagion, is defined as

SRk :=E
[
(θkXk −Ck)+ |θ1X1 >C1

]
, k= 1, . . . , n.

The above definitions strongly rely on the way how the regulatory capital is
defined. Nowadays, a commonly used and practical capital decomposition rule
is the Euler one, in which Ci is replaced by

Ci,CVaR(q) :=E
[
θiXi|Sθ

n >VaRq(Sθ
n )
]
, i= 1, . . . , n,

with

VaRq(Sθ
n)= inf{y ∈R : P(Sθ

n ≤ y)≥ q}, 0< q< 1.
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See Section 6.3.2 of McNeil et al. (2015). This is the so-called CVaRq-based
regulatory environment, which requires a total capital

CVaRq(Sθ
n )=

n∑
i=1

Ci,CVaR(q)=E
[
Sθ
n |Sθ

n >VaRq(Sθ
n )
]
.

It is well known that the Swiss Solvency Test that defines the insurance regula-
tory environment in Switzerland is a CVaRq-based regulation regime example.
Euler’s principle is considered to provide a right guidance for performance
measures, which allocates risk capital accounting to the risk contribution of
each line. For more details, we refer the reader to McNeil et al. (2015) and
Dhaene et al. (2012), among others. In this way, the SR and SRk’s under the
CVaRq-based allocations can be expressed as

SRCVaR(q) :=E

[(
Sθ
n −

n∑
i=1

Ci,CVaR(q)

)+∣∣∣∣∣ θ1X1 >C1,CVaR(q)

]
, (2.1)

and

SRk,CVaR(q) :=E
[
(θkXk −Ck,CVaR(q))+

∣∣θ1X1 >C1,CVaR(q)
]
, k= 1, . . . , n.

(2.2)
Nevertheless, some other regulatory environments in European Union,

Japan, Brazil, and Bermuda are VaRq-based. Alternatively, if the entire sys-
tem is VaRq regulated, then the total capital is VaRq(Sθ

n ), and a more practical
solution (see Kalkbrener (2005) or Bluhm et al. (2006)) is to use a surrogate
CVaRη(q)-type allocation rule in the following fashion

Ci,VaR(q) :=E
[
θiXi|Sθ

n >VaRη(q)(Sθ
n )
]
, i= 1, . . . , n,

where

η(q) := inf
u∈(0,1]

{
VaRq(Sθ

n)≤CVaRu(Sθ
n)
}
.

Then, the SR and SRk’s under the VaRq-based allocations can be expressed as

SRVaR(q) :=E

[(
Sθ
n −

n∑
i=1

Ci,VaR(q)

)+∣∣∣∣∣ θ1X1 >C1,VaR(q)

]
, (2.3)

and

SRk,VaR(q) :=E
[
(θkXk −Ck,VaR(q))+

∣∣θ1X1 >C1,VaR(q)
]
, k= 1, . . . , n. (2.4)

Typically, the expressions given by (2.1)–(2.4) are difficult to evaluate. We
aim at the asymptotic formulas as q ↑ 1, when the excessive prudence of the
current regulatory framework requires a confidence level close to 1.
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3. PRELIMINARIES

3.1. Heavy-tailed distributions

By definition, for a distribution function F on R, we write F ∈R−α for some
α > 0 if its right tail F(x)= 1− F(x)> 0 for all x> 0 is regularly varying with
index −α, that is,

lim
x→∞

F(xy)

F(x)
= y−α,

holds for any fixed y> 0. The definition immediately indicates that F(x) is a
power-like function in the sense that it differs from the power function x−α by
up to a slowly varying function at∞. The reader is referred to Bingham et al.
(1987) and Embrechts et al. (1997), among others.

A smaller value of α means a heavier right tail of F . This class has been
extensively used to describe heavy-tail phenomena in insurance and finance,
which contains many popular distributions such as the Pareto, log-gamma,
Burr, and student’s t distributions. It has been further shown by a few empiri-
cal studies that most financial risks are moderately heavy-tailed with parameter
α > 1. Some recent studies even argue that the tail exponent α in heavy-tailed
models typically lies in the interval (2, 5) for financial returns on many stocks
and stock indices in different markets, see Gabaix et al. (2006) and Gabaix
(2009).

If F ∈R−α for some α > 0, then it follows from Theorem 1.5.6 of Bingham
et al. (1987) that, for every ε > 0, there is some x0 > 0 such that for all x, y≥ x0,

(1− ε)
((

x
y

)α+ε

∧
(
x
y

)α−ε)
≤ F(y)

F(x)
≤ (1+ ε)

((
x
y

)α+ε

∨
(
x
y

)α−ε)
. (3.1)

Moreover, Proposition 1.3.6 of Bingham et al. (1987) indicates that for every
ε > 0,

x−(α+ε) = o(F(x)). (3.2)

3.2. Tail Asymptotic Independence

Studying the tail behavior of portfolio risk Sθ
n in SRmodeling requires carefully

addressing some dependence among the primary lossesX1, . . . ,Xn. Asymptotic
independence represents that the probability of two or more components being
simultaneously large can be negligible compared with one component being
large. Generally speaking, for all i �= j ≥ 1, two random variables Xi and Xj,
distributed by Fi and Fj, respectively, are said to be asymptotically independent
if they have a zero coefficient of (upper) tail dependence

λij = lim
u↑1

Pr (Xi > F←i (u)
∣∣Xj > F←j (u)

)= 0,
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FIGURE 1: 5000 samples of (X1,X2), where X1 and X2 both follow Pareto (1.5,1) and are dependent via a
Frank copula with parameter γ .

where F← is the generalized inverse of F , see McNeil et al. (2015). However,
λij = 0 does not imply that the multivariate distribution can be automatically
factorized asymptotically, as shown in Figure 1, where we visualize the tail
risk scenarios. Choose 5000 samples of X1 and X2 representing two risks, both
following the Pareto distribution (4.1) with parameters α = 1.5 and ϑ = 1, and
they are associated through the Frank copula (4.2) with parameter γ = 5 or 50.
The samples exceeding 98% (99%) quantile in the upper-right corner increase
as parameter γ changes from 5 to 50. Although risks are less likely to be jointly
extremely large in the upper-right corner, it is important to describe the tail risk
given a high-risk scenario.

Indeed, the asymptotic independence contains a rich collection of depen-
dence structures. Ledford and Tawn (1997) described the asymptotic inde-
pendence in a more informative way, where for all i �= j ≥ 1, the asymptotic
independence on two random variables with identical distributions Xi and Xj

can be restated as

lim
x→∞ Pr (Xi > x|Xj > x)= 0.

For nonindentically distributed random variables Xi and Xj, the upper tail
asymptotic independence and the tail asymptotic independence (TAI) are
defined as

lim
xi∧xj→∞

Pr (Xi > xi|Xj > xj)= 0, (3.3)

and

lim
xi∧xj→∞

P(|Xi|> xi|Xj > xj)= 0, (3.4)
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respectively byGeluk and Tang (2009), which allow the convergence to be inde-
pendent from the path by which xi and xj go to infinity. Hua and Joe (2011)
defined the tail order function in the form of copula: a bivariate copula C(u, v)
and its corresponding survival copula C satisfies C(u, v)= u+ v− 1+C(1−
u, 1− v) for u, v ∈ [0, 1]. With a slowly varying function l( · ) and an upper tail
order κ, it can be described as limu↓0 C(u,u)

uκ l(u) = 1. The upper tailed order κ > 1 is
called the extreme residual dependence by De Haan and Zhou (2011), which
implies λij = 0. In other words, there is much dependence left in the tails (see
Figure 1), even within the framework of the asymptotic independence.

In this paper, we use the pairwise TAI structure to model the primary losses.
Specifically, random variables X1, . . . ,Xn are said to be pairwise tail asymptot-
ically independent (TAI), if for any 1≤ i �= j ≤ n the relation (3.4) holds. The
definition of TAI indicates that neither too positively nor too negatively can
Xi and Xj be dependent. In spite of this, a wide range of dependence structures
are included such as mutual independence, pairwise negative dependence (see,
Lehmann (1966)), the Ali-Mikhail-Haq, Clayton, Frank, see Geluk and Tang
(2009). Clearly, the TAI implies asymptotic independence of Xi and Xj.

Our study on asymptotically independent risks via the TAI structure
becomes particularly relevant in the following circumstances. First, it is well
documented that companies may be weakly dependent in good times while
regulations would be drafted to prevent the strong dependence among them
in a crisis. For empirical results of asymptotically independent stock returns of
institutions, see Balla et al. (2014). Second, the underlying risks are asymp-
totically independent when the portfolio is well diversified. More detailed
discussions on asymptotically independent risks can be found in Das et al.
(2013) and Yuan (2017).

3.3. Modeling assumptions

Consider the model in which the primary losses X1, . . . ,Xn be n pairwise TAI
real-valued random variables with marginal distributions F1, . . . , Fn, respec-
tively, while the stochastic discount factors θ1, . . . , θn are nonnegative, not
degenerate at 0, and arbitrarily dependent on each other, but independent of
X1, . . . ,Xn. The right tails of θ1, . . . , θn are lighter than X1, . . . ,Xn.

Assume that all primary losses X1, . . . ,Xn are comparable in the right
tail, that is, there exists a representative random variable X with distribution
F ∈R−α for some α > 1, such that limx→∞ Fi(x)

F(x)
= bi for some positive constants

bi, . . . , bn. We remark that, on the one hand, the tail index equivalence hypoth-
esis has been adopted in other theoretical works on portfolio diversification
with heavy-tails, see, e.g., Hyung and de Vries (2002, 2005, 2007), Ibragimov
and Walden (2008) and Zhou (2010). Besides, empirical analyses performed
by Moore et al. (2013) support the assumption of the tail index equivalence.
On the other hand, although the insurance risks may have different tail indices
α, the famous Breiman result (see, Breiman (1965)) ensures that the smallest
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α’s (the largest risks) dominate. In addition, if we want to include also the
less severe losses, all marginal tails can be unified to the smallest α via a
statistic approach. More related discussions can be found in (Resnick, 1987,
Proposition 5.10), Kley and Klüppelberg (2016), and Kley et al. (2016).

Moreover, assume that the left tail of each primary loss is lighter than its
right tail, that is,

Fi(− x)= o(Fi(x)), i= 1, . . . , n. (3.5)

Note that (3.5) is a mild condition from the practical viewpoint. In actuarial
science, the individual loss Xi, considered as insurance risk, is interpreted as
the total claim amount minus the total premium amount in period i. Then each
individual loss Xi could be decomposed as Xi =Ai −Bi, where the nonnegative
random variables Ai and Bi are independent. See Tang and Yuan (2015) for
more details. If, further, FAi ∈R−α and E[Bβ

i ]<∞ for some β > α, then (3.5) is
satisfied. In practice, it is reasonable to assume that the claim amount Ai tends
to be heavy-tailed while the premium amount Bi is empirically light-tailed, see
Zhou (2010).Moreover,Xi could also be represented as the loss given default of
obligor i, or the financial loss. In such a situation, Xi is nonnegative, implying
(3.5) is automatically satisfied. We refer the reader to Tang and Yuan (2013)
and Tang et al. (2019).

4. SYSTEMIC RISKS UNDER REGULARLY VARYING LOSSES

4.1. Exploratory numerical studies

Under the modeling assumptions in Section 3.3, we shall study the asymptotic
behaviors of SRCVaR(q) and SRk,CVaR(q) to reflect our focus on the tail SR.
By a heuristic analysis of SRCVaR(q) and SRk,CVaR(q), we expect that as q ↑ 1
the value of SRCVaR(q) or SRk,CVaR(q) depends on the tail behavior of the pri-
mary losses and their tail dependence structure. To obtain a rough idea on
how primary losses and the dependence structure affect the SR, we conduct
the following numerical studies to analyze the SR in extreme regions.

Numerical study 4.1 Suppose that there are n lines of businesses or legal
entities. Each line i generates a primary loss Xi with the Pareto distribution

Fi(x)= 1−
(

ϑi

x+ ϑi

)α

, x> 0, (4.1)

for some shape parameter α > 0 and scale parameter ϑi ∈R. X1, . . . ,Xn, are
dependent through a Frank copula

C(u)=− 1
γ
ln

(
1+

∏n
i=1 (e

−γ ui − 1)
(e−γ − 1)n−1

)
, u ∈ (0, 1)n, (4.2)
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for some parameter γ �= 0. Let the stochastic discount factors θi’s follow a com-
mon exponential distribution with rate λ= 1.5 and be dependent through a
Gumbel copula

C(u)= exp

⎧⎨⎩−
(

n∑
i=1

(− ln ui)η
) 1

η

⎫⎬⎭ , u ∈ (0, 1)n, (4.3)

for some parameter η > 1.
To obtain the empirical estimators for SR and SRk in (2.1) and (2.2), we

first need to construct the empirical estimator for Ck,CVaR(q). Generate N = 108

samples (θ1,i, ..., θn,i,X1,i, ...,Xn,i), i= 1, ...,N. Denote by Sθ
n,(1) ≤ · · · ≤ Sθ

n,(N) the
order statistics of Sθ

n,i =
∑n

k=1 θk,iXk,i, i= 1, ...,N, then the empirical estimator
for Ck,CVaR(q) is given by

Ĉk =
∑N

i=1 θk,iXk,i1(Sθ
n,i>S

θ
n,(�Nq�)

)∑N
i=1 1

(
Sθ
n,i>S

θ
n,(�Nq�)

) , k= 1, . . . , n,

where �x� denotes the largest integer not exceeding x ∈R, and 1A is the indi-
cator function of a set A. Hence, the empirical estimator for SRCVaR(q) and
SRk,CVaR(q) is given by

ŜR =
∑N

i=1
(
Sθ
n,i −

∑n
k=1 Ĉk

)+
1(θ1,iX1,i>Ĉ1)∑N

i=1 1(θ1,iX1,i>Ĉ1)

, (4.4)

ŜRk =
∑N

i=1
(
θk,iXk,i − Ĉk

)+
1(θ1,iX1,i>Ĉ1)∑N

i=1 1(θ1,iX1,i>Ĉ1)

. (4.5)

For simplicity, we consider n= 3 lines of businesses or legal entities. Set the
parameters to α = 1.5 or 1.3, ϑi = i, γ = 2 and η= 6, i= 1, 2, 3. The empirical
estimators (4.4) and (4.5) are used to estimate the aggregate SR SRCVaR(q) and
the systemic risk contagion SRk,CVaR(q). The plots of SRs against VaRq[X1] for
q from 0.9459 to 0.9999 are demonstrated in Figure 2.

Figure 2 suggests the comonotonicity of the individual risk VaRq(X ), and
the aggregate SR SRCVaR(q) (or the SR contagion SR1,CVaR(q)) shows a rapid
growth as q close to 1. Moreover, we observe in (a) and (b) of Figure 2 that the
points all appear roughly on a straight line, which suggests that the SRCVaR(q)
or SR1,CVaR(q) grows corresponding to VaRq[X1] as q ↑ 1; that is, when q ↑ 1,

SRCVaR(q)≈ c1(α)VaRq[X1], and SR1,CVaR(q)≈ c2(α)VaRq[X1]

for some positive coefficients c1(α), c2(α). However, the values of SR2,CVaR(q)
and SR3,CVaR(q) decay as the individual risk increases, which indicates that the
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FIGURE 2: Comparison of the comovement of ŜR, ŜRk, and VaRq(X1) with N = 108.

values of SR2,CVaR(q) and SR3,CVaR(q) are negligible to VaRq[X1] as q ↑ 1. Such
observations will be theoretically verified in refinements in Subsection 4.2.

Numerical study 4.2Using a copula-based approach to describe the tail risk
contagion requires an appropriate choice of the copula, and the possibility of
choosing a wrong copula leads to significant model misspecification risks.

In this numerical study, we provide some numerical results to illustrate our
characterizations of tail risk and the individual SR contagion SR2,CVaR, where
the impact of the misspecification on SR2,CVaR is investigated by examples that
the tail dependence structure of the primary loss variables is misspecified.
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FIGURE 3: The empirically estimated SR2,CVaR based on the true copula (Frank), the fitted Clayton copula,
and the fitted Gaussian copula, for q from 0.9459 to 0.9999, with N = 108.

Explicitly, we extract the primary loss variables (X1,X2) from Numerical
study 4.1, where a Frank copula is regarded as the benchmark tail dependence
between X1 and X2. Then we use a Clayton copula and a Gaussian copula to
fit the generated data (a synthetic data set containing 108 samples of (X1,X2))
to see how the fitted cases differ from the benchmark. For both copulas, we
applied the function copulafit in the Matlab to obtain maximum likelihood
estimates for the parameters, where the parameter of the Clayton copula is esti-
mated to be 0.3384, and that of the Gaussian copula is 0.3006. The obtained
SR2,CVaR’s are compared for the three cases to show the impact of misspeci-
fication in Figure 3. Clear discrepancies among the estimated SR2,CVaR’s for
the three cases can be observed in Figure 3, especially in the tail area, which
implies that a misspecified dependence structure may lead to a significant over-
or underestimation of the SR contagion on its extreme region. Moreover, one
may note severe divergences on the tail behaviors of the estimated SR2,CVaR’s
as q ↑ 1. For example, the estimated SR2,CVaR’s decrease to 0 under the true
Frank-copula specification and the Clayton-copula specification but not for
the case under the Gaussian-copula specification. This will be further discussed
in Subsection 4.3.

4.2. Main Results

As the main contribution of this paper, we derive the asymptotic behavior for
the SR.
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Theorem 4.1. Consider the aggregate SR in (2.1) under the modeling assumptions
in Subsection 3.3. If E[θβ

i ]<∞ for some β > α > 1, i= 1, . . . , n, then it holds
that

lim
q↑1

SRCVaR(q)
VaRq(X )

= α

(α − 1)2

(
b1E[θα

1 ]
)α(∑n

i=1 biE[θ
α
i ]
)α− 1

α

. (4.6)

Our Theorem 4.1 quantitatively captures the aggregate SR with pairwise
TAI losses, provided that one component of the system is undercapitalised.
Relation (4.6) gives an infinite limit for the SR. On the one hand, the aggre-
gate SR becomes much larger when financial distress is observed in one single
component, which, thus, leads to a significant impact of the SR on the entire
system. On the other hand, the whole system is vulnerable when the primary
losses are heavy-tailed. Our second result aims to assess risk contagion among
all other components in a system.

Theorem 4.2. Consider the individual SR contagion in (2.2) under the conditions
of Theorem 4.1, it holds that

lim
q↑1

SRk,CVaR(q)
VaRq(X )

=
{

α

(α−1)2
b1E[θα

1 ]

(
∑n

i=1 biE[θα
i ])

1− 1
α
, k= 1,

0, k= 2, . . . , n.

Theorem 4.2 shows that SR1,CVaR is proportional to SRCVaR. Indeed, it

holds from Theorems 4.1 and 4.2 that limq↑1
SR1,CVaR(q)
SRCVaR(q)

=
(

b1E[θα
1 ]∑n

i=1 biE[θα
i ]

)1−α

. This

reminds us that all the other components spread the risks in the system.
Nevertheless, the impact of the individual SR contagion on all the other com-
ponents becomes negligible comparing with the value of the individual risk,
when the tail asymptotic independence arises. This phenomenon might inspire
regulatory bodies to promote regulations to weaken the dependence among
components in one system, so that a chain reaction in the system is unlikely
to happen. Then all other components remain solvent even through the entire
system is overall under-capitalised. However, our Theorem 4.2 fails to capture
the precise approximations for SRk,CVaR(q), k= 2, . . . , n, under the TAI frame-
work. We shall further consider the two special cases for refinements and look
for the precise approximations for SRk,CVaR(q), k= 2, . . . , n, in Subsections 4.3.

4.3. Refinements

In this section, we further investigate the asymptotic behavior of
SRk,CVaR(q), k= 2, . . . , n, for some refinements in the two special cases.

In the first case, we restrict the primary losses to the following pairwise
strongly asymptotic independence structure. Random variables X1, . . . ,Xn are
said to be pairwise strongly tail asymptotically independent (SAI), if for any
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1≤ i< j ≤ n, there exists some positive constant ρ such that

lim
xi∧xj→∞

Pr (Xi > xi,Xj > xj)
Pr (Xi > xi) Pr (Xj > xj)

= ρ.

Clearly, the above pairwise SAI structure can be rewritten in terms of copulas
as following: if C(·, ·) is the copula of (Xi,Xj), 1≤ i< j ≤ n, then,

lim
(u,v)↓(0,0)

C(u, v)
uv
= ρ. (4.7)

Related discussions on the pairwise SAI structure can be found in Li (2018).
Although the pairwise SAI structure seems a bit strong, it includes many
commonly-used copulas. For modeling purpose, we give some examples in
terms of n-dimensional symmetric copulas.

Example 4.1. If X1 . . . ,Xn are dependent through the Ali-Mikhail-Haq (AMH)
copula

C(u)= (1− γ )

(
n∏
i=1

(
1− γ

ui
+ γ

)
− γ

)−1
, γ ∈ (− 1, 1],

then they are pairwise SAI with ρ = 1+ γ in (4.7).

Example 4.2. If X1 . . . ,Xn are dependent through the Clayton copula

C(u)=
(

n∑
i=1

u−γ

i − n+ 1

)− 1
γ

, γ ∈ (0,∞),

then they are pairwise SAI with ρ = 1+ γ in (4.7).

Example 4.3. If X1 . . . ,Xn are dependent through the Frank copula in form of
(4.2), then they are pairwise SAI with ρ = γ eγ

eγ−1 in (4.7).

Example 4.4. If X1 . . . ,Xn are dependent through the Farlie-Gumbel-
Morgenstern (FGM) copula

C(u)=
(
1+ γ

n∏
i=1

(1− ui)
)

n∏
i=1

ui, γ ∈ (− 1, 1],

then they are pairwise SAI with ρ = 1+ γ in (4.7).

We remark that (3.4) implies (3.3) and

lim
xi∧xj→∞

P(Xi <−xi|Xj > xj) = 0. (4.8)

https://doi.org/10.1017/asb.2021.11 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.11


ASYMPTOTICS FOR SYSTEMIC RISKWITH DEPENDENT HEAVY-TAILED LOSSES 585

It is easy to check that relation (3.3) holds if X1 . . . ,Xn are pairwise SAI, while
(4.8) is still needed. Recall that there exists a representative random variable X
with distribution F ∈R−α for some α > 1, such that limx→∞ Fi(x)

F(x)
= bi for some

positive constants b1, ..., bn. Now we establish the precise approximations for
SRk,CVaR(q), k= 2, . . . , n, under the pairwise SAI structure.

Theorem 4.3. Consider the individual SR contagion in (2.2) under the conditions
of Theorem 4.1. If X1 . . . ,Xn are pairwise SAI and E[(θ1θk)β ]<∞ for some β >

α > 1, then it holds that for k= 2, . . . , n,

lim
q↑1

SRk,CVaR(q)
VaRq(X )(1− q) =

α1−αρb2−α
k E[(θ1θk)α](E[θα

k ])
1−α

(α − 1)2−αE[θα
1 ]

(∑n
i=1 biE[θ

α
i ]
)2−α− 1

α

.

Since F ∈R−α, we have the individual SR contagion SRk,CVaR(q) is asymp-
totically of the order (1− q)1−1/α. Thus, the individual SR contagion is
asymptotically zero when X1 . . . ,Xn are pairwise SAI.

In the second case, we consider the most famous Gaussian copula

C(u1, ..., un)= φn(φ←(u1), ..., φ←(un);n),

where φ is the standard-normal distribution function, φn( · ;n) is a n-variate
normal distribution function with correlation matrix n. Then, there is a
bivariate copula associated with pair (Xi,Xj) for all 1≤ i< j ≤ n,

C(u, v)= φ2(φ←(u), φ←(v);2), (u, v) ∈ [0, 1]2, (4.9)

with the correlation σ12 = σ21 = σ ∈ (− 1, 1). Clearly, its survival copula satis-
fies

lim
u↓0

C(u, u)

u
2

σ+1 l(u)
= lim

u↓0
C(u, u)

u
2

σ+1 l(u)
= 1 (4.10)

where l( · ) is a slowly varying function at 0, see Ledford and Tawn (1996) and
Reiss (1989). For a slowly variation function l( · ), it follows from Theorem
1.5.6 of Bingham et al. (1987) that, for every ε, there is some x0 > 0 such that
for x, y≥ x0

l(y)
l(x)
≤ (1+ ε)

((y
x

)−ε ∨
(y
x

)ε
)
. (4.11)

Furthermore, it holds that

lim
u↓0

C(ux, uy)

u
2

σ+1 l(u)
= x 1

σ+1 y
1

σ+1 , (4.12)
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see Asimit and Li (2016). In (4.9) and (4.10), a common slowly varying
function is

l(u)=Cσ (− log u)−
σ

σ+1 ,

where

Cσ = (1+ σ )
3
2 (1− σ )−

1
2 (4π)−

σ
σ+1 . (4.13)

Our last result presents the asymptotic formulas for SRk,CVaR(q), k= 2, . . . , n,
in the case that each pair of (Xi,Xj) follows a bivariate Gaussian copula (4.9),
1≤ i< j ≤ n.

Theorem 4.4. Consider the individual SR contagion in (2.2) under the conditions
of Theorem 4.1. If each pair of (Xi,Xj) follows a bivariate Gaussian copula (4.9),
1≤ i< j ≤ n, and E[θ (σ+3)ζ

1 ]<∞, E[θ (σ+3)ζ
k ]<∞, E[(θ1θk)ζ ]<∞ for some ζ >

α

σ+1 , then it holds that for k= 2, . . . , n,

lim
q↑1

SRk,CVaR(q)

VaRq(X ) (1− q) 1−σ
1+σ (− log (1− q))− σ

σ+1
= ξ ,

where the limit

ξ = (1+ σ )α1− α(1−σ )
1+σ b

σ (1−α)
1+α

1 b
2+σ−α
1+σ

k CσE[(θ1θk)
α

1+σ ](E[θα
k ])

1− α
1+σ

|α − σ − 1|(α − 1)1−
α(1−σ )
1+σ E[θα

1 ]
1+σ−ασ

1+σ

(∑n
i=1 biE[θ

α
i ]
)(1− 1

α
)(1−α 1−σ

1+σ
)
,

with Cσ defined in (4.13).

Since F ∈R−α, we have the individual SR contagion SRk,CVaR(q) is asymp-
totically of the order (1− q) 1−σ

1+σ
− 1

α (− log (1− q))− σ
1+σ when each pair of (Xi,Xj)

follows a bivariate Gaussian copula. Thus, the SRk,CVaR(q) being asymptoti-
cally zero, or infinity is completely determined by the interplay between the
values of σ and α. If 1< α < 1+σ

1−σ
(implying σ > 0) the SRk,CVaR(q) is asymp-

totically infinity; If either α ≥ 1+σ

1−σ
or σ ≤ 0, the individual SR contagion is

asymptotically zero.

Remark 4.1. Suppose that X1, . . . ,Xn are mutually independent, then it holds
that

lim
q↑1

SRk,CVaR(q)
VaRq(X )(1− q) =

α1−αb2−α
k E[(θ1θk)α](E[θα

k ])
1−α

(α − 1)2−αE[θα
1 ]

(∑n
i=1 biE[θ

α
i ]
)2−α− 1

α

,

which coincides with Theorem 4.3 with ρ = 1 or Theorem 4.4 with σ = 0.
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4.4. An application

The characterization of the tail SR in Theorem 4.1 has immediate applica-
tions in the calculation of the required risk capital on the SR. According to
the Swiss Solvency Test (SST) guidelines, the insurance company operating in
Switzerland is given by the CVaRq-based risk capital corresponding to a 99%
level of confidence over a one-year horizon. In practice, many insurance com-
panies select an even more conservative confidence level, e.g., 99.5%, 99.9%, or
even 99.95%. To protect an insurance company from the SR under an extreme
risk, the SR-based economic capital under the extreme risk condition can be
defined similarly as the aggregate SR (2.1) given by the line with the largest
loss in financial distress, that is

SRMθ
n ,CVaR(q) :=E

[(
Sθ
n −

n∑
i=1

Ci,CVaR(q)

)+∣∣∣∣∣Mθ
n >CMθ

n ,CVaR(q)

]
, (4.14)

where Mθ
n =

∨n
i=1 θiXi, and CMθ

n ,CVaR(q) :=E
[
Mθ

n

∣∣Sθ
n >VaRq(Sθ

n)
]
. Here we

provide an asymptotic formula as an alternative approximation.

Proposition 4.1. Consider the SR under the extreme risk condition in (4.14) and
under the conditions of Theorem 4.1, it holds that

lim
q↑1

SRMθ
n ,CVaR(q)

VaRq(X )
= α

(α − 1)2

(
n∑
i=1

biE[θα
i ]

)1/α

. (4.15)

5. NUMERICAL STUDIES

In this section, we use some numerical examples to show the discrepant tail
behaviors of the SR due to the heavy-tailedness of the primary losses and do
a comparison of the empirical estimates and its asymptotic approximations
for the SRs SRCVaR and SR1,CVaR (or SRVaR and SR1,VaR), where it could be
observed via the numerical studies that the asymptotic results may lead to a
better estimate for the SRs of portfolio losses, when there is uncertainty in the
tail part. For simplicity, we consider the case of n= 3 lines of businesses or
legal entities with q from 0.9459 to 0.9999.

Similarly to Subsection 4.1, we assume that the primary lossesXi, i= 1, 2, 3,
are distributed by a Pareto distribution (4.1) with α and ϑi = i, respectively,
and they are dependent via a Frank copula (4.2) with γ = 2. Again, let the
stochastic discount factors θi follow an exponential distribution with rate
λ= 1.5 and depend on each other through a Gumbel copula (4.3) with η= 6.
Inspired by our asymptotic results in Theorems 4.1 and 4.2, we start by show-
ing the discrepant tail behaviors of the SRs SRCVaR and SR1,CVaR when the
heavy-tailedness of Xi’s are changed according to α, such that α = 1.3, 1.4, 1.5.
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FIGURE 4: Comparisons between the asymptotic approximations of SRCVaR and SR1,CVaR (log (SRCVaR) and
log

(
SR1,CVaR

)
) and their empirical estimates (obtained based on α = 1.3, 1.4, 1.5, with a sample size of

N = 108).

We would like to point out that although we do not provide graphs here,
our experiments show that values of both SRCVaR and SR1,CVaR are not sensitive
to different TAI structures (i.e., the Frank, Clayton, FGM, Gaussian copulas,
or with different γ ) between the primary losses X1, X2,X3, and the depen-
dence structures between the stochastic discount factors θ1, θ2, θ3. However,
an increase on the value of λ will increase the level of SRCVaR and SR1,CVaR.
These are obvious according to our asymptotic results in Theorem 4.1 and
Theorem 4.2.
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FIGURE 5: Comparisons between the asymptotic approximations of SRVaR and SR1,VaR and their empirical
estimates(obtained based on α = 1.3, with a sample size of N = 108).

In addition to the movement of SRCVaR and SR1,CVaR due to changes of the
heavy-tailedness on the primary risk variables, one may observe from Figure 4
that the empirical estimations get more fluctuations in the tail part, that is,
when the heavy-tailedness of primary losses arises. The graphs in Figure 4 show
that the absolute differences between the empirical estimates and approxima-
tions are always small for q reasonably close to 1. The fluctuation for large q
close to 1 should be due to the variation of empirical estimations, which become
less stable when the event θ1X1 exceeding C1,CVaR(q) becomes rarer as q gets
closer to 1.

Although we only provide the results for the SR and SRk’s under the
CVaRq-based allocations in Theorem 4.1 and Theorem 4.2, all the results
can also be easily derived under the VaRq-based allocations (i.e., SRVaR(q),
SRk,VaR(q)) by replacing the VaRq(X ) with VaRη(q)(X ). Hence, the asymp-
totic approximations in Theorem 4.1 and Theorem 4.2 can also be applied to
approximate the SRVaR(q) and SRk,VaR(q), under the VaRq− based allocations.
With α = 1.3, we provide comparisons between the asymptotic approximations
of the SRVaR(q) and SRk,VaR(q) and their empirical estimates in Figure 5. We
would like to highlight that the simulation costs on traditional empirical esti-
mates for SRVaR and SR1,VaR are much higher than SRCVaR and SR1,CVaR due to
the complex structures related to η(q), where our asymptotic approximations
simplify the computations and provide a better estimation on its tail part. In
view of the fact that the traditional empirical estimates for SR need a large
sample size when the confidence level q is closed to 1, our asymptotic estimates
have apparent advantages in this situation.
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TABLE 1

EMPIRICAL ESTIMATE AND ASYMPTOTIC APPROXIMATION ON SRMθ
n ,CVaR(q) AND ITS RATIO

(EMPIRICAL ESTIMATE/ASYMPTOTIC APPROXIMATION) FOR α = 1.5, WITH A SAMPLE SIZE OF N = 108.

Confidence
level Empirical estimate Asymptotic approximation Ratio

99% 1.709× 107 1.625× 107 1.0520
99.5% 2.674× 107 2.626× 107 1.0183
99.9% 7.787× 107 7.831× 107 0.9945
99.95% 1.201× 108 1.248× 108 0.9628

TABLE 2

ASYMPTOTIC APPROXIMATION ON SRCVaR(q) WITH A FINANCIAL DISTRESS IN THE iTH LINE FOR
α= 1.5 AND A SAMPLE SIZE OF N = 108.

Systemic risk with Systemic risk with Systemic risk with
Confidence a financial distress a financial distress a financial distress
level in the first line in the second line in the third line

99% 7.523× 104 1.702× 106 1.055× 107

99.5% 1.216× 105 2.751× 106 1.706× 107

99.9% 3.625× 105 8.203× 106 5.086× 107

99.95% 5.777× 105 1.307× 107 8.1044× 107

In the last part of this section, we apply our approximations to evaluate
the SR capital for a Swiss-based insurance company. Let us assume that a
Swiss-based insurance company holds a portfolio of three business lines, where
the primary loss random variable Xi, i= 1, 2, 3 for ith business line is Pareto
distributed with α = 1.5 and ϑi = 104 · i. The dependence structure of primary
losses is described by a Frank copula in (4.2) with γ = 2. Since an insurer makes
risky investments, who suffers the financial risk θi, e.g., θi = 1

1+Ri with an overall
return rate Ri ∈ [− 1,∞). Without loss of generality, we assume that the finan-
cial risk follows the experiential distribution with rate λi = i and be dependent
through a Gumbel copula with η= 6. By the SST guidelines, the amount of
economic capital against the SR on the extreme risk prepared by the insurer, is
given by SRMθ

n ,CVaR(q).
Table 1 elucidates relation (4.15) numerically, which herein considers four

different confidence levels, i.e., 99%, 99.5%, 99.9%, and 99.95%. Further,
Table 2 applies Theorem 4.1, which are to this end calculated for SRCVaR(q)
with a financial distress in each business line for various confidence level q.
From Table 1 and Table 2, we can see that SRMθ

n ,CVaR(q) has a higher level
than SRCVaR(q) with a financial distress in each line of business. In addition,
the change in the values of SRMθ

n ,CVaR(q) and SRCVaR(q) is more pronounced as
the confidence level becomes less severe. Among the results of SRCVaR(q), the
third line business always has a highest SRCVaR(q) as expected, according to a
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highest scale parameter ϑ3. This application of the characterization shows that
it is helpful in the determination of the extra risk capital needed for the whole
system to mitigate impact of SRs for the insurer.

6. CONCLUDING REMARKS

In this paper, we study the tail behavior of the SRs for portfolio losses in
the presence of extreme risks. We consider a portfolio loss model in which
the primary losses are heavy-tailed and equipped with a wide type of depen-
dence structure (TAI), and the stochastic discount factors can be arbitrarily
dependent.

Under the TAI structure, we obtain an asymptotic characterization for the
SRs based on the popular measure MES. Unlike the pioneering works by Cai
et al. (2015), Asimit and Li (2016), Das and Fasen (2018), we consider the
marginal excess of a systemic portfolio risks provided one line of business
or legal entity is in a financial distress, where the risk capital allocation by
Euler’s principle is also taken into consideration. Distinguished from Asimit
et al. (2011), a nonpositive amount of capital is also allowed to be allocated to
any line of business. In many practical cases, our formulas can serve as some
accurate approximations for the reasonably large confidence level q close to 1.
Applications of the characterization show that it is helpful in the determination
of the extra risk capital needed for the whole system to mitigate the impact of
SRs, to insurance and financial institutions.

We further study the risk contagion SRk,CVaR(q), k= 2, . . . , n, for some
refinements in two special cases. In particular, we notice that the Gaussian
copula can still produce significant tail risk contagion, and, therefore, could
still be a good candidate for modeling tail risk. This may provide us some ideas
of the potential extensions in the future, including capturing the tail risk con-
tagion under some more general asymptotic dependence structures, which may
be helpful to quantitatively analyze and distinguish the different impacts of the
dependence structures between primary losses and has important implications
in the SR management.
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APPENDIX A

Throughout the paper, all limit relationships are according to x→∞ unless other-
wise stated. For two positive functions g1( · ) and g2( · ), we write g1(x)= o(g2(x)) if
lim g1(x)/g2(x)= 0, write g1(x)=O(g2(x)) if lim sup g1(x)/g2(x)<∞, and we write g1(x)∼
bg2(x) to mean strong equivalence, i.e., lim g1(x)/g2(x)= b for some positive constant
b, and we write g1(x)� g2(x) to mean weak equivalence, i.e., 0< lim inf g1(x)/g2(x)≤
lim sup g1(x)/g2(x)<∞. We also denote lim inf g1(x)/g2(x)≥ 1 and lim sup g1(x)/g2(x)≤ 1
by g1(x)� g2(x) and g1(x)� g2(x), respectively. For any x, y ∈R, write x∨ y=max{x, y},
x∧ y=min{x, y}, and x+ = x∨ 0, x− =−(x∧ 0).

A.1. Lemmas

Mimicking the proofs of Theorem 3.1 (a) of Zhang et al. (2009) and Lemma 3.1 of Chen and
Yuen (2009), we can obtain the following Lemmas A.1–A.3.

Lemma A.1. Under the conditions of Theorem 4.1, it holds that

P

(
max
1≤i≤n

Sθ
i > x

)
∼ P(Sθ

n > x)∼ P

( n∑
i=1

θiX
+
i > x

)
∼ P

( n∨
i=1

θiXi > x

)
∼

n∑
i=1

P(θiXi > x).

Lemma A.2. Let X be a real-valued random variable with distribution F ∈R−α for some α > 0
sasisfying F(− x)= o(F(x)), and θ be another nonnegative random variable satisfying E[θβ ]<
∞ for some β > α. Then, it holds that for any y> 0,

lim
x→∞

P(θX <−xy)
P(θX > x)

= 0.

Lemma A.3. Under the conditions of Theorem 4.1, it holds that for any y> 0 and k= 2, . . . , n,

lim
x→∞

P(θ1X1 > x, θkXk > xy)
P(θ1X1 > x)

= 0.

The next lemma plays an important role in the proofs of our main results.
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Lemma A.4. Under the conditions of Theorem 4.1, it holds that for k= 1, . . . , n,

E
[
θkXk1(Sθ

n>x)

]
∼E

[
θkXk1(θkXk>x)

]
. (A.1)

Proof. Without loss of generality, we only consider the case k= 1. Motivated by
Theorem 4.1 of Tang and Yuan (2014), we define a new probability measure Q by

dQ
dP
= θ1X

+
1

E[θ1]E[X
+
1 ]

,

where the symbol E without superscript means the expectation still under probability
measure P. Under Q, the tail probabilities of X1 and θ1X1 are given by

Q(X1 > x)= xF1(x)+
∫∞
x F1(y)dy

E[X+1 ]
, x> 0,

and

Q(θ1X1 > x)= xP(θ1X1 > x)+ ∫∞
x P(θ1X1 > y)dy

E[θ1]E[X
+
1 ]

, x> 0.

By F1 ∈R−α , Breiman’s theorem (see, Breiman (1965)) leads to Fθ1X1 ∈R−α , and
Karamata’s theorem (see Theorem 1.5.11(ii) of Bingham et al., 1987) further gives that the
distribution functions of X1 and θ1X1 under Q are both regularly varying tailed with the
same index −α+ 1.

For the desired (A.1), it suffices to prove

E
[
θ1X11(θ1X1>x)

]
�E

[
θ1X11(Sθ

n>x)

]
, (A.2)

and

E

[
θ1X
+
1 1(∑n

i=1 θiX
+
i >x

)]∼E
[
θ1X11(θ1X1>x)

]
. (A.3)

We first deal with (A.2). Clearly,

E

[
θ1X11(Sθ

n>x)

]
= E

[
θ1X
+
1 1(Sθ

n>x)

]
−E

[
θ1X
−
1 1(Sθ

n>x)

]
≥ E

[
θ1X
+
1 1(

θ1X1−
∑n

i=2 θiX
−
i >x

)]−E

[
θ1X
−
1 1(∑n

i=2 θiXi>x
)]

=: I1 − I2. (A.4)

Note that, under Q,

I1 =E[θ1]E[X
+
1 ]Q

(
θ1X1 −

n∑
i=2

θiX
−
i > x

)
. (A.5)
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For any v> 1, we have

Q

(
θ1X1 −

n∑
i=2

θiX
−
i > x

)

≥ Q

(
θ1X1 > vx,

n∑
i=2

θiX
−
i ≤ (v− 1)x

)

= Q (θ1X1 > vx)−Q

(
θ1X1 > vx,

n∑
i=2

θiX
−
i > (v− 1)x

)
. (A.6)

By Lemma A.2, we have that for any i= 2, . . . , n, under P,

P

(
θ1X1 > vx, θiX

−
i >

(v− 1)x
n− 1

)
≤ P

(
θiXi <− (v− 1)x

n− 1

)
= o (1) P(θ1X1 > x), (A.7)

and, moreover, for any c< 1 and all y≥ vx→∞,

P

(
θ1X1 > y, θiX

−
i >

(v− 1)x
n− 1

)
≤ P

(
θ1X1 > y, θiXi <− (v− 1)x

n− 1
, θ1 ≤ xc, θi ≤ xc

)
+P (

θ1X1 > y, θ1 > xc
)+ P

(
θ1X1 > y, θi > xc

)
= o(P(θ1X1 > y)), (A.8)

where in the last step we applied (3.4) to the first term and Lemma 7 of Tang and Yuan
(2014) to the last two terms. By (A.7) and (A.8), we have

E[θ1]E[X
+
1 ]Q

(
θ1X1 > vx, θiXi <− (v− 1)x

n− 1

)
= vxP

(
θ1X1 > vx, θiXi <− (v− 1)x

n− 1

)
+

∫ ∞
vx

P

(
θ1X1 > y, θiXi <− (v− 1)x

n− 1

)
dy

= o(1)Q(θ1X1 > x),

which implies

Q

(
θ1X1 > vx,

n∑
i=2

θiX
−
i > (v− 1)x

)

≤
n∑
i=2

Q

(
θ1X1 > vx, θiX

−
i >

(v− 1)x
n− 1

)
.

= o(1)Q(θ1X1 > x). (A.9)

Combining (A.5), (A.6), (A.9), and letting v ↓ 1, yields
I1 �E

[
θ1X11(θ1X1>x)

]
, (A.10)

because, under Q, the distribution of θ1X1 belongs toR−α+1.
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As for I2, by Lemma A.2, for any 0< ε < 1,

E

[
θ1X
−
1 1(

θ1X
−
1 >εx

)] = εxP(θ1X
−
1 > εx)+

∫ ∞
εx

P(θ1X
−
1 > y)dy

= ε

(
xP(θ1X1 <−εx)+

∫ ∞
x

P(θ1X1 <−εz)dz
)

= o(1)
(
xP(θ1X1 > x)+

∫ ∞
x

P(θ1X1 > z)dz
)

= o(1)E
[
θ1X11(θ1X1>x)

]
. (A.11)

By using Lemma A.1, (A.11) and Breiman’s theorem, we have

I2 = E

[
θ1X
−
1 1(

θ1X
−
1 ≤εx,

∑n
i=2 θiXi>x

)]+E

[
θ1X
−
1 1(

θ1X
−
1 >εx,

∑n
i=2 θiXi>x

)]
≤ εxP

( n∑
i=2

θiXi > x

)
+E

[
θ1X
−
1 1(

θ1X
−
1 >εx

)]

= εx
n∑
i=2

P(θiXi > x)+ o(1)E [
θ1X11(θ1X1>x)

]
= ε ·O(1)xP(θ1X1 > x)+ o(1)E [

θ1X11(θ1X1>x)
]

≤ (ε ·O(1)+ o(1))E [
θ1X11(θ1X1>x)

]
. (A.12)

Therefore, relation (A.2) follows from (A.4), (A.10), (A.12) and by the arbitrariness of ε > 0.
Now we consider (A.3). Clearly,

E

[
θ1X
+
1 1(∑n

i=1 θiX
+
i >x

)] = E
[
θ1X11(θ1X1>x)

]+E

[
θ1X
+
1 1(

θ1X
+
1 ≤x,

∑n
i=1 θiX

+
i >x

)]
=: I3 + I4. (A.13)

For any 0< ε < 1,

I4 ≤ εxP

( n∑
i=1

θiX
+
i > x

)
+ xP

(
εx< θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)
. (A.14)

By Lemma A.1 and Breiman’s theorem, we have

P

( n∑
i=1

θiX
+
i > x

)
∼

n∑
i=1

P(θiXi > x)=O(1)P(θ1X1 > x). (A.15)
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Again by Lemma A.1 and Breiman’s theorem,

P

(
εx< θ1X1 ≤ x,

n∑
i=1

θiX
+
i > x

)

≤ P

( n∑
i=1

θiX
+
i > x

)
− P(θ1X1 > x)− P

(
θ1X1 ≤ εx,

n∑
i=2

θiX
+
i > x

)

=
n∑
i=2

P(θiXi > x)+ o(1)P(θ1X1 > x)− P

(
θ1X1 ≤ εx,

n∑
i=2

θiX
+
i > x

)

= P

(
θ1X1 > εx,

n∑
i=2

θiX
+
i > x

)
+ o(1)P(θ1X1 > x)

≤
n∑
i=2

P

(
θ1X1 > εx, θiXi >

x
n− 1

)
+ o(1)P(θ1X1 > x)

= o(1)P(θ1X1 > x), (A.16)

where in the last step we used Lemma A.3. Plugging (A.15) and (A.16) into (A.14) yields

I4 = o(1)xP(θ1X1 > x)= o(1)E[θ1X11(θ1X1>x)],

by the arbitrariness of ε > 0. Thus, the desired relation (A.3) holds from (A.13). �

Lemma A.5. Under the conditions of Theorem 4.1, it holds that for k= 1, . . . , n,

lim
t→∞ P(Sθ

n > tx|θkXk > t)= 1(0<x≤1) + x−α1(x>1). (A.17)

Proof. When x> 1, on the one hand,

P(Sθ
n > tx, θkXk > t)≤ P

( n∑
i=1

θiX
+
i > tx, θkXk > t

)

≤ P

( n∑
i=1

θiX
+
i > tx

)
− P

( n⋃
i=1
{θiX+i > tx}, θkXk ≤ t

)

≤ P

( n∑
i=1

θiX
+
i > tx

)
− P

⎛⎜⎜⎝ n⋃
i=1
i �=k

{θiXi > tx}, θkXk ≤ t

⎞⎟⎟⎠
≤ P

( n∑
i=1

θiX
+
i > tx

)
−

n∑
i=1
i �=k

P (θiXi > tx)+
∑

1≤i<j≤n
i �=k �=j

P(θiXi > tx, θjXj > tx)

+
n∑
i=1
i �=k

P(θkXk > t, θiXi > tx).
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Applying Lemma A.1 and Breiman’s theorem (implying FθkXk ∈R−α) leads to

lim sup
t→∞

P

(
Sθ
n > tx|θkXk > t

)
≤ x−α .

On the other hand, again by Lemma A.1,

P
(
Sθ
n > tx, θkXk > t

)
≥ P(Sθ

n > tx)− P

( n∑
i=1

θiX
+
i > tx, θkXk ≤ t

)

= P

(
Sθ
n > tx

)
− P

( n∑
i=1

θiX
+
i > tx

)
+ P

( n∑
i=1

θiX
+
i > tx, θkXk > t

)

≥ P(Sθ
n > tx)− P

( n∑
i=1

θiX
+
i > tx

)
+ P(θkXk > tx, θkXk > t)

= P(Sθ
n > tx)− P

( n∑
i=1

θiX
+
i > tx

)
+ P (θkXk > tx)

∼ P (θkXk > tx) ,

which implies

lim inf
t→∞ P(Sθ

n > tx|θkXk > t)≥ x−α .

When 0< x≤ 1, on the one hand, we have P(Sθ
n > tx, θkXk > t)≤ P(θkXk > t). On the

other hand, applying a similar argument above and noting that P(θkXk > tx, θkXk > t)=
Pr (θkXk > t) , we have P(Sθ

n > tx, θkXk > t)∼ P(θkXk > t). It ends the proof of the lemma.
�

Lemma A.6. Under the conditions of Theorem 4.1, it holds that

lim
q↑1

Ck,CVaR(q)
VaRq(X )

= α

α − 1

bkE[θα
k ](∑n

i=1 biE[θα
i ]
)1− 1

α

. (A.18)

Proof. By Lemma A.1 and Breiman’s theorem, we have

P(Sθ
n > x)∼ F(x)

n∑
i=1

biE[θα
i ]. (A.19)

By applying Lemma A.4, Karamata’s theorem, Breiman’s theorem and (A.19), we have

E

[
θkXk

∣∣∣Sθ
n > x

]
∼ E[θkXk1(θkXk>x)]

F(x)
∑n

i=1 biE[θα
i ]

= xP(θkXk > x)+ ∫∞
x P(θkXk > y)dy

F(x)
∑n

i=1 biE[θα
i ]

∼ α

α− 1

xbkE[θα
k ]∑n

i=1 biE[θα
i ]

.
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By (A.19) and Proposition 0.8(v) of Resnick (1987), as q ↑ 1,

VaRq(Sθ
n )∼ F←

(
1− 1− q∑n

i=1 biE[θα
i ]

)
∼

( n∑
i=1

biE[θα
i ]

) 1
α

VaRq(X ).

Thus, the desired (A.18) follows from the above two relations. �

The following lemma is a restatement of Lemma 3 (iii) of Li (2018).

Lemma A.7. Under the conditions of Theorem 4.3, it holds that for k= 2, ..., n,

P(θ1X1 > x, θkXk > y)∼ ρE[(θ1θk)
α ]F1(x)Fk(y), as (x, y)→ (∞,∞).

Next lemma will be used for the proof of Theorem 4.4

Lemma A.8. Under the conditions of Theorem 4.4, it holds for that k= 2, ..., n,

P(θ1X1 > tx, θkXk > t)∼ (b1bk)
1

1+σ x−
α

1+σ E[(θ1θk)
α

1+σ ]
(
F(t)

) 2
1+σ l

(
F(t)

)
, as t→∞.

Proof. Noting ζ > α
1+σ

, Choose some α
ζ (1+σ ) < c< 1, and some real number M >

1. Then split the tail probability P(θ1X1 > tx, θkXk > t) according to the set �1 =
[0,M]2 ,�2 =

(
M, tc]2 , and �3 =

(
tc,∞)2 as

P(θ1X1 > tx, θkXk > t) =
3∑
i=1

P (θ1X1 > tx, θkXk > t, (θ1, θk) ∈�i)=:
3∑
i=1

Ji.

In view of F ∈R−α and Fi(x)∼ biF(x), i= 1, . . . , n, according to the tail asymptotic
behavior (4.12) for the Gaussian copula in Subsection 4.3 and E[(θ1θk)

α
1+σ ]<∞, we have

J1 =
∫∫

�1

P

(
X1 >

tx
u
,Xk >

t
v

)
P(θ1 ∈ du, θk ∈ dv)

=
∫∫

�1

C
(
F1

(
tx
u

)
, Fk

(
t
v

))
P(θ1 ∈ du, θk ∈ dv)

∼ (b1bk)
1

1+σ x−
α

1+σ E

[
(θ1θk)

α
1+σ 1((θ1,θk)∈�1)

] (
F(t)

) 2
1+σ l

(
F(t)

)
∼ (b1bk)

1
1+σ x−

α
1+σ E

[
(θ1θk)

α
1+σ

] (
F(t)

) 2
1+σ l

(
F(t)

)
where the last step we letM→∞.

For J2, we have,

J2 =
∫∫

�2∩{u≤v}
C

(
F1

(
tx
u

)
, Fk

(
t
v

))
P(θ1 ∈ du, θk ∈ dv)

+
∫∫

�2∩{u>v}
C

(
F1

(
tx
u

)
, Fk

(
t
v

))
P(θ1 ∈ du, θk ∈ dv)

=: J21 + J22.
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Thus, by E

[
θ
(σ+3)ζ
k

]
<∞,

J21 ≤
∫∫

�2∩{u≤v}
C

(
F1

(
tx
v

)
, Fk

(
t
v

))
P(θ1 ∈ du, θk ∈ dv)

≤ C
(
F(t)

) 2
σ+1 l

(
F(t)

)
E

[
θ
(σ+3)ζ
k 1(θk∈�2)

]
,

where the last step we applied (4.12) and inequalities (3.1) and (4.11). This
indicates limM→∞ lim supt→∞

J21
J1
= 0. In a similar argument, we also have

limM→∞ lim supt→∞
J22
J1
= 0. Hence, J2 = o(1)J1 asM→∞.

By Markov’s inequality and E

[
θ
(σ+3)ζ
1

]
<∞, E

[
θ
(σ+3)ζ
k

]
<∞, we have

J3 ≤ P(θ1 > tc)+ P(θk > tc)

≤
(
E

[
θ
(3+σ )ζ
1

]
+E

[
θ
(3+σ )ζ
k

])
t−(σ+3)cζ

= o
((
F(t)

) σ+3
σ+1

)
= o(1)J1,

where in the last step we used (3.2) by noting cζ (1+ σ )> α. Then, we conclude the lemma
from the above three relations. �

The following lemmas will be used for the proof of Proposition 4.1.

Lemma A.9. Under the conditions of Theorem 4.1, it holds that for k= 1, ..., n,

lim
t→∞ P(Sθ

n > tx|Mθ
n > t)= 1(0<x≤1) + x−α1(x>1).

Proof. When 0< x≤ 1, on the one hand, it trivially holds that

Pr
(
Sθ
n > tx,Mθ

n > t
)
≤ Pr

(
Mθ

n > t
)
.

On the other hand, by BonferroniâĂŹs inequality, we have

Pr

(
Sθ
n > tx,

n∨
i=1

θiXi > t

)

≥
n∑
i=1

Pr
(
Sθ
n > tx, θiXi > t

)
−

∑
1≤j<k≤n

Pr
(
θjXj > t, θkXk > t

)
≥ n Pr

(
Sθ
n > tx

)
− n Pr

( n∑
i=1

θiX
+
i > tx

)
+

n∑
i=1

Pr (θiXi > tx, θiXi > t)

−
∑

1≤j<k≤n
Pr

(
θjXj > t, θkXk > t

)
≥ n Pr

(
Sθ
n > tx

)
− n Pr

( n∑
i=1

θiX
+
i > tx

)
+ (1+ o(1))

n∑
i=1

Pr (θiXi > t)

∼ Pr
(
Mθ

n > t
)
,
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where the last second step we applied a similar argument as we did in the proof of Lemma A.5
and the last step we applied Lemma A.1 and Breiman’s theorem. Similarly, when x≥ 1, we
have,

Pr

(
Sθ
n > tx,

n∨
i=1

θiXi > t

)
∼

n∑
i=1

Pr (θiXi > tx) .

Applying Lemma A.1 and Breiman’s theorem (implying FSθ
n
∈R−α) leads to

lim
t→∞ P

(
Sθ
n > tx

∣∣∣Mθ
n > t

)
= x−α1(x>1).

It ends the proof of the lemma. �

Lemma A.10. Under the conditions of Theorem 4.1, it holds that

E

[
Mθ

n 1
(
Sθ
n>x

)]∼E

[
Mθ

n 1
(
Mθ
n>x

)] . (A.20)

Proof. For the desired (A.20), it suffices to prove

E

[
Mθ

n 1
(
Mθ
n>x

)]�E

[
Mθ

n 1
(
Sθ
n>x

)] . (A.21)

and

E

[
Mθ+

n 1(∑n
i=1 θiX

+
i >x

)]∼E

[
Mθ

n 1
(
Mθ
n>x

)] . (A.22)

For (A.21), we have

E

[
Mθ

n 1
(
Sθ
n>x

)] ≥ E

[
Mθ

n 1
(
Sθ
n>x,Mθ

n>x
)]−E

[
Mθ−

n 1(
Sθ
n>x

)]
=: K1 −K2. (A.23)

Note that, for K1,

K1 = x
(
Pr

(
Sθ
n > x,Mθ

n > x
)
+

∫ ∞
1

Pr
(
Sθ
n > x,Mθ

n > tx
)
dt
)

∼ E

[
Mθ

n 1
(
Mθ
n>x

)] , (A.24)

where the last step we applied Lemma A.9. Moreover, as for K2, by Lemma A.2 for any 0<

ε < 1,
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E

[
Mθ−

n 1(
Mθ−
n >εx

)] = ε

(
xP(Mθ

n <−εx)+
∫ ∞
x

P(Mθ
n <−εz)dz

)
≤ ε

(
xP(θ1X1 <−εx)+

∫ ∞
x

P(θ1X1 <−εz)dz
)

= o(1)
(
xP(θ1X1 > x)+

∫ ∞
x

P(θ1X1 > z)dz
)

≤ o(1)E
[
Mθ

n 1
(
Mθ
n>x

)] .
Hence, we have

K2 ≤ E

[
Mθ−

n 1(
Mθ−
n ≤εx,Sθ

n>x
)]+E

[
Mθ−

n 1(
Mθ−
n >εx

)]
≤ εxP

(
Sθ
n > x

)
+ o(1)E

[
Mθ

n 1
(
Mθ
n>x

)]
≤ (εO(1)+ o(1))E

[
Mθ

n 1
(
Mθ
n>x

)] , (A.25)

where the last step we applied Lemma A.1. Therefore, relation (A.21) follows from (A.23),
(A.24), (A.25), and by the arbitrariness of ε > 0.

Now we consider (A.22), obviously,

E

[
Mθ+

n 1(∑n
i=1 θiX

+
i >x

)] = E

[
Mθ

n 1
(
Mθ
n>x

)]+E

[
Mθ

n 1
(
Mθ+
n ≤x,

∑n
i=1 θiX

+
i >x

)]
=: K3 +K4. (A.26)

For any 0< ε < 1,

K4 ≤ εxP

( n∑
i=1

θiX
+
i > x

)
+ xP

(
εx<Mθ

n ≤ x,
n∑
i=1

θiX
+
i > x

)
.

Again by Lemma A.1,

P

(
εx<Mθ

n ≤ x,
n∑
i=1

θiX
+
i > x

)

≤ P

( n∑
i=1

θiX
+
i > x

)
− P(Mθ

n > x)− P

(
Mθ

n ≤ εx,
n∑
i=1

θiX
+
i > x

)
≤ (1+ o(1)) Pr

(
Sθ
n > x

)
− P(Mθ

n > x)− P

(
Mθ

n ≤ εx, Sθ
n > x

)
= o(1) Pr

(
Sθ
n > x

)
− P(Mθ

n > x)+ P

(
Mθ

n > εx, Sθ
n > x

)
= o(1)P(Mθ

n > x),

where in the last step we used Lemma A.1 and Lemma A.9 for any 0< ε < 1. Hence,

K4 = o(1)E
[
Mθ

n 1
(
Mθ
n>x

)]
holds by the arbitrariness of ε > 0. Thus, the desired relation (A.22) holds from (A.26). �
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A.2. Proofs of main results

Proof of Theorem 4.1. Starting from (2.1), we rewrite SRCVaR(q) as

SRCVaR(q) =
∫ ∞∑n

i=1 Ci,CVaR(q)
P

(
Sθ
n > x

∣∣θ1X1 >C1,CVaR(q)
)
dx

= C1,CVaR(q)
∫ ∞∑n

i=1 Ci,CVaR(q)
C1,CVaR(q)

P

(
Sθ
n >C1,CVaR(q)x

∣∣θ1X1 >C1,CVaR(q)
)
dx.

Noticing C1,CVaR(q)→∞ as q ↑ 1, and by Lemma A.1, Breiman’s theorem and (3.1), there
exist some 1< γ < α and some largeM such that

P

(
Sθ
n >C1,CVaR(q)x

∣∣θ1X1 >C1,CVaR(q)

)
≤Mx−γ

holds for q in some left neighborhood of 1 and x> 1, which is integrable on (1,∞). Hence,
by Lemmas A.6 and A.5, and applying the Dominated Convergence Theorem, we derive

lim
q↑1

SRCVaR(q)
VaRq(X )

= α

α − 1

b1E[θα
1 ](∑n

i=1 biE[θα
i ]
)1− 1

α

∫ ∞∑n
i=1 biE[θα

i ]

b1E[θ
α
1 ]

x−αdx

= α

(α − 1)2

(
b1E[θα

1 ]
)α(∑n

i=1 biE[θα
i ]
)α− 1

α

,

which concludes relation (4.6).

Proof of Theorem 4.2. Similarly to the proof of Theorem 4.1,

SRk,CVaR(q) =
∫ ∞
Ck,CVaR(q)

P(θkXk > y
∣∣θ1X1 >C1,CVaR(q) )dy

= C1,CVaR(q)
∫ ∞
Ck,CVaR(q)
C1,CVaR(q)

P(θkXk >C1,CVaR(q)x
∣∣θ1X1 >C1,CVaR(q) )dx.

When k= 1, Breiman’s theorem implies Fθ1X1 ∈R−α , and keeping in mind C1,CVaR(q)→
∞, q ↑ 1, thus, by using (3.1), we have that for some 1< γ < α, largeM > 0 and q close to 1,

P(θkXk >C1,CVaR(q)x
∣∣θ1X1 >C1,CVaR(q) )≤ 1(0<x≤1) +Mx−γ 1(x>1), (A.27)

which is integrable on (0,∞). Applying the Dominated Convergence Theorem and Lemma
A.6, and by Fθ1X1 ∈R−α we have

lim
q↑1

SR1,CVaR(q)
VaRq(X )

= α

(α − 1)2
b1E[θα

1 ](∑n
i=1 biE[θα

i ]
)1− 1

α

.

When k= 2, . . . , n, again by Breiman’s theorem and (3.1), we can obtain that inequality
(A.27) still holds for all q close to 1. By Lemma A.3, we have that for any fixed x> 0,

lim
t→∞ P(θkXk > tx|θ1X1 > t)= 0,
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which, by using the Dominated Convergence Theorem and by Lemma A.6, leads to

lim
q↑1

SRk,CVaR(q)
VaRq(X )

= 0, k= 2, . . . , n.

Proofs of Theorems 4.3 and 4.4.The proofs are the same as that of Theorem 4.2 by addressing
Lemma A.7 and Lemma A.8, respectively.

Proofs of Proposition 4.1 The proof is the same as that of Theorem 4.1 by addressing Lemma
A.9 and Lemma A.10, respectively.
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