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SUMMARY

The present paper compares standard and novel methods for analysing aggregated patterns of plant death in
designed field experiments; these methods include binomial (BN), beta-binomial (BBN), logistic-normal-binomial
(LNB), BN models with random blocks, BN models with smooth-scale spatial components and principal
coordinates of neighbour matrices (PCNM). PCNM is a relatively new technique used in ecology to determine
how much observed variability can be explained by spatial and environmental variables, and has not yet been
applied to agricultural studies. The survival data of two pasture species, collected from a designed field experiment
that was replicated at multiple locations, were used. First, the occurrence of overdispersion was tested using the
BN and BBN distributions. Goodness-of-fit tests proved that the BBN model provided a better description (better
fit) of the observed data in some cases than did the BN distribution, indicating overdispersion was present. When
overdispersion was not present, the BN distribution was adequate to describe the data, and the use of the BBN
distribution was superfluous. It is then shown that the PCNM approach, the BN model with smooth-scale spatial
components and the LNBmodel were able to account for some of the variation as spatial variability, thus reducing
the species effect compared with that explained under the standard BN model. The amount of variation among
species according to the BNmodel and the BNmodel with random blocks was similar. Therefore, it is argued that
the novel PCNM approach warrants further testing when exploring the spatial variability in designed experiments
in agriculture and using LNB, PCNM and BN with smooth-scale spatial components may provide better
predictions of species effects than do other, more conventional, approaches.

INTRODUCTION

The use of probability distributions to characterize
the spatial pattern of disease occurrence, species com-
position and species abundance in plant communities
is now a well-established technique in plant-disease
epidemiology and ecology (Campbell & Noe 1985;
Madden 1989; Madden & Hughes 1995; Chen et al.
2008). In many ecological studies that involve the
analysis of count data, the data exhibit variation
greater than that predicted by the stochastic com-
ponent of a model (Richards 2008). Such data are
referred to as overdispersed with respect to the

modelled error distribution. Overdispersion may be
due to the model not accounting for important
covariates, or to a lack of independence among
study subjects or treatments (Williams 1975; Cox &
Snell 1989). Unfortunately, published studies that
adopt model selection often do not report whether
their data are overdispersed with respect to their best-
fitting models (Richards 2008). Moreover, ignoring
overdispersion can cause overestimation of the pre-
cision of model parameters, which can in turn lead to
the selection of overly complex models with more
parameters (Anderson et al. 1994), resulting in poor
inference (Burnham & Anderson 2002). Some statis-
ticians, following McCullagh & Nelder (1989), but
ignoring their qualification (‘unless the data or prior
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information indicate otherwise’), suggest that it is wise
to assume that overdispersion is always present.

Agricultural researchers usually make efforts to
conduct experiments as pre-planned designs with im-
posed treatment levels and maintain all other con-
ditions consistent across sampling units (e.g. plots) in
order to minimize experimental errors and simplify
analysis. However, despite taking such precautions to
maintain uniformity, some heterogeneity among
experimental units will often remain, such as differ-
ences in soil fertility, frost severity due to micro-
topology, insect–pest density or a host of other
possibilities. In such circumstances, there is a high
probability of encountering overdispersed data.
Therefore, there is a need to test for overdispersion
and use appropriate statistical analysis techniques
to determine the significance of imposed treatment
(e.g. different species) effects in order to make better
inferences (SAS 2010) and gain insight into the under-
lying biological processes (Garrett et al. 2004).

One important kind of data resulting from agricul-
tural trials is BN data or data on the counts of just two
possible outcomes, such as the number of diseased
plants v. the number of disease-free plants or the
number of surviving plants v. the number of dead
plants. This data is usually measured within a plot or
unit of replication comprised of a number of individ-
uals, yielding data such as 15 out of 20 plants died in a
particular plot. The standard model for BN data is the
BN model, which implicitly assumes no overdisper-
sion beyond standard BN errors (McCullagh & Nelder
1989). A standard model for BN data that does include
the possibility of overdispersion is the beta-binomial
(BBN) distribution, derived by assuming that the
probability of plant death across different plots with
the same treatment has a beta distribution (Skellam
1948; Williams 1982; McCullagh & Nelder 1989).
Using a BBN model allows testing of whether there is
overdispersion in the data after accounting for the
imposed treatment effects; if there is not, a simpler and
more powerful BN model may be used, but if over-
dispersion is indeed present, it must be accounted for.

In some cases, it may be possible to measure the
value of heterogeneous environmental variables
across the experimental site and then account for
their effect in the analysis as covariates, and if all
the important heterogeneous environmental variables
can be measured and accounted for in this way, at a
detailed enough scale, the analysis should show no
remaining overdispersion. However, due to the dif-
ficulty or impossibility of measuring all important

heterogeneous environmental variables at a detailed
enough scale, the analysis will often show some
remaining overdispersion, thus indicating that some
important ‘hidden’ environmental variables are still
causing extra variability in the results. It is possible that
the spatial structure in hidden environmental variables
occurs within the plots (units of replication) and the
variables are not spatially structured beyond the scale
of individual plots/replicates. This may be the case
when plants within a given plot are all more or less
likely to succumb to frost, due to micro-topography, or
to disease, due to short-range spore dispersal. If this is
the case, then this variability must simply be modelled
as overdispersion, with a corresponding reduction in
the power and precision of the analysis. However, it is
also possible that the hidden environmental variables
are spatially structured beyond the scale of individual
plots/replicates; due to large areas of increased frost
susceptibility or larger-scale spore dispersal that spans
multiple adjacent plots (units of replication). In this
second case, it may still be possible to account for this
environmental heterogeneity in a number of different
ways.

For example, in the case of designed field exper-
iments, overdispersion might also be due to environ-
mental heterogeneity that causes correlation among
neighbours at the scale of blocks. In such circum-
stances, correlation could be taken into account by
including a random block effect in a BN model
(‘G-side’ random effects) (SAS 2010), in which case the
marginal responses will be correlated, due to the fact
that observations within a block share the same
random effect. Observations from different blocks
will remain uncorrelated in the spirit of separate
randomization among blocks. Alternatively, if the cor-
relations among neighbours occur at a scale lower
than the size of a block, smooth-scale spatial
components could be taken into account with a BN
model (‘R-side’ random effects) (Gotway & Stroup
1997; Schabenberger & Pierce 2002; SAS 2010).

Other approaches such as logistic-normal-binomial
(LNB) or correlated BN models can also be used
when assessing the effects of explanatory variables in
designed experiments with environmental heterogen-
eity (Hughes et al. 1998). The former is very useful
because it fits into the structure of generalized linear
mixed models for discrete data, allowing researchers
to deal with hierarchical aspects of experimental or
survey designs (Williams 1975; Lin & Breslow 1996;
Hughes et al. 1998). In the LNB approach, an in-
dependently distributed standard normal random
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variable is added into the model to account for spatial
heterogeneity (Hughes et al. 1998).
The spatial heterogeneity observed in a data set

can also be explained through principal coordinates
of neighbour matrices (PCNM). Even though this
approach is currently used in ecological studies it
has not, as far as the present authors are aware, been
applied in analysing the results of agricultural exper-
imentation (i.e. designed experiments). PCNM was
developed to improve on other simpler methods for
modelling spatial structures in data, including poly-
nomial regression (trend-surface analysis in the bi-
dimensional case) (Legendre 1990; Borcard et al.
1992), and use of Mantel and partial Mantel tests with
a matrix of Euclidean (geographic) distances among
sampling sites (Legendre & Troussellier 1988).
Problems associated with these approaches are that
individual terms are highly correlated, which prevents
the modelling of independent structures at different
spatial scales; having a large number of terms in the
model; and coarseness in terms of spatial resolution,
such as allowing only monotonic gradients or broad-
scale spatial structures such as a single wave or a
saddle (Borcard & Legendre 2002; Dray et al. 2006).
To solve these problems, PCNM takes a different
starting point by considering the close neighbourhood
relationships among the sampling sites (Borcard &
Legendre 2002; Dray et al. 2006, and references
therein). The procedure can detect and quantify spatial
patterns over a wide range of scales; for example,
PCNM should be able to detect and account for large-
scale trends or gradients across the whole experimen-
tal site, several large patches, such as increased death
rates in large hollows due to frost or smaller patches,
such as smaller patches of increased death rates due to
rain-splashed spores being spread to nearby plants but
not further. Details of the procedure are given in
Borcard et al. (1992), Borcard & Legendre (1994,
2002), Legendre & Legendre (1998), Dray et al. (2006)
and Peres-Neto et al. (2006). Other approaches for
handling spatial autocorrelation in BN data that are not
considered in this paper include generalized linear
models with quasi-binomial errors and classification
tree analysis (Wedderburn 1974; Thuiller et al. 2003).
The present study used an example data set of plant

death in individual plots (number of plants that died
v. number of plants that survived) obtained from a
designed field experiment that included an Australian
native perennial pasture legume Cullen australasicum
(hereafter ‘Cullen’) and an exotic perennial pasture
legume Bituninaria bituminosa var. albomarginata

(‘Albo-tedera’). The objectives were to (i) investigate
whether overdispersion was present in the data – that
is, whether the number of dead plants per plot oc-
curred in an aggregated pattern rather than random, by
comparing BN and BBN models, (ii) analyse the
observed plant death rate in the designed field ex-
periments using the PCNM approach in order to
explore the spatial variability and (iii) compare the
results obtained through different statistical ap-
proaches (i.e. BN model, LNB model, BN model
with random blocks, BN model with smooth-scale
spatial components and PCNM) when analysing plant
death rates as affected by design variables (i.e. plant
variety).

MATERIALS AND METHODS

Site description

Data from an experiment that was originally designed
to investigate the productivity and persistence of
Cullen and Albo-tedera under a range of environ-
mental conditions in the wheatbelt of Western
Australia were used. The experiments were located at
Buntine (Liebe Group long-term research site, 20 km
west of Buntine (30°00′S, 116°20′E; 317m asl)),
the Department of Agriculture and Food, Western
Australia (DAFWA) Research Station at Merredin
(31°29′S, 118°13′E; 312m asl) and the DAFWA
Research Station at Newdegate (18 km west of
Newdegate town site (33°06′S, 118°49′E; 333m asl)).
Sites were flat and uniform. There were no significant
differences (P=0·05) in soil physical (i.e. texture and
colour) or chemical (i.e. nitrate and ammonium N,
bicarbonate extractable-P, potassium, sulphur, iron,
aluminium and organic-C-concentrations, pH and EC)
characteristics among blocks in each site (Suriyagoda
et al. unpublished data). Sites were established using
4-week-old seedlings, grown in the glasshouse, on
9, 16 and 23 June 2008 (winter establishment) at
Newdegate, Buntine and Merredin, respectively. The
experiment was established in a blocked design. There
were four blocks comprising linear arrays of 16 plots.
Plots were 4m long×1m wide and were arranged
side-by-side with 1m spacing between adjacent plots.
Each species was randomly assigned to eight plots
in each block and then to four cutting frequencies
of 1, 2, 3 and 4 cuts/yr (two plots for each cutting
frequency). Each plot was 4m2 in size, and consisted
of 30 seedlings of either Cullen or Albo-tedera. There
were no guard rows. Numbers of dead plants per plot
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were recorded on 12, 13 and 14 January 2009 (during
summer) for Newdegate, Merredin and Buntine,
respectively, and used for the analysis.

BN and BBN distributions

If there is a constant probability, P, of a plant being
dead across replicate sample units (plots) representing
the same experimental treatment, then the number of
dead plants, X, out of n in a sample unit has the BN
distribution:

prob(X = x) = n
x

( )
Px(1− P)(n−x), 0 4 P 4 1 (1)

in which prob(X=x) represents the probability of X
being equal to x, where x takes values 0, 1, 2, . . ., n.
The mean and variance of X according to the BN
distribution are then nP and nP(1−P), respectively.
Assuming a BN distribution with P, depending on
experimental factors only, implicitly assumes, for
example, that plots do not differ and the probability
of a plant being dead does not depend on the location
of other dead plants.

When heterogeneous soil, weather and pathogen-
icity characteristics make it unreasonable to assume
P is constant across replicate sample units representing
the same experimental treatment, then it is convenient
to assume that P follows a beta distribution:

beta(P|α, β) = Γ(α+ β)
Γ(α)Γ(β) P

(α−1)(1− P)(β−1) (2)

where Γ is the gamma function over the domain [0,1]
and α and β are two positive parameters. In other
words, if we let Pi=xi/ni, i=1, 2, . . ., k, where i indexes
different studies (or plots, sites or even repetitions
within treatments), and xi and ni are the number of
dead plants and the sample size of the ith study,
respectively, then using the BN model by itself
implicitly assumes that P1=P2= . . .=Pn=P, while
using the BBN model allows for the possibility that
these Pi values will differ due to environmental
heterogeneity or other factors. In this case, where
one BN distribution cannot adequately describe the
additional variation when Pi varies, the variability in
actual proportions within the study (plot, site, repe-
tition) is modelled with a number of different BN
distributions, while the variability in average pro-
portions among the studies (the variation in the Pi
values) is modelled with the beta distribution.

The resulting combination of the BN distribution
with the beta density function (the BBN) can be written

in the form:

prob(X = x)

= n
x

( )
Γ(α+ β)Γ(α+ x)Γ(β + n− x)

Γ(α)Γ(β)Γ(α+ β + n) (3)

If we now let μ=α/(α+β), θ=1/(α+β), where μ is the
mean plant death rate (i.e. the expected value of a
variable BN parameter P) and θ is a measure of the
variation in P, then, in short, the constructed two-stage
model is

Xi|Pi �BN(ni, Pi), pi �Beta(μ, θ), i.i.d.
The new mean and variance of X are nμ and nμ(1−μ)
(1+nθ)/(1+θ), respectively (Griffiths 1973). Therefore,
the term [(1+nθ)/(1+θ)] is a multiplier of the BN
variance and the extent that it is greater than one
represents the overdispersion. Kleinman (1973) used
the term γ where γ=θ/(1+θ)=1/(α+β+1) and thus the
variance of X is nμ(1−μ)(1− γ+n γ), and thus (1− γ+n
γ) is the multiplier of the BN variance. In essence, the
same information about the variance of the BBN
distribution and the presence of overdispersion can be
derived from both θ and γ, as explained below, so it is
beneficial to know both and employ whichever is
more convenient for computation. Detailed descrip-
tions of parameter estimation for the BBN distribution
through maximum likelihood and method of moment
approaches are described by Griffiths (1973),
Kleinman (1973) and Smith (1983).

The SAS macro BETABIN, written by Ian Wakelin,
can be obtained from Qi-Statistics (http://www.
qistatistics.co.uk/index.html, verified 9 June 2011). It
borrows the existing SAS procedure NLMIXED to
provide a maximum likelihood estimation of μ and θ
for the BBN distribution. It provides not only the
standard BBN model but also Brockhoff’s (Brockhoff
2003) corrected BBN model.

Testing overdispersion

Using the BN model when the variability in the data
exceeds that which the BN model can accommodate
could result in an underestimation of the standard
error of the pooled plant death rate and thus increase
the chance of a Type I error when comparing treatment
effects (McCullagh & Nelder 1989). So before one
adopts the BN model for the analysis of a particular
dataset, one must first examine whether the data are
overdispersed to the extent that the BBN model
would be a better fit than the simple BN model
(Williams 1982; Moore 1987). One way to examine
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overdispersion is to test whether θ is significantly
greater than 0 or, alternatively, whether γ is signifi-
cantly greater than 0. In both cases, this is testing
whether the variance of the BBN distribution is
significantly larger than the variance of the BN
distribution with the same mean. This follows because
the variance of the BBN reduces to nμ(1−μ) and thus
the BBN reduces to the ‘pure binomial’ when θ=0 or
γ=0 (Hughes & Madden 1993). If θ and γ are close to
zero, then there is no significant overdispersion and
the BN model will adequately describe the data. The
SAS macro BETABIN provides the estimates of θ and γ
and their significances, which were used to test the
overdispersion in our seedling survival dataset.
Once the parameter P for the BN and α and β for the

BBN have been estimated, the expected frequencies
for the BN and BBN distributions can be calculated
using methods suggested by Skellam (1948) or
McCullagh & Nelder (1989). The expected frequen-
cies of plant death for a given plot within a site and
across sites for the BN distribution were calculated
from Eqn (1) based on the estimated P value. Similarly,
Eqn (3) was used for the BBN distribution, based on the
estimated α and β values. Then the χ2 goodness-of-fit
statistics for both the BN and BBN estimates compared
with observed frequencies were calculated. For the BN
frequencies, at each site, the number of degrees of
freedom is the number of frequency classes, minus two
(i.e. 28) and for the BBN frequencies, it is the number
of frequency classes, minus three (i.e. 27), since the
BBN distribution has one extra parameter. Therefore,
at each site, for the BN model the corresponding
critical χ2 at P=0·05 is 41·3 (D.F.=28) and for the BBN
model it is 40·1 (D.F.=27). All the BN and BBN model
comparisons were made with these critical values.

PCNM approach

One aim of the present paper was to model the
variation of the plant death pattern in terms of design
(i.e. block, variety and cutting frequency) and the
spatial structures that could be represented by PCNM
eigenfunctions. The number of dead plants in each of
the 64 plots at each site was mapped, and then the
similarities among the plots were analysed by variation
partitioning (Borcard et al. 1992; Borcard & Legendre
1994; Legendre & Legendre 1998; Peres-Neto et al.
2006) with respect to design and spatial variables. As
explained by Borcard & Legendre (2002), this ap-
proach involves first constructing a matrix of Euclidean
distances among the plots in a site. Then, a threshold is

defined under which the Euclidean distances are
kept as measured, and above which all distances are
considered to be ‘large’, the corresponding numbers
being replaced by an arbitrarily large value. This large
value can be set equal to four times the threshold value
(Borcard & Legendre 2002). In the present study,
several thresholds were tested and the best results
were found when all distances larger than the distance
between the centres of adjacent plots (i.e. 2 m) were
replaced by four times that value (i.e. 8 m). Beyond a
factor of four times the threshold for the ‘large’
distances the principal coordinates remain the same
to within a multiplicative constant, and so multiple
regressions using thresholds greater than four would
yield the same proportion of variation (R2) and the
same P-value. The second step is to compute the
principal coordinates of the modified distance matrix.
This is necessary because the spatial information must
be represented in a form compatible with applications
of multiple regression or canonical ordination. This
procedure results in several positive, one or several
null and several negative eigenvalues. In the present
example, 23 PCNM eigenfunctions with positive
eigenvalues were generated with the first of these
reflecting large-scale spatial structures and subsequent
ones depicting variation at increasingly finer scales.
These positive PCNMs were then used as possible
explanatory variables in a multiple regression exploit-
ing forward selection criteria to select important
PCNMs. In the PCNM procedure, negative eigen-
values are not used because the coordinates of the sites
along these ‘axes’ are complex numbers (Borcard &
Legendre 2002). First, detrended plant death data
were generated considering the number of dead plants
per plot as the response and coordinates of each plot
as explanatory variables. In the present experiment,
no significant trends were observed. Next, detrended
plant death data were regressed against design and/or
spatial variables. PCNM eigenfunctions and forward
selection of PCNMs were computed using the
‘spacemakeR’ and ‘packfor’ packages, available
under the ‘sedaR’ project on R-Forge.

When partitioning variation, R2 explained by the
model (i.e. experimental design and spatial com-
ponents) is partitioned into unique and common
contributions of the sets of predictors by fitting a series
of separate models or ‘canonical analyses’. For ex-
ample, the first canonical analysis uses only the exper-
imental design predictors [D]= ([D>*S]< [D>S])
and thus shows how much variability is explained by
just these design predictors, the second uses only the
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spatial components ([S]= ([*D>S]< [D>S]) and
thus shows how much variability is explained by just
these spatial predictors and the third uses both sets of
predictors (i.e. experimental design and spatial com-
ponents [D>S]) and thus shows how much variability
is explained by all possible predictors (Fig. 1). All
remaining fractions (i.e. experimental design-spatial
covariation or ‘overlap’ ([D>S]) and the residual
component ([R]= ([*D>*S])) can be obtained by
simple subtraction (Fig. 1) (Peres-Neto et al. 2006).
Variation partitioning and tests of significance of each
variation source (i.e. design (block, variety, cutting
frequency), spatial and residual) were computed using
the ‘vegan’ library (Oksanen et al. 2007) of the R
statistical language (R Development Core Team 2007).
The program provides the significance of the overall
model and its components, using F statistics (permu-
tation F test), and the adjusted R2 for each source
of variability (previously explained by Legendre &
Legendre (1998) and Peres-Neto et al. (2006)). For
each source, the adjusted-R2 was calculated and
expressed as a proportion of the total variability.
Note that the ‘overlap’ [D>S] component of ex-
plained variation does not correspond to the inter-
action component in a standard two-way analysis of
variance for an orthogonal design, but rather to the
overlapping portion of explained variance due to
covariation between spatial and design variables, as
would be found in a standard multiple regression
analysis.

Other approaches

Fitting the data using a BN model, a BN model with
random blocks and a BN model with smooth-scale
spatial components, was done in SAS using Proc

GLIMMIX (SAS 2010). In the standard BN model,
spatial heterogeneity is accounted for by including
‘block’ in the model as a fixed effect or factor, along
with our treatment factors of variety and cutting fre-
quency. The way that spatial heterogeneity is ac-
counted for in the BN model with random blocks and
the BN model with smooth-scale spatial components
can be summarized as follows.

Suppose Y represents the (n×1) vector of observed
data and δ is a (r×1) vector of random effects. Models
fitted by the GLIMMIX procedure assume that E[Y|δ]=
g−1(Xτ+Zδ), where g(·) is a differentiable monotonic
link function (e.g. logit) and g−1(·) is its inverse. The
matrix X is a (n×p) matrix of rank k, where n, p and k
are the number of observations, number of indepen-
dent variables and the maximum number of indepen-
dent rows (or, the maximum number of independent
columns) of matrix X, respectively. Z is a (n× r) design
matrix for the random effects. The random effects are
assumed to be normally distributed with mean 0 and
variance matrix G. This model component η=Xτ+Zδ
is then referred to as the ‘linear predictor’. The variance
of the observations, conditional on the random effects,
is var[Y|δ]=A1/2RA1/2. The matrix A is a diagonal
matrix that contains the variance functions of the
model. The variance function expresses the variance
of a response as a function of the mean. The matrix R is
a variance matrix specified by the user. In the model
used for the present example, the R matrix used was
the exponential spatial covariance matrix as specified
in Proc GLIMMIX in SAS (2010). If the conditional
distribution of the data contains an additional scale
parameter, it can either be part of theAmatrix variance
functions or part of the R matrix. The GLIMMIX pro-
cedure distinguishes two types of random effects.
Depending on whether the variance of the random
effect is contained in G or in R, these are referred to as
‘G-side’ and ‘R-side’ random effects. R-side effects are
also called ‘residual’ effects. Simply put, if a random
effect is an element of δ, it is a G-side effect (i.e.
random block effects in the present experiment);
otherwise, it is an R-side effect (i.e. smooth-scale
spatial components in the present experiment). There-
fore, the unknown quantities subject to estimation are
the fixed-effects parameter vector τ and the covariance
parameter vector δ that comprises all unknowns in
G and R. The random effects δ are not parameters of
the model in the sense that they are not estimated.

This means that when fitting data to the BN model
with random blocks, the assumption is made that
environmental effects operate at the scale of blocks.

[D ~S] [D∩S] [~D S] 

[R]

Fig. 1. Schematic representation of the partitioning of pure
design [D], pure spatial [S], covariation of design and
spatial [D>R] and residual [R] variability.
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Due to the fact that the conditional distribution
(conditional on block effects) is BN, the marginal
distribution will be overdispersed relative to the BN
distribution. Therefore, treating the block effects as
random rather than fixed, changes the estimates
compared with the standard BN model (SAS 2010).
When using the BN model with smooth-scale spatial
components, environmental effects are modelled by
adjusting the mean and/or correlation structure of
experimental units. Therefore, in this approach, spatial
coordinates of each plot are considered through an
exponential covariance matrix (as mentioned above)
and an ‘R-side’ random effects model is fitted. When
assuming either random blocks and/or smooth-scale
spatial components to the BN model, Proc GLIMMIX
does not use maximum likelihood for estimation, but
instead uses a restricted (residual) pseudo-likelihood
algorithm (SAS 2010).
For the BBN model, it was assumed that the pro-

bability of a plant being dead (Pi) could be described
by a beta distribution. However, this is not the only
assumption that can be made about to describe spatial
variation in Pi. Suppose, instead that logit(Pi) (i.e. log
(Pi/(1−Pi))) has a normal distribution: Pi then has a
logistic-normal distribution (Aitchison & Shen 1980)
and BN data has an LNB distribution. In this approach,
an independently distributed standard normal random
variable is incorporated into the model to represent
spatial variation, thus reducing the residual D.F. com-
pared with the standard BN model, and a dual quasi-
Newtonmethod is used as the optimization technique.
Fitting an LNBmodel to the datawas done in SAS using
Proc NLMIXED. Details of this LNB approach can be
found elsewhere (Hughes et al. 1998; SAS 2010).

Comparison of different testing approaches

Due to the fact that different approaches used different
test statistics when fitting models and testing the
significance of the overall model, direct comparisons
among all the different approaches at this level were
not possible (e.g. BN and LNB models used the Akaike
information criterion (AIC), PCNM used AIC-like
criterion (Dray et al. 2006), while the BN model with
random blocks and the BN model with smooth-scale
spatial components used a generalized χ2 statistic (SAS
2010). However, this generalized χ2 statistic was used
to generate an AIC statistic (AIC=χ2+2×number of
estimated parameters) and present this information,
which enables some comparison.

The main aim of the original experiment was to
search for any difference in survival between the two
species under field conditions. Therefore, the size of
the species effect was calculated and the significance
of the effect tested, using the different approaches
described above, and then the results obtained were
compared. The species test statistic was the species χ2

statistic, a measure of the amount of variability ex-
plained by the species effect. The probability or sig-
nificance associated with the estimated χ2 of species
effects obtained using each method was recorded and
compared. These tests of the significance of the species
effects are Wald-type tests, not likelihood ratio tests
(Engle 1984; SAS 2010). In addition, the species χ2

statistic from each of the alternative models was
compared with that of the standard BN model
(a model with blocks, varieties and cutting frequencies
as fixed effects), and referred to the difference in
species χ2 between the standard BN model and each
alternative model as Δχ2.

Due to the absence of significant differences in
plant death among the different cutting frequencies,
the effects of cutting frequencies were not compared
between models.

RESULTS

BN, BBN parameter estimates and the test for
overdispersion

The data used for the analyses are given in Table 1. The
plant death rate from different plots varied from 0·0 to
0·97, with the highest proportion at Newdegate for
Cullen.

Estimated death rates of Cullen and Albo-tedera at
each of the three sites, as well as across sites, under BN
and BBN models are given in Table 2. Cullen had
death rates of over 0.30 at Merredin and Newdegate.
The mean death rates estimated by BN and BBN
models for a given species and site did not differ
greatly. However, standard error estimates for the
mean plant death rates for the BN model were much
smaller than those for the BBN model. This resulted in
narrower confidence intervals for the BN model, so
conclusions based on this model were likely to be
over-confident and therefore misleading. For example,
when comparing the sites using results derived from
the BN model, the proportional plant death at all
three sites differed significantly. In contrast, when
comparing the sites using results derived from the
BBN model, the proportional plant death at Merredin
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Table 1. Number of dead plants in each block and cutting frequency (Cut=number of cuttings/yr) of Cullen
and Albo-tedera at three sites. n=30

Block Cut

Cullen Albo-tedera

Buntine Merredin Newdegate Buntine Merredin Newdegate

1 1 0 5 25 1 1 0
1 2 1 7 29 0 1 0
1 3 1 7 17 1 0 1
1 4 6 13 5 0 0 0
2 1 0 5 6 0 5 0
2 2 1 3 7 0 0 1
2 3 1 4 17 0 0 0
2 4 0 3 20 0 0 0
3 1 0 8 3 0 0 0
3 2 4 10 6 0 2 1
3 3 3 6 2 0 1 0
3 4 4 10 2 0 2 0
4 1 1 19 0 0 0 1
4 2 0 14 3 0 0 1
4 3 0 15 3 0 0 0
4 4 2 8 7 0 0 0
1 1 2 9 12 2 2 0
1 2 0 6 10 1 2 0
1 3 0 8 10 0 1 0
1 4 2 10 27 0 2 0
2 1 2 13 20 0 2 0
2 2 1 10 22 0 4 0
2 3 0 4 15 0 3 0
2 4 4 14 17 0 4 0
3 1 4 6 7 0 0 2
3 2 2 15 6 0 1 0
3 3 4 11 3 0 2 0
3 4 6 12 11 0 1 0
4 1 0 19 12 6 1 1
4 2 2 12 22 1 1 0
4 3 2 19 24 0 1 0
4 4 2 15 22 0 4 0

Table 2. Estimates and confidence intervals (CI) of the proportion of plant death for different sites and across
sites for Cullen and Albo-tedera through BN and BBN models

Species Site

Estimate±S.E. CI (95%)

BN (%) BBN (%) BN (%) BBN (%)

Cullen Buntine 5·94±0·76 5·93±1·08 4·44–7·43 3·82–8·04
Merredin 33·33±1·52 33·35±2·67 30·35–36·32 28·11–38·60
Newdegate 40·63±1·59 40·70±4·59 37·52–43·73 31·70–49·71
Collective 26·70±0·82 27·04±2·39 25·09–28·32 22·35–31·73

Albo-tedera Buntine 1·25±0·36 1·26±0·62 0·55–1·95 0·03–2·48
Merredin 4·48±0·67 4·47±0·83 3·17–5·79 2·85–6·11
Newdegate 0·83±0·29 0·83±0·29 0·26–1·41 0·25–1·41
Collective 2·19±0·27 2·19±0·40 1·65–2·72 1·40–2·97
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and Newdegate did not differ significantly. This
highlights that the probability of the Type I error
occurring is higher with the BN model than with the
BBN model.

Model parameters for the beta distribution (α and β)
are given in Table 3. For Cullen at Buntine and for
Albo-tedera at all three sites, both α and β were not
significantly different from zero. However, for Cullen
at Merredin and Newdegate and for both Cullen and
Albo-tedera during collective estimation across sites, α
and β were different from zero. Consequently, testing
for the overdispersion becomes important as it is the
basis for preferring the BBN model in these situations.
Results of the overdispersion test are also presented in
Table 3. As discussed earlier, α and β are model
parameters for the beta distribution and θ and γ are
indicators of overdispersion. For Cullen at Buntine,
where the death rates were very low, overdispersion
was not evident. However, at Merredin and
Newdegate, both θ and γ were significantly different
from zero, indicating overdispersion. Furthermore,
when death rates across three sites were considered
(with increased heterogeneity), the significance of θ
and γ increased further compared with analysis within
sites (higher t0·05 values). For Albo-tedera when indi-
vidual sites were considered, both θ and γ were not
significantly different from zero at any site, indicating
the absence of overdispersion among plots within a
site. However, when death rates were tested across all
three sites, θ and γ became significant, indicating
overdispersion. At all times, information on over-
dispersion obtained through θ and γ was consistent.

Expected plant death frequencies calculated from
BN and BBNmodels using the parameters estimated in
Tables 2 and 3 are presented in Fig. 2. For Cullen,
goodness-of-fit of BN and BBN models were tested for
all three sites as well as for the analysis across three
sites. For Albo-tedera, since overdispersion was found
only during the analysis across sites, goodness-of-fit of
the BN and BBN models was tested only at this level.
For Cullen at Buntine, with very low plant death rates,
both BN and BBN models described the death rates
equally well (χ2=30·9 and 28·4 for the BN and BBN
models, respectively) and were below the critical χ2.
However, for Merredin, the BBN model described the
death rates much better than did the BN model
(χ2=652·4 and 23·2 for the BN and BBN models,
respectively). The BBNmodel also described the death
rates better for Newdegate (χ2=3·4×108 and 36·8 for
the BN and BBN models, respectively). Comparison
across sites also revealed that the BBNmodel fitted theTa
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Cullen data better than did the BN model (χ2=2·2
×1013 and 30·7 for the BN and BBN models,
respectively). Furthermore, for Cullen, the BN model
overestimated death rates at the centre of the
distribution and underestimated the death rates
towards the end in most instances. This caused the
BN model to provide expected frequencies further
from observed frequencies. Similar to the explanation
for Cullen across sites, the BBN model provided a
much better description of the Albo-tedera death rates
across sites than did the BNmodel (χ2=324·8 and 20·7
for BN and BBN models, respectively).

PCNM approach

Twenty-three eigenvectors with positive eigenvalues
were retained as spatial descriptors to be used in the
variation partitioning of the plant death rate data at
each site (data not shown). However, among those
spatial descriptors, only one PCNM for each of Buntine
and Merredin (V23 (adj. R2=0·34), and V2 (adj.
R2=0·28), respectively) and three PCNMs for
Newdegate (V5, V7 and V23 (adj. R2=0·29)) were
identified as having a significant positive spatial
correlation with the de-trended plant death data
through the forward selection criteria (Table 4). The
proportions of variance explained by each source of
variability at the three sites are given in Table 4. Design
variables explained 0·34, 0·39 and 0·22 of the total
variability at Buntine, Merredin and Newdegate,
respectively, with a higher contribution from blocks.
The components of the total variability explained by
pure species effects were 0·06, 0·06 and 0·05 and
cutting frequency were 0·01, 0·02 and 0·02 at Buntine,
Merredin and Newdegate, respectively. The variability
explained by both design and spatial components
(design > spatial) were 0·32, 0·23 and 0·22, while
those explained by pure spatial effects were 0·02, 0·05
and 0·06 at Buntine, Merredin and Newdegate,
respectively. The ‘overlap’ in explained variability
with spatial components were calculated for each
design variable (i.e. block > spatial, species > spatial
and cutting frequency> spatial), but only the block>
spatial effect was significant, while other effects were
close to zero and insignificant (data not shown).

Comparison of different approaches when testing
‘species’ effects

When comparing the overall model predictions using
AIC at Merredin and Newdegate, the two sites with
higher plant death rates, the LNB model was an
improvement over the BN model. At all three sites,
predictions made under PCNM were an improvement
according to the AIC-like criteria (Table 5). Due to the
fact that the BN model with random blocks and the
BNmodel with smooth-scale spatial components used
a generalized χ2 statistic (SAS 2010), direct overall
model comparisons with the standard BN and LNB
models were not possible. However, when comparing
the BN model with random blocks and the BN
model with smooth-scale spatial components, model
prediction was improved with the BN model with
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Fig. 2. Observed (black bars), BN (line with squares) and
BBN (line with triangles) frequency of dead plants of (a)
Cullen at Buntine, (b) Cullen at Merredin, (c) Cullen at
Newdegate, (d ) Cullen across sites and (e) Albo-tedera
across sites. Goodness-of-fit statistics for the BN and BBN
are also given, where the critical values were χ0·05,29

2 =42·6
and χ0·05,28

2 =41·3 for the BN and BBN models, respect-
ively.
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smooth-scale spatial components while conserving
more residual D.F. (Table 5).
When testing for species effects at all three sites,

under the standard BN model, a significant difference
in plant death rate between the two species was found
(χ2 of 25·3, 194·3 and 155·2 at Buntine, Merredin and
Newdegate, respectively, P<0·001 in all cases)
(Table 5). In general, incorporation of spatial variability
into the model (e.g. random blocks, smooth-scale
spatial components, PCNM eigenvectors or an aggre-
gation parameter at LNB), reduced the estimated
species χ2 statistic compared with that of the standard
BN model, but the species effect remained highly
significant. For example, when the species effects were
compared using the LNB model, they still remained

significant, although species accounted for less of the
overall variation (Wald test species χ2 lowered) at all
three sites compared with that under the standard BN
model (Table 5). The use of the BNmodel with random
blocks, to account for spatial variability at the scale
of blocks (‘G-side’ random effects), showed species
accounting for a similar amount of the overall variation
compared with that of the standard BN model.
However, using the BN model with smooth-scale
spatial components (‘R-side’ random effects) showed
species accounting for a smaller amount of the overall
variation (lower Wald test species χ2 than those with
the BN model, LNB model and the BN model with
random blocks) (Table 5). In the PCNM approach, the
spatial component also accounted for some of the

Table 4. Proportion of variance explained by each source of variability at the three sites. Design variables
used in the experiment were block, species and cutting frequency. For ‘spatial’ component of variability and
PCNM selected; values within parenthesis are the probability derived through permutation F tests

Source of variability D.F. Buntine Merredin Newdegate

Design [D] 34 39 22
Block 3 27 31 15
Species 1 6 6 5
Cutting 3 1 2 2

Spatial [S] 1, 1, 3* 2 (<0·01) 5 (<0·001) 6 (<0·01)
Design > Spatial [D>S] 7, 7, 21 32 23 22
Residual [R] 48, 48, 32 32 32 50
Number of PCNM’s selected and
adj. R2 of PCNMs

1 (<0·001)
(adj. R2=0·34)

1 (<0·001)
(adj. R2=0·28)

3 (<0·001)
(adj. R2=0·29)

* Indicates the number of PCNM’s selected (D.F.) for Buntine, Merredin and Newdegate, respectively.

Table 5. Residual D.F., test statistic for ‘species’ effect (χ2-species), improvement of the prediction of species
effect compared with standard BN model (Δχ2-species) and the overall model test statistic (T) under different
methods. Note: Model fit statistics (T) are AIC for the BN and LNB; AIC-like criterion for PCNM; AIC, derived
from generalized χ2, for the BN model with random blocks and the BN model with smooth-scale spatial
components

Method
D.F.
residual

Buntine Merredin Newdegate

χ2

species*
Δχ2

species T
χ2

species*
Δχ2

species T
χ2

species*
Δχ2

species T

BN 56 25·3 184·1 194·3 306·2 155·2 402·9
LNB 53 16·2 −9·1 180·8 130·0 −64·3 299·8 92·0 −67·2 271·0
BN with random
blocks

56 25·2 −0·1 163·5 193·9 −0·4 136·9 154·8 −0·4 304·0

BN smooth-scale
spatial components

59 9·7 −15·6 161·0 38·9 −155·4 111·5 11·8 −143·4 298·2

PCNM 55,55,53† 11·6 −13·7 50·6 11·6 −182·7 51·0 6·2 −149·0 28·8

*χ2 species at three sites for all the methods were significant at P<0·001.
† D.F. are 55, 55 and 53 for Buntine, Merredin and Newdegate, respectively.
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variability attributed to species in the standard BN
model, meaning a reduced species χ2 (Δχ2 of −13·7,
−182·7 and −149·0 at Buntine, Merredin and
Newdegate, respectively). Furthermore, at Merredin
the species effect obtained through the PCNM
approach was even smaller than that obtained using
the BN model with smooth-scale spatial components
(Δχ2=−27·3), while at Buntine and Newdegate the
predictions made through both approaches were
similar.

DISCUSSION

Testing for overdispersion

Overdispersion in plant death rates was found for
Cullen at Merredin and Newdegate: both sites with
high mean death rates. Overdispersion was also found
for Cullen and Albo-tedera when analyses were
performed across sites. The descriptions provided by
the BBN distribution were a significant improvement
over the BN distribution. This was true over a range of
data from single sites (at Merredin and Newdegate for
Cullen where death rates were relatively high and
diverse) as well as across sites (for both Cullen and
Albo-tedera). These results highlight that although
randomized trials have been established as the ‘gold
standard’ for agricultural evaluations, comprehensive
assessment is required when combining BN data from
different sites and/or plots.

The standard errors of the mean death rate derived
for the BN distribution are generally not trustworthy
for making inferences when overdispersion prevails.
This was very clearly illustrated when comparing
the Merredin and Newdegate sites as the BN model
showed a difference in plant death rates between sites,
while the BBN model did not (Table 2). It is also
illustrated by the fact that the BN model tended to
overestimate plant death rates at the centre of the
distribution and underestimate plant death rates
towards the end when overdispersion was present. In
general, narrow standard errors for the BN distribution,
not supported by data, will tend to lead to the over-
detection of real treatment effects (i.e. increase the
chance of Type I error occurring) in designed
experiments (e.g. species, sites and densities).

Plant death rates at Buntine for Cullen and at all
three sites for Albo-tedera were very low and over-
dispersion was not detected, suggesting a truly random
pattern of plant death. In such instances the BBN
model did not perform better than the BN model, and

the use of the BBN distribution was therefore super-
fluous.

The main reason for adopting the BBN distribution
would be for estimating overall mean plant death rates
with correct confidence intervals for given species at
given sites or across a number of sites in a given region.
The present results show that estimates based on a
simple BN model will not be valid for heterogeneous
BN data. However, one might also wish to examine
whether, and to what extent, specific attributes of the
study (e.g. species, cutting, site and within-site spatial
variability) had a meaningful impacts on death rates.
This is discussed below.

PCNM approach to explore the spatial variability
(variation partitioning) in designed field experiments
in agriculture

The PCNM analysis is a powerful tool for analysing
spatial variation in the occurrence of plant death in
designed experiments. When applying the PCNM
approach in ecology, ‘environmental’ variables (e.g.
soil characteristics, elevation and weather) are con-
sidered as explanatory variables. For the present
application, ‘design’ variables (i.e. blocks, species
and cutting frequencies) were considered instead of
environmental variables. Apart from this, there was no
difference in the way this technique was applied to
designed agricultural experiments to the way it has
been applied in ecological studies.

Even though the source ‘block’ itself accounts for a
certain level of spatial variability at a relatively coarse
scale (i.e. 0·27, 0·31 and 0·15 at Buntine, Merredin
and Newdegate, respectively), by incorporating the
block effect as a design variable in the model (as a
separate source) an exploration of the extra spatial
variability explained by the PCNM approach which
was not taken into account by relatively coarse-
grained blocks was possible. The significance of
this ‘pure spatial variability’ detected by the PCNM
approach (Table 4) highlights the existence/occur-
rence of spatial variability at a finer scale than does the
scale of blocks. Furthermore, the high proportion of
variability that was explained by both the design and
spatial effects (design> spatial) (0·32, 0·23 and 0·22 at
Buntine, Merredin and Newdegate, respectively) is
probably associated with the spatial arrangement of
species and cutting frequencies across a site. However,
it is important to note that the pure spatial variability
was still significant (Table 4). After partitioning the total
variability of plant death to spatial and design sources,
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a considerable proportion still remained unexplained
(i.e. 0·32, 0·32 and 0·50 at Buntine, Merredin and
Newdegate, respectively). This unexplained variability
must be due to other biological or environmental
factors that were not measured and were either non-
spatially structured or structured at too fine a resolution
to be detected with the number of eigenvectors
available. Ultimately, the PCNM approach was able
to explain a significant proportion of the total
variability (i.e. pure spatial and spatial-design covari-
ance), which could not be explained by other sources
(e.g. blocks, species and cutting frequency).
Testing for design variables is done against the

residual in a standard ANOVA. In a standard block
design, ‘nuisance’ variability due to coarse-grained
spatial variability is removed from the residual, at the
cost of a few D.F., which increase the power of the test
if there is indeed spatial variation at the scale of
blocks. In the PCNM analysis here, another portion
of finer-scaled ‘nuisance’ spatial variability could
be accounted for, resulting in a further reduction in
the residual variability compared with the conven-
tional method, and thus increased power and a
corresponding increase in the significance of design
variables.
Inflated type I error is caused when both response

and design variables are autocorrelated (Dutilleul
1993). If hidden covariates (e.g. soil physical and
chemical characteristics) are correlated with the
design matrix then again an inflated type I error can
occur, but this is due to their effect on the response
rather than directly due to hidden covariates.
However, if the hidden covariates affect the response
but do not correlate with the design matrix and the
design is not autocorrelated, then there is no type I
error (Dutilleul 1993). In the present experiment, no
spatial heterogeneity was detected in soil physical and
chemical characteristics (e.g. covariates) among plots
in a site. Also, there was no correlation between these
covariates and design variables. This indicates that
there was no spatial autocorrelation in environmental
variables studied and only the response variable (i.e.
number of dead plants out of total number in a plot)
was autocorrelated in the present experiment. For this
reason, no inflated type I error was expected to occur
in the present experiment and therefore the test of
significance in the experiment is valid, as explained by
Legendre et al. (2002) and Peres-Neto & Legendre
(2010). However, when design and response variables
are autocorrelated, and/or covariates are correlated
with design matrix one should consider the

occurrence of inflated type I error in the analysis and
adjustments should be made (Dutilleul 1993).
However, PCNMs reflect or represent the effects of
missing covariates. One missing covariate can be
represented by the mix of one to several PCNMs
and therefore the D.F. may be too conservative and
decrease statistical power. In designed field exper-
iments, one way to reduce this drawback is through
increased replication. However, further testing of
this method for agricultural experimentation is war-
ranted.

Comparison of different approaches when testing
the species effects

Due to the fact that different approaches used different
test statistics when fitting models (i.e. BN and LNB
approaches used AIC, PCNM used AIC-like criterion
as the test statistic, while the BN model with random
blocks and the BN model with smooth-scale spatial
components used generalized χ2), direct comparison
of the significance/improvement of the overall model
generated under different approaches was not poss-
ible. However, when comparing the BN model and
LNB model, LNB model was an improvement over the
BN model as explained by Hughes et al. (1998).
Similarly, the BN model with smooth-scale spatial
components was an improvement over the BN model
with random blocks. Interestingly, across all models, a
Wald-type χ2 statistic of species effects could be
generated, and therefore the species effect could be
tested and compared. This is an important consider-
ation, because in field experiments in agriculture the
prime objectives are to differentiate the treatment
effects (e.g. species) to make better inferences (SAS
2010) and to understand the underlying biological
processes (Garrett et al. 2004). It is interesting to note
that in all cases the species effect was highly sig-
nificant, despite the fact that the size of the effect was
greatly reduced in some of the models that took spatial
variability into account (i.e. LNB, PCNM and the BN
model with smooth-scale spatial components).

The size of the estimated species effect was greatly
reduced when using the BN model with smooth-scale
spatial components and PCNM compared with the
standard BN model. However, assuming blocks to be
random rather than fixed effects did not account for
any extra-spatial variability, and thus did not reduce
the estimated species effect. These results provided
further evidence for the occurrence of finer-scale
spatial patterns in plant death, smaller than the size
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of a block, and for the ability of the BN model with
smooth-scale spatial components and the PCNM
approach to capture it. From the coarse layout of the
experimental area, it is not surprising that using the BN
model with random blocks alone did not account for
the overdispersion of the data. As far as the present
authors are aware, this is the first attempt to use the
PCNM approach to explore the spatial variability in a
designed agricultural field experiment. As observed in
the present paper, results obtained through the PCNM
approach are similar (even better at Merredin) to the
alternative best approach, the BN model with smooth-
scale spatial components (Table 5). Therefore, the
PCNM approach seems to provide a novel way to
partition variation in plant death data and identify
design effects in agricultural experimentation, and it
could be a useful alternative to the other better-known
approaches such as BN model with smooth-scale
spatial components. Model prediction of species
effects obtained through the LNB model was also
satisfactory (better than the BN model prediction
although not as good as the PCNM and BN model
with smooth-scale spatial components approaches).
It is also important to note that, even though the BN
model with smooth-scale spatial components and
PCNM approaches generated better predictions of
species effects than other approaches, the PCNM
approach used more D.F. in the model (depending on
the number of PCNMs selected into the model), while
smooth-scale spatial components with the BN model
conserved the highest residual D.F. because this
approach models the covariation directly (SAS 2010)
(Table 5).

The survival of a plant under different environmental
conditions is a major determinant used in selecting
and breeding crops and pastures for diverse environ-
ments. Oneway to evaluate the performance (survival)
of species is to conduct experiments in different
environments and evaluate their performances (survi-
val) (Li et al. 2008). In the present experiment, plant
death was assumed to occur for various reasons,
including unfavourable weather (drought during the
summer and frost during the winter) and soil charac-
teristics (acidity, nutrient imbalances), as well as, to
a lesser extent, the occurrence of disease. Spatial
variability in the degrees of severity of these factors
during the study period is, presumably, responsible for
some of the differences in death rate among plots and
sites. The results show the advantage of using
appropriate statistical analysis techniques in such
circumstances.

Concluding remarks

When studying the occurrence of plant death rates in
crops or pastures across multiple plots/sites, one must
consider the possible existence of overdispersion and
the adequacy of the BN distribution. This is equally
true for any BN data set, such as survival rates,
germination rates or disease rates. Results generated
using models that do not account for overdispersion
are not valid when overdispersion remains after the
effects of design variables are accounted for. The BBN
distribution can be used to detect overdispersion in the
data, and to analyse overdispersed data when over-
dispersion cannot be accounted for by using methods
that take autocorrelation into account. PCNM can be
used to account for autocorrelation by partitioning
the variance into experimental factors, and large- and
small-scale spatial effects, and results in the present
case indicate, for the first time, that the method may be
useful for designed experiments. The BN model with
smooth-scale spatial components also showed
promise as a method for detecting experimental ef-
fects, while accounting for spatial variation. The
performance of the LNB model was better than that
of the simple BN model. Finally, it is concluded that a
range of models that account for spatial patterns
should be used to explore spatial variability of plant
death in designed field experiments, including LNB,
BN model with smooth-scale spatial components and
PCNM. Only by testing and comparing a number of
such models, can the best model for a particular data
set be identified.
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