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ABSTRACT. This paper presents first chronological results for a Holocene marshland system from the southern part
of the Danube-Tisza Interfluve. Radiocarbon (**C) ages were used to build age-depth models relying of probabilistic
tools. Four models have been built: a linear one using dates gained via simple calibration, a P_Sequence model, fitting
a polynomial function to calibrated dates; a Gamma_Sequence considering priori given and posterior accumulation
rates have been constructed. As there was no significant difference between the mean values of individual models all
seem suitable for establishing a reliable chronology despite differences in 95% CI ranges. While P_Sequence models
underestimated SR, values calculated from the polynomial model were not significantly different from those of the
G_Sequence. Based on multiproxy geochemical, sedimentological, paleoecological data the evolution of the system
was reconstructed, covering a timespan of ca. 13,000 years starting from 12,000 BC and lasting until 1300 AD. High-
est accumulation rates are dated to the Early Middle Ages from the 11th century. Several climate changes could have
been identified which are present in other Hungarian and Western European records too, such as the Sb IRD event at
ca. 5800 BC, a humid phase around 1600 BC, and a cool humid phase around the 6th century AD.
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INTRODUCTION

Peatlands, marshlands, and oxbow lakes located at a farther distance from the archeological
sites are generally considered background sites in geoarcheological investigations. Primarily,
these sites preserve records of the natural evolution of the landscape. Nevertheless, potential
signs of human activities are recorded as well. Besides natural succession, understanding the
nature and driving mechanisms of climate- and human-induced changes preserved in these
records is gaining importance in conservation measures not only in Hungary but around the
world as well. To achieve these goals, the establishment of a firm, independent chronology is
needed. Marshlands, peatlands, and lakes preserve organic and/or carbonate samples suitable
for radiocarbon accelerator mass spectrometry ('*C AMS) dating and the construction of such
chronological models. However, besides those of instrumental measurements, uncertainties
related to fluctuations of the '“C curve used in calibration of conventional '*C ages to calendar
dates can yield sometimes significantly different chronologies (Bronk Ramsey 2009; Reimer
et al. 2013). Relying on various statistical and probabilistic approaches, choosing the right age-
depth model is crucial regarding the reliability of chronological paleoenvironmental recon-
structions (Bronk Ramsey 2009; Reimer et al. 2013). However, choosing the best model is not
always straightforward, especially when we need good point estimates (Michczynski 2007;
Walanus 2008). So, comparison of different age-depth models and consideration of the back-
ground mathematics and priors is important, as seen in recent works of Blaauw et al. (2018). In
this paper, in addition to newly gained '“C dates, several age-depth models relying on various
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probabilistic approaches are presented from a marshland sequence from the southern part of
the Danube-Tisza Interfluve. The congruency of each model and calculated accumulation rates
are tested to find the best chronology. After choosing the best chronology, multiproxy (sedi-
mentological, geochemical, palynological, mollusk) paleoenvironmental data are presented
along a timeline starting from the Late Glacial, helping us to outline the evolutionary history of
the referred marshland and signs of climate- and human-induced changes.

STUDY AREA LOCATION, GEOLOGY, GEOMORPHOLOGY, CLIMATE, AND VEGETATION

The study site is located near the village of Csaszartoltés at the eastern margin of the Holocene
Danubian floodplain. The marshland occupies an oxbow lake basin corresponding to one of the
numerous Pleistocene branches of the Danube River (Figure 1). Since the Early Pleistocene the
Danube had been traversing the area of the Danube-Tisza Interfluve building extensive alluvial
fans (Siimeghy 1944, 1953, 1955; Mihaltz 1953; Molnar 2015). Starting out near Budapest the
river charged into the Tisza River at Szeged, SE Hungary. Besides a natural westward avulsion,
because of rejuvenating neotectonics activity near the cities of Kalocsa and Baja ca. 40 ka the
Danube incised into its alluvium reaching its modern N-S course (Stimeghy 1944, 1953, 1955;
Mihaltz 1953; Molnar 2015). This process displaced the former riverbed to a lower elevation of
ca. 100 m ASL allowing for the development of a broad floodplain studded with numerous
branches and oxbow lakes. One of these former oxbow lakes hosts our studied marshland. As
hydrological connections were preserved with the modern river even after the cut-off, sufficient
water supply through strictly the groundwater allowed for the maintenance of a marshland
ecosystem. The adjacent loess and sand covered alluvial fan, found ca. 20-40 m above the
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Figure 1 Location, geology, geomorphology of the study site with sampling points for '*C analysis.
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modern floodplain, was turned into dry high bluffs. Today the Danubian floodplain is covered
by fluvisols, while the adjacent high bluffs host chernozems and andosols. The climate of the
area is continental with strong Sub-Mediterranean influences. The average annual temperature
is 10°C. The annual precipitation varies between 500 and 600 mm (Borhidi 1961, 1993).

The natural vegetation of the sand dunes and loess covered high-bluff is made up of Junipero-
Populetum scrub and sandy grasslands formed by Bromus squarrosus, Secale sylvestre, Stipa
borystenica, and Festuca vaginata. Well-drained areas are occupied by oak forests ([Iridi
variegatae-Quercetum roboris, Polygonato latifolii-Quercetum roboris). Recently, most of the
area is a cultural landscape with plowlands and vineyards. The natural vegetation is preserved
only at certain spots. The floodplain hosts marshlands with patches of Fraxino pannonicae-
Alnetum forests (Toth 1979, 1996; Pocs 1991; Rakonczay 2001; Borhidi 2003).

MATERIAL AND METHODS
Sampling

Because of peat mining in the study site that lasted for more than a hundred years (Molnar 2015)
there are only a few sites where intact peat layers occur. Two sites were chosen for potential
sampling based on the presence of a continuous record from the sandy fluvial bedrock all the
way to the topmost altered peat layers not subjected to mining. Two overlapping cores of 270 cm
length were extracted conforming to the general practice in Quaternary paleoenvironmental
studies (Aaby and Digerfeldt 1986) using a 5 cm-diameter Russian-type corer. After transpor-
tation to the laboratory, the cores were cut in half lengthwise. Sections for paleobotanical,
geochemical, sedimentological analyses were stored at 4°C in accordance with the international
standards. The cores were subsampled for further analysis at 2- and 1-cm intervals.

Lithostratigraphy, LOI and Trace and Major Element Analysis

The main lithostratigraphic features of the sedimentary sequence were determined and descri-
bed using the internationally accepted system Troels-Smith (1955), developed for unconsoli-
dated sediments. To determine the organic, carbonate and inorganic content samples were
subjected LOI (loss-on-ignition) following the method presented by Dean (1974). Concentra-
tion of selected major and trace elements carrying information on erosion-induced soil in wash
(Na, K), carbonate sources (Ca, Mg), as well as oxygen content (Mn) and pH (Fe) of the
waterbody (Richardson et al. 1988; Langlet et al. 2006, 2007; Lazareth et al. 2003; Gulyas et al.
2011a, 2011b; Gulyas and Siimegi 2012a, 2012b) was determined using water soluble extracts.
Samples were analyzed by a Perkin-Elmer AAS spectrometer. Concentrations are reported as
parts per million (ppm).

14C Dating

Eight peat and one reed samples were selected for '*C analysis between the depths of 80 and 260
cm, as the uppermost 80 cm represented dried-out altered peat. AMS '*C dating was performed
in the Hertelendi Laboratory of Environmental Studies in the Institute for Nuclear Research of
the Hungarian Academy of Sciences in Debrecen (Hungary). Some of these measurements were
carried out within the lab of ETH Ziirich as part of a collaboration program (Arno-Synal 2016).
From the bottom of the sequence (206 cm) a single terrestrial gastropod was also submitted for
AMS dating to the Radiocarbon Lab at Gliwice (Czernik and Goslar 2007) (Table 1). Certain
herbivorous gastropods are known to yield reliable ages for dating deposits of the past 40 ka
with minimal estimates of shell age offsets on the scale of perhaps a couple of decades This
enables the construction of age models with resolution on the sub-centennial scale. (Stimegi and

https://doi.org/10.1017/RDC.2018.112 Published online by Cambridge University Press


https://doi.org/10.1017/RDC.2018.112

1304 T Torébcesik et al.

Table 1  List of AMS dated samples by depth, material type as well as conventional *C ages.

Lab code Material Depth (cm) 14C age yr (BP) +

Deb-11310 Peat 80 875 45
Deb-11309 Peat 100 1228 53
Deb-11306 Peat 120 1619 49
Deb-11308 Peat 170 2253 62
ETH-41276 Peat 210 3695 75
Deb-11334 Peat 230 5785 74
Deb-3926 Peat 240 6756 72
ETH-41277 Reed 245 9045 45
GdA-555 Shell 260 11,960 60

Hertelendi 1998; Pigati et al. 2004, 2010, 2013; Xu et al. 2011; Ujvéri et al. 2014). Based on
Hungarian studies by Stimegi and Hertelendi (1998) and Ujvari et al. (2014), the sampled taxon
was chosen accordingly. The preparation of the samples and the actual steps of the measure-
ment followed Hertelendi et al. (1989, 1992) and Molnar et al. (2013). Conventional '*C ages
were converted to calendar ages using the software OxCal 4.2 online (Bronk Ramsey 2009) and
the most recent IntCall3 calibration curve (Reimer et al. 2013). Calibrated ages are reported as
age ranges at the 2-sigma confidence level (95.4%).

Age-Depth Modeling

Four types of age-depth models have been applied for our dataset. The first is the popular
classical model of linear interpolation (Blaauw 2010), which assumes that accumulation rates
were constant between neighboring dated depths and changed, potentially abruptly, exactly at
the dated depths (Bennett 1994; Blaauw and Heegaard 2012). Then a classical polynomial
model was also applied. In this case 95% confidence intervals were calculated via Monte Carlo
simulation of 10,000 iterations. Finally, we tested two Bayesian models that use gamma and
Poisson distributions as prior information.

Bacon (Blaauw and Christen 2011) models the accumulation rates of many equally spaced
depth sections based on an autoregressive process with gamma innovations (here set at mean
40-80 and shapes 0.5-1.5 to allow for many accumulation rates, memory strength was 4 with a
memory mean of 0.7, section thickness was set to 20, 10, 5, 2, 1, respectively in several runs).
Based on the observed major lithostratigraphic boundaries between different oxbow lake
sediments at 245 and between oxbow lake sediments and overlying peat at 230 cm, boundary
conditions were also added into this model.

OxCal’s P_sequence (Bronk Ramsey 2009) was also tried with the granularity set to the size of
the most dominant grain in the sequence (silt) (k=0.3). Here two sub models were run. One
without an inner boundary and one where a stratigraphic boundary has been introduced at
230 cm similarly to the previous Bayesian gamma sequence model. Ages were calculated for
1-cm intervals along with 95% CI to assess uncertainty. Point estimates are based on the mean
values. The received ages of the different models were evaluated for integrity and congruence
as well as statistically significant differences using the non-parametric methods of pairwise
Mann-Whitney U test for equality of medians and the Kolmogorov-Smirnov test for equality
of distributions (Sokal and Rohlf 1995). Mean 95% confidence ranges and maximum and
minimum confidence values have also been calculated and compared to assess similarities
and differences in uncertainty of ages for different parts of the profile. Sedimentation rates
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(mm/year) with 95% confidence ranges have been calculated and compared for all age-depth
models.

Paleoecological Analyses of Pollen Grains and Mollusk Fauna

Samples of 1-cm® wet sediment for pollen analysis were processed at 4-cm intervals in the pollen
laboratory of the Department of Geology and Paleontology at University Szeged using stan-
dard HF methods. Lycopodium spore tablets of known volume were added to each sample
(Stockmarr 1971) to work out pollen concentrations. Pollen and spores were identified and
counted under a light microscope at 400-1000 X magnification. According to Magyari et al.
(2010), a minimum 500 pollen grains were counted. For the identification of pollen and spores
the reference database at the Department of Geology and Paleontology, University of Szeged
and pollen atlases and keys were used (Moore et al. 1991; Reille 1992, 1995, 1998). The point-
count method of Clark (1982) was applied to determine microcharcoal concentrations. Per-
centages of terrestrial pollen taxa, excluding Cyperaceae, were calculated using the sum of all
those taxa. Percentages of Cyperaceae, aquatics, and pteridophyte spores were calculated
relative to the main sum plus the relevant sum for each taxon or taxon group. Works of Behre
(1981, 1988) regarding human impact were adopted in interpretation as these considers the
appearance of weeds that spread because of human effect in addition to cultivated cereals for
identifying human impact on the landscape (Jones 1992).

Mollusk shells were collected from 2 to 4 cm thick subsamples taken at regular intervals
throughout the core. The aquatic malacofauna was divided into three ecological groups fol-
lowing the classifications of Boycott (1934), Sparks (1961), Lozek (1964), and Krolopp and
Stimegi (1995): (1) moving-water habitat preferring species (rheophilous species), (2) universal
species demanding steady water inundation and tolerating organic-rich waters (catholic), and
(3) species tolerant to periodic water supply (slum group). These ecological types in addition to
the ratio of aquatic/terrestrial gastropods carry information on inundation events and changes
in habitat types. Terrestrial gastropods were grouped considering their temperature preference
(warmth-loving and cold-resistant), humidity preference (waterbank, humidity loving (hygro-
philous); humidity tolerant (mesophilous); drought tolerant (xerophilous) as well as habitat
type (grassland, open parkland, woodland elements) (Krolopp 1973, 1983; Lozek 1964; Sparks
1961). Dominance values (relative percentages) of these ecotypes thus carry information on
habitat types, temperature and humidity.

RESULTS
14C Analysis and Age-Depth Models

Conventional '*C ages for the studied depth intervals and material type are presented in
Table 1. Four age-depth models have been constructed. Table 2 depicts ages produced by
simple calibration and gained via P_Sequence models.

Based on simple calibration of '*C dates sediment accumulation must have started between
12,060 and 11,640 cal BC and have come to an end between 1030 and 1260 AD. Similar age
ranges were gained in P_Sequence models without and with stratigraphic boundaries. However,
both models have confined better the initial age ranges resulting in a slight reduction of uncer-
tainties compared to simple calibration. When results of P_Sequence models are compared
(Table 2) the model, where a stratigraphic boundary was introduced at the start of peat formation
yielded dates with somewhat lower uncertainty at certain depths compared to the one without this
inner boundary. However, difference between the two P_Sequence models is negligible.
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Table 2 List of calibrated unmodeled and modeled ages for two types of P_Sequence models.

Unmodeled (BC/AD) Modeled (BC/AD)
P_Sequence 1. (k=0.3)
Csaszartoltés-Hungary  from to B Iy} m from to p o m A C
Boundary bottom —-12030 -11620 -—11840 100 -11830 97.6
R_Date GdA-555 —-12060 —-11640 -—11870 100 —-11860 —-12030 -11620 -—11840 100 —11830 989 97.6
R_Date ETH-41277 —-8330  —8200  —8260 40 -8270  —8330 —8020 —8260 40 —8270 99 99.2
R_Date deb-3926 =5790  —=5530 -5660 60 -5660  —5800 5540 -5670 60  -5670  100.3 99
R_Date deb-11334 —4800  —4460 —4640 90 —4640  —4800 —4460 —4640 90 —4640 1004 98.6
R_Date ETH-41276 -2340 —1880  —2090 110 -2090 -2450 -1920 -2150 110 -2140 92.8 979
R_Date deb-11308 =420 =110 =300 70 =290 =740 =200 =370 100 =370 89.5 982
R_Date deb-11306 330 560 450 60 450 340 550 460 60 460 103.5 98.7
R_Date deb-11309 660 950 790 70 790 670 940 800 60 800 103.1 99
R_Date deb-113010 1030 1260 1150 60 1160 1050 1270 1180 50 1190 102.2  99.3
Boundary top 1050 1270 1180 50 1190 99.3

P_Sequence 2. (k=0.3)

Boundary bottom -12060 —-11640 —11870 100 -11860 99
R_Date GdA-555 —-12060 —-11640 -—11870 100 —-11860 —-12060 —-11640 —11870 100 —-11860 99.2 99
R_Date ETH-41277 —-8330  —8200 —8260 40 -8270  —-8330  —-8020 —-8260 40 -—-8270 985  99.7
R_Date deb-3926 =5790  —5530 —5660 60 -5660 —-5760 5510 -5650 60  —-5650 97.6  99.5
Boundary marsh =5760 —-5510 =-5650 60  —5650 99.5
R_Date deb-11334 —4800 —4460 —4640 90 —4640  —4800 —4460 —4640 80  —4640 1004 99.1
R_Date ETH-41276 -2340 —-1830  —2090 110 -2090  -2450 -1920 -2150 110 -2140 92.8  99.2
R_Date deb-11308 —420 -110 =300 70 =290 =740 —200 -370 100 —370 89.6  99.5
R_Date deb-11306 330 560 450 60 450 340 550 460 60 460 103.4  99.6
R_Date deb-11309 660 950 790 70 790 670 900 800 60 800 103.4 994
R_Date deb-11310 1030 1260 1150 60 1160 1050 1270 1170 50 1180 102.7 99.3
Boundary top 1050 1270 1170 50 1180 99.3

P 12 §1$2040 I 90€1
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Figure 2 presents the results of the linear fit, polynomial, Gamma_Sequence, Poisson_Sequence
models with their 95% confidence ranges (Table S1). All three models display a similar trend
with upward decreasing uncertainty. There is no significant difference between the point esti-
mate ages of the individual models (see Table S2). However, 95% confidence ranges are dif-
ferent. The highest 95% confidence range of 751 yr with a minimum of 215 yr at 80-cm depth
and a maximum of 2652 yr at 258-cm depths are observed for the Gamma_Sequence model. Yet
the prior on accumulation rates (acc. shape:0.5, acc. mean:40 year/cm) is very close to the
posterior accumulation rate received by the model. The higher (0.5) memory values indicate a
relatively smooth sediment accumulation, which is congruent with our understanding of peat
accumulation. These values were set after numerous runs of the model with different settings.
So, in this sense, despite the wider confidence intervals, the Gamma_Sequence model seems
acceptable. The lowermost uncertainties are restricted to the upper 200 m of the sequence
similarly to the other models too. The narrowest range of 95% CI is observed for other three
models rendering them seemingly better suited for age-depth model construction than the
Gamma_Sequence model at first sight. The 6th order polynomial and linear fit models seems to
have the narrowest 95% CI ranges. The P_Sequence model has also very narrow 95% CI ranges
close to those of the linear and polynomial models. Point estimate age values however are not
significantly different as stated previously. Based on this information any models would be
suitable for calculation of sedimentation rates and building an age-depth model for proxies.

The picture is somewhat different when we compare variation of sedimentation rates calculated
using the different models (Figure 3).

There is a significantly upward increasing trend in accumulation rates according to all con-
structed age-depth models (Mann-Kendall test p: 0.785) with the highest rates observed in the
uppermost ca. 40 cm of the profile corresponding to the Roman Age, Migration Age, and Early
Middle Ages. However, there is a significant difference in the distribution of the calculated
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Figure 2 Comparison of constructed age-depth models relying on probabilistic approaches. Model 1: simple
calibration, linear fit, Model 2: simple calibration 8th order polynomial fit, Model 3: Bayesian modeling using
Gamma_distribution approach of Bacon, Model 4: Bayesian models using Poisson_distribution approach of OxCal
(horizontal bars represent 95% CI ranges).
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Figure 3 Comparison of calculated sedimentation rates using different age-depth models for the marshland
sequence (horizontal bars represent 95% CI ranges).

mean sedimentation rates of certain age-depth models (Kruskal-Wallis p: 3.88E-43; Table S3).
The P_Sequence model significantly underestimates the sedimentation rates compared to other
models (Table S3). The 95% confidence intervals of all models are relatively wide with the
lowest ranges restricted to the middle of the profile. An exception is the Gamma_Sequence
model because it considers the a-priori given accumulation rates, which are well fitted to the
posterior ones (Figure 2). So, despite the relatively wide 95% confidence interval ranges of
calibrated ages yielded by the model (Figure 2) compared to the others, the best confined
sedimentation rates are observable here, which would lead us to choose this age-depth model
for proxies too. Mean SR values of the Gamma_Sequence model are significantly different
from both the linear and the P_Sequence models (Table S3). However, there is no significant
difference between the mean SR values of this and the polynomial model. Their mean values
and 95% confidence ranges are clearly overlapping. SR rates, however, are much more
smoothed due to the nature of the polynomial model. In contrast, SR rates seem to show minor
variations on the Gamma_Sequence model. From a sedimentological point of view choosing
the Gamma_Sequence model and/or the polynomial model seems to be the best. When we look
at the temporal resolution of the different models per sampling interval (years/cm) (Figure 4)
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Figure 4 Comparison of temporal resolution of 1-cm sampling intervals for the different age-depth models.

the upper 100 cm of the dated part provides a centennial resolution for the cycle analysis of our
proxy data when 95% CI are considered as well. Mean values here offer a resolution at the sub-
centennial scale of 40-60 yr. In the oxbow lake sequence and the initial phase of peat accu-
mulation the sampling resolution corresponds to multi-centennial age variations.

Lithology, Geochemistry, Sedimentation Rates

The bedrock (280-275 cm) is made up of very fine sandy fine sands (Ga4) of white-grey color
(10 YR 1/7) (Munsell and Notation 1954) representing the deposits of the original river branch
preceding the emergence of an oxbow lake. Based on the available '*C dates from the depth of 260
cm this fluvial stage must have emerged during the Late Glacial phase of the last ice age (before
12,000 BC). The first datable geological series is made up of greyish-white (10 YR 1/8) clayey chalk
and coarse silts and silty clays (Lc2As2). These layers contain abundant Chara remains and
mollusk shells representing the deposits of an oligotrophic well-lit oxbow lake (Figure 5).

This lake phase lasted from 12,000 to 8400 cal BC corresponding to the Early Mesolithic.
Sediment accumulation rates were minimal during this stage with a clear dominance of inor-
ganic matter, minimal signs of erosion of the adjacent areas as seen in the low Na, K values, a
relatively high and stable Mg content and upward increasing Ca and carbonate content. The
peak carbonate and Ca values accompanied by a significant drop in the inorganics between
9500 and 8600 BC indicate the emergence of a shallow carbonate rich oxbow lake. As seen by
the low Mn and Fe levels primary production was negligible and the dissolved oxygen of the
water was high with relatively normal pH. There is a marked increase in the organics accom-
panied by a major drop in the Ca, Mg and carbonate values in the next stage corresponding to
the Late Mesolithic between ca. 8400 and 6000 cal BC. The concentration of inorganics is
gradually increasing towards the 7th century BC reaching a stable plateau followed by minor
fluctuations upwards in the profile. Although accumulation rates are lower compared to the
previous period, a significant rise in the K as well as the Mn, Fe values indicate a strong drop in
the dissolved oxygen levels, pH as well as the expansion of K rich littoral vegetation marking
the development of a mesotrophic lake, which gradually evolved into a eutrophic system
(Figure 5). From about 6000 cal BC (Early Neolithic), there is a marked change the accumu-
lating deposits with the appearance of alternating layers of peat silty peat and peaty silts
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Figure 5 Observed sedimentological, geochemical changes indicating various stages of marshland evolution in light
of known archeostratigraphy.

representing natural cycles of a marshland. Between 5600 and 4500 cal BC corresponding to the
Middle and Late Neolithic there are cyclical ca. 20% increases and drops in the organic content
with similar contrasting fluctuations of the inorganics. These may signal human/and or climate
induced changes. As this period represents the appearance of farming cultures these fluctuations
may indicate deforestation induced nutrient in wash into the marshland. However, as the three
peaks in organics clearly correlate with increases in Ca and Mg concentrations with minimal
carbonate content of the deposits another source of organic matter can be assumed. Expansion
of reed and sedge rich in Ca, Mg implying a shallowing of the open water marshland could be
blamed as well. There are further increases in the Mn and Fe content of these marshland
deposits compared to the previous lacustrine phase indicating a gradual increase in the pH and
a reduction of dissolved oxygen, increase in primary production.

Besides the Neolithic, other major cyclical rises in the organic matter are connected to Copper
Age and Bronze Age cultures with multiple peaks, which again may hint to human induced
changes. The gradual upward increase in the Mn and Fe content until the Late Copper and
Early Bronze Ages (2500-2300 cal BC) indicates a further increase in pH and primary pro-
duction accompanied by decreasing dissolved oxygen levels. From the opening of the Bronze
Age there is a twofold increase in accumulation rates to 0.3 mm/year coevally with the marked
drop in Mn, Fe concentration as well as marked fluctuations of the Ca, Mg, levels. Organic
peaks between 2000 and 1000 cal BC correlate well with the highest Ca and Mg concentra-
tions in the entire sequence implying again a natural source of Ca, Mg from reed and sedge
vegetation. This is also justified by the appearance of reed peat in this part of the profile. The
periods of the Bronze Age, Iron Age, Roman Age (2500 BC-475 AD) are all characterized by
somewhat lower pH and primary production values comparable to those recorded during the
L. Mesolithic. The next major ca. twofold increase in sediment accumulation around 800 cal
BC must indicate the activities of Iron Age communities. The rising trend in Fe and Mn as
well as the peak values of K, Na plus a clear dominance of inorganics also indicate a silting up
of the marshland basin, which might be attributed to deforestation induced erosion of the
settling communities. The Early Medieval period marks the final stage of marshland
evolution.
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Multiproxy Paleoecological Results

The ratio of aquatic/terrestrial mollusk was uniformly low throughout the entire sequence apart
from 3 major peaks at 11,800 cal BC, 1600 cal BC, 500 cal AD (Figure 6). Another small peak at
5800 cal BC also turns up. Abundance variations of hygrophilous terrestrial taxa clearly follow
those of aquatics with peaks located at the same intervals. These coevally noticed peaks may
signal periods of high stand an increased humidity. The lowermost peak clearly represents the
initial phase of lake development. This period is characterized by a high abundance of moving-
water mollusk taxa and collective abundance peaks of warmth-loving and cold-resistant ele-
ments (Figure 5). The small peak at 5800 cal BC is correlated with the flood events recon-
structed for the Tisza Basin (Siimegi 2003, 2007; Magny et al. 2006; Stimegi and Molnar 2007;
Gulyas and Stimegi 2012a, 2012b) for the period of the Early Neolithic leading to the trans-
formation of the Koros Culture as well. This event is correlated with the 5b IRD event generally
characterized by increased oceanic influences, higher precipitation rates and lake high stands in
Western Europe and Western Hungary (Magny et al. 2006; Gulyas and Stimegi 2011a, 2011b,
2012a, 2012b). The next peak at 1600 cal BC correlates well with other paleoecological records
implying a humid Middle Bronze Age in Hungary (Siimegi et al. 2012). The final peak at cal 500
AD hallmarks another wet climatic phase known as the Late Antique Little Ice Age (Biintgen
et al. 2016). There must have been an upward gradual increase in the temperature of the area
from the all-time low at 7600 cal BC to its peak at 1600 cal BC, corresponding to a humid
Middle Bronze Age. The other major peak in temperature is dated to the period of the Roman
Climatic Optimum (Wang et al. 2013; Biintgen et al. 2016). Similar conditions have been
documented for Western Hungary as well for the same period (Stimegi et al. 2009; Stimegi et al.
2012).

In terms of the vegetation (Figure 7) there is a clear dominance of woodlands from 12,000 to
6000 BC corresponding to the periods of the lake phases. The number of weeds was minimal
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Figure 6 Abundance variations of selected ecological groups of aquatic and terrestrial mollusks acting as proxies of
temperature, humidity changes in the vicinity of the site in addition to fluctuations of aquatic habitat types.
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Figure 7 Abundance variations of sums of selected pollen types reflecting changes in the arboreal, non-arboreal
vegetation, aquatic habitats as well as human activities (cereals, weeds).

indicating no or minimal human influence on the landscape. There is a slight decrease in the
arboreal vegetation during the first phase of the Late Neolithic accompanied by a drop in weeds
and rise in non-arboreal vegetation, which may signal slight forest clearance of Mesolithic
hunters for the creation of hunting paths. The first major transition is connected to the
appearance of the first farmers at 5800 cal BC. Increased pressure on the landscape from human
activities is clearly seen in a rapid rise of weeds, the appearance of cereals and reduction of the
arboreal vegetation (Figure 7). This remained constant through the remaining periods with
minor fluctuations present only in the individual proxy values. There are two peaks in cereal
concentrations, which are also all-time highs in the profile, dated to the Roman Age and the
early periods of the Hungarian Kingdom. These are both accompanied by cyclical rises in weed
abundances. A different type of land use primarily relying on free-range animal husbandry
instead of plant cultivation characterizes the intervening period of the Migration Age. This is
also seen in our records leading to the expansion of arboreal vegetation, reduction of non-
arboreals, cereals and weeds, implying a regeneration of arboreal vegetation in the forest steppe
ecotone surrounding the marshland (Stimegi et al. 2012).

CONCLUDING REMARKS

In our work the adoption of '*C analysis and the comparison of various age-depth models built
using statistical and probabilistic approaches enabled the construction of a reliable chronology
suitable for tackling climate- and/or human-induced changes in a marshland sequence from
southern Hungary. All four models yielded reliable ages; the polynomial, linear as well as the
P_Sequence models had the narrowest 95% CI ranges. The Gamma_Sequence model yielded
relatively wide 95% CI ranges but in the upper 1 m of the profile confidence intervals
were comparable to those of other models. From a sedimentological point of view the
Gamma_Sequence model of Bacon seemed to be the best as both the prior and posterior
accumulation rates are similar. This prior is not included in other models. Our geological record
provided multiproxy data spanning ca. 13 kyr. Numerous changes observed in our records
could have been correlated clearly with the appearance and activities of certain cultural groups
indicating human-induced alterations of the landscape. In several cases climate-driven changes
could have been identified as well, which were all correlable with globally observed records.
Timing of these changes at the centennial or even sub-centennial scale requires precise
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chronologies, which could be established only via reducing uncertainties in dating and cali-
bration as much as possible. This can only be achieved via the construction and quantitative
comparison of various age-depth models using probabilistic approaches such as those in our
work. The newly established chronology will enable tackling the presence of natural cycles in

our record in the future.
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