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Efficient mixing, typically characterised by chaotic advection, is hard to achieve in
low Reynolds number conditions because of the linear nature of the Stokes equation
that governs the motion. Here we show that low Reynolds number swimmers moving
in quasi-periodic orbits can result in considerable stretching and folding of fluid
elements. We accurately follow packets of tracers within the fluid domain and
show that their trajectories become chaotic as the swimmer’s trajectory densely fills
its invariant torus. The mixing process is demonstrated in two dimensions using the
Quadroar swimmer that autonomously propels and tumbles along quasi-periodic orbits
with multi-loop turning trajectories. We demonstrate and discuss that the streamlines
of the flow induced by the Quadroar closely resemble the oscillatory flow field of
the green alga Chlamydomonas reinhardtii. Our findings can thus be utilized to
understand the interactions of microorganisms with their environments, and to design
autonomous robotic mixers that can sweep and mix an entire volume of complex
geometry containers.

Key words: biological fluid dynamics, mixing, swimming/flying

1. Introduction
Life on the Earth is strongly dependent upon mixing across a vast range of scales.

For example, mixing distributes nutrients for microorganisms in aquatic environments
(Pushkin & Yeomans 2013), and balances the spatial energy distribution in the
oceans and the atmosphere. From an industrial point of view, mixing is essential
in many microfluidic processes and lab-on-a-chip operations, polymer engineering,
pharmaceutics, food engineering, petroleum engineering and biotechnology
(Rauwendaal 1991; Nienow et al. 1997; Ottino & Wiggins 2004).

Mixing can be achieved by diffusion, turbulence and stirring. The importance
of diffusive over convective mixing is characterised by the Péclet number. In
microchannels, the typical value of the Péclet number is usually much larger than
O(1) and can easily be of the order of tens of thousands (e.g. Ottino & Wiggins
2004). In the limit of immiscible fluids, the Péclet number is infinity, pointing to
the inefficiency of diffusion for mixing in most lab-on-a-chip devices. Although
turbulence is an efficient mixing mechanism, generating turbulence in a flow whose
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Reynolds number is naturally very low (i.e. flow of highly viscous fluids) is typically
very energy intensive, especially for applications in which long-chain molecules
cannot be strained arbitrarily and must be treated with extreme care (Aref 1991).
As a result, in many low Reynolds number applications active stirring, implemented
through creating a relative speed between the fluid and an object, is the preferred
mixing strategy (Nienow et al. 1997; Mathew et al. 2007; Couchman & Kerrigan
2010).

The most efficient form of mixing is chaotic mixing (Ottino 1989, 1990; Wiggins
& Ottino 2004). If the fluid flows inside a channel (e.g. flow in microchannels),
the channel geometry or carvings on the channel wall can be architected to result
in chaotic mixing as the flow passes (e.g. Liu et al. 2000; Stroock et al. 2002).
Forced mixing protocols have also been introduced for mixing in closed vessels
(Gouillart et al. 2007, 2008). A rod moving on a periodic eight shaped path can
homogenize the concentration of a low-diffusivity dye in a vessel whose boundaries
are close enough to the path of the moving rod. The mixing efficiency depends on
the wall conditions (Sturman & Springham 2013), and is enhanced in the presence of
moving walls (Thiffeault et al. 2011). The wall effect in the moving rod experiment
is pronounced because in a zeroth-order model, the rod behaves like a point force
and the induced velocity field is a Stokeslet that has the shallow declining profile
∼r−1, with r measuring the distance from the axis of the rod.

Of primary interest for this work is stirring, and the consequent mixing, induced
by the motility of microorganisms and microswimmers. This type of mixing has
been extensively investigated both computationally and experimentally, characterised
by the enhanced effective diffusivity (Wu & Libchaber 2000; Lin, Thiffeault &
Childress 2011; Eckhardt & Zammert 2012; Pushkin & Yeomans 2013; Wagner et al.
2014). The concept of stirring highly viscous fluids by use of low Reynolds number
swimmers is different from protocols with moving forces because the resultant force
exerted by a swimmer on its environmental fluid is zero, and the leading term in the
velocity field is a Stokes dipole that steeply drops as ∼r−2 (e.g. Pak & Lauga 2015).
Consequently, the wall effect becomes weaker and a swimmer can only stir its close
proximity, but without wasting too much energy to overwhelm viscous dissipation
by the boundaries. Mixing a large volume of fluid is therefore possible either when
the number of swimmers is large, or when a single swimmer sweeps a large area
or volume. Here, we are interested in mixing by a single swimmer that can access
remote regions and containers with complex geometries.

We report the first demonstration of chaotic mixing induced by a microswimmer
that strokes on quasi-periodic orbits with multi-loop turning paths. We introduce
the geometry of the swimmer in § 2 and derive its governing equations of motion.
Hydrodynamic interactions between rotating actuators are taken into account in our
analysis. The mechanism of mixing is demonstrated in § 4 by following a fluid patch
marked by tracer particles, and the existence of chaos is proved using finite-time
Lyapunov exponents. Applications of microswimmer-induced mixing and future
prospects are discussed in § 5.

2. The swimmer and equations of motion
We consider a recently proposed swimmer, the Quadroar (Jalali, Alam & Mousavi

2014), which is composed of four rotating disks of radius a at the ends of its two
axles, and a chassis of variable length. Each axle has a length of 2b and the length of
the chassis 2l+ 2s(t) is varied by a linear actuator (figure 1a). The chassis and axles
make an I-shape planar frame. A body-fixed coordinate system (x1, x2, x3) with the
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b

(a) (b)

FIGURE 1. (Colour online) (a) The geometry of the Quadroar. The centre of the
body-fixed coordinate system (x1, x2, x3) is at the centre of mass of the swimmer. (b)
The geometry of the swimmer as seen along the positive x2-axis, which is parallel to the
axles. The chassis performs its open � close function according to a harmonic function
with a constant frequency ωs. The front and rear disks counter-rotate with the base angular
velocities ϑ̇1= ϑ̇2=ωs/2 and ϑ̇3= ϑ̇4=−ωs/2, respectively, but their rotational frequencies
can be shifted by 1νn.

unit base vectors (e1, e2, e3) is chosen to describe the kinematics and dynamics of the
swimmer’s translational and rotational movements. The x1-axis is along the chassis,
the x2-axis is parallel to the axles and the x3-axis is normal to the plane of the I-
frame. The relative orientation of the nth disk with respect to the swimmer’s frame
is measured by the angle −π 6 ϑn 6 +π that the plane of the disk makes with the
(x1, x2) coordinate plane. We define the global coordinate frame (X1, X2, X3) with the
unit base vectors (E1,E2,E3), and denote the position vector of the swimmer’s centre
of mass by Xc(t). The translational velocity of the swimmer thus becomes vc = Ẋc.
Here, an overdot stands for d/dt. We will represent all physical quantities in terms of
the unit vectors ei in the body-fixed coordinate frame, and will explicitly state if we
switch to the global coordinate system.

The main difference between the Quadroar and other swimmer designs such
as those that use linked spheres is the point torque that each rotating disk of
the Quadroar exerts on the background fluid. Consequently, the streaming of the
background fluid in response to the combined translational and rotational motions of
the disks (propellers) is a combination of Stokeslets and rotlets. Jalali et al. (2014)
ignored the hydrodynamic interactions between the disks of the swimmer by assuming
that they are sufficiently far from each other. Since this study is going to address
the near and far flow fields generated by the swimmer, hydrodynamic interactions
of the four disks cannot be ignored. We thus derive new equations of motion for
the swimming of the Quadroar taking full account of hydrodynamic interactions.
Nonetheless, we retain one of our basic simplifying assumptions: each disk interacts
with the background fluid through a point force and a point torque, both applied at
the centre of the disk. Therefore, in our analysis, the disks still need to be far from
each other such that geometrical effects on streamlines due to the ‘finite sizes’ of the
disks can be ignored.

The Quadroar can propel both in stepwise and continuous operation modes. In
this study, we consider continuous operation modes that result in two-dimensional
orbits of the swimmer in its sagittal (x1, x3)-plane. In the operation mode that we are
interested in, the chassis expands and contracts according to the harmonic function
s(t) = s0[1 − cos(ωst)]/2, and the front and rear disks counter-rotate with the base
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frequency ωs/2 (figure 1b). Our control input is the small frequency shift 1ν that
detunes the rotational speeds of the front and rear disks as

ϑ1 = ϑ2 =ωs/2, ϑ3 = ϑ4 =−ωs/2+1ν. (2.1a,b)

The swimming dynamics is therefore associated with two time scales: the fast time
Tfast = 2π/ωs and the slow time Tslow = 2π/1ν. Jalali et al. (2014) showed that the
Quadroar strokes rectilinearly along its x3 body axis for 1ν = 0, and swims on quasi-
periodic orbits for non-zero frequency shifts. While depending on the geometrical
aspects of the Quadroar details of trajectories maybe different, quasi-periodic orbits
also exist when hydrodynamic interactions between disks are included. Quasi-periodic
orbits have remarkable consequences on the streaming of the background fluid, which
we explore here.

The relative position vector of the nth disk with respect to the centre of mass of
the swimmer is defined by rn. We have

r1 = [l+ s(t)]e1 + be2, r3 =−[l+ s(t)]e1 + be2, (2.2a,b)

r2 = [l+ s(t)]e1 − be2, r4 =−[l+ s(t)]e1 − be2. (2.2c,d)

Due to the expanding and contracting motion of the chassis (body link), each disk
of the Quadroar has a relative velocity vrel,n with respect to the centre of mass. The
relative velocities are computed by taking the time derivatives of rn in the body-fixed
coordinate system. For the front disks (n = 1, 2) and rear disks (n = 3, 4) one has
vrel,1 = vrel,2 = ṡe1 and vrel,3 = vrel,4 = −ṡe1, respectively. Here ṡ is the expansion or
contraction rate of the chassis.

The angular velocity of the swimmer, which is also the angular velocity of the body-
fixed coordinate system, is denoted by ωbody(t). It is related to the 1-2-3 sequence of
Euler angles α = (φ, θ, ψ) through the following transformation

ωbody = T · α̇, T =
1 0 −sθ

0 cφ cθsφ
0 −sφ cθcφ

, (2.3a,b)

where sγ and cγ denote sin(γ ) and cos(γ ), respectively. The transformation between
body-fixed and global coordinate systems is carried out using the rotation matrix

R = Rx1 Rx2 Rx3 =
1 0 0

0 cφ sφ
0 −sφ cφ

cθ 0 −sθ
0 1 0
sθ 0 cθ

 cψ sψ 0
−sψ cψ 0

0 0 1

. (2.4)

For instance, the velocity of the centre of mass in the body-fixed coordinate system
reads R · Ẋc. The absolute linear and angular velocities of the nth disk are thus
determined from

vn = vc + vrel,n +ωbody × rn, (2.5)

ωn =ωbody + ϑ̇ne2. (2.6)

We define the isotropic tensor G= (32/3)a3I , with I being the identity matrix and the
translation matrix (Jalali et al. 2014)

K n = 8
3

a

5− cos(2ϑn) 0 sin(2ϑn)

0 4 0
sin(2ϑn) 0 5+ cos(2ϑn)

. (2.7)
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At its hydrodynamic centre, the nth disk exerts the force vector f n and torque τn on
the fluid. The reactions of these are the drag forces and torques. Within a non-inertial
streaming fluid, the following analytic expressions are known (Happel & Brenner
1983)

f n =µK n · (vn − un), τn =µG · (ωn −Ωn), (2.8a,b)

where u(X, t) and 2Ω(X, t) = ∇ × u are the streaming and vorticity fields of the
background fluid with the dynamic viscosity µ, and we have

un = u(Xc + rn, t), Ωn =Ω(Xc + rn, t). (2.9a,b)

It is noted that the drag forces and torques occur when the relative linear and angular
velocities within the parentheses in (2.8a,b) are non-zero. The effects of un and Ωn
cannot be neglected for compact swimmers whose own propellers are close to each
other and have hydrodynamic interactions.

For a neutrally buoyant swimmer in low Reynolds number conditions, Re→ 0, the
drag force and torque vanish and we obtain

force balance:
4∑

n=1

f n = 0, (2.10)

torque balance:
4∑

n=1

(rn × f n + τn)= 0. (2.11)

These equations are still incomplete for the determination of the translational and
rotational dynamics of the swimmer as they contain the unknown velocities un and
spins Ωn that are developed in the background fluid because of the activity of the
swimmer itself: each disk generates a flow and influences the operation of other
propellers. If we assume that the kth disk exerts a point force and torque (at its
hydrodynamic centre) on the fluid, the velocity field that it generates at X will be
the combination of a Stokeslet and a rotlet as (e.g. Lopez & Lauga 2014)

Uk(X, t)= f k

z
+ ( f k ·X)

z3
X+ τk ×X

z3
, z= (X ·X)1/2. (2.12)

Operating (2.12) with ∇× gives the vorticity field:

ξk(X, t)= 2f k ×X
z3

+ 3(τk ·X)X− z2τk

z5
. (2.13)

The velocity and vorticity fields induced at the hydrodynamic centre of the nth disk
by three other disks are thus determined from

un =
4∑

k=1
k 6=n

[
f k

zkn
+ ( f k ·Xkn)

z3
kn

Xkn + τk ×Xkn

z3
kn

]
, (2.14)

2Ωn =
4∑

k=1
k 6=n

[
2f k ×Xkn

z3
kn

+ 3(τk ·Xkn)Xkn − z2
knτk

z5
kn

]
, (2.15)
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where Xkn = rn − rk and zkn = (Xkn · Xkn)
1/2. In these equations, the forces f k and

torques τk linearly depend on uk and Ωk through relations in (2.8a,b). We collect the
30 unknown components of the vectors vc, ωbody, un and Ωn (n = 1, 2, 3, 4) in the
vector w, and combine (2.14) and (2.15) with (2.10) and (2.11) to obtain a system of
linear equations

L(vc,ωbody, u1, . . . , u4,Ω1, . . . ,Ω4, t)= L(w, t)= 0, (2.16)

in terms of w and t, with L being a vectorial function of dimension 30× 1. We then
analytically calculate the Jacobian of L and transform (2.16) to

A(t) ·w= d(t)≡ L|w=0, A(t)=
[
∂L
∂w

]
30×30

. (2.17)

Here the matrix A(t) and the right-hand side vector d(t) explicitly depend on t through
the control variables s(t) and ϑn(t). At each time step, the linear system of (2.17) is
solved using a standard LU decomposition method with pivoting. After calculating vc

and ωbody, the position vector Xc = Xc,iEi and orientation angles of the swimmer are
found by the direct numerical integration of

Ẋc = RT
· vc, α̇ = T−1

·ωbody, (2.18a,b)

with the superscript T denoting transpose. We now express all physical quantities in
terms of the unit vectors Ei of the global coordinate system. This is simply done by
left-multiplying all vectors in the (x1, x2, x3) frame by RT. The flow field generated
by the Quadroar is a superposition of the Stokeslets and rotlets of the four disks:

u(X, t)= uiEi =
4∑

n=1

[
f n

zn
+ ( f n ·Xn)

z3
n

Xn + τn ×Xn

z3
n

]
, zn = (Xn ·Xn)

1/2, (2.19)

Xn =X−Xc(t)− rn(t), (2.20)

where f n and τn are computed using the components of w(t). We study the flow
characteristics by following the Lagrangian trajectories of passive tracers. The equation
of motion for a tracer becomes

dX
dt
= u(X, t), (2.21)

which is integrated in the global coordinate system simultaneous with the swimmer’s
equations of motion in (2.18a,b). Due to the coupled rotational and translational
motions of the swimmer and their effect on the background fluid and tracers, the
equations of motion are highly nonlinear and we need an accurate integrator to
avoid spurious mixing due to numerical errors. Leap frog integrators devised for
second-order ordinary differential equations do not work well here because we do
not have evolution equations for the velocities – there is no acceleration in the
low Reynolds flow regimes. We therefore adopt the RK78 integrator (Fehlberg
1968) that can keep relative integration errors at O(10−14) over long time scales
that a quasi-periodic orbit becomes dense in its invariant manifold or chaotic orbits
uniformly sample their invariant measure.
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(a) (b)

FIGURE 2. (Colour online) Side views of the Quadroar swimmer during a rectilinear
motion: the front and rear disks counter-rotate with the same angular velocities, and
their inclinations with respect to the chassis are identical but with different signs. (a)
and (b) respectively show the swimmer’s conformations during the expansion (ṡ> 0) and
contraction (ṡ< 0) phases of the chassis.

3. Flow field
The Quadroar is a three-dimensional swimmer with rich orbital structure in

the phase space. Nonetheless, to study the quantitative and qualitative effects of
swimming on environmental fluid, and gain insight into the regions of influence
of microswimmers, we investigate two-dimensional quasi-periodic motions in the
body-fixed (x1, x3) coordinate system. The parameters of our model swimmer have
been set to a = 1, b = 4, l = 4, ωs = 1, and s0/l = 1/2. We assume that all disks
start their rotations in phase, ϑn = 0 (n= 1, 2, 3, 4), and the initial conditions for the
position and orientation of the swimmer are set to Xc = 0 and α = 0. Depending on
our choice of the control parameter 1ν in (2.1a,b), the swimmer can take different
courses of quasi-periodic orbits.

The simplest motion is rectilinear with 1ν = 0: the front and rear disks counter-
rotate as the chassis periodically expands and contracts. Disks simultaneously become
parallel and perpendicular to the swimmer’s body plane (x1, x2) at the times t= j Tfast
and t = (2j + 1)Tfast/2 (j = 0, 1, 2, . . .), respectively. When the chassis is expanding,
ṡ> 0, the inclination angles of the front and rear disks (with respect to the swimmer’s
body plane) vary in the intervals 0 6 ϑ1 = ϑ2 6 π/2 and −π/2 6 ϑ3 = ϑ4 6 0,
respectively. In such conditions, the swimmer has the conformation of figure 2(a).
During the contraction phase of the chassis, ṡ< 0, the front and rear disks respectively
evolve in the intervals π/26ϑ1=ϑ26π and −π6ϑ3=ϑ46−π/2 and the swimmer
has the conformation of figure 2(b). We have used (2.19) to compute the flow field
u(X, t) induced by the swimmer. Streamlines and velocity vectors have been displayed
in figure 3 for several values of 0 < t < Tfast during a full cycle of the swimmer’s
stroke. Since there is no net motion/flow in the x2 direction, we have visualised u
only in the (X1, X3) slice of the configuration space that overlaps with the (x1, x3)

coordinate plane. Another justification for selecting the (X1, X3) plane is to avoid
the geometrical effects of the disks, which have finite sizes: our methodology of
modelling the disks by f k and τk is supposed to give reasonable results for u if
|X−Xc − rn| � a. This condition is fulfilled in the (x1, x3) plane.

Each stroke cycle begins with the expansion of the chassis and two lateral vortices
are formed on the anterior side of the swimmer. These two vortices are pushed
forward and shrink in size as the inclination angles ϑn increase (figure 3a,b). For
|ϑn|≈π/4, the lateral vortices disappear and the flow field takes a hyperbolic structure
where the fluid is pumped in towards the centre of mass of the swimmer along the
X3-axis, and is pumped out along the X1-axis (figure 3c). During this transitional
phase, the swimmer behaves like a puller dipole swimmer (e.g. Elgeti, Winkler
& Gompper 2015). As the disks make right angles with respect to the chassis, two
counter-rotating side vortices are generated by the disks (figure 3d). When the chassis
contracts, the swimmer behaves like a pusher dipole: the fluid is pumped in along
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FIGURE 3. (Colour online) Snapshots of the streamlines of the flow field u(X, t) induced
by the Quadroar swimmer that starts its motion form (X1, X3)= (0, 0) and strokes along
the negative X3-axis. The chassis of the swimmer with variable length 2l+ 2s(t) has been
shown by a thick red bar. For each panel, the conformation of the swimmer’s disks can be
determined in terms of sign(ṡ) and figure 2. The inclinations of the disks with respect to
the swimmer’s chassis can be computed using the following equations: ϑ1=ϑ2=ωst/2 and
ϑ3 = ϑ4 =−ωst/2. (a) t= (1/64)Tfast, ṡ> 0, (b) t= (8/64)Tfast, ṡ> 0, (c) t= (16/64)Tfast,
ṡ> 0, (d) t= (32/64)Tfast, ṡ= 0, (e) t= (48/64)Tfast, ṡ< 0, (f ) t= (63/64)Tfast, ṡ< 0.

the X1-axis and pumped out along the X3-axis as in pushers (figure 3e). The flow
structure is hyperbolic for |ϑn| ≈π/4, and lateral vortices occur behind the swimmer
for smaller inclinations of the disks (figure 3f ). The Quadroar is therefore a hybrid
swimmer that inherits the features of both pusher and puller dipole swimmers. The
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FIGURE 4. (Colour online) (a) The quasi-periodic orbit of the swimmer integrated from
(X1, X3) = (0, 0) over the time interval 0 6 t 6 tmax = 6.25Tslow. The orbit precesses
and becomes dense in an annular region. (b) A close-up snapshot of the orbit near the
swimmer’s position at tmax. The orientation of the body-fixed coordinate frame (x1, x3) is
displayed at tmax. (c) The streamlines and local velocity vectors of the flow field u(X, t)
at t = 6.25Tslow − (7/8)Tfast. (d) Same as (c) but for t = 6.25Tslow − (3/4)Tfast. The thick
bar shows the chassis of the swimmer.

streamlines displayed in figure 3 resemble the oscillatory flow field of a single-celled
swimming alga called C. reinhardtii (Guasto, Johnson & Gollub 2010).

4. Chaotic mixing
The rectilinear mode of swimming helps us gain insight into the flow physics

around microswimmers, but it is not useful for mixing due to two obvious reasons:
(i) a rectilinear trajectory has measure zero in the two-dimensional configuration
space, and (ii) fluid particles affected by a distant swimmer passing on a straight
line move on loop-like paths (Pushkin & Yeomans 2013), which are not effective
in the stirring of environmental fluid. We therefore turn our attention to curved
quasi-periodic orbits of non-zero measure. We set 1ν = 0.00125 that generates the
precessing orbit of figure 4(a) for the swimmer’s centre of mass. The trajectory has
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inverted multi-loop turns aligned towards the centre of the orbit and becomes dense
in an annular region A , which is the projection of a three-dimensional torus M in
the (X1, X3, θ)-space on the (X1, X3)-plane. In the literature of dynamical systems
theory, M is called the ‘invariant torus’ of a quasi-periodic orbit. We have integrated
the equations of motion from t = 0 to tmax = 6.25Tslow. Figure 4(b) shows a close-up
of the trajectory and highlights it over the time interval 6.03Tslow 6 t6 tmax. We have
also shown in this figure the location and orientation of the swimmer’s chassis and
its body-fixed coordinate system at tmax.

Near the state of the swimmer shown in figure 4(b), we have plotted the streamlines
and local velocity vectors at the two instants t = 6.25Tslow − (7/8)Tfast (figure 4c)
and t = 6.25Tslow − (3/4)Tfast (figure 4d). We have only shown the velocity field in
the (x1, x3) body plane that passes through the centre of mass of the swimmer and
overlaps with the global (X1, X3) plane. It can be seen how the swimmer pumps the
fluid while making a spiral turn. Here the magnitudes of ϑ1,2 and ϑ3,4 differ due
to gradual phase shift generated by 1ν, and streamlines are rapidly evolving. The
twisted hyperbolic structure of figure 4(c) occurs when the swimmer strokes like a
puller dipole, and four separatrices intersect at a saddle node which is close to the
swimmer’s centre of mass. The flow stream of figure 4(d) originates around one axle
and sinks towards the other one. This pattern has no analog in rectilinear motion and
is a consequence of phase shift between front and rear disks and spiralling motion.
These patterns are few demonstrative examples which show how a swimmer moving
on a curved path induces complex, evolving topologies of streamlines. Depending on
the phase shift ϑ1,2 + ϑ3,4 = 1ν t, the swimmer’s trajectory and its orientation, new
topologies can emerge.

To understand the mixing process and its efficiency, we follow the Lagrangian
trajectories of a packet of tracers as the orbit of the swimmer illustrated in figure 4(a)
becomes dense in the annular region A . We choose a uniformly distributed set
of 2500 passive tracers in the rectangular region D0 = {(X1, X3)| − 70 6 X1 6
−67.5, −1.25 6 X3 6 1.25}, which lies well in the ring of the swimmer’s orbit. To
visualise the mixing process and deformation of fluid elements, we split D0 to four
equal square subdomains and tag their corresponding tracers in a clockwise order
by filled blue, green, black and red dots (figure 5a). We then release the swimmer
from (X1, X3) = (0, 0) and integrate (2.18a,b) for the swimmer and (2.21) for the
tracers. The fluid element D0 starts to deform and is mapped to the set D(t) as the
time elapses. Figure 5(a) demonstrates the shape of D(t), with D(0) = D0, at four
snapshots in time. It is seen that the fluid element and the contact lines between its
four subdomains are deformed gradually from t = 0 to t = 6.25Tslow but the element
keeps its integrity.

The element is highly stretched and folded later at t= 10Tslow and starts to develop
tails. Over this period, the swimmer has completed approximately 21 turning loops of
its quasi-periodic orbit. The folded patch evolves to thin wavy structures as seen in
figure 5(b) and the contact lines between the four subdomains are destroyed, allowing
tracers to gradually distance from their associates. The set D(t) shown in figure 5(c)
at t = 50Tslow no longer exhibits the properties of a manifold and is topologically
similar to strange attractors of dissipative dynamical systems, although it is just an
intermediary and not a final stage of an ongoing mixing process. The swimmer
completely disperses tracers in A as t→∞. The tracers of the four subdomains of
D0 have been well mixed by t= 125Tslow (figure 5d).
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FIGURE 5. (Colour online) Dispersion of a packet of passive tracers by a single quasi-
periodic orbit swimmer. The packet has been split to four subdomains of different colours.
(a) The initial condition of the packet, and its subsequent states at t/Tslow = 3.75, 6.25
and 10 where Tslow = 2π/1ν. The packet is folded and stretched in the flow field of the
swimmer of figure 4. (b) A highly folded and stretched intermediary state of the patch at
t= 22.5Tslow. Contact lines between four subdomains are being destroyed: (c) t= 50Tslow.
The contact lines between the four subdomains of the initial patch have been completely
destroyed and the mixing process has started. (d) The fully mixed state of the patch at
t = 125Tslow. Tracers have been dispersed uniformly within the annular region A filled
by the swimmer’s orbit. The initial packet is also superimposed in panels (c) and (d) for
comparison. Note the different scales of panels.

Various measures can be utilized to quantify the mixing process, including entropy,
Lyapunov exponents and the mix-norm of advected scalar fields by chaotic flows
(Mathew, Mezić & Petzold 2005). In this study, we choose the line element
L0 = {(X1, X3)|X3 = 0,−1006 X1 6−40}, and compute its corresponding finite-time
largest Lyapunov exponent, σmax, following the procedure of Chabreyrie, Chandre
& Aubry (2011). A positive Lyapunov exponent implies chaos and exponential
divergence of neighbouring tracers that lie on L0. To compute Lyapunov exponents
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FIGURE 6. (Colour online) (a) The profile of Tslowσmax(L0, 50Tslow) along the line element
L0. (b) The state of the line element represented by 1000 tracer particles at t= 0 (blue
solid line) and t= 50Tslow (black dots). The element has been disrupted along the path of
the swimmer (cf. figure 4a).

corresponding to a particle initially located at X0 =X(0), we integrate

dΦ
dt
= J(X(t), t) ·Φ, J = ∂u

∂X
, Φ(0)= I, (4.1a−c)

along with (2.21) and compute the 3 × 3 state transition matrix Φ(t) and its three
eigenvalues λk (k = 1, 2, 3) at t = T = 50Tslow. The largest Lyapunov exponent
is calculated from σmax = T−1max(λ1, λ2, λ3). Figure 6(a) shows the variation of
Tslowσmax(L0, T). Results do not considerably change by increasing T . We have also
shown the deformed and disrupted state of L0 at t = T . Our numerical experiments
show that σmax is positive wherever the line element is stretched, and becomes
minimum at the tips of the deformed lobes where tracer particles move together and
the line element experiences the least stretching and maximum folding. The magnitude
of the Lyapunov exponent is small because the swimmer spends a large fraction of
time far from a test tracer: a quasi-periodic orbit is characterised by a short period
needed to complete a full multi-loop tun and a subsequent long-range stroke, and
a long period associated with its orbital precession. During each swimmer–tracer
encounter, tracer particles are displaced but they remain almost stationary until the
swimmer revisits that part of the configuration space. Since the precession rate
of quasi-periodic orbits is $ ∼ O(T−1

slow), the recurrence time for swimmer–tracer
interaction is ∼2π/$ , which is long. Therefore, Lyapunov exponents are scaled by
T−1

slow, and remain almost zero over the hibernation (stationary) phase of tracer particles.
These two effects decrease the magnitude of σmax and increase the time scale of
mixing substantially. The mixing speed can be enhanced using more swimmers on
a given orbit, but hydrodynamic interactions between swimmers must be taken into
account.

We have repeated our simulations for different choices of the frequency shift 1ν.
Our numerical experiments show that chaotic mixing occurs within the invariant
torus of all quasi-periodic orbits, and the thickness of the chaotic layer correlates
with the structure of the turning loops: the higher the number of loops in a turning
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FIGURE 7. (Colour online) (a) The quasi-periodic orbit of the swimmer with a single
turning cardioid for 1ν = 0.00625, and the dispersed chain-like pattern of tracer packets
whose advection starts from the tiled elements at t = 0. The snapshot of the chain-like
chaotic pattern has been taken at t = 625Tslow. The chain-like pattern is rotating. (b)
The swimmer’s periodic orbit with inverted cardioids for 1ν = 0.005. Fluid elements are
stretched and transported, without chaos, on a curved path along the periphery of the orbit.
The snapshots of the four deforming fluid elements have been taken at t = 0, 50Tslow,
100Tslow, 200Tslow, and 400Tslow.

multi-loop bundle, the greater the number of foldings that a test patch experiences,
and consequently the wider the chaotic layer. The number of loops nonlinearly
depends on the geometric parameters of the swimmer and 1ν. The turning loop
of the simplest quasi-periodic orbit in our library is a cardioid corresponding to
1ν = 0.00625 (figure 7a). For this swimming mode, the chaotic set forms a rotating
chain-like structure in the configuration space. We have not observed any sign of
chaos for periodic orbits. For 1ν = 0.005, the swimmer’s orbit is periodic with
inverted single cardioids as turning loops (figure 7b). It is seen that fluid elements
are stretched and carried by the swimmer on a curved path, but they are not subject
to successive foldings and do not diffuse in the annular region covered by the
swimmer’s orbit. Full exploration of chaotic zone in the parameter space is the topic
of our future research.

5. Conclusions
We have shown that the Quadroar swimmer performs a hybrid pusher and puller

swimming like C. reinhardtii (Guasto et al. 2010; Klindt & Friedrich 2015). To the
best of our knowledge, the Quadroar is the only artificial swimmer that induces
flow streamlines similar to living flagellar microorganisms. This similarity opens
a new ground for understanding the behaviour of bacterial colonies, and the way
that they influence their environmental fluid and redistribute nutrients/chemicals. One
of the interesting subjects in biology is to understand social interactions between
the members of animal groups. The complexity of such interactions increases for
living beings with advanced neural and sensory systems. For simple swimming
microorganisms, interactions have hydrodynamic origin while individuals perform
chemotaxis. Given the similarities between the flow field induced by the Quadroar
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and flagellar swimmers, we have now the machinery to develop more realistic models
of hydrodynamic interactions between microorganisms and simulate their collective
swarms.

We have demonstrated that a Quadroar swimmer can chaotically mix its surrounding
fluid over the area that the swimmer’s quasi-periodic trajectory covers. The advantage
of this mixing strategy is highlighted particularly where the fluid is quiescent, or
if it flows sufficiently slow that mixing based on the channel wall corrugations
is inefficacious. Microswimmer-induced chaotic mixing may be used to revitalise
marine life in the dead zones of the oceans and estuaries where the shortage
of microorganisms and their stirring contribution (cf. Katija 2012; Wilhelmus &
Dabiri 2014) has negatively impacted the ecological cycle. The behaviour of a single
Quadroar in the presence of solid boundaries, i.e. walls, and whether its quasi-periodic
orbit is retained remains to be investigated. Of particular interest is the special case
of the swimmer inside a fully confined space (a chamber), and whether a uniform
mixing over the entire space can be achieved. A swarm of Quadroars is expected to
achieve a spatially uniform mixing with a much higher efficiency and larger Lyapunov
exponents, details of which requires several computational challenges to be overcome
and shall be addressed in a separate study.
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