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We consider an additive model with second-order interaction terms+ Both mar-
ginal integration estimators and a combined backfitting-integration estimator are
proposed for all components of the model and their derivatives+ The correspond-
ing asymptotic distributions are derived+ Moreover, two test statistics for testing
the presence of interactions are proposed+ Asymptotics for the test functions and
local power results are obtained+ Because direct implementation of the test pro-
cedure based on the asymptotics would produce inaccurate results unless the num-
ber of observations is very large, a bootstrap procedure is provided, which is
applicable for small or moderate sample sizes+ Further, based on these methods a
general test for additivity is developed+ Estimation and testing methods are shown
to work well in simulation studies+ Finally, our methods are illustrated on a five-
dimensional production function for a set of Wisconsin farm data+ In particular,
the separability hypothesis for the production function is discussed+

1. INTRODUCTION

Linearity has often been used as a simplifying device in econometric modeling+
If a linearity assumption is not tenable, even as a rough approximation, a very
large class of nonlinear models is subsumed under the general regression model

Y � m~X !� s~X !«, (1)

where X � ~X1, + + + , Xd ! is a vector of explanatory variables, and where « is
independent of X with E~«! � 0 and Var~«! � 1+ Although in principle this
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model can be estimated using nonparametric methods, in practice the curse of
dimensionality would in general render such a task impractical+

A viable middle alternative in modeling complexity is to consider m as being
additive, i+e+,

m~x! � c � (
a�1

d

fa~xa!, (2)

where the functions fa are unknown+ Additive models were discussed already
by Leontief ~1947!+ He analyzed so-called separable functions, i+e+, functions
that are characterized by the independence between the marginal rate of substi-
tution for a pair of inputs and the changes in the level of another input+ Sub-
sequently, the additivity assumption has been employed in several areas of
economic theory, e+g+, in connection with the separability hypothesis of produc-
tion theory+ Today, additive models are widely used in both theoretical econom-
ics and empirical data analysis+ They have a desirable statistical structure
allowing econometric analysis for subsets of the regressors, permitting decen-
tralization in optimizing and decision making and aggregation of inputs into
indices+ For more discussion, motivation, and references see, e+g+, Fuss,
McFadden, and Mundlak ~1978! or Deaton and Muellbauer ~1980!+

In statistics, the usefulness of additive modeling has been emphasized by
among others Stone ~1985! and Hastie and Tibshirani ~1990!+ Additive models
constitute a good compromise between the somewhat conflicting requirements
of flexibility, dimensionality, and interpretability+ In particular, the curse of di-
mensionality can be treated in a satisfactory manner+

So far, purely additive models have mostly been estimated using backfitting
~Hastie and Tibshirani, 1990! combined with splines, but recently the method
of marginal integration ~Auestad and Tjøstheim, 1991; Linton and Nielsen, 1995;
Newey, 1994; Tjøstheim and Auestad, 1994! has attracted a fair amount of at-
tention, an advantage being that an explicit asymptotic theory can be con-
structed+ Combining marginal integration with a one-step backfit, Linton ~1997!
presents an efficient estimator+ It should be remarked that important progress
has also been made recently ~Mammen, Linton, and Nielsen, 1999; Opsomer
and Ruppert, 1997! in the asymptotic theory of backfitting+ Finally, the estima-
tion of derivatives in additive nonparametric models is of interest for econo-
mists ~Severance-Lossin and Sperlich, 1999!+

A weakness of the purely additive model is that interactions between the ex-
planatory variables are completely ignored, and in certain econometric contexts—
production function modeling being one of them—the absence of interaction
terms has been criticized+ In this paper we allow for second-order interactions
resulting in a model

m~x! � c � (
a�1

d

fa~xa!� (
1�a�b�d

fab~xa , xb!, (3)

198 STEFAN SPERLICH ET AL.

https://doi.org/10.1017/S0266466602182016 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466602182016


and the main objective of the paper is to consider estimation and testing in
such models, mainly using marginal integration techniques+ Notice that intro-
ducing higher order interaction would gradually bring back problems of inter-
pretation and the curse of dimensionality+

In the sequel the model ~3! will be referred to as an additive model with
interactions as opposed to the purely additive model ~2!+ Actually, models with
interactions are not uncommon in economics, but parametric functions have
typically been used to describe them, which may lead to wrong conclusions if
the parametric form is incorrect+ Examples for demand and utility functions
can be found, e+g+, in Deaton and Muellbauer ~1980!+ Imagine that we want to
model utility for a household and consider the utility tree

In a nonparametric approach this would lead to the model

m~x! � c � (
a�1

6

fa~xa!� f12~x1, x2 !� f34~x3 , x4 !� f56~x5 , x6 !,

where the xa’s stand for the inputs of the bottom line in the tree ~counted
from left to right!+ The interaction function f12 stands for interaction in food-
stuffs, f34 in shelter, and f56 for entertainment; other interactions are assumed
to be nonexistent+

In the context of production function estimation various ~parametric! func-
tional forms including interaction have been proposed as alternatives to the clas-
sic Cobb–Douglas model, resulting in the

Generalized Cobb–Douglas ln Y � c � (
a�1

d

(
b�1

d

cab ln�Xa� Xb

2
�,

Translog ln Y � c � (
a�1

d

ca ln Xa

� (
a�1

d

(
b�1

d

cab~ ln Xa!~ ln Xb!,

Generalized Leontief Y � c � (
a�1

d

caMXa � (
a�1

d

(
b�1

d

cabMXa Xb,

Example: utility tree for households.
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Quadratic Y � c � (
a�1

d

ca Xa� (
a�1

d

(
b�1

d

cab Xa Xb ,

Generalized concave Y � (
a�1

d

(
b�1

d

cab Xb fab� Xa
Xb
�,

fab known and concave+

Although parametric, they all have a functional form encompassed by ~3!+ For
further discussion and references see Section 7+3, where we present a detailed
nonparametric example+

Turning to the estimation of model ~3!, we can construct an asymptotic theory
for marginal integration and also for a one-step efficient estimator analogous to
that of Linton ~1997!+ However, extending the remarkable work of Mammen
et al+ ~1999! on the asymptotic theory of backfitting seems difficult as a result
of its strong dependence on projector theory, which would be hard to carry
through for the interaction terms+

It should be pointed out that estimation in such models has already been men-
tioned and discussed in the context of a series estimator and backfitting with
splines+ For example,Andrews and Whang ~1990! give theoretical results using
a series estimator, whereas Hastie and Tibshirani ~1990! discuss possible algo-
rithms for backfitting with splines+ Stone, Hansen, Kooperberg, and Troung
~1997! develop estimation theory for interaction of any order by polynomial
spline methods+ For further general references concerning series estimators and
splines, see Newey ~1995! and Wahba ~1992!, respectively+

It should be mentioned that the approach of Fan, Härdle, and Mammen ~1998!
in estimating an additive partially linear model

m~x, z! � z Tu� c � (
a�1

d

fa~xa!

can be applied relatively straightforwardly to our framework with interaction
terms included+ Such mixed models are interesting from a practical and also
from a theoretical point of view, and they permit estimating u with the para-
metric Mn rate+ Also, an extension to generalized additive models should be
possible+ We refer to Linton and Härdle ~1996! and Härdle, Huet, Mammen,
and Sperlich ~1998! for a more detailed description of these models+

Coming finally to the issue of testing, it should be noted that sometimes eco-
nomic reasoning is used as a justification for omitting interaction terms, as in
the utility example+ However, from a general statistical point of view one would
like to test for the potential presence of interactions+ Additivity tests developed
so far have mostly been focused on testing whether a function m~x1, + + + , xd ! is
purely additive or not in the sense of ~2!+ However, if pure additivity is re-
jected, the empirical researcher would like to know exactly which interaction
terms are relevant+ A main point of the present paper is to test directly for such
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interactions ~cf+ the example of Section 7+3!, and we propose two basic func-
tionals for doing this for a pair of variables ~xa, xb!+ The most obvious one is
to estimate fab of ~3! and then use a test functional

� Zfab2 ~xa , xb!p~xa , xb!dxa dxb , (4)

where p is an appropriate nonnegative weight function+ The other functional is
based on the fact that ]2m0]xa]xb is zero iff there is no interaction between xa
and xb+ By marginal integration techniques this test can be carried out without
estimating fab itself, but it does require the estimation of a second-order mixed
partial derivative of the marginal regressor in the direction ~xa, xb!+

It is well known that the asymptotic distribution of test functionals of the
previous type does not give a very accurate description of the finite sample
properties unless the sample size n is fairly large ~see, e+g+, Hjellvik, Yao, and
Tjøstheim 1998!+ As a consequence for a moderate sample size we have adopted
a wild bootstrap scheme for constructing the null distribution of the test
functional+

Other tests of additivity have been proposed+ The one coming closest to ours
is a test by Gozalo and Linton ~1997!, which is based on the differences in
modeling m by a purely additive model as in equation ~2! as opposed to using
the general model ~1!+ The curse of dimensionality may of course lead to
bias—as pointed out by the authors themselves+ Also, this test is less specific
in indicating what should be done if the additivity hypothesis is rejected+ A
rather different approach to additivity testing ~in a time series context! is taken
by Chen, Liu, and Tsay ~1995!+ Still another methodology is considered by Eu-
bank, Hart, Simpson, and Stefanski ~1995! or by Derbort, Dette, and Munk
~2002!, who both only consider fixed designs+

Our paper is divided into two main parts concerned with estimation and test-
ing, respectively+ In Section 2 we present our model in more detail and state
some identifying assumptions+ In Section 3 are given the marginal integration
estimator for additive components and interactions, for derivatives, and sub-
sequently, in Section 4, the corresponding one-step efficient estimators+ The
testing problem is introduced in Section 6 with two procedures for testing the
significance of single interaction terms; also local power results are given+ Fi-
nally, Sections 5 and 7 provide several simulation experiments and an applica-
tion to real data+ The technical proofs have been relegated to the Appendix+

2. SOME SIMPLE PROPERTIES OF THE MODEL

In this section some basic assumptions and notations are introduced+ We con-
sider the additive interactive regression model

Y � c � (
a�1

d

fa~Xa!� (
1�a�b�d

fab~Xa , Xb!� s~X !«+ (5)
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Here in general, X � ~X1, X2, + + + , Xd ! represents a sequence of independent
and identically distributed ~i+i+d+! vectors of explanatory variables; « refers to
a sequence of i+i+d+ random variables independent of X and such that E~«! � 0
and Var~«! � 1+ We permit heteroskedasticity, and the variance function is
denoted by s 2~X !+ In the previous expression c is a constant, $ fa~{!%a�1

d and
$ fab~{!%1�a�b�d are real-valued unknown functions+ Clearly, the representa-
tion ~5! is not unique, but it can be made so by introducing for a � 1,2, + + + ,d,
the identifiability conditions

Efa~Xa! �� fa~xa!wa~xa!dxa� 0, (6)

and for all 1 � a � b � d,

� fab~xa , xb!wa~xa!dxa �� fab~xa , xb!wb~xb!dxb� 0, (7)

with $wa~{!%a�1
d being marginal densities ~assumed to exist! of the Xa’s+

It is important to observe that equations ~6! and ~7! do not represent restric-
tions on our model+ Indeed, if a representation as given in ~3! or ~5! does not
satisfy ~6! and ~7!, one can easily change it so that it conforms to these identi-
fiability conditions by taking the following steps+

~1! Replace all $ fab~xa, xb!%1�a�b�d by $ fab~xa, xb! � fa,ab~xa! � fb,ab~xb! �
c0,ab%1�a�b�d , where

fa,ab~xa! �� fab~xa ,u!wb~u!du,

fb,ab~xb! �� fab~u, xb!wa~u!du,

c0,ab �� fab~u, v!wa~u!wb~v!dudv

and adjust the $ fb~xb!%b�1
d ’s and the constant term c accordingly so that m~ !

remains unchanged;
~2! Replace all $ fb~xb!%b�1

d by $ fb~xb! � c0,b%b�1
d , where c0,b � * fb~u!wb~u!du,

and adjust the constant term c accordingly so that m~ ! remains unchanged+

In the sequel, unless otherwise stated, each fa and fab will be assumed to sat-
isfy ~6! and ~7!+

Next, we turn to the concept of marginal integration+ Let X ta be the ~d � 1!-
dimensional random variable obtained by removing Xa from X � ~X1, + + + , Xd !
and let X n n nab be defined analogously+With some abuse of notation we write X �
~Xa, Xb, X n n nab! to highlight the directions in d-space represented by the a and b
coordinates+ We denote the density of Xa, X ta, X n n nab, and X by wa~xa!, w ta~x ta!,
w n n nab~x n n nab!, and w~x!, respectively+
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We now define by marginal integration

Fa~xa! ��m~xa , x ta!w ta~x ta!dx ta (8)

for every 1 � a � d and

Fab~xa , xb! ��m~xa , xb, x n n nab!w n n nab~x n n nab!dx n n nab ,

cab �� fab~u, v!wab~u, v!dudv

for every pair 1 � a � b � d+ Denote by Da the subset of $1,2, + + + ,d % with a
removed,

Daa � $~g,d!61 � g � d� d,g � Da ,d � Da%, and

Dab � $~g,d!61 � g � d� d,g � Da � Db ,d � Da � Db%+

The quantities Fa and Fab do not satisfy the identifiability conditions+ Actually,
~6! and ~7! entail the following lemma+

LEMMA 1+ For model (5) the following equations for the marginals hold:

1. Fa~xa! � fa~xa!� c � (
~g,d!�Daa

cdg

Fab~xa , xb!� fab~xa , xb!� fa~xa!� fb~xb!� c � (
~g,d!�Dab

cdg

2. Fab~xa , xb!� Fa~xa!� Fb~xb!��m~x!w~x!dx � fab~xa , xb!� cab

3. cab��$Fab~u, xb!� Fa~u!%wa~u!du � Fb~xb!��m~x!w~x!dx

fab~xa , xb!� Fab~xa , xb!� Fa~xa!��$Fab~u, xb!� Fa~u!%wa~u!du

We define another auxiliary function:

fab
* ~xa , xb! :� Fab~xa , xb!� Fa~xa!� Fb~xb!��m~x!w~x!dx

� fab~xa , xb!� cab +

In Section 3 we will estimate Fa and fab
* + These quantities are more convenient

to work with than fa and fab, and as shown by Lemma 1 and the definition of
fab
* they can be identified with fa and fab up to a constant+ That fab

* is a conve-
nient substitute for fab when it comes to testing is shown by the following
corollary+
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COROLLARY 1+ Let fab
* ~xa , xb! and fab~xa, xb! be as defined previously.

Then

fab
* ~xa , xb! [ 0m fab~xa , xb! [ 0+

The corollary suggests the use of the following functional for testing of ad-
ditivity of the ath and bth directions+

� Zfab*2~xa , xb!wab~xa , xb!dxa dxb , (9)

where

Zfab* ~xa , xb! � ZFab~xa , xb!� ZFa~xa!� ZFb~xb!�
1

n (j�1

n

Yj (10)

with estimates ZFab, ZFa, and ZFb of Fab, Fa, and Fb being defined in the next
section and where it follows from the strong law of large numbers that

1

n (j�1

n

Yj
a+s+
&& �m~x!w~x!dx+

In practice, because wab is unknown, the integral in ~9! is replaced by an em-
pirical average ~cf+ Section 6!+

As an alternative it is also possible to consider the mixed derivative of fab+
We will use the notation fab

~r, s! to denote the derivative ~] r�s0]xar]xbs ! fab and
analogously Fab

~r, s! for ~] r�s0]xar]xbs !Fab + We only have to check whether

�$Fab~1,1!~xa , xb!%2p~xa , xb!dxa dxb

is zero, because, under the identifiability condition ~7!, Fab
~1,1!� 0 is equivalent

to fab � 0+

3. MARGINAL INTEGRATION ESTIMATION

3.1. Estimation of the Additive Components and Interactions Using
Marginal Integration

To use the marginal integration type statistic ~9!, estimators of the interaction
terms must be prescribed+ Imagine the X-variables to be scaled so that we can
choose the same bandwidth h for the directions represented by a, b, and g for
n n nab+ Further, let K and L be kernel functions and define Kh~{!� h�1K~{0h! and
Lg~{! � g�1L~{0g!+ For ease of notation we use the same letters K and L ~and
later K *! to denote kernel functions of varying dimensions+ It will be clear from
the context what the dimensions are in each specific case+
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Following the ideas of Linton and Nielsen ~1995! and Tjøstheim and Aues-
tad ~1994! we estimate the marginal influence of xa, xb, and ~xa, xb! by the
integration estimator

ZFab~xa , xb! �
1

n (l�1

n

[m~xa , xb , Xl n n nab!, ZFa~xa!�
1

n (l�1

n

[m~xa , Xl ta!, (11)

where Xl n n nab ~Xl ta! is the l th observation of X with Xa and Xb ~Xa! removed+
The estimator [m~xa, xb, Xl n n nab! will be called the preestimator in the follow-

ing+ To compute it we make use of a special kind of multidimensional local
linear kernel estimation; see Ruppert and Wand ~1994! for the general case+We
consider the problem of minimizing

(
i�1

n

$Yi � a0 � a1~Xia� xa!� a2~Xib� xb!%
2Kh~Xia� xa , Xib� xb!

� Lg~Xi n n nab� Xl n n nab! (12)

for each fixed l+ Accordingly we define

[m~xa , xb , Xl n n nab! � e1~Zab
T Wl,ab Zab!

�1 Zab
T Wl,abY,

where Y � ~Y1, + + + ,Yn!
T,

Wl,ab � diag � 1

n
Kh~Xia� xa , Xib� xb!Lg~Xi n n nab� Xl n n nab!�

i�1

n

,

Zab � �
1 X1a� xa X1b� xb
I I I

1 Xna� xa Xnb� xb
� ,

and e1 � ~1,0,0!+ It should be noted that this is a local linear estimator in the
directions a, b, and a local constant one for the nuisance directions n n nab+

Similarly, to obtain the preestimator [m~xa, Xl ta!, with e1 � ~1,0!, we define

[m~xa , Xl ta! � e1~Za
T Wl,a Za!

�1 Za
T Wl,aY,

in which

Wl,a � diag � 1

n
Kh~Xia� xa!Lg~Xi ta� Xl ta!�

i�1

n

,

Za � �
1 X1a� xa
I I

1 Xna� xa
� +
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This estimator results from minimizing

(
i�1

n

$Yi � a0 � a1~Xia� xa!%
2Kh~Xia� xa!Lg~Xi ta� Xl ta!,

which gives a local linear smoother for the direction a and a local constant one
for the other directions+

To derive the asymptotics of these estimators we make use of the concept
of equivalent kernels; see Ruppert and Wand ~1994! and Fan, Gasser, Gijbels,
Brockmann, and Engel ~1993!+ The main idea is that the local polynomial
smoother of degree p is asymptotically equivalent to, i+e+, it has the same lead-
ing term as, a kernel estimator with a “higher order kernel” given by

Kn
�~u! :� (

t�0

p

snt utK~u! (13)

in the one-dimensional case, where S � ~*ut�sK~u!du!0�t, s�p and S�1 �
~snt !0�n, t�p and where p is chosen according to need+ Estimates of deriva-
tives of m can then be obtained by choosing appropriate rows of S�1 + If, e+g+,
p � 1, we have

S�1 � �1 0

0 m2
�1�,

with m j � *u jK~u!du+
To estimate the functions fa ~or m! itself ~n� 0! we use a local linear smoother

and have simply K0
�~u! � K~u!+

We can now state the first main result for estimation in our additive inter-
active regression model+ For this, we need the following assumptions+

~A01! The kernels K~{! and L~{! are bounded, symmetric, compactly sup-
ported, and Lipschitz continuous with the nonnegative K ~{! satisfying
*K~u!du � 1+ The ~d � 1!-dimensional kernel L~{! is a product of univariate
kernels L~u! of order q � 2, i+e+,

�urL~u!du � �
1 for r � 0

0 for 0 � r � q

cr � IR for r � q

+

~A02! Bandwidths satisfy nhg ~d�1!0ln~n!r `, gq0h 2r 0, and h � h0 n�105+

~A3! The functions fa, fab have bounded Lipschitz continuous derivatives of
order q+

~A4! The variance function s 2~{! is bounded and Lipschitz continuous+

~A5! The d-dimensional density w has compact support A with infx�Aw~x! �
0 and is Lipschitz continuous+
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Remark 1+ Product kernels are chosen here for ease of notation, especially
in the proofs+ The theorems also work for other multivariate kernels+ In the
following discussion we will use the notation 7L722 :� *L2~x! dx for a kernel L
~and later also for K or Kn

*! of any dimension+

Remark 2+ For ease of presentation we will use local linear smoothers in
Theorems 1–3+ But from Severance-Lossin and Sperlich ~1999! it is clear that
this can easily be extended to arbitrary degrees p � 1+ Then, assumption ~A02!
would change to nhg ~d�1!0ln~n! r `, gq0h p�1 r 0, and h � h0 n�~102p�3!,
whereas in ~A3! one would have to require that the functions fa, fab have bounded
Lipschitz continuous derivatives of order max$ p � 1,q% +

THEOREM 1+ Let ~xa! be in the interior of the support of wa~{! . Then un-
der conditions (A01), (A02), and (A3)–(A5),

Mnh$ ZFa~xa!� Fa~xa!� h 2b1~xa!%
L
&& N$0, v1~xa!%, (14)

where Fa is given by (8) and Lemma 1, ZFa by (11). The variance is

v1~xa! � 7K722�s 2~x!
w ta

2~x ta!

w~x!
dx ta

and the bias

b1~xa! �
m2

2
fa
~2!~xa!+

We now have almost everything at hand to estimate the interaction
terms, again using local linear smoothers+ For the two-dimensional local lin-
ear ~ p � 1! case the equivalent kernel is

Kn
*~u, v! :� K~u, v!sn~1,u, v!T, (15)

with sn, 0 � n � 2, being the ~n � 1!th row of

S�1 � �
1 0 0

0 m2
�1 0

0 0 m2
�1� +

Using a local linear smoother we have K0
*~u, v! � K~u, v!, but Kn

* becomes in-
creasingly important when we estimate derivatives+ We will come back to this
point in Section 3+2+

We are interested in the asymptotics of the estimator Zfab* ~xa , xb! given in
~10!+ Since we have a two-dimensional problem, the assumptions have to be
adjusted accordingly+

~A1! The kernels K~{! and L~{! are bounded, symmetric, compactly sup-
ported, and Lipschitz continuous+ The bivariate kernel K is a product kernel
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such that ~with some abuse of notation! K~u, v! � K~u!K~v!, where K~u! and
K~v! are identical functions with the nonnegative K~{! satisfying *K~u!du � 1+
The ~d � 1!-, respectively ~d � 2!-dimensional kernel L~{! is also a product of
univariate kernels L~u! of order q � 2+

~A2! Bandwidths satisfy nh 2g ~d�2!0ln2~n! r ` and nhg ~d�1!0ln2~n! r `,
gq0h 2 r 0 and h � h0 n�106+

THEOREM 2+ Let ~xa, xb! be in the interior of the support of wab~{! . Then
under conditions (A1)– (A5),

Mnh 2 $ Zfab* ~xa , xb!� fab
* ~xa , xb!� h 2B1~xa , xb!%

L
&& N$0,V1~xa , xb!%, (16)

where Zfab* is given by (10) and

V1~xa , xb! � 7K0
*722�s 2~x!

w n n nab
2 ~x n n nab!

w~x!
dx n n nab

and

B1~xa , xb! � m2~K !
1

2
$ fab
~2,0!~xa , xb!� fab

~0,2!~xa , xb!%+

Theorems 1 and 2 are concerned with the individual components+ The last
result of this section ~whose proof essentially follows from Theorems 1 and 2
and will be omitted! states the asymptotics of the combined regression estima-
tor Km~x! of m~x! given by

Km~x! � (
a�1

d

ZFa~xa!� (
1�a�b�d

Zfab* ~xa , xb!� ~d � 1!
1

n (i�1

n

Yi + (17)

THEOREM 3+ Let x be in the interior of the support of w~{! . Then under
conditions (A1) and (A3)– (A5) and choosing bandwidths as in (A02) and (A2)
for the one- and two-dimensional component functions, we have

Mnh 2 $ Km~x!� m~x!� h 2Bm~x!%
L
&& N$0,Vm~x!%, (18)

where h is as in (A2),

Bm~x!� (
1�a�b�d

B1~xa , xb! and Vm~x!� (
1�a�b�d

V1~xa , xb! +

3.2. Estimation of Derivatives

Because the estimation of derivatives for additive separable models has already
been considered in the paper of Severance-Lossin and Sperlich ~1999!, in this
section we concentrate on estimating the mixed derivatives of the function Fab+
Our interest in this estimator is motivated by testing the hypothesis of additiv-
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ity without second-order interaction because Fab
~1,1! � 0 is equivalent to testing

the hypothesis that fab is zero under the identifiability condition ~7!+
Following the ideas of the previous section at the point ~xa, xb, Xi n n nab! we im-

plement a special version of the local polynomial estimator+ For our purpose it
is enough to use a bivariate local quadratic ~ p � 2! estimator+ We want to
minimize

(
i�1

n

$Yi � a0 � a1~Xia� xa!� a2~Xib� xb!� a3~Xia� xa!~Xib� xb!

� a4~Xia� xa!
2 � a5~Xib� xb!

2 %2

� Kh~Xia� xa!Kh~Xib� xb!Lg~Xi n n nab� Xl n n nab!

and accordingly define our estimator by

ZFab
~1,1!~xa , xb! �

1

n (i�1

n

e4~Zab
T Wi,ab Zab!

�1 Zab
T Wi,abY, (19)

where Y,Wi,ab are defined as in Section 3+1, e4 � ~0,0,0,1,0,0!, and

Zab � �
1 X1a� xa X1b� xb ~X1a� xa!~X1b� xb! ~X1a� xa!

2 ~X1b� xb!
2

I I I I I I

1 Xna� xa Xnb� xb ~Xna� xa!~Xnb� xb! ~Xna� xa!
2 ~Xnb� xb!

2� +
This estimator is bivariate locally quadratic for the directions a and b and lo-
cally constant elsewhere+

Recalling the approach of the preceding section we can now put the equiva-
lent kernel K * to effective use+ Using a local quadratic smoother we have for
the two-dimensional case

Kn
*~u, v! :� K~u, v!sn~1,u, v,uv,u2, v 2 !T,

where sn is the ~n � 1!th, 0 � n � 5, row of

S�1 � �
m4 �m2

2

m4 �m2
2 0 0 0

�m2

m4 �m2
2

�m2

m4 �m2
2

0 m2
�1 0 0 0 0

0 0 m2
�1 0 0 0

0 0 0 m2
�2 0 0

�m2

m4 �m2
2 0 0 0 ~m4 �m2

2!�1 0

�m2

m4 �m2
2 0 0 0 0 ~m4 �m2

2!�1

� +
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The relationship between S�1 and ~Zab
T Wl,ab Zab!

�1 is given in Lemma A2 in
the Appendix+

If we want to estimate the mixed derivative, we use K3
*~u, v!� K~u, v!uvm2

�2

where

�uvK3
*~u, v! dudv � 1,

�uiK3
*~u, v! dudv ��v iK3

*~u, v! dudv� 0 for i � 0,1,2,3, + + + ,

�u2v iK3
*~u, v! dudv ��uiv 2K3

*~u, v! dudv� 0 for i � 0,1,2,3, + + + +

To state the asymptotics for the joint derivative estimator we need bandwidth
conditions that differ slightly from ~A2!+ In fact, more smoothing is required+

~A6! Bandwidths satisfy nh 2g ~d�2!0ln~n!r `, gq0h 2r 0, and h � h0n�1010+

Further, using a local quadratic smoother, Assumption ~A3! changes to the
following assumption+

~A7! The functions fa, fab have bounded Lipschitz continuous derivatives of
order max$3,q%+

Then we have the following theorem+

THEOREM 4+ Under conditions (A1), and (A4)– (A7),

Mnh 6 $ ZFab
~1,1!~xa , xb!� Fab

~1,1!~xa , xb!� h 2B2~xa , xb!%
L
&& N$0,V2~xa , xb!%,

where

V2~xa , xb! � 7K3
*722�s 2~x!

w n n nab
2 ~x n n nab!

w~x!
dx n n nab

and

B2~xa , xb! � m4m2
�1	 1

2
$ fab
~2,1!~xa , xb!®b� fab

~1,2!~xa , xb!®a%

�
1

3!
$ fab
~3,1!~xa , xb!� fab

~1,3!~xa , xb!� fab
~3,0!~xa , xb!®b

� fab
~0,3!~xa , xb!®a� fa

~3!~xa!®b� fb
~3!~xb!®a%
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with

®a �� w n n nab~x n n nab!
w~x!

]w~x!

]xa
dx n n nab

and ®b defined analogously.

4. A ONE-STEP EFFICIENT ESTIMATOR

It is known that for purely additive models of the form

E @Y 6X � x#� m~x1, + + + , xd !� c � (
a�1

d

fa~xa! (20)

the marginal integration estimator is not efficient if the regressors are corre-
lated and the errors are homoskedastic+ It is inefficient in the sense that if f2, + + + , fd
are known, say, then the function f1 could be estimated with a smaller variance
applying a simple one-dimensional smoother on the partial residual

Ui1 � Yi � c � (
a�2

d

fa~Xia!+ (21)

Basically, this is the idea of the ~iterative! backfitting procedure+ Linton ~1997,
2000! suggests an estimator combining the backfitting with the marginal
integration idea+ He first performs the marginal integration procedure to ob-
tain Zfa, + + + , Zfd , and then derives the partial residuals

EUi1 � Yi � c � (
a�2

d

Zfa~Xia!+ (22)

Subsequently, he applies a one-dimensional local linear smoother on the EUia+
This is equivalent to a one-step backfit+

Assuming that we already know the true underlying model, we consider an
extension of his approach to our additive interaction models of the form ~5!+
This ought to be of some interest, because in contradistinction to the case of no
interaction, for a pure backfitting procedure, analogous to Hastie and Tibshi-
rani ~1990! or Mammen et al+ ~1999!, it is not even clear how a consistent
estimate could be constructed+ Hastie and Tibshirani discuss this point but only
for one interaction term, and they merely supply some heuristic motivation for
their methods+

At the outset we do not restrict ourselves to homoskedastic errors but let
sa

2~xa! � Var @Y � m~x!6Xa � xa# , with sab~xa, xb! defined analogously, and
assume the existence of finite second moments for these quantities+We present
an analogue to the efficient estimator of Linton ~1997!, but, as in his paper, we
can claim a smaller variance than for the classic marginal integration only in
case of homoskedasticity+
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Consider model ~5! and the two partial residuals

Uia � Yi � (
g�a

fg~Xig!� (
1�g�b�d

fgb~Xig , Xib!� (
~g,d!�Daa

cgd

� Yi � m~Xi !� Fa~Xia!, (23)

Uiab � Yi � (
g�1

d

fg~Xig!� (
1�g�d�d
~g,b!�~a,b!

fgd~Xig , Xid !� cab

� Yi � m~Xi !� fab
* ~Xia , Xib!+ (24)

For the estimation of the functional form it does not matter whether we correct
for the constants ~cab! before or after calculating the efficient estimator+ To be
consistent in our presentation with the preceding sections we have chosen the
latter option+ Further discussion of this issue can also be found in Linton ~1997,
2000!+

Let now XFaopt be the local linear regressor of Uia in ~23! with respect to Xa,
and Xfab*opt the one of Uiab in ~24! versus ~Xa, Xb!+ From Fan ~1993! and Ruppert
and Wand ~1994! we know that under standard regularity conditions the asymp-
totic properties are

Mnhe$ XFaopt~xa!� Fa~xa!� he
2 be~xa!%r N$0, ve~xa!%, (25)

Mnhe
2$ Xfab*opt~xa , xb!� fab

* ~xa , xb!� he
2 Be~xa , xb!%r N$0,Ve~xa , xb!% (26)

with

be~xa! � m2~J !
1

2
f ~2! ~xa!, ve~xa!� 7J722sa2~xa!wa�1~xa!,

Be~xa , xb! � m2~J !
1

2
$ f ~2,0! ~xa , xb!� f ~0,2! ~xa , xb!%,

Ve~xa , xb! � 7J722sab2 ~xa , xb!wab�1~xa , xb!,

where J is the one- or two-dimensional kernel ~corresponding to ~23! and ~24!,
respectively! with m2~J ! � *u2J ~u!du in the one-dimensional case and he is
the associated bandwidth+

Suppose now that the kernel J is the same as the kernel K used to define
ZFab~xa , xb! and ZFa~xa! in ~11!+ Then the bias expressions are the same

for the efficient estimators XFaopt~xa! and Xfab*opt~xa , xb! and the original mar-
ginal integration estimators+ Using the simple trick of Linton ~1997!, it is also
straightforward to verify that if s~x! [ s0 � 0 is a constant, then XFaopt~xa!
and Xfab*opt~xa , xb! have smaller variances than ZFa~xa! and ZFab~xa, xb!, respec-
tively+ The appellation “efficient estimator” is justified in the sense that this
estimator has the same asymptotic variance as if the other components were
known+
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Now we replace Uia, Uiab by EUia, EUiab by replacing the real functions Fg, fgd*

by their marginal integration estimates defined in the preceding sections+ The
efficient estimator XFa~xa! for Fa~xa! is defined as being the solution for c0 in

min
c0 , c1
(
i�1

n

$ EUia� c0 � c1~Xia� xa!%
2J� Xia� xa

he
�+ (27)

Similarly, for fab
* ~xa , xb! it is defined as being the solution for c0 in

min
c0 , c1, c2
(
i�1

n

$ EUiab� c0 � c1~Xia� xa!� c2~Xib� xb!%
2J� Xia� xa

he

,
Xib� xb

he
�+

(28)

From the discussion in Linton ~1997! it is clear that slightly undersmoothing
the marginal integration estimator, i+e+, h, g � o~n�105!, leads to the desired
result that asymptotically the efficient estimators XFa and Xfab* inherit the prop-
erties of XFaopt , Xfab*opt+

THEOREM 5+ Suppose that conditions (A1)– (A5) hold, that the kernel J
behaves like the kernel K, and g, h are o~n�105! , he � Cn�105,C � 0 . Then we
have in probability

Mnhe$ XFa~xa!� XFaopt~xa!%
p
&& 0, (29)

Mnhe
2$ Xfab* ~xa , xb!� Xfab*opt~xa , xb!%

p
&& 0 (30)

for all a,b � 1, + + + ,d.

Apart from the theoretical differences made apparent by ~25!, ~26!, ~29!, and
~30!, there is also another, substantial, difference between backfitting, marginal
integration, and this efficient estimator+ The backfitting consists in estimating
the additive components after a projection of the regression function into the
space of purely additive models+ The marginal integration estimator, in con-
trast, always estimates the marginal influence of the particular regressor, what-
ever the true model is ~see, e+g+, Sperlich, Linton, and Härdle 1999!+ The efficient
estimator is a mixture and thus suffers from the lack of interpretability if the
assumed model structure is not completely fulfilled+ This could be a disadvan-
tage in empirical research+ Moreover, in the context of testing model structure
this may lead to problems, especially if we use bootstrap realizations generated
with an estimated hypothetical model+

5. COMPUTATIONAL PERFORMANCE OF THE ESTIMATORS

To examine the small sample behavior of the estimators of the previous sec-
tions we did a simulation study for a sample size of n � 169 observations+
Certainly, an intensive computational investigation of not only ours but also
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alternative estimation procedures for additive models would be of interest, but
this would really require a separate paper+A first detailed investigation and com-
parison between the backfitting and the marginal integration estimator can be
found in Sperlich et al+ ~1999! but without interaction terms+

Here, we present a small illustration to indicate how these procedures be-
have in small samples+ The data have been generated from the model

m~x! � E~Y 6X � x!� c �(
j�1

3

fj ~xj !� f12~x1, x2 !, (31)

where

f1~u! � 2u, f2~u!� 1+5 sin~�1+5u!, (32)

f3~u! � �u2 � E~X3
2! and f12~u, v!� auv

with a � 1 for the simulations in this section+ The input variables Xj , j � 1,2,3,
are i+i+d+ uniform on @�2,2# + To generate the response Y we added normally
distributed error terms with standard deviation se� 0+5 to the regression func-
tion m~x!+

For all calculations we used the quartic kernel ~15016!~1 � u2!211$6u 6 � 1%
for K~u! and L~u!, and we used product kernels for higher dimensions+ We
chose different bandwidths depending on the actual situation and on whether
the direction was of interest or not ~in the previous sections we distinguished
them by denoting them h and g!+ For a discussion of optimal choice of band-
width, we refer to Sperlich et al+ ~1999!, but it must be admitted that a com-
plete and practically useful solution to this problem remains to be found+ This
is particularly true ~also for the bandwidth he! if applying the one-step efficient
estimator+

When we considered the estimation of the functions fa, fab* we used h � 0+9,
g � 1+1+ For the one-step backfit ~efficient estimator! we used h � 0+7, g � 0+9,
and he � 0+9, as we have to undersmooth+

In Figure 1 we depict the performance of the “simple” marginal integration
estimator, using the local linear smoother+ The data generating functions f1, f2,
and f3 are given as dashed lines in a point cloud that represents the observed
responses Y after the first simulation run+ The interaction function f12 is given
in the lower left window+ For 100 repetitions we estimated the functions on a
grid with the previously mentioned bandwidths and kernels and plotted for each
grid point the extreme upper and extreme lower value of these estimates+ For
the one-step efficient estimator we did the same+ The results are given in
Figure 2+

The results are quite good having in mind that we have used only n � 169
observations+ As intended, the estimates, at least for the interaction term, are
smoother for the one-step efficient estimator+ The biases can be seen clearly for
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Figure 1. Performance of the “simple” marginal integration estimator+ Real functions
~dashed! and extreme points for 100 of their estimates ~solid!+ For the first run also the
response variable Y ~points! is given+ Position: f1 ~top!, f2 ~upper left!, f3 ~upper right!,
f12 ~lower left!, and extreme points of its estimates after 100 simulation runs ~lower
right!+
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Figure 2. Performance of the “efficient” estimator+ Real functions ~dashed! and ex-
treme points for 100 of their estimates ~solid!+ For the first run also the response vari-
able Y ~points! is given+ Position: f1 ~top!, f2 ~upper left!, f3 ~upper right!, f12 ~lower
left!, and extreme points of its estimates after 100 simulation runs ~lower right!+
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both and are similar+ All in all, for a sample of this size the two estimators give
roughly the same results+

6. TESTING FOR INTERACTION

The second major objective of this paper is to provide tests of second-order
interaction+ For the model ~3! we consider the null hypothesis H0,ab : fab � 0;
i+e+, there is no interaction between Xa and Xb for a fixed pair ~a,b!+ Applying
this test to any pair of different directions Xg, Xd, 1 � g � d � d this can be
regarded as a test for separability in the regression model+

6.1. Considering the Interaction Function

We will briefly sketch how the test statistic can be analyzed and then state the
theorem giving the asymptotics+ The detailed proof is given in the Appendix+

We consider * Zfab*
2
~xa , xb!wab~xa , xb!dxa dxb + In practice, because wab is

unknown, this functional will subsequently be replaced by an empirical aver-
age in ~37!+ Note first that by Theorem 2, equation ~16!, and some tedious cal-
culations we get the following decomposition:

� Zfab* 2
~xa , xb!wab~xa , xb!dxa dxb

� 2 (
1�i�j�n

H~Xi ,«i , Xj ,«j !�(
i�1

n

H~Xi ,«i , Xi ,«i !

� � fab
*2~xa , xb!wab~xa , xb!dxa dxb

� 2h 2� fab
* ~xa , xb!B1~xa , xb!wab~xa , xb!dxa dxb� op~h

2 !,

where

H~Xi ,«i , Xj ,«j ! � «i «j� 1

n2 ~wiab� wia� wib!~wjab� wja� wjb!

� s~Xi !s~Xj !wab~xa , xb!dxa dxb

with weights wia, wib, and wiab defined in the Appendix, equations ~A+2! and
~A+5!+

We then calculate the asymptotics of the sums of the H~Xi ,«i , Xi ,«i !’s and
the H~Xi ,«i , Xj ,«j!’s, put the results together, and obtain ~see the proof of Theo-
rem 6 in the Appendix! the following theorem+
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THEOREM 6+ Under Assumptions (A1)– (A5),

nh� Zfab* 2
~xa , xb!wab~xa , xb!dxa dxb�

2$K ~2! ~0!%2

h

� � wab~za , zb!w n n nab2 ~z n n nab!
w~z!

s 2~z!dz

� nh� fab
*2~xa , xb!wab~xa , xb!dxa dxb

� 2nh 3� fab
* ~xa , xb!B1~xa , xb!wab~xa , xb!dxa dxb

L
&& N$0,V~K,w,s!%,

in which

V~K,w,s! � 27K ~2! 724� wab2 ~z1a , z1b!w n n nab
2 ~z1 n n nab!w n n nab

2 ~z2 n n nab!

w~z1!w~z1a , z1b , z2 n n nab!

� s 2~z1!s
2~z1a , z1b , z2 n n nab!dz1 dz2 n n nab ,

where K ~2! is the two-fold convolution of the kernel K and where B1 is defined
in the formulation of Theorem 2.

It should be noted that under the null hypothesis of no pairwise interactions,
the terms involving fab

* vanish identically+ Thus it is not necessary to estimate
the bias term B1+

To derive the local power, denote by Sab the support of the density wab and
let Bab~M ! be the function class consisting of functions fab satisfying

7 fab7H 2~Sab! � M,

where one denotes by 7 fab7H s~Sab! the Sobolev seminorm

�(
u�0

s �
Sab
� ] s fab~xa , xb!

]uxa]
s�uxb

�2

dxa dxb, s � 2,3, + + +

and M � 0 is a constant+ Consider the null hypothesis H0,ab : fab~xa, xb! [ 0
versus the local alternative H1,ab~a! : fab � Fab~a! where, for any a � 0,
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Fab~a! � �fab � Bab~M ! : 7 fab7L2~Sab ,wab!

� ��Sab

fab
2 ~xa , xb!wab~xa , xb!dxa dxb � a� +

Based on Theorem 6, the test rule with asymptotic significance level 1 � h is
as follows+

Test Rule+ Reject the null hypothesis H0,ab in favor of the alternative
H1,ab~a! if

Tn � C~h;h,K,w,s!, (33)

where the test functional is

Tn � nh� Zfab* 2
~xa , xb!wab~xa , xb!dxa dxb (34)

and the critical value

C~h;h,K,w,s! � F�1~1 � h!V 102~K,w,s!

�
2$K ~2! ~0!%2

h
� wab~za , zb!w n n nab2 ~z n n nab!

w~z!
s 2~z!dz, (35)

in which F is the cumulative distribution function of the standard normal vari-
able+ The following result concerns the local power of the preceding test+

THEOREM 7+ Under assumptions (A1)– (A5), let for 1 � i � n

Yi, n � c � (
g�1

d

fg~Xig, n !� fab, n~Xia, n , Xib, n !� (
1�g�d�d
~g,d!�~a,b!

fgd~Xig, n , Xid, n !

� s~Xi, n !«i, n (36)

be the data array generated from the i.i.d. array ~Xi, n , «i, n!,1 � i � n,
for each n � 1,2, + + + , with fixed main effects $ fg%g�1

d and interactions
$ fgd%1�g�d�d, ~g,d!�~a,b! and with the abth interaction ~ fab, n !n�1

` a sequence
of functions such that fab, n � Fab~an! where $an% is a sequence satisfying
an

�1 � o~nh � h�2! � o~n506! as n r ` . Denote by pn the probability of
rejecting H0,ab : fab, n~xa , xb! [ 0 in favor of the local alternative
H1,ab~an! : fab, n � Fab~an! based on the data ~Xi, n,Yi, n!,1 � i � n as defined
in (36). Then limnr` pn � 1 .

Theorem 7 guarantees that asymptotically, the proposed test procedure ~33!
is able to detect an interaction term of the magnitude n�506 with probability 1+
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To implement the test procedure ~33!, the critical value C ~h; h,K,w,s!
can be obtained as the wild bootstrap quantiles of the test statistic Tn �

nh* Zfab*
2
~xa , xb!wab~xa , xb!dxa dxb + Because the density wab is unknown, Tn

is approximated, using a law of large numbers argument, by

ETn � nh(
l�1

n

Zfab*
2
~Xla , Xlb!0n � h(

l�1

n

Zfab*
2
~Xla , Xlb!+ (37)

The following theorem ensures that this substitution is asymptotically feasible+

THEOREM 8+ Under Assumptions (A1)– (A5),

ETn �
2$K ~2! ~0!%2

h
� wab~za , zb!w n n nab2 ~z n n nab!

w~z!
s 2~z!dz

� nh� fab
*2~xa , xb!wab~xa , xb!dxa dxb

� 2nh 3� fab
* ~xa , xb!B1~xa , xb!wab~xa , xb!dxa dxb

L
&& N$0,V~K,w,s!%+

Hence, Theorem 6 and test rule ~33! are not affected by replacing Tn with ETn+
Further, this holds for Theorem 7 also, provided the same additional assump-
tions are true+

6.2. Considering the Mixed Derivative of the Joint Influence

In contrast to the preceding method one can test for interaction without esti-
mating the function of interaction fab explicitly but looking at the mixed de-
rivative of the function Fab+ Our test functional is * ZFab

~1,1!2 wab~xa, xb! dxa �
dxb � * Zfab

~1,1!2wab~xa , xb! dxadxb+
As can be seen from the proofs of Theorems 1, 2, and 4– 6 in the Appendix,

the derivation of the asymptotics for this test statistic is the same as in the proof
of Theorem 6 with the only difference that we now have to deal with K3

* and
end up with asymptotic formulas containing K1

� instead of K; see the definition
in Section 3+1+ Thus we state the following theorem without an explicit proof+
Again, it can be noted that the convergence rate is slower than that obtained in
Theorem 6, so it could be asked why this test statistic should be looked at+ In
fact, as will be seen in the simulations in Section 7, large samples are needed
to approximate the asymptotic properties, where large can mean thousands of
observations+ So, even if the test procedure proposed in Section 6+1 should at
some point beat the one we consider here, this is not clear for a small or mod-
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erate sample, which is typical for many real data sets+ Further, it is well known
that even though a certain test based on the estimation of a functional form is
superior in detecting a general deviation from the hypothetical one, a single
peak or bump can often be better detected by tests based on the derivatives+

THEOREM 9+ Under Assumptions (A1) and (A4)– (A7),

nh 5� ZFab~1,1!2~xa , xb!wab~xa , xb!dxa dxb

�
2$K1

�~2!~0!%2

h
� wab~za , zb!w n n nab2 ~z n n nab!

w~z!
s 2~z!dz

� nh 5� fab
~1,1!2~xa , xb!wab~xa , xb!dxa dxb

� 2nh 7� fab
~1,1!~xa , xb!B2~xa , xb!wab~xa , xb!dxa dxb

L
&& N �0,27K1

�~2!724� wab2 ~z1a , z1b!w n n nab
2 ~z1 n n nab!w n n nab

2 ~z2 n n nab!

w~z1!w~z1a , z1b , z2 n n nab!

� s 2~z1!s
2~z1a , z1b , z2 n n nab!dz1 dz2 n n nab� ,

where B2 is defined in the formulation of Theorem 4.

Again, we note that under the hypothesis of no interactions the terms con-
taining fab

~1,1! drop out and consequently the bias term B2 need not be estimated+
Now let Bab~M ! denote the function class consisting of functions fab satisfying

7 fab7H 4~Sab!� 7 fab7H 3~Sab! � M,

where M � 0 is a constant+ Consider the null hypothesis H0,ab : fab~xa, xb! [ 0
versus the local alternative H1,ab~a! : fab � Fab~a! where, for any a � 0,

Fab~a! � �fab � Bab~M ! : 7 fab
~1,1!7L2~Sab ,wab!

� ��Sab

fab
~1,1!2~xa , xb!wab~xa , xb!dxa dxb � a� +

Based on Theorem 9, the test rule with asymptotic significance level 1 � h is
as follows+
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Test Rule+ Reject the null hypothesis H0,ab in favor of the alternative H1,ab~a!
if

nh 5� ZFab~1,1!2~xa , xb!wab~xa , xb!dxa dxb

�
2$K1

�~2!~0!%2

h
� wab~za , zb!w n n nab2 ~z n n nab!

w~z!
s 2~z!dz

�
F

~1 � h!�27K1
�~2!724� wab2 ~z1a , z1b!w n n nab

2 ~z1 n n nab!w n n nab
2 ~z2 n n nab!

w~z1!w~z1a , z1b , z2 n n nab!

� s 2~z1!s
2~z1a , z1b , z2 n n nab!dz1 dz2 n n nab

+ (38)

The following result concerns the local power of the preceding test+

THEOREM 10+ Under Assumptions (A1) and (A4)– (A7), let Yi, n,1 � i � n
be the same data array as in Theorem 7 but with the abth interaction fab, n �
Fab~an! where $an% is a sequence satisfying an

�1 � o~nh 5 � h�2!� o~n102! as
n r ` . Denote by pn the probability of rejecting H0,ab : fab, n~xa, xb! [ 0
in favor of the local alternative H1,ab~an! : fab, n � Fab~an! based on the data
~Xi, n,Yi, n!,1 � i � n as defined in (36). Then limnr` pn � 1 .

Thus Theorem 10 guarantees that asymptotically with probability 1, the pro-
posed test procedure ~38! is able to detect an interaction term whose mixed
derivative is of the magnitude n�102 + The proof of Theorem 10 is similar to that
of Theorem 7 and is therefore omitted+ Also, Theorem 8 can be extended to the
test rule ~38!, but we have omitted its statement because of similarity+

6.3. A Possible F -Type Test

Both Theorems 6 and 9 are used to test pairwise interactions+ As remarked by
one of the referees, methodologically speaking we propose two individual t-type
statistics to check for a given interaction+ Because of possible high multicolin-
earity among the explanatory variables, as in the classical linear regression con-
text, it may happen that individual test statistics are insignificant but their joint
effect is significant+

To consider such a situation, in general let Gab be a functional for testing
fab � 0+ We have shown that

g~n, h!$Gab� E~Gab!%
L
&& N~0,Vab!,

where g~n, h! is a normalizing factor and Vab is the asymptotic variance+
Let G � $Gab,1 � a � b � d % be the vector obtained by considering all

pairwise interactions+ It has dimension p � d~d � 1!02 corresponding to the
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number of possible interactions+ If it can be proved that G is jointly asymptot-
ically normal,

g~n, h!$G � E~G!% L
&& N~0,V !,

where V is a covariance matrix of dimension p, then one would have that

g2~n, h!$G � E~G!%TV �1$~G � E~G!%

is asymptotically xp
2-distributed+ But studentizing and by analogy with ordi-

nary multivariate analysis ~cf+ Johnson and Wichern, 1988, p+ 171!, one might
expect that

g2~n, h!$G � E~G!%T ZV �1$~G � E~G!%

should be more accurately described by an F-type statistic+ Such a statistic would
yield an F-type test for all of the pairwise interactions+ It is a natural sugges-
tion, but it is far from trivial to establish, and it is a topic for further research+
For example it is not clear how one should choose the number of degrees of
freedom+ Some discussion of this point is given in a related framework by Hastie
and Tibshirani ~1990, Secs+ 3+5, 3+9, 5+4+5, 6+8+3! looking at the trace of the
smoother matrices+ However, theory is lacking, and Sperlich, Linton, and Här-
dle ~1997, 1999! found reasons to doubt the generality of these methods, espe-
cially for the marginal integration estimator+ This was partly confirmed by Müller
~1997! in the context of much simpler testing problems than considered here+
Further it was briefly discussed in Härdle, Mammen, and Müller ~1998!, also
in a different context of testing+

7. AN EMPIRICAL INVESTIGATION OF THE TEST PROCEDURES

In nonparametric statistics one has to be cautious when using the asymptotic
distribution for small and moderate sample sizes+We have the additional prob-
lem of having complicated expressions for the bias and variance of the test
statistics, which means that asymptotic critical values are hard to obtain+ More-
over, we are dealing with a type of nonparametric test functional that has been
known ~Hjellvik et al+, 1998! to possess a low degree of accuracy in its asymp-
totic distribution+ It is therefore not unexpected when a simulation experiment,
to be described in this section, for n � 150 observations reveals a very bad
approximation for the asymptotics, and we must look for alternative ways to
proceed for low and moderate sample sizes+ For an intensive simulation study
of the performance of marginal integration estimation in finite samples see also
Sperlich et al+ ~1999!+

7.1. The Wild Bootstrap

One possible alternative is to use the bootstrap or the wild bootstrap, the latter
being first introduced by Wu ~1986! and Liu ~1988!+ The wild bootstrap allows
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for a heterogeneous variance of the residuals+ Härdle and Mammen ~1993! put
it into the context of nonparametric hypothesis testing as it will be used here+

The basic idea is to resample from residuals estimated under the null hypoth-
esis by drawing each bootstrap residual from a two-point ~a,b! distribution
G~a,b!, i that has mean zero, variance equal to the square of the residual, and
third moment equal to the cube of the residual for all i �1,2, + + + , n+ Thus, through
the use of one single observation one attempts to reconstruct the distribution
for each residual separately up to the third moment+ For this we do not need
additional assumptions on « or s~{!+

Let Tn be the test statistic described in Theorem 6 or 9 and let n* be the
number of bootstrap replications+ The testing procedure then consists of the
following steps+

~1! Estimate the regression function m0 � m0,ab under the hypothesis H0,ab that fab�
0 in model ~3! for a fixed pair ~a,b!, 1 � a � b� d, and construct the residuals
Iui � Iui,ab � Yi � Zm0~Xi !, for i � 1,2, + + + , n+

~2! For each Xi , draw a bootstrap residual ui
* from the distribution G~a,b!, i such that

for U ; G~a,b!, i ,

EG~a,b!, i ~U ! � 0, EG~a,b!, i ~U
2 !� Iui

2 , and EG~a,b!, i ~U
3 !� Iui

3 +

~3! Generate a sample $~Yi
*, Xi !%i�1

n with Yi
*� Zm0 � ui

*+ For the estimation of m0 it is
recommended to use slightly oversmoothing bandwidths ~see, e+g+, Härdle and
Mammen, 1993!+

~4! Calculate the bootstrap test statistic Tn
* using the sample $~Yi

*, Xi !%i�1
n in the

same way as the original Tn is calculated+
~5! Repeat steps 2– 4 n* times and use the n* different Tn

* to determine the quantiles
of the test statistic under the null hypothesis and subsequently the critical values
for the rejection region+

For the two-point distribution G~a,b!, i we have used the so-called golden cut con-
struction, setting G~a,b!, i � qda � ~1 � q!db where da,db denote point measures
at a � Iui~1 � M5!02, b � Iui~1 � M5!02 with q � ~5 � M5!010+

For the marginal integration estimator Dalelane ~1999! recently proved that
the wild bootstrap works for the case of i+i+d+ observations+ In the setting of
times series some work on this has been done by Achmus ~2000!+ Dalelane
showed via strong approximation that it holds in supremum norm, whereas Ach-
mus proved that the wild bootstrap works at least locally for time series+ Im-
portant general progress in this area has recently been achieved by Kreiss,
Neumann, and Yao ~1999!+ There is still some work needed to establish a theory
of the wild bootstrap for the test statistic we are using+

7.2. The Simulation Study

The small sample behavior of the estimators has already been investigated and
discussed in Section 5+ For testing we again use the model ~31!, ~32! where
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a � 0 under the null hypothesis and a � 1 under the alternative+ Again, Xj ;
U @�2,2# i+i+d+ for j � 1,2,3, and the error terms are normally distributed with
standard deviation 0+5+ Sample size is now always n � 150+

To calculate the test statistic we used the ~product! quartic kernel for K~u!
and L~u! as before+ When we considered the test statistic based on the estima-
tion of f12

* ~direct test! we used h � 0+9, g � 1+1, and for the preestimation to do
the wild bootstrap we used h � 1+0 and g � 1+2+ To calculate the test statistic
based on the joint derivative f12

~1,1! testing derivatives, which generally requires
more smoothing ~cf+ ~A6!!, we selected h � 1+5, g � 1+6 and h � 1+4, g � 1+5,
respectively+

We consider first the null hypothesis H0,12 : f12~u! [ 0 and look at the asymp-
totics+ In Figure 3 we have plotted kernel estimates of the standardized densi-
ties of the test procedures compared to the standard normal distribution+ The
densities of the test statistics have been estimated with a quartic kernel and
bandwidth 0+2+ To make the densities comparable we also smoothed the normal
densities using the same kernel+ We see clearly that the test statistics we intro-
duced in the previous sections look more like a x2-distributed random variable
than a normal one+ Thus, even if we could estimate bias and variance of the
test statistics well, the asymptotic distribution of them is hardly usable for test-
ing for such a moderate sample of observations+

This conclusion is consistent with the results of Hjellvik et al+ ~1998!
for a similar type of functional designed for testing of linearity+ For that
functional roughly 100,000 observations were needed to obtain a good
approximation+ The reason seems to be that for a functional of type

Figure 3. Densities of the test statistics; direct method ~solid!, testing derivatives
~dashed!, and normal density ~thick, solid!
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* Zfab*
2
~xa , xb!p~xa , xb!dxa dxb several of the leading terms of the Edge-

worth expansion are nearly of the same magnitude, so that very many obser-
vations are needed for the dominance of the first-order term yielding normality+
We refer to Hjellvik et al+ ~1998! for more details+

To get the results of Table 1 and Figure 4, describing the bootstrap version
of the tests, we did 249 bootstrap replications and, following Theorems 6, 8,
and 9, considered the test statistics

Table 1. Percentage of rejection under H0

Significance level in % 1 5 10 15 20

Direct method 3+0 6+0 12+7 17+3 22+3
Testing derivatives 0+5 4+5 11+4 14+4 18+2

Figure 4. Power functions at the 1, 5, 10, and 20% significance levels for both proce-
dures: direct method ~solid! ~see equation ~39!! and testing derivatives ~dashed! ~see
equation ~40!!+We used 249 bootstrap replications and performed 300 iterations at each
point ~0+0, 0+1, 0+2, + + + ! to determine the probability to reject+
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1

n (i�1

n

Zf12
* 2
~X1, X2 ! 11$6Xk 6 � 1+6 for k � 1,2% (39)

and

1

n (i�1

n [
F12
~1,1! 2
~X1, X2 ! 11$6Xk 6 � 1+6 for k � 1,2%, (40)

respectively; i+e+ we have integrated numerically over the empirical distribu-
tion function and used a weight function ~the indicator function 11! for the test
statistic to remove outliers and avoid boundary effects caused by the estima-
tion ~cf+ Hjellvik et al+, 1998!+

Table 1 presents the error of the first kind for both methods and at different
significance levels; the rejection probability was determined by performing 500
iterations+

Obtaining an accurate error of the first kind with the aid of the wild boot-
strap depends on a proper choice of bandwidth, although the results are fairly
robust for a reasonably wide range of bandwidths+ In the absence of an optimal
procedure for choosing the bandwidth, Table 1 must be interpreted with cau-
tion as far as a comparison of the two testing procedures is concerned+ But it is
seen that the wild bootstrap works quite well and can be used for this test prob-
lem+ For a comparison of the direct method against the derivative approach
and to be able to judge the tests more generally we have to look at the error of
the first kind and the power for a wide range of examples+ The power as a
function of a in ~32! is displayed for both methods and for different levels in
Figure 4+ Both procedures appear to work well+ For this particular model the
power function of the direct method is steeper ~also when the tests are adjusted
to have the same level!+ This is intuitively reasonable as the estimator and the
test statistic have smaller asymptotic variance for this method, but for a finite
sample it is quite likely that the comparative advantages of the two methods
depend on the particular model or design+ For instance, the derivative test is
more designed for detecting a less smooth interaction term having high-frequency
components+

Obviously a much more detailed simulation study would be of interest, in
particular concerning the interplay between model complexity and ~optimal!
choice of bandwidth+ However, it is beyond the scope of the present paper+ At
the moment, bandwidths have been chosen somewhat arbitrarily, but we have
been pleased to observe that the same set of bandwidths seems to lead to satis-
factory results for both estimation and testing+

7.3. An Application to Production Function Estimation

In this section we apply the estimation and testing procedures to a five-
dimensional production function+ There has been much discussion in the past
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whether production functions can be taken to be additive ~strongly separable!1

for a particular data set+ It goes back at least to Denny and Fuss ~1977!, Fuss
et al+ ~1978!, and Deaton and Muellbauer ~1980, pp+ 117–165!+ Our test pro-
cedure is an adequate tool to investigate the hypothesis of additivity+

We consider the example and data of Severance-Lossin and Sperlich ~1999!
and look at the estimation of a production function for livestock in Wisconsin+
In that paper strong separability ~additivity! among the input factors was as-
sumed, and the additive components and their derivatives were estimated using
the marginal integration estimator+Whereas the interest there was focused mainly
on the return to scale and hence on derivative estimation, presently we are more
interested in examining the validity of the assumption of absence of interaction
terms looking only at second-order interactions, as these are the only interpret-
able ones+ We use a subset of n � 250 observations of an original data set of
more than 1,000 Wisconsin farms collected by the Farm Credit Service of St+
Paul, Minnesota, in 1987+ Severance-Lossin and Sperlich removed outliers and
incomplete records and selected farms that only produced animal outputs+ The
data consist of farm level inputs and outputs measured in dollars+ The output Y
in this analysis is livestock; the input variables are family labor X1, hired labor
X2, miscellaneous inputs ~e+g+ repairs, rent, custom hiring, supplies, insurance,
gas, oil, and utilities! X3, animal inputs ~purchased feed, breeding, and veteri-
nary services! X4, and intermediate-run assets ~assets with a useful life of 1 to
10 years! X5+

The underlying purely additive model is of the form

ln~ y! � c � (
a�1

d

fa $ln~xa!%+ (41)

This model can be viewed as a generalization of the Cobb–Douglas production
technology+ In the Cobb–Douglas model we would have fa$ln~xa!%� ba ln~xa!+

We have extended this model by including interaction terms fab to obtain

ln~ y! � c � (
a�1

d

fa $ln~xa!%� (
1�a�b�d

fab $ln~xa!, ln~xb!%, (42)

and the assumed strong separability ~additivity! can be checked by testing the
null hypothesis H0,ab : fab � 0 for all a,b using the approach of Section 3+

First we estimated all functions of type fa and fab+ The estimation results are
given in Figures 5–7+ Because we want to plot the functional forms jointly
with the real data point cloud, we depict ZFa for the one-dimensional impact
functions; for the interactions we plotted Zfab* , the functions we will use
for the test procedure+ Again, quartic kernels were employed for K and L+ The
data were divided by their standard deviations so that we could choose the same
bandwidths for each direction+ We tried different bandwidths, and h � 1+7 and
g � 3+3 yield reasonably smooth estimates+ However, we know by experience
that the integration estimator is quite robust against a relatively wide range of
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choices of bandwidths+ For a detailed discussion of the bandwidth choice and
robustness we refer to Sperlich et al+ ~1997!+

In Figure 5 the univariate function estimates ~not centered to zero as
in ~6!! are displayed together with a kind of partial residuals [ria :� yi �

(g�a ZFg~Xig!+ To see clearly the shape of the estimates we display the main
part of the point clouds including the function estimates+ As suggested already
in Severance-Lossin and Sperlich, the graphs in Figure 5 give some indication
of nonlinearity in family labor, hired labor, and intermediate-run assets+ They
even seem to indicate that the elasticities for these inputs increase and finally
could lead to increasing returns to scale+ An obvious inference from an eco-
nomic point of view would be that larger farms are more productive+

In Figures 6 and 7 we have shown the estimates of the bivariate interaction
terms fab+ For their estimation and presentation we trimmed the data by remov-
ing 2% of the most extreme observations and used the quartic kernel+ The same
kernel and trimming were used for the testing, and we did 249 bootstrap repli-

Figure 5. Function estimates for the univariate additive components and partial residuals
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cations+ To examine the sensitivity of the test procedures against choice of band-
width, we tried a wide range of bandwidths+ For the first method, which employs
the estimate of the interaction term directly, we used h � 1+3–2+1, g � 2+9–3+7
for the preestimation to get estimates for the bootstrap and h � 1+6–2+4, g �
3+1–3+9 to calculate the test statistics+ For the second method, which involves
the mixed derivatives of the interaction term, we used h � 1+6–2+4, g � 3+1–3+9
for the preestimation to get estimates for the bootstrap and h � 2+1–2+9, g �
3+1–3+9 to calculate the test statistics+

To test the different interaction terms for significance, we used an iterative
model selection procedure+ First we calculated the p-values for each interaction

Figure 6. Estimates of the first six interaction terms
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term fab including all the other functions fg, 1 � g� d, and fgd, 1 � g � d� d,
with ~g,d !� ~a,b! in the model ~42!+ Then we removed the function fab with
the highest p-value and again determined the p-values for the remaining inter-
action terms as previously+ Stepwise eliminating the interaction terms with the
highest p-value, we end up with the most significant ones+

This procedure was applied for both testing methods+ For large bandwidths
the interactions are smoothed out, and we never rejected the null hypothesis of
no interaction for any of the pairwise terms, but for small bandwidths some of
the interactions terms turned out to be significant+ For the first method, where
we consider the interaction terms directly, the term f13 ~family labor and mis-
cellaneous inputs! was significant at a 5% level with a p-value of about 2%+ Of
the other terms f35 and f15 came closest to being significant+

For the second method, considering the derivatives, f15 ~family labor and
intermediate-run assets! and f35 ~miscellaneous inputs and intermediate-run as-
sets! had the lowest p-values, f15 having a p-value of less than 1%+ Among the
others, f13 came closest+

Both procedures suggest that a weak form of interaction is present and that
the variable family labor plays a significant role in the interaction+ The fact
that the two procedures are not entirely consistent in their selection of relevant
interaction terms should not be too surprising in view of the moderate sample

Figure 7. Estimates of the last four interaction terms
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size and the lack of any strong interactions+ There are fairly clear indications
from Figures 6, and 7 that f13 and f15 are not multiplicative in their input fac-
tors+ This would make it difficult for many parametric tests to detect the inter-
action as they usually are based on multiplicative combinations of the regressors+

NOTE

1+ The expression “strong separability” is equivalently used for “additivity” or “generalized
additivity” ~see, e+g+, Berndt and Christensen, 1973!+
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APPENDIX

Proof of Lemma 1.

1+ Both formulas follow from the definitions of Daa, Dab, cab and equations ~8! and
~9!+

2+ Note first that the population mean is simply

�m~x!w~x!dx � c � (
~1�g�d�d !

cdg +

Using this and the formulas in item 1, one arrives at

Fab~xa , xb!� Fa~xa!� Fb~xb!��m~x!w~x!dx

� fab~xa , xb!� (
1�g�d�d

cdg� (
~g,d!�Dab

cdg� (
~g,d!�Daa

cdg� (
~g,d!�Dbb

cdg

� fab~xa , xb!� cab +

3+ We only need to integrate both sides of the equation in item 2 and note that the
right-hand side comes out as cab because of the identifiability condition ~7!+ The
rest follows by the equation in item 2+ �

Proof of Corollary 1. First assume that fab
* ~xa , xb! [ 0+ By Lemma 1,

Fab~xa, xb! � Fa~xa! � Fb~xb! � *m~x!w~x!dx [ 0 implies fab~xa, xb! � cab [ 0,
or fab~xa, xb! [ �cab, which by ~7! gives

0 �� fab~xa , xb!wa~xa!dxa� ��cabwb~xb!dxb� �cab ,

and therefore fab~xa, xb! [ 0+
On the other hand, by the definition of cab, fab~xa, xb! [ 0 gives cab � 0, and thus

fab~xa, xb! � cab [ 0+ �

Proof of Theorems 1 and 2. The proof of Theorems 1 and 2 makes use of the fol-
lowing two lemmas, whose proofs are not difficult+We refer to Silverman ~1986! or Fan
et al+ ~1998!+

LEMMA A1+ Let Dn,Bn, and A be matrices, possibly having random variables as
their entries. Further, let Dn � A � Bn where A�1 exists and Bn � ~bij !1�i, j�d where
bij � Op~dn! with d fixed, independent of n. Then Dn

�1 � A�1~I � Cn! where Cn �
~cij !1�i, j�d and cij � Op~dn! . Here dn denotes a function of n, going to zero with increas-
ing n.

LEMMA A2+ Let Wl,a,Wl,ab, Za, Zab, and S be defined as in Section 3.1 and H �
diag~h i�1!i�1, + + + , p�1. Then

(a). ~H�1 Za
T Wl,a ZaH�1 !�1 �

1

w~xa , Xl ta!
S�1 �I � Op�h 2 � � ln n

nhgd�1 ��
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and

(b). ~H�1 Zab
T Wl,ab ZabH�1 !�1 �

1

w~xa , xb , Xl n n nab!
S�1 �I � Op�h 2 � � ln n

nh 2gd�2 �� +
Define Ei @{# � E @{6Xi1, + + + , Xid # and E* @{# � E @{6X], where X is the design matrix

$Xia%i,a�1,1
n,d + The proofs of Theorems 1 and 2 can now be divided into two parts corre-

sponding to the estimators ZFa and Zfab* , respectively+
~i! We start by considering the univariate estimator ZFa+ This is also a component of

the estimator Zfab* of interest in Theorem 2+ First we will separate the difference between
the estimator and the true function into a bias and a variance part+

Defining the vector

Fi � �c � fa~xa!� (
g�Da

fag~xa , Xig!� (
g�Da

fg~Xig!� (
~g,d!�Daa

fgd~Xig , Xid !

fa
~1!~xa!� (

g�Da

fag
~1,0!~xa , Xig! �

and applying Lemma A2~a!, we have

ZFa~xa!� Fa~xa!

�
1

n (i�1

n

e1~Za
T Wi,a Za!

�1 Za
T Wi,aY � Fa~xa!

�
1

n (i�1

n

e1~Za
T Wi,a Za!

�1 Za
T Wi,a~Y � ZaFi !� Op~n

�102 !

�
1

n (i�1

n 1

w~xa , Xi ta!
e1 S�1 �I � Op�h 2 � � ln n

nhgd�1 ��H�1 Za
T Wi,a~Y � ZaFi !

� Op~n
�102 !+

Computing the matrix product and inserting for Yl � s~Xl !«l � m~Xl ! the Taylor ex-
pansion of m~Xl ! around ~xa, Xl ta!, we obtain

ZFa~xa!� Fa~xa!

�
1

n (i�1

n 1

w~xa , Xi ta!

1

n (l�1

n

Kh~Xla� xa!Lg~Xl ta� Xi ta! �1 � Op�h 2 � � ln n

nhgd�1 ��
� 	 ~Xla� xa!

2

2 �fa
~2!~xa!� (

g�Da

fag
~2,0!~xa , Xlg!� � (

g�Da

$ fg~Xlg!� fg~Xig!%

� Op $~Xla� xa!
3 %� (

~g,d!�Daa

$ fgd~Xlg , Xld !� fgd~Xig , Xid !%� s~Xl !«l

� Op~n

�102 !+ (A.1)
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Separating this expression into a systematic “bias” and a stochastic “variance” we have

ZFa~xa!� Fa~xa! �
1

n (i�1

n Ei ~ [ai !

w~xa , Xi ta!
�

1

n (i�1

n [ai � Ei ~ [ai !

w~xa , Xi ta!
� Op� h 2

Mnhgd�1
�
M ln n

nhgd�1�,
where

[ai �
1

n (l�1

n

Kh~Xla� xa!Lg~Xl ta� Xi ta!� @ + + + #

and the expression in the brackets @ + + + # is as in formula ~A+1!+ It remains to work with
the first-order approximations+

Let

T1n �
1

n (i�1

n Ei ~ [ai !

w~xa , Xi ta!
; T2n �

1

n (i�1

n [ai � Ei ~ [ai !

w~xa , Xi ta!
+

For the bias part we prove that

T1n � h 2m2~K !
1

2 �fa
~2!~xa!� (

g�Da

1

n (i�1

n

fag
~2,0!~xa , Xig!� � op~h

2 !+

Consider w~xa, Xi ta!
�1Ei~ [ai !, which is, in fact, an approximation of the ~conditional!

bias of the Nadaraya–Watson estimator at ~xa, Xi ta!+ This is, by Assumptions ~A1!–~A3!
and ~A5!

Ei ~ [ai !

w~xa , Xi ta!
�

1

w~xa , Xi ta!

� Ei	 1

n (l�1

n

Kh~Xla� xa!Lg~Xl ta� Xi ta!

� 	 ~Xla� xa!
2

2 �fa
~2!~xa!� (

g�Da

fag
~2,0!~xa , Xlg!�

� (
g�Da

$ fg~Xlg!� fg~Xig!%

� (
~g,d!�Daa

$ fgd~Xlg , Xld !� fgd~Xig , Xid !%� Op $~Xla� xa!
3 %



�
1

w~xa , Xi ta!
�Kh~z � xa!Lg~w � Xi ta!w~z,w!

�	 ~z � xa!
2

2 �fa
~2!~xa!� (

g�Da

fag
~2,0!~xa , Xlg!�

� (
g�Da

$ fg~wg!� fg~Xig!%� (
~g,d!�Daa

$ fgd~wg ,wd !� fgd~Xig , Xid !%

� Op $~z � xa!
3 %
 dwdz � op~1!
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�
1

w~xa , Xi ta!
�K~u!L~v!w~xa� uh, Xi ta� vg!

�	 ~uh!2

2 �fa
~2!~xa!� (

g�Da

fag
~2,0!~xa , Xlg!� � Op $~uh!3 %

� (
g�Da

$ fg~Xig� gvg!� fg~Xig!%

� (
~g,d!�Daa

$ fgd~Xig� gvg , Xid� vd g!� fgd~Xig , Xid !%
 dvdu � op~1!

� h 2m2~K !
1

2 �fa
~2!~xa!� (

g�Da

fag
~2,0!~xa , Xlg!� � op~h

2 !� Op~g
q !

because E*~«i ! � 0, respectively Ei~«l ! � 0 for all i and l+ We have used here the sub-
stitutions u � ~z � xa!0h and v � ~w � Xi ta!0g, where v and w are ~d � 1!-dimensional
vectors with gth component vg, respectively wg+

Because the random variables w~xa, Xi ta!
�1Ei~ [ai ! are bounded, we have by using ~A2!

T1n � h 2m2~K !
1

2 �fa
~2!~xa!� (

g�Da

1

n (i�1

n

fag
~2,0!~xa , Xig!� � op~h

2 !

and note that

1

n (i�1

n

fag
~2,0!~xa , Xig! �

]2

]xa
2 � fag~xa ,ug!wg~ug!dug� op~n

�102 !� 0 � op~n
�102 !

by ~7!, for any g � Da+
For the stochastic term we use the same technique as in Fan et al+ ~1998! and

Severance-Lossin and Sperlich ~1999! to prove that with wia given by

wia �
1

n
Kh~xa� Xia!

w ta~Xi ta!

w~xa , Xi ta!
, (A.2)

we have

T2n � (
i�1

n

wias~Xi !«i � op $~nh!�102 % (A.3)

and hence

ZFa~xa!� Fa~xa! � Op $~nh!�102 %� Op~h
2 !+

It is easily seen that the preceding expressions imply Theorem 1 ~cf+ Severance-
Lossin and Sperlich, 1999!+
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~ii! Analogous to the univariate case of ZFa, we proceed for the bivariate case consid-
ering ZFab+ We need the following definition+

Fi � �
c � fa~xa!� fb~xb!� fab~xa , xb!� (

g�Dab

${{{%

fa
~1!~xa!� (

g�Da,b

fag
~1,0!~xa , Xig!� fab

~1,0!~xa , xb!

fb
~1!~xb!� (

g�Da,b

fag
~1,0!~xb , Xig!� fab

~0,1!~xa , xb!
� ,

where ${{{% is

�fag~xa , Xig!� fbg~xb , Xig!� fg~Xig!� (
g,d�Dab

fgd~Xig , Xid !� +
Applying Lemma A2~b! we have

ZFab~xa , xb!� Fab~xa , xb!

�
1

n (i�1

n

e1~Zab
T Wi,ab Zab!

�1 Zab
T Wi,abY � Fab~xa , xb!

�
1

n (i�1

n

e1~Zab
T Wi,ab Zab!

�1 Zab
T Wi,ab~Y � ZabFi !� Op~n

�102 !

�
1

n (i�1

n 1

w~xa , xb , Xi n n nab!
e1 S�1 �I � Op�h 2 � � ln n

nh 2gd�2 ��
� H�1 Zab

T Wi,ab~Y � ZabFi !� Op~n
�102 !+

As previously in ~i! we do the matrix calculation, replace Yl by Yl � s~Xl !«l � m~Xl !,
and use the Taylor expansion of m around ~xa, xb, Xl n n nab!+ Then we obtain

ZFab~xa , xb!� Fab~xa , xb!

�
1

n (i�1

n 1

w~xa , xb , Xi n n nab!

1

n (l�1

n

Kh~Xla� xa!Kh~Xlb� xb!Lg~Xl n n nab� Xi n n nab!

� �I � Op�h 2 � � ln n

nh 2gd�2 ��
� 	 ~Xla� xa!

2

2 �fa
~2!~xa!� (

g�Da,b

fag
~2,0!~xa , Xlg!� fab

~2,0!~xa , xb!�
�
~Xlb� xb!

2

2 �fb
~2!~xb!� (

g�Da,b

fbg
~2,0!~xb , Xlg!� fab

~0,2!~xa , xb!�
� (
g�Da,b

$ fg~Xlg!� fg~Xig!%� (
~g,d!�Dab

$ fgd~Xlg , Xld !� fgd~Xig , Xid !%

� ~Xla� xa!~Xlb� xb! fab
~1,1!~xa , xb!� Op $~Xla� xa!

3 %

� op $~Xla� xa!~Xlb� xb!%� Op $~Xlb� xb!
3 %� s~Xl !«l
 � Op~n

�102 !+ (A.4)
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We go through the same steps as for the one-dimensional case and separate this ex-
pression into a systematic “bias” and a stochastic “variance”:

1

n (i�1

n Ei ~ [ai !

w~xa , xb , Xi n n nab!
�

1

n (i�1

n [ai � Ei ~ [ai !

w~xa , xb , Xi n n nab!
� Op� h 2

Mnh 2gd�2
�
M ln n

nh 2gd�2�,
where

[ai �
1

n (l�1

n

Kh~Xla� xa!Kh~Xlb� xb!Lg~Xl n n nab� Xi n n nab!� @ + + + #

and @ + + + # is the expression in the large brackets of equation ~A+4!+
Again, we only have to work with the first-order approximations+ Let

T1n �
1

n (i�1

n Ei ~ [ai !

w~xa , xb , Xi n n nab!
; T2n �

1

n (i�1

n [ai � Ei ~ [ai !

w~xa , xb , Xi n n nab!
+

We first prove that

T1n � h 2m2~K !
1

2 �fa
~2!~xa!� (

g�Da,b

1

n (i�1

n

fag
~2,0!~xa , Xig!� fb

~2!~xb!

� (
g�Da,b

1

n (i�1

n

fbg
~2,0!~xb , Xig!� fab

~2,0!~xa , xb!� fab
~0,2!~xa , xb!�

� op~h
2 !+

Consider w~xa, xb, Xi n n nab!
�1Ei~ [ai !, which is again an approximation of the ~conditional!

bias of the Nadaraya–Watson estimator at ~xa, xb, Xi n n nab!+ By Assumptions ~A1!–~A3!
and ~A5! we have

Ei ~ [ai !

w~xa , xb , Xi n n nab!

�
1

w~xa , xb , Xi n n nab!
�Kh~za� xa!Kh~zb� xb!Lg~w � Xi n n nab!w~z,w!

� 	 ~za� xa!
2

2 �fa
~2!~xa!� (

g�Da,b

fag
~2,0!~xa , Xlg!� fab

~2,0!~xa , xb!�
�
~zb� xb!

2

2 �fb
~2!~xb!� (

g�Da,b

fbg
~2,0!~xb , Xlg!� fab

~0,2!~xa , xb!�
� (
g�Da,b

$ fg~wg!� fg~Xig!%

� (
g,d�Dab

$ fgd~wg ,wd !� fgd~Xig , Xid !%

� ~za� xa!~zb� xb! fab
~1,1!~xa , xb!� Op $~za� xa!

3 %

� Op $~zb� xb!
3 %� op $~za� xa!~zb� xb!%
 dwdz � op~1!
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�
1

w~xa , xb , Xi n n nab!
�K~ua!K~ub!L~w!w~xa� ua h, xb� ub h, Xi n n nab� vg!

� 	 ~hua!
2

2 �fa
~2!~xa!� (

g�Da,b

fag
~2,0!~xa , Xlg!� fab

~2,0!~xa , xb!�
�
~hub!

2

2 �fb
~2!~xb!� (

g�Da,b

fbg
~2,0!~xb , Xlg!� fab

~0,2!~xa , xb!�
� (
g�Da,b

$ fg~Xig� gvg!� fg~Xig!%

� (
~g,d!�Dab

$ fgd~Xig� gvg , Xid� gvd !� fgd~Xig , Xid !%

� ~hua!~hub! fab
~1,1!~xa , xb!� Op~h

3 !
 dvdu � op~1!

� h 2m2~K !
1

2 �fa
~2!~xa!� (

g�Da,b

fag
~2,0!~xa , Xig!� fb

~2!~xb!

� (
g�Da,b

fbg
~2,0!~xb , Xig!� fab

~2,0!~xa , xb!� fab
~0,2!~xa , xb!�

� op~h
2 !� Op~g

q !

because E* @«i #� 0+We have used here the substitutions u � ~z � ~xa, xb!T!0h and v�
~w � Xi n n nab!0g, where v,w are ~d � 2!-dimensional vectors with gth component vg, wg+

Because the w~xa, xb, Xi n n nab!
�1Ei~ [ai ! are independent and bounded, we have

T1n � h 2m2~K !
1

2 �fa
~2!~xa!� (

g�Da,b

1

n (i�1

n

fag
~2,0!~xa , Xig!� fb

~2!~xb!

� (
g�Da,b

1

n (i�1

n

fbg
~2,0!~xb , Xig!� fab

~2,0!~xa , xb!� fab
~0,2!~xa , xb!�

� op~h
2 !+

Thus, combining with the bias formulas obtained for ZFa~xa! and ZFb~xb!, the bias of
ZFab~xa, xb! � ZFa~xa! � ZFb~xb! is as claimed in the theorem:

h 2B1 � h 2m2~K !
1

2 �fab
~2,0!~xa , xb!�� fab

~2,0!~xa ,ub!w ta~u! du

� fab
~0,2!~xa , xb!�� fab

~0,2!~ua , xb!w nb~u! du� � op~h
2 !+
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We now turn to the variance part T2n+ In Fan et al+ ~1998! it is shown that for

wiab �
1

n
Kh~xa� Xia , xb� Xib!

w n n nab~Xi n n nab!

w~xa , xb , Xi n n nab!
, (A.5)

T2n � (
i�1

n

wiabs~Xi !«i � op $~nh 2 !�102 %, (A.6)

where the term

(
i�1

n

wiabs~Xi !«i � Op $~nh 2 !�102 %

is asymptotically normal and dominates the corresponding stochastic term

(
i�1

n

wias~Xi !«i � Op $~nh!�102 %

from part ~i! of the proof+ This means that Zfab* ~xa , xb! as defined by ~10! is asymptoti-
cally normal+

Finally, we want to calculate the variance of the combined estimator ZFab~xa, xb! �
ZFa~xa!� ZFb~xb!+ Because of the faster rate of the stochastic term in ~i!, it is enough to

consider ~ii!, i+e+, (i�1
n wiabs~Xi !«i + It is easy to show that the variance is then

7K0
*722�s2~x!

w n n nab
2 ~x n n nab!

w~x!
dx n n nab +

Theorem 2 follows+ �

Proof of Theorem 4. This proof is analogous to that of Theorems 1 and 2 for the
two-dimensional terms+ The main difference is that at the beginning the kernel K~{! has
to be replaced by Kn

*~{!; i+e+, K3
*~u, v! � K~u, v!uvm2

�2 and the weights are

wiab �
1

nh 3 K3, h
* ~xa� Xia , xb� Xia!

w n n nab~Xi n n nab!

w~xa , xb , Xi n n nab!
, (A.7)

where K3, h
* ~{,{! � ~10h 2 !K3

*~{0h,{0h!+ �

Proof of Theorem 5. Because the proof follows the arguments of Linton ~1997, 2000!
we give only a sketch here+ Further, we only discuss the statement in ~29!, because for
~30! the reasoning is the same+ We have

XFaopt~xa!� XFa~xa!

� (
i�1

n wi

(
j�1

n

wj

	(
g�a

$Fg~Xig!� ZFg~Xig!%� (
g�b

$ fgb
* ~Xig , Xib!� Zfgb* ~Xig , Xib!%


� Op~n
�102 !
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with

wi � J� xa� Xia

he
�$sn2 � ~xa� Xia!sn1%

and

snl � (
k�1

n

J� xa� Xka

he
�~xa� Xka!

l, l � 1,2+

We consider the differences for the one- and two-dimensional functions separately+
From Theorem 1 and its proof in this Appendix we know that the leading terms of

Fg~Xig! � ZFg~Xig! are

h 2b1~Xig!�
1

n (j�1

n

Kh~Xjg� Xig!
w rg~Xj rg!

w~Xig , Xj rg!
s~Xj !«j

with

b1~Xig! �
m2

2 �fg
~2!~Xig!� (

d�Dg

1

n (j�1

n

fgd
~2,0!~Xig , Xjd !� +

All these terms are additive over g, and the correlation between the marginal integration
estimators is of smaller order+ Multiplying h 2b1~{! with wi 0(j�1

n wj and summing we
still get a term of order h 2 , which by assumption is o~n�205!+

Also, if we consider the stochastic part of Fg~Xig! � ZFg~Xig!, we can see that for
l � 0,1

1

n (i�1

n

Jhe
~xa� Xia!~xa� Xia!

l �
1

n (j�1

n

Kh~Xjg� Xig!
w rg~Xj rg!

w~Xig , Xj rg!
s~Xj !«j

�
1

n (j�1

n

Dnljg w rg~Xj rg! s~Xj !«j (A.8)

where we have

Dnljg �
1

n (i�1

n

Jhe
~xa� Xia!~xa� Xia!

lKh~Xjg� Xig!
1

w~Xig , Xj rg!
+

But Dnljg is bounded, and the whole expression ~A+8! is of order Op~n�102!+
For the interaction terms the reasoning is virtually the same+ The leading terms of

fgd
* ~Xig , Xid ! � Zfgd* ~Xig , Xid ! are

h 2B1~Xig , Xid !�
1

n (j�1

n

Kh~Xjg� Xig , Xjd� Xid !
w n n ngd ~Xj n n ngd !

w~Xig , Xid , Xj n n ngd !
s~Xj !«j

with B1~{! defined in Theorem 2+ Again, all of these terms are additive and asymptoti-
cally independent+ Further, multiplying h 2B1~{! with wi 0(j�1

n wj this term stays of or-
der h 2 � o~n�205!+
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For the remaining term we have ~l � 0,1!

1

n (i�1

n

Jhe
~xa� Xia!~xa� Xia!

l �
1

n (j�1

n

Kh~Xjg� Xig , Xjd� Xid !
w n n ngd ~Xj n n ngd !

w~Xig , Xid , Xj n n ngd !
s~Xj !«j ,

where now g is also allowed to take the value a ~compare ~23!!+ Nevertheless the same
arguments of boundedness apply as previously+

The rest of the proof is along the lines of Linton ~1997!+ For the interaction term in
~30! all of the arguments are the same ~compare ~24! and ~28!!, but the rate is slower
~by one bandwidth! because of having one dimension more to estimate+ �

Proof of Theorem 6. Consider the decomposition

� Zfab* 2
~xa , xb!wab~xa , xb!dxa dxb

� (
1�i�j�n

H~Xi ,«i , Xj ,«j !�(
i�1

n

H~Xi ,«i , Xi ,«i !

� � fab
*2~xa , xb!wab~xa , xb!dxa dxb

� 2h 2� fab
* ~xa , xb!B1~xa , xb!wab~xa , xb!dxa dxb� op~h

2 !

in which

H~Xi ,«i , Xj ,«j !

� «i «j� 1

n2 ~wiab� wia� wib!~wjab� wja� wjb!s~Xi !s~Xj !wab~xa , xb!dxa dxb

(A.9)

with wia, wib, and wiab as in equations ~A+2! and ~A+5!+
We first simplify H~Xi ,«i , Xj ,«j ! by substituting alternatively u � ~xa� Xia!0h, v�

~xb � Xib!0h:

H~Xi ,«i , Xj ,«j !

�
«i «j

n2 ��K~u!K~v!
w n n nab~Xi n n nab!

w~Xi !h
� K~u!

w ta~Xi ta!

w~Xi !
� K~v!

wab~Xi nb!

w~Xi !
�

� �K�u �
Xia� Xja

h �K�v�
Xib� Xjb

h � w n n nab~Xj n n nab!

w~Xia , Xib , Xj n n nab!h

� K�u �
Xia� Xja

h � w ta~X n n nja!

w~Xia , Xj ta!
� K�v�

Xib� Xjb

h � wab~Xj nb!

w~Xib , Xj nb!
�

� s~Xi !s~Xj !wab~Xia , Xib!dudv$1 � op~1!%+
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Denoting by K ~r! the r-fold convolution of the kernel K, one obtains

(
1�i�j�n

H~Xi ,«i , Xj ,«j ! � (
1�i�j�n

~H1 � H2 � H3 � H4 � H5 !$1 � op~1!%,

where

H1 �
«i «js~Xi !s~Xj !

n2h 2 K ~2!�Xia� Xja

h
�K ~2!�Xib� Xjb

h
�w n n nab~Xi n n nab!w n n nab~Xj n n nab!

� � wab~Xia , Xib!

w~Xi !w~Xia , Xib , Xj n n nab!
�

wab~Xja , Xjb!

w~Xj !w~Xja , Xjb , Xi n n nab!
� ,

H2 � �
«i «js~Xi !s~Xj !

n2h

w n n nab~Xj n n nab!

w~Xia , Xib , Xj n n nab!

� �K ~2!�Xia� Xja

h � w ta~Xi ta!

w~Xi !
� K ~2!�Xib� Xjb

h � wb~Xi nb!

w~Xi !
� wab~Xia , Xib!

�
«i «js~Xi !s~Xj !

n2h

w n n nab~Xi n n nab!

w~Xja , Xjb , Xi n n nab!

� �K ~2!�Xja� Xia

h � w ta~Xj ta!

w~Xj !
� K ~2!�Xjb� Xib

h � wb~Xj nb!

w~Xj !
� wab~Xja , Xjb!,

H3 � �
«i «js~Xi !s~Xj !

n2h

w n n nab~Xi n n nab!

w~Xi !

� �K ~2!�Xia� Xja

h � w ta~X n n nja!

w~Xia , Xj ta!
� K ~2!�Xib� Xjb

h � wb~Xj nb!

w~Xib , Xj nb!
� wab~Xia , Xib!

�
«i «js~Xi !s~Xj !

n2h

w n n nab~Xj n n nab!

w~Xj !

� �K ~2!�Xja� Xia

h � w ta~Xia!

w~Xja , Xi ta!
� K ~2!�Xjb� Xib

h � wb~Xi nb!

w~Xjb , Xi nb!
� wab~Xja , Xjb!,

H4 �
«i «js~Xi !s~Xj !

n2 �K ~2!�Xia� Xja

h � w ta~Xi ta!

w~Xi !

w ta~X n n nja!

w~Xia , Xj ta!

� K ~2!�Xib� Xjb

h � wb~Xi nb!

w~Xi !

wb~Xj nb!

w~Xib , Xj nb!
� wab~Xia , Xib!

�
«i «js~Xi !s~Xj !

n2 �K ~2!�Xja� Xia

h � w ta~Xj ta!

w~Xj !

w ta~Xi ta!

w~Xja , Xi ta!

� K ~2!�Xjb� Xib

h � wb~Xj nb!

w~Xj !

wb~Xi nb!

w~Xjb , Xi nb!
� wab~Xja , Xjb!,

H5 �
«i «js~Xi !s~Xj !

n2 � w ta~Xi ta!

w~Xi !

wb~Xj nb!

w~Xib , Xj nb!
�
wab~Xi nb!

w~Xi !

w ta~X n n nja!

w~Xia , Xj ta!
� wab~Xia , Xib!

�
«i «js~Xi !s~Xj !

n2 � w ta~Xj ta!

w~Xj !

wb~Xi nb!

w~Xjb , Xi nb!
�
wab~Xj nb!

w~Xj !

w ta~Xi ta!

w~Xja , Xi ta!
� wab~Xja , Xjb!+
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All of these are symmetric and nondegenerate U-statistics+ We will derive the asymp-
totic variance of H1, and it will be seen in the process that H2 to H5 are of higher order
and thus negligible+ Now we calculate

E $H1
2~X1,«1, X2 ,«2 !%

�
1

n4h 4 �K ~2!2� z1a� z2a

h
�K ~2!2� z1b� z2b

h
�w n n nab2 ~z1 n n nab!w n n nab

2 ~z n n n n2ab!

� � wab~z1a , z1b!

w~z1!w~z1a , z1b , z2 n n nab!
�

wab~z2a , z2b!

w~z2 !w~z2a , z2b , z1 n n nab!
�2

� s2~z1!s
2~z2 !w~z1!w~z2 !dz1 dz2 +

Introducing the change of variable

z2a � z1a� hu, z2b� z1b� hv

we obtain

E $H1
2~X1,«1, X2 ,«2 !%

�
1

n4h 2 �K ~2!2~u!K ~2! 2~v!w n n nab2 ~z1 n n nab!w n n nab
2 ~z n n n n2ab!s

2~z1!s
2~z1a , z1b , z2 n n nab!

� � wab~z1a , z1b!

w~z1!w~z1a , z1b , z2 n n nab!
�

wab~z1a , z1b!

w~z1a , z1b , z2 n n nab!w~z1!
�2

� w~z1!w~z1a , z1b , z2 n n nab!dz1 dudvdz2 n n nab $1 � o~1!%

or

E $H1
2~X1,«1, X2 ,«2 !% �

4

n4h 2 7K
~2! 724� w n n nab2 ~z1 n n nab!w n n nab

2 ~z2 n n nab!wab
2 ~z1a , z1b!

w~z1!w~z1a , z1b , z2 n n nab!

� s2~z1!s
2~z1a , z1b , z2 n n nab!dz1 dz2 n n nab $1 � o~1!%+

To prove that (i�j H1~Xi ,«i , Xj ,«j ! is asymptotically normal, one needs to show that

E $G1
2~X1,«1, X2 ,«2 !%� n�1E $H1

4~X1,«1, X2 ,«2 !% � o@$EH1
2~X1,«1, X2 ,«2 !%

2 # ,

where

G1~x,«, y,d! � E $H1~X1,«1, x,«!H1~X1,«1, y,d!% (A.10)

~see Hall, 1984!+

LEMMA A3+ As h r 0 and nh 2 r ` ,

n�1E $H1
4~X1,«1, X2 ,«2 !% � O~n�9h�6 !� o@$EH1

2~X1,«1, X2 ,«2 !%
2 # +
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Proof. As in the case of the second moment, the fourth moment can be calculated as

E $H1
4~X1,«1, X2 ,«2 !%

�
h 2

n8h 8 �K ~2! 4~u!K ~2! 4~v!w n n nab4 ~z1 n n nab!w n n nab
4 ~z2 n n nab!s

4~z1!s
4~z1a , z1b , z2 n n nab!

� � wab~z1a , z1b!

w~z1!w~z1a , z1b , z2 n n nab!
�

wab~z1a , z1b!

w~z1a , z1b , z2 n n nab!w~z1!
�4

� w~z1!w~z1a , z1b , z2 n n nab!dz1 dudvdz2 n n nab $1 � op~1!%,

which implies that

n�1E $H1
4~X1,«1, X2 ,«2 !% � O~n�9h�6 !� $EH1

2~X1,«1, X2 ,«2 !%
2O~n�1h�2 !,

which proves the lemma as n�1h�2 r 0+ �

LEMMA A4+ As h r 0 and nh 2 r ` ,

G1~x,«, y,d!

�
2«dwab~xa , xb!w n n nab~x n n nab!w n n nab~ y n n nab!s~x!s~ y!

n4h 2w~x!
K ~4!� xa� ya

h
�K ~4!� xb� yb

h
�

� �� wab~ ya , yb!

w~ y!w~ ya , yb , z n n nab!
�

wab~xa , xb!

w~xa , xb , z n n nab!w~xa , xb , y n n nab!
�

� w n n nab
2 ~z n n nab!s

2~xa , xb , z n n nab!dz n n nab $1 � o~1!%+

Proof. According to the definition of G1

G1~x,«, y,d! � E $H1~X1,«1, x,«!H1~X1,«1, y,d!%

�
«d

n4h 4 E	K ~2!� X1a� xa
h

�K ~2!�X1b� xb

h
�

� � wab~xa , xb!

w~x!w~xa , xb , X n n nab!
�

wab~X1a , X1b!

w~X1!w~X1a , X1b , x n n nab!
�

� w n n nab~X1 n n nab!w n n nab~x n n nab!s~X1!s~x!

� K ~2!� X1a� ya
h

�K ~2!�X1b� yb

h
�

� � wab~ ya , yb!

w~ y!w~ ya , yb , X n n nab!
�

wab~X1a , X1b!

w~X1!w~X1a , X1b , y n n nab!
�

� w n n nab~X1 n n nab!w n n nab~ y n n nab!s~X1!s~ y!
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or

G1~x,«, y,d! �
«dw n n nab~x n n nab!w n n nab~ y n n nab!s~x!s~ y!

n4h 4 �w n n nab2 ~z n n nab!s2~z!

� K ~2!� za� xa
h

�K ~2!� zb� xb

h
�

� � wab~xa , xb!

w~x!w~xa , xb , z n n nab!
�

wab~za , zb!

w~z!w~za , zb , x n n nab!
�

� K ~2!� za� ya
h

�K ~2!� zb� yb

h
�

� � wab~ ya , yb!

w~ y!w~ ya , yb , z n n nab!
�

wab~za , zb!

w~z!w~za , zb , y n n nab!
�w~z!dz+

Introducing the change of variable

za � xa� hu, zb� xb� hv

we obtain

G1~x,«, y,d!

�
«dw n n nab~x n n nab!w n n nab~ y n n nab!s~x!s~ y!

n4h 4 �w n n nab2 ~z n n nab!s2~xa , xb , z n n nab!

� K ~2! ~u!K ~2! ~v! � wab~xa , xb!

w~x!w~xa , xb , z n n nab!
�

wab~xa , xb!

w~xa , xb , z n n nab!w~xa , xb , x n n nab!
�

� K ~2!�u �
xa� ya

h
�K ~2!�v�

xb� yb

h
�

� � wab~ ya , yb!

w~ y!w~ ya , yb , z n n nab!
�

wab~xa , xb!

w~xa , xb , z n n nab!w~xa , xb , y n n nab!
�

� w~xa , xb , z n n nab!h 2dudvdz n n nab $1 � o~1!%+

Using convolution notation, one has

G1~x,«, y,d!

�
«dw n n nab~x n n nab!w n n nab~ y n n nab!s~x!s~ y!

n4h 2 K ~4!� xa� ya
h

�K ~4!� xb� yb

h
�

� � 2wab~xa , xb!

w~x!w~xa , xb , z n n nab!
� wab~ ya , yb!

w~ y!w~ ya , yb , z n n nab!
�

wab~xa , xb!

w~xa , xb , z n n nab!w~xa , xb , y n n nab!
�

� w n n nab
2 ~z n n nab!s

2~xa , xb , z n n nab!w~xa , xb , z n n nab!dz n n nab $1 � o~1!%
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or

G1~x,«, y,d! �
2«dwab~xa , xb!w n n nab~x n n nab!w n n nab~ y n n nab!s~x!s~ y!

n4h 2w~x!

� K ~4!� xa� ya
h

�K ~4!� xb� yb

h
�

� �� wab~ ya , yb!

w~ y!w~ ya , yb , z n n nab!
�

wab~xa , xb!

w~xa , xb , z n n nab!w~xa , xb , y n n nab!
�

� w n n nab
2 ~z n n nab!s

2~xa , xb , z n n nab!dz n n nab $1 � o~1!%,

which is what we set out to prove+ �

By techniques used in the two previous lemmas, we have the following lemma+

LEMMA A5+ As h r 0 and nh 2 r ` ,

E $G1~X1,«1, X2 ,«2 !
2 % � O~n�8h�2 !� o@$EH1~X1,«1, X2 ,«2 !

2 %2 # +

Lemmas A3 and A5 and the martingale central limit theorem of Hall ~1984! imply
the following propositions+

PROPOSITION A1+ As h r 0 and nh 2 r ` ,

nh (
1�i�j�n

H~Xi ,«i , Xj ,«j !

L
&& N�0,27K ~2! 724� wab2 ~z1a , z1b!w n n nab

2 ~z1 n n nab!w n n nab
2 ~z2 n n nab!

w~z1!w~z1a , z1b , z2 n n nab!
s 2~z1!s

2~z1a , z1b , z2 n n nab!dz1 dz2 n n nab� +
The “diagonal” term (i�1

n H~Xi ,«i , Xi ,«i ! has the following property+

PROPOSITION A2+ As h r 0 and nh 2 r ` ,

(
i�1

n

H~Xi ,«i , Xi ,«i ! �
2$K ~2! ~0!%2

nh 2 � wab~za , zb!w n n nab2 ~z n n nab!
w~z!

s2~z!dz � Op� 1

Mnnh 2�+
Proof. This follows by simply calculating the mean and variance of H~X1,«1, X1,«1!+
Putting these results together, Theorem 6 is proved+ �

Proof of Theorem 7. To prove Theorem 7, first note that the support Sab of wab is
compact+ Hence there exists a constant C � 0 such that

7B17L2~Sab ,wab! � ��B1
2~xa , xb!wab~xa , xb!dxa dxb � CM (A.11)

for any fab � Bab~M !+ Here

B1~xa , xb! � m2~K !
1

2
$ fab
~2,0!~xa , xb!� fab

~0,2!~xa , xb!%
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is the bias function of Theorem 2+ Meanwhile, because

fab
* ~xa , xb! � fab~xa , xb!� cab , cab�� fab~xa , xb!wab~xa , xb!dxa dxb

it follows that

� fab
*2~xa , xb!wab~xa , xb!dxa dxb �� fab

2 ~xa , xb!wab~xa , xb!dxa dxb

� 2cab� fab~xa , xb!wab~xa , xb!dxa dxb� cab
2

�� fab
2 ~xa , xb!wab~xa , xb!dxa dxb� 3cab

2

� � fab
2 ~xa , xb!wab~xa , xb!dxa dxb +

Hence for any fab � Fab~a!, one has

7 fab
* 7L2~Sab ,wab!

2 �� fab
*2~xa , xb!wab~xa , xb!dxa dxb� a2+ (A.12)

Now for n � 1,2, + + + , let

Tn
' � nh� Zfab, n* 2

~xa , xb!wab~xa , xb!dxa dxb

�
2$K ~2! ~0!%2

h
� wab~za , zb!w n n nab2 ~z n n nab!

w~z!
s2~z!dz

� nh� fab, n
*2 ~xa , xb!wab~xa , xb!dxa dxb

� 2nh 3� fab, n
* ~xa , xb!B1n~xa , xb!wab~xa , xb!dxa dxb ,

where ~ fab, n !n�1
` is the sequence in Theorem 7 and B1n the corresponding bias coeffi-

cients+ Note that although the function fab, n
* ~xa , xb! is different for each n, a careful re-

view of the proof of Theorem 6 shows that it still holds because the second-order Sobolev
seminorm of each fab, n

* ~xa , xb! is bounded uniformly for n � 1,2, + + + , and all the main
effects $ fg%g�1

d and other interactions $ fgd%1�g�d�d, ~g,d!�~a,b! are fixed+ Hence

Tn
' L
&& N$0,V~K,w,s!% (A.13)
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as n r `+ Now let

tn � nh� fab, n
*2 ~xa , xb!wab~xa , xb!dxa dxb

� 2nh 3� fab, n
* ~xa , xb!B1n~xa , xb!wab~xa , xb!dxa dxb +

Then

tn � nh7 fab, n
* 7L2~Sab ,wab!

2 � 2nh 3 7 fab, n
* 7L2~Sab ,wab!7B1n7L2~Sab ,wab!

� nh7 fab, n
* 7L2~Sab ,wab! $7 fab, n

* 7L2~Sab ,wab!� 2h 2 7B1n7L2~Sab ,wab! %

tn � nhan $an � 2h 2CM %,

which, using the condition that an
�1 � o~nh � h�2!, entails that tn r ` as n r `+ By

the definition of the test ~33!

pn � P @Tn
'� tn � F�1~1 � h!V 102~K,w,s!# + (A.14)

Now ~A+13!, ~A+14!, and tn r ` yield limnr` pn � 1+ �

Proof of Theorem 8. In parallel to the proof of Theorem 6, one can decompose

(
l�1

n

Zfab*
2
~Xla , Xlb!0n � (

1�i�j�n

EH~Xi ,«i , Xj ,«j !�(
i�1

n

EH~Xi ,«i , Xi ,«i !

� (
l�1

n

fab
*2~Xla , Xlb!0n � 2h 2 (

l�1

n

fab
* ~Xla , Xlb!B1~Xla , Xlb!0n

� op~h
2 !,

in which

EH~Xi ,«i , Xj ,«j ! � «i «j(
l�1

n 1

n3 ~ Kwiab, l � Kwia, l � Kwib, l !~ Kwjab, l � Kwja, l � Kwjb, l !s~Xi !s~Xj !

with

Kwia, l �
1

n
Kh~Xla� Xia!

w ta~Xi ta!

w~Xla , Xi ta!
, (A.15)

wiab, l �
1

n
Kh~Xla� Xia , Xlb� Xib!

w n n nab~Xi n n nab!

w~Xla , Xlb , Xi n n nab!
+ (A.16)

It is directly verified that for wia defined in ~A+2! and wiab defined in ~A+5!

(
l�1

n 1

n
~ Kwiab, l � Kwia, l � Kwib, l !~ Kwjab, l � Kwja, l � Kwjb, l !

��~wiab� wia� wib!~wjab� wja� wjb!wab~xa , xb!dxa dxb $1 � Op~n
�102 !%

uniformly for all 1 � i, j � n+
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Note also the fact that E~«i 6X1, + + + , Xn! � 0,E~«i
2 6X1, + + + , Xn ! � 1, and using the in-

dependence of «1, + + + ,«n, one obtains

(
i�1

n

EH~Xi ,«i , Xi ,«i ! � $1 � Op~n
�102 !% (

i�1

n

H~Xi ,«i , Xi ,«i !,

whereas

(
1�i�j�n

EH~Xi ,«i , Xj ,«j ! � (
1�i�j�n

H~Xi ,«i , Xj ,«j !� Op~n
�102 !

with H as defined in ~A+9!+ These, plus the trivial facts that

(
l�1

n

fab
*2~Xla , Xlb!0n �� fab

*2~xa , xb!wab~xa , xb!dxa dxb� Op~n
�102 !

(
l�1

n

fab
* ~Xla , Xlb!B1~Xla , Xlb!0n �� fab

* ~xa , xb!B1~xa , xb!wab~xa , xb!dxa dxb

� Op~n
�102 !

establish Theorem 8+ �
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