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Abstract

For any x in [0, 1), let [a1(x), a2(x), a3(x), . . .] be its continued fraction. Let ψ : N→ R+ be such that
ψ(n)→ ∞ as n→ ∞. For any positive integers s and t, we study the set

E(ψ) = {(x, y) ∈ [0, 1)2 : max{asn(x), atn(y)} ≥ ψ(n) for all sufficiently large n ∈ N}

and determine its Hausdorff dimension.

2020 Mathematics subject classification: primary 11K55; secondary 28A80.

Keywords and phrases: continued fraction, partial quotient, Hausdorff dimension.

1. Introduction

Continued fraction expansions can be defined in terms of the Gauss transformation
T : [0, 1)→ [0, 1) given by

T(0) := 0, T(x) :=
1
x

(mod 1) for x ∈ (0, 1).

Let a1(x) = �x−1� (where �·� stands for the integer part) and an(x) = a1(Tn−1(x)) for
n ≥ 2. Every irrational number x ∈ [0, 1) can be uniquely expanded into its infinite
continued fraction expansion:

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
1
. . .

,

This work was supported by the Program of Chongqing Municipal Education Commission (Nos.
KJQN202100528 and KJQN202000531), Projects from Chongqing Municipal Science and Technology
Commission (No. cstc2018jcyjAX0277) and the Foundation of Chongqing Normal University (No.
20XLB030).
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

404

https://doi.org/10.1017/S0004972721000940 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972721000940
https://orcid.org/0000-0001-9536-244X
https://orcid.org/0000-0002-5874-2088
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972721000940&domain=pdf
https://doi.org/10.1017/S0004972721000940
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which is simply written as x = [a1(x), a2(x), . . .]. The integers {an(x)}n≥1 are called the
partial quotients of x. The nth convergent is pn(x)/qn(x) = [a1(x), . . . , an(x)].

The convergents give the best rational approximations and the rate of approximation
of the sequence of convergents can be characterised by

1
(an+1(x) + 2)q2

n(x)
≤
∣∣∣∣∣ x −

pn(x)
qn(x)

∣∣∣∣∣ ≤
1

an+1(x)q2
n(x)

.

This implies that the Diophantine properties of a point x ∈ [0, 1) are reflected in the
growth rate of its partial quotients.

The metrical theory of Diophantine approximation concerns the quantitative study
of the density of rationals in irrationals. In one dimension, this can be rephrased in
terms of the growth of partial quotients of the continued fraction expansions of real
numbers. For example, the set of badly approximable numbers comprises the points
whose partial quotients are bounded. More generally, given an increasing function
ψ : N→ R+, the ψ-approximable set

W(ψ) =
{
x ∈ R :

∣∣∣∣∣ x −
p
q

∣∣∣∣∣ <
1

q2ψ(q)
for infinitely many (p, q) ∈ Z × N

}

can be estimated in terms of

K(ψ) = {x ∈ R : an+1(x) ≥ ψ(qn(x)) for infinitely many n ∈ N}.
In fact, by using elementary properties of continued fractions, W(3ψ) ⊂ K(ψ) ⊂ W(ψ).

As yet, there is no higher dimensional analogue of the Gauss map that captures
all the features of continued fractions in one dimension. We attempt to extend the
Diophantine approximation properties to two dimensions by characterising points in
the plane in terms of the growth of the partial quotients of their coordinates.

For any positive integers s and t, define

E = {(x, y) ∈ [0, 1)2 : max{asn(x), atn(y)} → ∞ as n→ ∞}.
We investigate the size of the set E as measured by its Hausdorff dimension dimH E.

THEOREM 1.1. We have

dimH E = 1 + 1
2 .

Let ψ : N→ R+ be such that ψ(n)→ ∞ as n→ ∞. For any positive integers s and t,
write

E(ψ) = {(x, y) ∈ [0, 1)2 : max{asn(x), atn(y)} ≥ ψ(n) for all sufficiently large n ∈ N}.

THEOREM 1.2. If lim supn→∞ n−1 log logψ(n) = log b, then

dimH E(ψ) = 1 +
1

1 + b1/max{s,t} .

The history of investigating the fractional dimensions of sets of real numbers whose
continued fraction expansions satisfy various conditions on their partial quotients
{an(x) : n ≥ 1} can be traced back to the 1940s. Good [3] considered such questions
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and more results were given by Feng et al. [2], Hirst [4], Łuczak [6] and Moorthy [7].
The set {x ∈ [0, 1) : an(x) ≥ φ(n) for infinitely many n}, where φ : N→ R+ is a positive
function, was considered by Wang and Wu [8] and they completely determined its
Hausdorff dimension. Wu and Xu [9] investigated the distribution of the largest digit
in the continued fraction.

Throughout this paper, we use |A| to denote the diameter of a set A ⊂ R, #B to denote
the cardinality of a set B ⊂ Z andH s to denote the s-dimensional Hausdorff measure.
We refer to [1] for the definition and properties for Hausdorff measure and Hausdorff
dimension.

2. Preliminaries

In this section, we first briefly recall some basic properties and known results of the
continued fraction expansion that will be used later.

Let x ∈ [0, 1) and [a1(x), a2(x), a3(x), . . .] be its continued fraction expansion.
For any n ≥ 1 and (a1, a2, . . . , an) ∈ Nn, let qn(a1, a2, . . . , an) be the denominator of
the nth convergent [a1, a2, . . . , an]. If there is no confusion, we write qn instead
of qn(a1, a2, . . . , an) for simplicity. With the conventional starting values p−1 = 1,
q−1 = 0, p0 = 0, q0 = 1,

pn+1 = an+1 pn + pn−1, qn+1 = an+1qn + qn−1, n ≥ 0.

For any n ≥ 1 and (a1, a2, . . . , an) ∈ Nn, define a basic cylinder of order n by

In(a1, a2, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an}.

The cylinder of order n consists of all real numbers in [0, 1) whose continued fraction
expansions begin with (a1, a2, . . . , an). The length of the cylinder is given by the
formula in the next lemma.

LEMMA 2.1 [5]. For any n ≥ 1 and (a1, a2, . . . , an) ∈ Nn,

1
2q2

n
≤ |In(a1, a2, . . . , an)| = 1

qn(qn + qn−1)
≤ 1

q2
n

(2.1)

and
n∏

k=1

ak ≤ qn(a1, . . . , an) ≤ 2n
n∏

k=1

ak. (2.2)

LEMMA 2.2 [6]. For any a, b > 1,

dimH{x ∈ [0, 1) : an(x) ≥ abn
for infinitely many n ≥ 1}

= dimH{x ∈ [0, 1) : an(x) ≥ abn
for all n ≥ 1} = 1

1 + b
.

LEMMA 2.3 [3]. If F = {x ∈ [0, 1) : an(x)→ ∞ as n→ ∞}, then dimH F = 1
2 .
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LEMMA 2.4 [1]. If E ⊂ Rn, F ⊂ Rm are Borel sets, then

dimH(E × F) ≥ dimH E + dimH F.

3. Proofs of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1. We divide the proof into two parts.

LOWER BOUND. Recall that

E = {(x, y) ∈ [0, 1)2 : max{asn(x), atn(y)} → ∞ as n→ ∞}.

It follows immediately that the set E contains the set

{x ∈ [0, 1) : an(x)→ ∞ as n→ ∞} × [0, 1),

which is of Hausdorff dimension 1 + 1/2 by Lemmas 2.3 and 2.4. This gives

dimH E ≥ 1 + 1/2.

UPPER BOUND. By the definition of E, we can rewrite it as

E =
∞⋂

M=1

∞⋃
N=1

∞⋂
k=N

{(x, y) ∈ [0, 1)2 : max{asn(x), atn(y)} > M for all n ≥ k}

:=
∞⋂

M=1

∞⋃
N=1

∞⋂
k=N

Ek(M).

(3.1)

It is clear that the set Ek(M) has the same Hausdorff dimension as

E(M) = {(x, y) ∈ [0, 1)2 : max{asn(x), atn(y)} > M for all n ≥ 1}.

Consequently, we only need to estimate the dimension of the latter set.
Set T = max{2s, 2t} + 1 and fix ε > 0. There exists an integer M0 = M(ε) such that

2T ·
( 1
εMε

)1/2
·
(
1 +

1
ε

)T
< 1 for all M > M0.

Let M > M0 and (x, y) be an element in E(M). Then, for any integers N and n with
TN < n ≤ 2 · TN ,

either asn(x) > M or atn(y) > M.

For this reason,

#{TN < n ≤ 2 · TN : asn(x) > M} ≥ 1
2 · T

N

or

#{TN < n ≤ 2 · TN : atn(y) > M} ≥ 1
2 · T

N .

Note that TN < max{sn, tn} ≤ TN+1 when TN < n ≤ 2 · TN . From this, for any N ≥ 1,

#{TN < n ≤ TN+1 : an(x) > M} ≥ 1
2 · T

N
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or

#{TN < n ≤ TN+1 : an(y) > M} ≥ 1
2 · T

N .

Thus, if we write

FN = {x ∈ [0, 1) : #{TN < n ≤ TN+1 : an(x) > M} ≥ 1
2 · T

N},

it can be shown that

E(M) ⊂
∞⋂

N=1

[(FN × [0, 1)) ∪ ([0, 1) × FN)].

Now we find a cover of FN × [0, 1) and estimate its volume. The required cover of
[0, 1) × FN can clearly be constructed in the same way. We fix the following notation:

• � := 1
2 · T

N ;
• A := {all choices of w = {n1, n2, . . . , n�} with n1 < n2 < · · · < n�, TN < ni ≤ TN+1

and 1 ≤ i ≤ �} so that #A = C�
(T−1)·TN ≤ 2TN+1

;
• wc:= {the integers in [1, Tn+1] \ w}.

For any n ≥ 1, set

Dn(w) = {(σ1,σ2, . . . ,σn) ∈ Nn, σn > M for n ∈ w, σn ≥ 1 for n ∈ wc}.

From the definition of FN ,

FN × [0, 1) ⊂
⋃
w∈A
{x : an(x) > M, n ∈ w} × [0, 1)

=
⋃
w∈A

⋃
(a1,...,aTN+1 )∈DTN+1 (w)

ITN+1 (a1, . . . , aTN+1 ) × [0, 1).

For each (a1, . . . , aTN+1 ) ∈ DTN+1 (w), the set ITN+1 (a1, . . . , aTN+1 ) × [0, 1) can be covered
by |ITN+1 (a1, . . . , aTN+1 )|−1 many squares, each of side length |ITN+1 (a1, . . . , aTN+1 )|, giving
a cover of FN × [0, 1).

Let α = (1 + ε)/2. A simple computation gives
∑
a>M

1
a2α ≤

1
εMε

,
∑
a≥1

1
a2α ≤ 1 +

1
ε

.

Using these inequalities, together with (2.1) and (2.2), the (1 + α)-dimensional volume
of this cover can be estimated as∑

w∈A

∑
(a1,...,aTN+1 )∈DTN+1 (w)

|ITN+1 (a1, . . . , aTN+1 )|−1 · |ITN+1 (a1, . . . , aTN+1 )|α+1

≤
∑
w∈A

∑
(a1,...,aTN+1 )∈DTN+1 (w)

TN+1∏
k=1

a−2α
k =

∑
w∈A

∏
n∈w

(∑
a>M

a−2α
)
·
∏
n∈wc

(∑
a≥1

a−2α
)
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≤
∑
w∈A

∏
n∈w

( 1
εMε

)
·
∏
n∈wc

(
1 +

1
ε

)
=
∑
w∈A

( 1
εMε

)�
·
(
1 +

1
ε

)TN+1−�

≤ 2TN+1 ·
( 1
εMε

)TN/2
·
(
1 +

1
ε

)TN+1

=

(
2T ·
( 1
εMε

)1/2
·
(
1 +

1
ε

)T)TN

.

Therefore, by the choice of the integer M,

Hα+1(E(M)) ≤ 2 lim inf
N→∞

(
2T ·
( 1
εMε

)1/2
·
(
1 +

1
ε

)T)TN

= 0,

which shows that

dimH E(M) ≤ 1 + ε
2
+ 1.

Since Ek(M) has the same Hausdorff dimension as E(M), by equation (3.1), and ε > 0
is arbitrary, we conclude that

dimH E ≤ 1 + 1
2 ,

which completes the proof of Theorem 1.1. �

PROOF OF THEOREM 1.2. Write

lim sup
n→∞

log logψ(n)
n

= log b with b ≥ 1.

According as b = 1 or not, the proof will be divided into two cases.

Case 1: b = 1. It is clear that E(ψ) ⊂ E, so dimH E(ψ) ≤ 1 + 1
2 . On the other hand,

{x : an(x) ≥ ψ(n) for all sufficiently large n ∈ N} × [0, 1) ⊂ E(ψ)

and ψ(n) ≤ e(1+ε)n
for any ε > 0 and all sufficiently large n, so that

{x : an(x) ≥ e(1+ε)n
for all sufficiently large n ∈ N} × [0, 1) ⊂ E(ψ).

Since ε is arbitrary, it follows from Lemma 2.2 that dimH E(ψ) ≥ 1 + 1
2 .

Case 2: b > 1. Take a point (x, y) ∈ E(ψ). Let 1 < a < b. By the definition of b, there
exists an infinite subset L of N such that ψ(n) ≥ ean

for all n ∈ L. For each n ∈ L,
either asn(x) > ean

or atn(y) > ean
. Since L is infinite, at least one of the inequalities

asn(x) > ean
and atn(y) > ean

holds for infinitely many n. This clearly forces

E(ψ) ⊂ E1 × [0, 1) ∪ [0, 1) × E2,

where

E1 = {x : asn(x) ≥ ean
for infinitely many n ∈ N},

E2 = {y : atn(y) ≥ ean
for infinitely many n ∈ N}.
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Thus, by Lemma 2.2,

dimH E(ψ) ≤ 1 +max
{ 1

1 + a1/s ,
1

1 + a1/t

}
=

1
1 + a1/max{s,t} .

On the other hand, for any c > b, we have ψ(n) ≤ ecn
for all large n. Without loss of

generality, we assume that s > t. So, it is clear that

E(ψ) ⊃ [0, 1) × {y : asn(y) ≥ ecn
for all n ∈ N}

⊃ [0, 1) × {y : an(y) ≥ e(c1/s)n
for all n ∈ N}.

By Lemma 2.2,

dimH E(ψ) ≥ 1 +
1

1 + c1/s .

Since c > b is arbitrary, we conclude that

dimH E(ψ) ≥ 1 +
1

1 + b1/s = 1 +
1

1 + b1/max{s,t}

and the proof of Theorem 1.2 is finished. �

4. Final remark

With a slight change in the notation, Theorems 1.1 and 1.2 can be generalised to
[0, 1)d in the same manner.

For 1 ≤ i ≤ d, let fi(n) = bin + ci with bi ≥ 1 and bi, ci positive real numbers. Define

Ed = {(x, . . . , xd) ∈ [0, 1)d : max{a f1(n)(x1), . . . , a fd(n)(xd)} → ∞ as n→ ∞}

and

Ed(ψ) = {(x1, . . . , xd) ∈ [0, 1)d :
max{a f1(n)(x1), . . . , a fd(n)(xd)} ≥ ψ(n) for all sufficiently large n ∈ N}.

Take

T = max{2bi, ci : 1 ≤ i ≤ d} + 1.

If Tk < n ≤ 2Tk, then

Tk < fi(n) = bin + ci ≤ 2biTk + ci ≤ (2bi + 1)Tk ≤ Tk+1.

Following the proofs of Theorems 1.1 and 1.2 step by step, we can deduce analogous
results in dimension d.

THEOREM 4.1. We have dimH Ed = d − 1
2 .

THEOREM 4.2. We have dimH Ed(ψ) = (d − 1) + 1/(1 + b1/A), where

lim sup
n→∞

log logψ(n)
n

= log b, A = max{bi : 1 ≤ i ≤ d}.
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