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We study the existence of Liouvillian first integrals for the generalized Liénard
polynomial differential systems of the form x′ = y, y′ = −g(x) − f(x)y, where
f(x) = 3Q(x)Q′(x)P (x) + Q(x)2P ′(x) and g(x) = Q(x)Q′(x)(Q(x)2P (x)2 − 1) with
P, Q ∈ C[x]. This class of generalized Liénard polynomial differential systems has the
invariant algebraic curve (y + Q(x)P (x))2 − Q(x)2 = 0 of hyperelliptic type.
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1. Introduction and statement of the main result

One of the most classical and difficult problems in the qualitative theory of planar
differential systems depending on parameters is to characterize the existence and
non-existence of first integrals in functions of the parameters of the system.

We consider the polynomial differential system

x′ = y, y′ = −g(x) − f(x)y, (1.1)

called the generalized Liénard polynomial differential system, where x and y are
complex variables and the prime denotes the derivative with respect to the time t,
which can be real or complex. Such differential systems appear in several branches of
the sciences, such as biology, chemistry, mechanics and electronics (see, for example,
[8,21] and the references therein). For g(x) = x the Liénard differential system (1.1)
is called the classical Liénard polynomial differential system.

Let
X = y

∂

∂x
− (g(x) + f(x)y)

∂

∂y

be the polynomial vector field associated with system (1.1). Let U be an open and
dense set in C

2. We say that the non-locally constant function H : U → C is a first
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integral of the polynomial vector field X on U if H(x(t), y(t)) = const. for all values
of t for which the solution (x(t), y(t)) of X is defined on U . Clearly, H is a first
integral of X on U if and only if XH = 0 on U .

A Liouvillian first integral is a first integral H which is a Liouvillian function,
that is, roughly speaking, one that can be obtained ‘by quadratures’ of elementary
functions. For a precise definition see [19]. The study of Liouvillian first integrals is
a classical problem of the integrability theory of differential equations, which goes
back to Liouville.

As far as we know the Liouvillian first integrals of some multi-parameter family
of planar polynomial differential systems have only been completely classified for
the planar Lotka–Volterra systems (see [1, 9, 15–18]).

Note that when g(x) = x system (1.1) is the well-known classical Liénard poly-
nomial differential system whose Liouvillian first integrals were studied in [11].
Moreover, the Liouvillian first integrals of these systems when 2 � deg g � deg f
were studied in [12], and the Liouvillian first integrals of these systems when
deg g = deg f + 1 were studied in [13].

The case when f and g are general polynomials is still open. The study of Liou-
villian first integrals is based, in particular, on the search for what is called an
invariant algebraic curve. Let h = h(x, y) ∈ C[x, y]\C. As usual C[x, y] denotes the
ring of all complex polynomials in the variables x and y. We say that h = 0 is an
invariant algebraic curve of the vector field X if it satisfies

y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= Kh

for some polynomial K = K(x, y) ∈ C[x, y], called the cofactor of h = 0. Clearly, h
has degree at most m = max{deg f +1, deg g}− 1. We also say that h is a Darboux
polynomial of system (1.1). Note that a polynomial first integral is a Darboux
polynomial with zero cofactor.

The invariant algebraic curves are important because a sufficient number of them
forces the existence of a first integral. This result is the basis of the Darboux theory
of integrability (see, for example, [4–7,10]).

An exponential factor E of system (1.3) is a function of the form E = exp(u/v) �∈
C with u, v ∈ C[x, y] satisfying

y
∂E

∂x
− (g(x) + f(x)y)

∂E

∂y
= LE (1.2)

for some polynomial L = L(x, y) of degree at most m, called the cofactor of E.
It is easy to check the following result for any generalized Liénard polynomial

differential system (1.1).

Proposition 1.1. System (1.1) has exponential factors exj

with cofactors xj−1y
for j = 1, . . . ,max{deg f,deg g − 1} and exponential factors of the form exp(u(x))
with u(x) a polynomial of degree at most max{deg f,deg g−1}. Moreover, if deg g �
deg f , then system (1.1) has the exponential factors exp(x +

∫
f(x) dx) with cofac-

tor −g(x).

The main difficulty in studying the Liouvillian integrability of a polynomial dif-
ferential system is the characterization of the invariant algebraic curves and of the
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exponential factors of the polynomial differential system. For that reason we restrict
our study of the Liouvillian integrability of the generalized Liénard polynomial dif-
ferential systems (1.1) to the following:

x′ = y,

y′ = −g(x) − f(x)y

= −Q(x)Q′(x)(Q(x)2P (x)2 − 1)

− (3Q(x)Q′(x)P (x) + Q(x)2P ′(x))y.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.3)

System (1.3) is motivated by the work of Żo�la̧dek [22]. More precisely, Żo�la̧dek
studied the Liénard differential systems (1.1) having a hyperelliptic invariant alge-
braic curve of the form (y+P (x))2 −Q(x) = 0, where P (x) and Q(x) are polynomi-
als. We consider the subclass of Liénard differential systems (1.1) studied by Żo�la̧dek
having a hyperelliptic invariant algebraic curve of the form (y + Q(x)P (x))2 −
Q(x)2 = 0; this is because such a curve factorizes into the two invariant algebraic
curves y + Q(x)(P (x) − 1) = 0 and y + Q(x)(P (x) + 1) = 0, which allows us to
study the Liouvillian integrability of the Liénard differential systems (1.1) having
such invariant algebraic curves.

Our main result on the Liouvillian integrability of the class of generalized Liénard
polynomial differential system (1.3) is the following.

Theorem 1.2. The following statements hold for the generalized Liénard poly-
nomial differential system (1.3).

(a) When deg Q = 0, i.e. Q(x) = κ ∈ C, system (1.3) is Liouvillian integrable,
with the first integral H = y + κ2P (x).

(b) When deg P = 0, i.e. P (x) = κ ∈ C, system (1.3) is Liouvillian integrable
with the first integral

H =
κ2Q(x)2 + κy − 1√

y2 + (2κy − 1)Q(x)2 + κ2Q(x)4
.

(c) Assuming that deg Q � 1 and deg P � 1,

(i) the unique irreducible Darboux polynomials are h1 = y +Q(x)(P (x)− 1)
and h2 = y+Q(x)(P (x)+1) with cofactors K1 = −Q′(x)(Q(x)P (x)+1)
and K2 = −Q′(x)(Q(x)P (x) − 1), respectively;

(ii) system (1.3) is not Liouvillian integrable.

Statements (a) and (b) can be checked directly from the definition of the first
integral. We shall divide the proof of statement (c) into different parts: in § 3 we
shall prove (i), while the proof of (ii) will be given in § 4.

Note that the main result in statement (i) is the uniqueness of h1 and h2 as
irreducible Darboux polynomials, because their existence follows from [22]. We
remark that exp(xj) are exponential factors for any generalized Liénard polynomial
differential system (1.1). The existence of rational first integrals of the form H =
y2 +A(x)y +B(x) for the differential system (1.1) when f(x) and g(x) are rational
functions was studied by Wilson in [20].
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2. Auxiliary notions and results

The following result is well known. For a proof see, for example, [7, proposition 8.4].

Lemma 2.1. Assume f ∈ C[x, y] and let f = fn1
1 · · · fnr

r be its factorization into
irreducible factors over C[x, y]. Then, for a polynomial differential system (1.1),
f = 0 is an invariant algebraic curve with cofactor Kf if and only if fi = 0 is
an invariant algebraic curve for each i = 1, . . . , r with cofactor Kfi . Moreover,
Kf = n1Kf1 + · · · + nrKfr

.

Proposition 2.2. The following statements hold.

(a) If E = exp(u/v) is an exponential factor for the polynomial differential sys-
tem (1.3) and v is not a constant polynomial, then v = 0 is an invariant
algebraic curve.

(b) Eventually E = exp(u) can be exponential factors coming from the multiplicity
of the invariant straight line at infinity.

For a geometric meaning of exponential factors and a proof of proposition 2.2
see [3]. The existence of exponential factors exp(u/v) is due to the fact that the
multiplicity of the invariant algebraic curve v = 0 is greater than 1 (again, for more
details, see [3]).

The following result, given in [3], characterizes the algebraic multiplicity of an
invariant algebraic curve using the number of exponential factors of system (1.3)
associated with the invariant algebraic curve.

Proposition 2.3. Given an irreducible invariant algebraic curve v = 0 of degree k
in system (1.3), it has algebraic multiplicity � if and only if the vector field associated
with system (1.3) has �−1 exponential factors exp(ui/vi), where ui is a polynomial
of degree at most ik and (ui, v) = 1 for i = 1, . . . , � − 1.

In view of proposition 2.3 if we prove that eu/v is not an exponential factor
with deg u � deg v, there are no exponential factors associated with the invariant
algebraic curve v = 0.

We say that a C1 function V = V (x, y) is an integrating factor if it satisfies

XV = − div XV,

where div stands for the divergence of the vector field X.
In 1992 Singer [19] proved that a polynomial differential system has a Liouvillian

first integral if and only if it has an integrating factor of the form

exp
( ∫

U1(x, y) dx +
∫

U2(x, y) dy

)
,

where U1 and U2 are rational functions that verify ∂U1/∂y = ∂U2/∂x. In 1999
Christopher [2] improved the results of Singer, showing that there are integrating
factors of the form

exp
(

u

v

) k∏
i=1

fλi
i , (2.1)

https://doi.org/10.1017/S0308210515000906 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000906


Liouvillian integrals for Liénard polynomial differential systems 1199

where u, v and fi are polynomials and λi ∈ C. From the Darboux theory of inte-
grability (see [7, 10,19]) we have the following result.

Theorem 2.4. The polynomial differential system (1.3) has a Liouvillian first inte-
gral if and only if system (1.3) has an integrating factor of the form (2.1), or,
equivalently, there exist p invariant algebraic curves fi = 0 with cofactors Ki

for i = 1, . . . , p, q exponential factors Ej = exp(uj/vj) with cofactors Lj for
j = 1, . . . , q and λj , µj ∈ C not all zero such that

p∑
i=1

λiKi +
q∑

j=1

µjLj = −divergence of (1.3) = f(x).

3. Proof of theorem 1.2(i)

The proof is a direct consequence of the following auxiliary results.

Proposition 3.1. Let h = h(x, y) be a Darboux polynomial of system (1.3) with
cofactor K �= 0. Then K = K(x).

Proof. As system (1.3) has deg g = 2 deg f +1 = m+1 � 3, and K is a polynomial
of degree at most m, we can write K as

K(x, y) =
m∑

j=0

Kj(x)yj , (3.1)

where Kj(x) has degree at most m − j. By assumption, h satisfies

y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= h

m∑
j=0

Kj(x)yj , (3.2)

where f and g were given in (1.3). We write h(x, y) =
∑l

j=0 hj(x)yj . Without loss
of generality we can assume that hl(x) �= 0. Computing the coefficient of yl+m

in (3.2), we get
0 = hl(x)Km(x), i.e. Km(x) = 0.

Therefore, repeating this argument for yl+m−1, . . . , yl+2, we get that Kj(x) = 0 for
j = 2, . . . , m−1. Hence, K(x) = K0(x)+K1(x)y. Computing the coefficient of yl+1

in (3.2) we get h′
l(x) = hl(x)K1(x), that is

hl(x) = C exp
( ∫

K1(x) dx

)
, C ∈ C.

Since hl(x) must be a polynomial in x, we have that K1(x) = 0. This completes
the proof of the proposition.

Proposition 3.2. The unique irreducible Darboux polynomials of system (1.3)
with non-zero cofactor are h1 = y+Q(x)(P (x)−1) and h2 = y+Q(x)(P (x)+1) with
respective cofactors K1 = −Q′(x)(Q(x)P (x)+1) and K2 = −Q′(x)(Q(x)P (x)−1).
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Proof. By direct computations we obtain that h1 and h2 are irreducible Darboux
polynomials of system (1.3).

Now we shall prove that these are the only irreducible Darboux polynomials
of system (1.3). Let h = h(x, y) be another irreducible Darboux polynomial of
system (1.3) with cofactor K. In view of proposition 3.1 we have that K = K(x).
Then,

y
∂h

∂x
− (g(x) + f(x)y)

∂h

∂y
= K(x)h,

with f and g as in (1.3).
Now we introduce the variables (X, Y ) with

X = x and Y = h1 = y + Q(x)(P (x) − 1). (3.3)

Then in these variables system (1.3) becomes

X ′ = Y − Q(X)(P (X) − 1), Y ′ = −Q′(X)(Q(X)P (X) + 1)Y. (3.4)

Let h = h̄(X, Y ). Then, if we denote by h̃ = h̃(X) the restriction of h̄ to Y = 0 we
get that h̃ �= 0 (otherwise h would not be irreducible). Note that h̃ is a Darboux
polynomial of system (3.4) restricted to Y = 0, that is,

−Q(X)(P (X) − 1)
dh̃

dX
= K(X)h̃, (3.5)

where K(X) is the cofactor of h̃, equal to the cofactor of h.
Solving this linear differential equation, we deduce that

h̃ = C exp
(

−
∫

K(X)
Q(X)(P (X) − 1)

dX

)
, C ∈ C \ {0}. (3.6)

Let r(X) = −Q(X)(P (X) − 1). Without loss of generality we can assume that K
and r are coprime; otherwise, we divide by their common factor. We claim that

deg K < deg r. (3.7)

We proceed by contradiction. Assume (3.7) and consider the Euclidean division of
K and r. We have

K(X) = s(X)r(X) + ψ(X), (3.8)

where ψ(X) cannot be zero, taking into account that K and r are coprime and
deg ψ < deg r. Hence, (3.8) becomes

K(X)
r(X)

= s(X) +
ψ(X)
r(X)

. (3.9)

Integrating this equation and taking into account (3.6), we have that

h̃(X) = C exp(s̃(X)) exp
( ∫

ψ(X)
r(X)

dX

)
, C ∈ \{0}, (3.10)

where s̃′(X) = s(X). Therefore, the first factor in (3.10) cannot cancel the second
factor of (3.10), and this contradicts the fact that h̃(X) is a polynomial. Hence, we
conclude that deg K < deg r, which proves (3.7).
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We say that the polynomial r(X) is square-free if r(X) =
∏k

l=1(X − αl) with
αl �= αl for l, j = 1, . . . , k and l �= j. We claim that

the polynomial r must be square-free. (3.11)

We again proceed by contradiction. Using an affine transformation of the form
X �→ X + α with α ∈ C if necessary, we can assume that X is a factor of the
polynomial r with multiplicity µ > 1. Then we write it as r(X) = Xµs(X) with
s(0) �= 0. We know that K(0) �= 0, since K and r are coprime. Now we develop
K(X)/r(X) in simple fractions of X, that is

K(X)
r(X)

=
cµ

Xµ
+

cµ−1

Xµ−1 + · · · +
c1

X
+

α1(X)
s(X)

,

where α1(X) is a polynomial with deg α1 < deg s and ci ∈ C for i = 1, 2, . . . , µ.
Equating both expressions, we get that cµ = K(0)/s(0) �= 0. Therefore, (3.6)
becomes

h̃(X) = C exp
(

cµ

1 − µ

1
Xµ−1

)
exp

[ ∫ (
cµ−1

Xµ−1 + · · · +
c1

µ
+

α1(X)
s(X)

)
dX

]
,

where C ∈ C \ {0}. The first exponential cannot be simplified with any part of
the second exponential. Thus, we get a contradiction with the fact that h̃ must
be a polynomial. Therefore, we conclude that r must be square-free, and (3.11) is
proved.

Hence, we have
K(X)
r(X)

=
γ1

X − α1
+ · · · +

γk

X − αk
. (3.12)

Integrating (3.6), we get

h̃(X) = C(X − α1)γ1(X − α2)γ2 · · · (X − αk)γk , C ∈ C \ {0}.

Since h̃ must be a polynomial, we must have that γi ∈ N ∪ {0} for i = 1, . . . , k.
Now we introduce the variables (X, Y ) with

X = x and Y = h2 = y + Q(x)(P (x) + 1). (3.13)

Then, in these variables, system (1.3) becomes

X ′ = Y − Q(X)(P (X) + 1), Y ′ = −Q′(X)(Q(X)P (X) − 1)Y. (3.14)

Let h = ĥ(X, Y ). Then, if we denote by h∗ = h∗(X) the restriction of ĥ to Y = 0,
we get that h∗ �= 0 (otherwise h would not be irreducible). Here h∗ is a Darboux
polynomial of system (3.14) restricted to Y = 0, that is

−Q(X)(P (X) + 1)
dh∗

dX
= K(X)h∗.

Solving this linear differential equation, we deduce that

h∗ = C1 exp
(

−
∫

K(X)
Q(X)(P (X) + 1)

dX

)
, C1 ∈ C \ {0}. (3.15)
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Proceeding as we did for h̃, if we define r∗(X) = −Q(X)(P (X) + 1), then we must
have that r∗ is square-free and that

K(X)
r∗(X)

=
δ1

X − β1
+ · · · +

δ�

X − β�
. (3.16)

Integrating (3.15), we get

h∗(X) = C1(X − β1)δ1(X − β2)δ2 · · · (X − β�)δ� , C1 ∈ C \ {0}.

Since h∗ must be a polynomial, we must have that βi ∈ N ∪ {0} for i = 1, . . . , �.
Note that if we denote by h = h(x, y) a Darboux polynomial of system (1.3) with

cofactor K = K(x), then

h = h̃ + (y + Q(x)(P (x) − 1))h1 = h∗ + (y + Q(x)(P (x) + 1))h2

for some polynomials h1, h2 ∈ C[x, y]. Moreover, from (3.12) we obtain

K(x) = − h̃′(x)
h̃(x)

Q(x)(P (x) − 1),

where the prime denotes the derivative with respect to x, and from (3.16) we get

K(x) = −h∗′
(x)

h∗(x)
Q(x)(P (x) + 1).

Hence,
h̃′(x)
h̃(x)

(P (x) − 1) =
h∗′

(x)
h∗(x)

(P (x) + 1),

which yields (
h̃′(x)
h̃(x)

− h∗′
(x)

h∗(x)

)
P (x) =

h̃′(x)
h̃(x)

+
h∗′

(x)
h∗(x)

.

That is,

P (x) =
h̃′(x)h∗(x) + h̃(x)h∗′

(x)
h̃′(x)h∗(x) − h̃(x)h∗′(x)

=
P1(x) + P2(x)
P1(x) − P2(x)

, (3.17)

where
P1(x) = h̃′(x)h∗(x), P2(x) = h̃(x)h∗′

(x).

It follows from (3.17) that any zero of P1(x) − P2(x) must be a zero of P1(x) and
P2(x). This implies that P1(x) = aP2(x) with a ∈ C. However, since P (x) is not
constant, because deg P � 1, this is not possible. Hence, we have a contradiction.
This concludes the proof of the proposition.

Proposition 3.3. System (1.3) has no polynomial first integrals.

Proof. We introduce the variables (X, Y ) as in (3.3) and we get system (3.4). Let
h = h̄(X, Y ) be a polynomial first integral. Then, if we denote by h̃ = h̃(X) the
restriction of h̄ to Y = 0, h̃ satisfies (3.5) with K(X) = 0, i.e.

−Q(X)(P (X) − 1)
dh̃

dX
= 0.
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Then

h̃(X) = c̃ ∈ C.

Since we can assume without loss of generality that h has no constant terms, we
have c̃ = 0, and thus h̃ = 0.

Now, introducing the variables (X, Y ) as in (3.13), we get system (3.14). Then,
if we denote by h∗ = h∗(X) the restriction of ĥ to Y = 0, h∗ satisfies (3.16) with
K(X) = 0, i.e.

−Q(X)(P (X) + 1)
dh∗

dX
= 0.

Then

h∗(X) = c∗ ∈ C.

In short, any polynomial first integral h can be written as

h = (y + Q(x)(P (x) − 1))g1 = c∗ + (y + Q(x)(P (x) + 1))g2 (3.18)

for some polynomials g1, g2 ∈ C[x, y]. Restricting h to y = −Q(x)(P (x) − 1) and
setting ḡ2 = ḡ2(x) = g2(x,−Q(x)(P (x) − 1)) (that is, ḡ2 is the restriction of g2 to
y = −Q(x)(P (x) − 1)) from (3.18) we get

0 = c∗ + 2Q(x)ḡ2(x),

but since Q(x) is not constant because deg Q � 1 this is not possible unless c∗ = 0
and ḡ2(x) = 0. Therefore, h can be written as

h = (y + Q(x)(P (x) − 1))g1 = (y + Q(x)(P (x) + 1))g2.

Hence,

h = [(y + Q(x)P (x))2 − Q(x)2]g3

for some g3 ∈ C[x, y] that satisfies

y
∂g3

∂x
−(Q(x)Q′(x)(Q(x)2P (x)2−1)+(3Q(x)Q′(x)P (x)+Q(x)2P ′(x))y)

∂g3

∂y
= Kg3,

with K = 2Q′(x)Q(x)P (x). In other words g3 must be a Darboux polynomial of
system (1.3) with cofactor K = 2Q′(x)Q(x)P (x). In view of proposition 3.2 and
lemma 2.1 we must have

m1K1(x) + m2K2(x) = 2Q′(x)Q(x)P (x), m1, m2 ∈ N ∪ {0},

where K1(x) = −Q′(x)(Q(x)P (x)+1) and K2(x) = −Q′(x)(Q(x)P (x)−1). This is
not possible because m1 and m2 must be positive integers, and this contradiction
completes the proof of the proposition.

Proof of theorem 1.2(i). The proof of theorem 1.2(i) follows directly from proposi-
tions 3.2 and 3.3.
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4. Proof of theorem 1.2(ii)

We divide the proof of theorem 1.2 into different steps.

Lemma 4.1. System (1.3) has no exponential factors of the form exp(u/h) with
u and h coprime and deg u < deg h, h being one of the two irreducible Darboux
polynomials of proposition 3.2.

Proof. Let h1 = y + Q(x)(P (x) − 1) and let E = exp(u/h1), with u and h1 being
coprime. Clearly, after cancelling the exp(u/h1), we get that u satisfies

y
∂u

∂x
− (Q(x)Q′(x)(Q(x)2P (x)2 − 1)

+ (3Q(x)Q′(x)P (x) + Q(x)2P ′(x))y)
∂u

∂y

+Q′(x)(Q(x)P (x) + 1)u = L(x, y)h1, (4.1)

where L is a polynomial of degree at most m. We introduce the change of variables
of (3.3), and (4.1) becomes

(Y − Q(X)(P (X) − 1))
∂ū

∂X
− Q′(X)(Q(X)P (X) + 1)Y

∂ū

∂Y
+ Q′(X)(Q(X)P (X) + 1)ū = L̄Y, (4.2)

where ū = ū(X, Y ) = u(x, y) and L̄ = L̄(X, Y ) = L(x, y). If we denote by ũ the
restriction of ū to Y = 0, we have that ũ �= 0 (otherwise ū would be divisible by Y ).
Evaluating (4.2) on Y = 0 we conclude that

−Q(X)(P (X) − 1)
dũ

dX
+ Q′(X)(Q(X)P (X) + 1)ũ = 0.

Therefore, ũ must be a polynomial that satisfies (3.5) with

K(X) = −Q′(X)(Q(X)P (X) + 1).

Note that, proceeding as in the proof of proposition 3.2, we get that deg K(X)
must be less than the degree of Q(X)(P (X) − 1), which is not the case. Hence,
system (1.3) has no exponential factors of the form exp(u/h1) with u and h1 being
coprime.

Let h2 = y + Q(x)(P (x) + 1) and E = exp(u/h2) with u and h2 being coprime.
After simplifying by u/h2, we get that u satisfies

y
∂u

∂x
− (Q(x)Q′(x)(Q(x)2P (x)2 − 1)

+ (3Q(x)Q′(x)P (x) + Q(x)2P ′(x))y)
∂u

∂y

+Q′(x)(Q(x)P (x) − 1)u = L(x, y)h2, (4.3)
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where L is a polynomial of degree at most m. We introduce the change of variables
of (3.13), and (4.3) becomes

(Y − Q(X)(P (X) + 1))
∂ū

∂X
− Q′(X)(Q(X)P (X) − 1)Y

∂ū

∂Y
+ Q′(X)(Q(X)P (X) − 1)ū = L̄Y, (4.4)

where ū = ū(X, Y ) = u(x, y) and L̄ = L̄(X, Y ) = L(x, y). If we denote by ũ the
restriction of ū to Y = 0, we have that ũ �= 0 (otherwise ū would be divisible by Y ).
Evaluating (4.4) on Y = 0, we conclude that

−Q(X)(P (X) + 1)
dũ

dX
+ Q′(X)(Q(X)P (X) − 1)ũ = 0.

Note that by proceeding as in the proof of proposition 3.2 we get that the degree of
(Q′(X)(Q(X)P (X)−1)) must be less than the degree of Q(X)(P (X)+1), which is
not the case. Hence, system (1.3) has no exponential factors of the form exp(u/h2)
with u and h2 being coprime.

Lemma 4.2. System (1.3) has no exponential factors of the form exp(u/hn
j ) with

u ∈ C[x, y] coprime with hj for j = 1, 2 and n � 1, and h1 and h2 being the two
irreducible Darboux polynomials of proposition 3.2.

Proof. The proof follows directly from proposition 2.3 and lemma 4.1.

Lemma 4.3. System (1.3) has no exponential factors of the form exp(u/(hn1
1 hn2

2 ))
with u, h1 and h2 coprime, n1 � 1, n2 � 1, and h1 and h2 being the two irreducible
Darboux polynomials of proposition 3.2.

To prove lemma 4.3 we state the following result, whose proof was given in [14,
lemma 3.2]. In fact, in [14] Llibre and Valls prove only one direction, but by working
backwards in the proof we readily get the other direction.

Lemma 4.4. The functions exp(g1/h1), . . . , exp(gr/hr) are exponential factors of
some polynomial differential system with cofactors Lj for j = 1, . . . , r if and only
if exp(g1/h1 + · · · + gr/hr) is an exponential factor of the same differential system
with cofactor L =

∑r
j=1 Lj.

Proof of lemma 4.3. Assume that exp(u/(hn1
1 hn2

2 )) is an exponential factor of sys-
tem (1.3). Then, writing

u

hn1
1 hn2

2
=

c1

h1
+ · · · +

cn1

hn1
1

+
d1

h2
+ · · · +

dn2

hn2
2

,

where ck and dl are polynomials of degree less than the degrees of hk
1 and hl

2,
respectively, for k = 1, . . . , n1 and l = 1, . . . , n2, and using lemma 4.4, we obtain
that each ck/hk

1 and dl/hl
1 must be exponential factors, but this is impossible in

view of lemma 4.2. This concludes the proof.

Using lemmas 4.2 and 4.3 we get that the unique possible exponential factors of
system (1.3) are of the form eu with u ∈ C[x, y].
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Lemma 4.5. If system (1.3) has a Liouvillian first integral, then it has an integrat-
ing factor of the form exp(u(x, y))hλ1

1 hλ2
2 , where u ∈ C[x, y], λ1, λ2 ∈ C and h1

and h2 are the Darboux polynomials of theorem 1.2(i). Moreover, the cofactor of
the exponential factor exp(u(x, y)) is a polynomial L = L(x).

Proof. Let L(x, y) be the cofactor of exp(u(x, y)). In order that system (1.3) has a
Liouvillian first integral, by theorems 2.4, 1.2(i) and lemma 4.1 we must have

− λ1Q
′(x)(Q(x)P (x) + 1) − λ2Q

′(x)(Q(x)P (x) − 1) + L(x, y)
= f(x)

= 3Q(x)Q′(x)P (x) + Q(x)2P ′(x). (4.5)

We expand L in power series in the variable y as L(x, y) =
∑m

j=0 Lj(x)yj . Comput-
ing the coefficients of yj with j > 0 in (4.5), we get that Lj(x) = 0 for j = 1, . . . , n
and thus L = L0(x). This concludes the proof.

Since we are looking for Liouvillian first integrals of system (1.3), in view of
lemma 4.5, we can restrict our study to the exponential factors with cofactor L =
L(x).

Proposition 4.6. System (1.3) has no exponential factors of the form exp(u),
where u ∈ C[x, y] with cofactor L = L(x).

Proof. Let E = exp(u) with u ∈ C[x, y] \ C and let L = L(x) =
∑m

k=0 βkxk be the
cofactor associated with E with βk ∈ C. We write

u =
r∑

j=0

uj(x)yj .

Without loss of generality we can assume that ur(x) �= 0. By the definition of the
exponential factor in (1.2) we have

y
∂u

∂x
− (g(x) + f(x)y)

∂u

∂y
=

m∑
k=0

βkxk, (4.6)

with f and g as in (1.3). Then

r∑
j=1

u′
j(x)yj+1 − Q(x)Q′(x)(Q(x)2P (x)2 − 1)

r∑
j=1

juj(x)yj−1

− Q(x)(3Q′(x)P (x) + Q(x)P ′(x))
r∑

j=1

juj(x)yj =
m∑

k=0

βkxk. (4.7)

We write
Q(x) = aqx

q + l.o.t. and P (x) = bpx
p + l.o.t.,

where ‘l.o.t.’ denotes the lower-order terms in x.
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Now we consider two cases.

Case 1 (r � 2). Computing the coefficient of yr+1 in (4.7), we get that u′
r(x) = 0,

i.e. without loss of generality we can take ur(x) = 1. Now we claim that if we write

u = u(x, y) = yr +
r∑

j=1

ur−j(x)yr−j ,

then, for j = 1, . . . , r,

ur−j(x) =
(a2

qbp)jAj

j!(2q + p)j
xj(2q+p) + l.o.t., (4.8)

where A1 = (3q + p)r, A2 = q(2q + p)r + (3q + p)2r(r − 1) and, for � � 2,

A�+1 = (3q + p)(r − �)A� + q�(2q + p)(r − � − 1)A�−1. (4.9)

Note that in view of (4.9) we have that A�+1 > 0 for any � = 0, . . . , r − 1.
We start the proof of the claim. For j = 1, computing the coefficient of yr in (4.7),

we get that

u′
r−1(x) = rQ(x)(3Q′(x)P (x) + Q(x)P ′(x)) = r(3q + p)a2

qbpx
2q+p−1 + l.o.t.

Integrating it, we obtain

ur−1(x) =
a2

qbp(3q + p)r
2q + p

x2q+p + l.o.t.,

which coincides with (4.8) for j = 1.
For j = 2, computing the coefficient of yr−1 in (4.7), we get that

u′
r−2(x) = Q(x)Q′(x)(Q(x)2P (x)2 − 1)r

+ Q(x)(3Q′(x)P (x) + Q(x)P ′(x))(r − 1)ur−1(x).

Now, using that

ur−1(x) =
a2

qbp(3q + p)r
2q + p

x2q+p + l.o.t.,

we obtain

u′
r−2(x) = qa4

qb
2
prx

4q+2p−1

+ (3q + p)a2
qbp(r − 1)x2q+p−1 a2

qbp(3q + p)r
2q + p

x2q+p + l.o.t.

= qa4
qb

2
prx

4q+2p−1 + a4
qb

2
p

(3q + p)2r(r − 1)
2q + p

x4q+2p−1 + l.o.t.

=
a4

qb
2
p

2q + p
(q(2q + p)r + (3q + p)2r(r − 1))x4q+2p−1 + l.o.t.

=
a4

qb
2
pA2

2q + p
x4q+2p−1 + l.o.t.

https://doi.org/10.1017/S0308210515000906 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000906


1208 J. Llibre and C. Valls

Integrating this, we get

ur−2(x) =
a4

qb
2
pA2

2!(2q + p)2
x4q+2p + l.o.t.,

which coincides with (4.8) for j = 2.
Now we assume that (4.8) holds for j = 0, . . . , L with L < r, and we shall prove

it for j = L + 1. Computing the terms in (4.7) with yr−L, we get

u′
r−L−1(x) = Q′(x)Q(x)3P (x)2(r − L + 1)ur−L+1(x)

+ Q(x)(3Q′(x)P (x) + Q(x)P ′(x))(r − L)ur−L(x) + l.o.t.

Now, using the induction hypothesis and (4.9), we obtain that

u′
r−L−1(x) = qa4

qb
2
px

4q+2p−1(r − L + 1)
(a2

qbp)L−1AL−1

(L − 1)!(2q + p)L−1 x(L−1)(2q+p)

+ (3q + p)a2
qbpx

2q+p−1(r − L)
(a2

qbp)LAL

L!(2q + p)L
xL(2q+p) + l.o.t.

=
(a2

qbp)L+1

L!(2q + p)L
x(L+1)(2q+p)−1(qL(2q + p)(r − L + 1)AL−1

+ (3q + p)(r − L)AL) + l.o.t.

=
(a2

qbp)L+1AL+1

L!(2q + p)L
x(L+1)(2q+p)−1 + l.o.t.

Integrating the above equation yields

ur−L−1(x) =
(a2

qbp)L+1AL+1

L!(2q + p)L(L + 1)(2q + p)
x(L+1)(2q+p) + l.o.t.

=
(a2

qbp)L+1AL+1

(L + 1)!(2q + p)L+1 x(L+1)(2q+p) + l.o.t.,

which is (4.8) with j = L + 1. This completes the proof of the claim.

From (4.8) with j = r − 1 we obtain

u1(x) =
(a2

qbp)r−1Ar−1

(r − 1)!(2q + p)r−1 x(r−1)(2q+p) + l.o.t. (4.10)

We recall that Ar−1 > 0. Now, computing the coefficient of y0 in (4.7), we get

−Q(x)Q′(x)(Q(x)2P (x)2 − 1)u1(x) =
m∑

k=0

β0,kxk. (4.11)

Using (4.10), the degree of the polynomial on the left-hand side of (4.11) is (r −
1)(2q + p) + 4q + 2p − 1 � 6q + 3p − 1. Since the degree of the right-hand side is at
most m = 4q + 2p − 2, we have a contradiction.
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Case 2 (r � 1). We write u = u(x, y) = u0(x)+u1(x)y. Computing the coefficient
of y2 in (4.7), we get

u′
1(x) = 0,

and without loss of generality we can take

u1(x) = 1.

Furthermore, the coefficient of y in (4.7) gives

u′
0(x) − (3Q(x)Q′(x)P (x) + Q(x)2P ′(x)) = 0, (4.12)

that is,

u0(x) = β0 +
∫

(3Q(x)Q′(x)P (x) + Q(x)2P ′(x)) dx,

β0 being a constant.
Finally, the coefficient of y0 in (4.7) gives

−Q(x)Q′(x)(Q(x)2P (x)2 − 1) =
m∑

k=0

βkxk. (4.13)

Since g(x) = Q(x)Q′(x)(Q(x)2P (x)2 − 1) has degree m + 1, from (4.13) we get a
contradiction. This concludes the proof of the proposition.

Proof of theorem 1.2(ii). The proof of theorem 1.2 follows directly from lemma 4.5
and proposition 4.6.
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22 H. Żo�la̧dek. Algebraic invariant curves for the Liénard equation. Trans. Am. Math. Soc.
350 (1998), 1681–1701.

https://doi.org/10.1017/S0308210515000906 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000906

