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Abstract
Here we review the potential of ILB 938 (IG 12132 – doi: 10.18730/60FD2), a unique faba bean ac-
cession originating from the Andean region of Colombia and Ecuador, maintained at ICARDA –

International Center for Agricultural Research in the Dry Areas, with resistance to multiple biotic
and abiotic stresses and carrying some useful morphological markers. It has been used as a
donor of leaf-related drought adaptation traits and chocolate spot (Botrytis fabae) resistance
genes in faba bean breeding programmes worldwide. From generated populations of recombinant
inbred lines, quantitative traits loci associated with these useful traits have beenmapped. Other mar-
kers, such as a lack of stipule-spot pigmentation and clinging pod wall, show the presence of un-
usual changes in biochemical pathways that may have economic value in the future.
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Introduction

Faba bean (Vicia faba L.) seeds are a generous source of
plant protein, with a global average protein concentration
of 29% on a dry-weight basis (Feedipedia, 2018). It is one of
the main sources of affordable protein for human con-
sumption in developing countries (consumed as dry or
canned), and for livestock feed in many developed coun-
tries. The fresh pods and seeds are widely used as a vege-
table crop for fresh seed production. Like other legumes, it
symbiotically fixes atmospheric nitrogen, thus improving
the soil fertility. As a non-host of many cereal pathogens,
faba bean is ideal as a break between grain crops in the ro-
tation (Köpke andNemecek, 2010). It has amixed breeding
system and is cross-pollinated at frequencies of 4–84%,

with the value determined by the interaction between the
plant genotype, its environment and the population of pol-
linators (Bond and Poulsen, 1983). Its interaction with
many species of bee (Stoddard and Bond, 1987) makes it
suitable for growing in ecological focus areas (Bues et al.,
2013). It is widely adapted to cool-temperate agriculture,
being grown from Mediterranean climates in southern
Australia and Mediterranean basin countries to sub-boreal
climates in Finland and Canada. Nevertheless, faba bean
cultivation is limited due to its susceptibility to several biot-
ic and abiotic constraints globally (see Stoddard et al., 2006;
Torres et al., 2006; Khan et al., 2010). Hence, genetically
diverse sources of resistance genes or genes for specific
adaptations such as to abiotic stress factors are required
in pre-breeding programmes worldwide. Some of these
germplasm sources, called ‘donors’, may become
prominent.

Faba bean is represented in germplasm collections by
only the cultivated form. Both botanical and molecular
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data suggest that the wild ancestors of faba bean either
have vanished or have not yet been discovered (Maxted,
1993; Duc et al., 2010; Kosterin, 2014; Caracuta et al.,
2016), which highlights the importance of the accessible di-
versity within the cultivated form. The place of origin of
faba bean is still unknown. A Near or Middle East centre
of origin has been proposed (Cubero, 1974), and the earli-
est identified remains of faba bean date from 10,200 BP in a
cave in Israel (Caracuta et al., 2015). Radiation followed in
four directions from the proposed centre: Europe, along the
North Africa coast to Spain, along the Nile Valley to
Ethiopia and from Mesopotamia to India and China
(Lawes et al., 1983). Spanish and European material was
taken to South America in the 16th century (Bond, 1976).
There are 43,695 faba bean accessions conserved within
37 global genebanks (ex situ, FAO, 2010) as well as on-farm
conservation (in situ, Kumar et al., 2012). ICARDA
(International Center for Agricultural Research in the Dry
Areas) hosts the largest collection of over 9500 accessions
(21% of global collection, FAO, 2010). ICARDA maintains
its faba bean germplasm in two classes, international leg-
ume bean (ILB) accessions from different countries, and
bean pure line (BPL) accessions that are derived through
selfing from accessions drawn from the ILB collection
(Saxena and Varma, 1985).

Accession ILB 938

ILB 938 is the result of mass selection from ILB 438 based
on seed size. ILB 438 was brought to ICARDA from the
Andean region of Ecuador and Columbia (Robertson,
1984) in 1973. ICARDA’s registered BPL derivatives of ILB
438 and ILB 938 are BPL 710 and BPL 1179, respectively.
ILB 938/2 is an inbred line developed at Göttingen for
use in genetics and breeding studies. The corresponding
‘IG’ number for ILB 938 in the ICARDA genebank is ‘IG
12132’ (accession doi: 10.18730/60FD2, see https://www.
genesys-pgr.org/10.18730/60FD2). ILB 438 is registered
as IG 11632 in the ICARDA genebank (accession doi:
10.18730/601TB).

Morphological markers

In the wild-type faba bean, the extra-floral nectary on the
stipule is coloured black. The presence of stipule-spot pig-
mentation was proposed as an early morphological marker
indicating wild-type ‘coloured’ flowers (tannin-containing
faba bean), where there is a black spot on each wing
petal and dark vein markings on the standard petal
(Picard, 1976). The absence of the pigmentation was con-
sidered as the corresponding early morphological indicator
for thewhite-flower, zero-tannin trait (Link et al., 2008). ILB
938, however, carries a rare allele (ssp1) that decouples

pigmentation in flowers from that in stipules, so it has
colourless stipules and coloured flowers (online
Supplementary Fig. S1, Khazaei et al., 2014a). An
Australian line, AF11212, has the same phenotype and is
derived from BPL 710 (Dr Jeff Paull, The University of
Adelaide, Australia; personal communication). Crossing
ILB 938/2 with AF11212 (including reciprocal crosses)
showed in the F1 and F2 generations uniformly the com-
bination of colourless stipule spots and spotted flowers,
confirming that the same gene exists in both accessions
(Miller, 2016).

The seed size of ILB 938 is classified as equina (horse
bean, field bean, flattened seed; 0.6 g/seed), which is ex-
pected since it was the medium- to large-seeded
Mediterranean-adapted faba bean form that was intro-
duced to Central and South America by immigrants from
Spain (Muratova, 1931; Cubero, 1974). The seed coat of
ILB 938 is green in colour, which is recessive to the com-
mon beige or buff colour (Khazaei et al., 2014b).

A further noticeable morphological character of ILB 938
is the clinging pod wall, where fibres from the inner epider-
mis of the pod cling to the surface of the seed (online
Supplementary Fig. S2). We have not seen this trait other-
wise reported in faba bean germplasm, and while it is of lit-
tle importance agronomically or economically, it may
indicate a difference in cell wall development that has
other impacts elsewhere in the plant or in the value chain.

Finally, the funiculus is yellow in ILB 938, in contrast to
the common green displayed by other accessions.

Biotic stresses

The resistance of ILB 938 to chocolate spot (CS, caused by
Botrytis fabae Speg.) has been demonstrated in Egypt
(Mohamed et al., 1981 [re-coded NEB 938]; Khalil and
Nassib, 1984; Robertson, 1984), Syria (Hanounik, 1982),
the UK (Jellis et al., 1982), Canada (Robertson, 1984),
France (Tivoli et al., 1988), and Ethiopia (Beyene et al.,
2016). Further, we have noticed its resistance to CS in field
conditions of both southern Finland and western Canada.

The resistance of the original source of ILB 938 was con-
firmed in the Nile Delta after crosses with the local cultivar
Giza 3 (ICARDA Caravan, 1998; Zeid et al., 2009). From
there, it was transferred to locally adapted material that
was released as Giza 461 in Egypt (Bond et al., 1994;
Dwivedi et al., 2006; El-Komy et al., 2015).

The related BPLs BPL 710 and BPL 1179 to ILB 438 and
ILB 938, respectively, also showed high resistance to CS
across environments (Hanounik and Maliha, 1986;
Hanounik and Robertson, 1988; Villegas-Fernández et al.,
2012; Beyene et al., 2018). The Australian cultivar Icarus
was derived from BPL 710 and released as a cultivar resist-
ant to CS and rust (Dwivedi et al., 2006).
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ILB 938 is, furthermore, considered as a consistent
source of resistance to rust (Uromyces viciae-fabae (Pers.)
J. Schrot.) (Khalil et al., 1985; Rashid and Bernier, 1986;
Rashid and Bernier, 1991). Both BPL 710 (Australian acces-
sion No. AC1269) and BPL 1179 (AC1272) are registered as
rust-resistant accessions in Australia (Ijaz et al., 2018) as
well as in ICARDA (1987).

Some studies have suggested that ILB 938 may also
carry resistance to crenate broomrape, Orobanche
crenata Forsk., an achlorophyllous, holoparasitic weed,
poses a major constraint to faba bean production in
Mediterranean climates (Zeid et al., 2006, 2009).

Abiotic stresses

Drought adaptation is an essential character for faba bean
cultivation in arid and semiarid regions. ILB 938 has de-
monstrated high water use efficiency (WUE) in several
studies (e.g. Abdelmula et al., 1999; Link et al., 1999;
Stoddard et al., 2006; Khan et al., 2007, 2010; Khazaei
et al., 2013; Khazaei et al., 2014b) mainly due to low stoma-
tal conductance, thus minimizing water loss and maintain-
ing yield under drought conditions. Nevertheless, its
reduced leaf stomatal conductance was not associated
with a highly ramified rooting system (Belachew et al.,
2018).

While ILB 938 has relatively low productivity, no yield
penalty was observedwhen it was exposed to drought con-
ditions (Link et al., 1999; Khan et al., 2007; Khazaei et al.,
2014b). It maintains a relatively high water status under
water-deficit conditions, demonstrating high WUE with
relatively low yield, because its stomata shut early, redu-
cing potential photosynthesis while limiting water loss.

The response of ILB 938/2 to ultraviolet light differs
greatly from that of a contrasting cultivar, Aurora/2 that
was developed at low altitudes and high latitudes where in-
cident UV is much weaker than high in the Andes (Yan
et al., 2018).

Mapping populations

A population of recombinant inbred lines (RILs) was devel-
oped from the cross of Mélodie/2 × ILB 938/2 (along with
its reciprocal) at the University of Helsinki (Khazaei et al.,
2014a). This population has been mapped for traits related
to drought adaptation (Khazaei et al., 2014b), vicine–con-
vicine concentration (v–c, Khazaei et al., 2015) and stipule-
spot pigmentation (Khazaei et al., 2014a). Quantitative
traits loci for seed size, seed coat colour, clinging pod
wall and yellow funiculus have also been located. ILB
938 and Mélodie differed at two loci affecting stomatal ac-
tivity at opposite ends of chromosome II, with each parent
contributing a canopy-cooling allele (Khazaei et al.,

2014b). The progenies of this population facilitated the de-
velopment of a reliable molecular marker for v–c in this
crop (Khazaei et al., 2017). This population is being pheno-
typed for salinity response in a collaboration with Egypt,
and collaborative studies on other traits are in progress.
Near-isogenic lines have been derived from heterozygous
F5 individuals at Göttingen (Tacke and Link, 2017).

Another RIL population, ILB 938/2 × Disco/2 (Khazaei
et al., 2014a), is suitable for CS genetic studies. Disco
(low in both tannin and v–c) has been shown to be very
sensitive to CS (Villegas-Fernández et al., 2012; Khazaei,
Personal observation). An RIL population from ILB 938/2 ×
Aurora/2 (Khazaei et al., 2014a) will be useful for analysing
the basis of the difference in ultraviolet response of these
two lines.

A multi-parent population [(Disco/2 × ILB 938/2) × (IG
114476 × IG 132238)] has been prepared for use in genom-
ic studies (Khazaei et al., 2018). This population is at F4
generation at the time of writing this paper and kept at
the University of Reading, UK.

DNA fingerprinting

ILB 938/2 was genotyped using 875 single nucleotide poly-
morphism markers developed by Webb et al. (2016). The
results showed a high level of homozygosity (99.6%, Webb
et al., 2016). The genotyping calls on ILB 938/2 are pre-
sented in online Supplementary Table S1.

Conclusions

The presence of unusual traits in this material is intriguing,
because the crop has been grown in South America for only
about 500 of its 10,000 years of domestication. It may be at-
tributable to several causes, including widespread genetic
variation introduced by the European settlers, adaptation to
extremely varied environments within short distances due
to altitude, frequent gene exchanges by pollinators and
movement of peoples, and natural selection (Bond et al.,
1994), or UV-induced mutation. Recently, several new ac-
cessions from Spain, Ecuador, Colombia and Peru with
high level of resistance to CS were identified (Maalouf
et al., 2016).

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/S1479262118000205.
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