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The movements of fluid–fluid interfaces and the common curve are an important
aspect of two-fluid-phase flow through porous media. The focus of this work is
to develop, apply and evaluate methods to simulate two-fluid-phase flow in porous
medium systems at the microscale and to demonstrate how these results can be
used to support evolving macroscale models. Of particular concern is the problem of
spurious velocities that confound the accurate representation of interfacial dynamics in
such systems. To circumvent this problem, a combined level-set and lattice-Boltzmann
method is advanced to simulate and track the dynamics of the fluid–fluid interface
and of the common curve during simulations of two-fluid-phase flow in porous media.
We demonstrate that the interface and common curve velocities can be determined
accurately, even when spurious currents are generated in the vicinity of interfaces.
Static and dynamic contact angles are computed and shown to agree with existing
slip models. A resolution study is presented for dynamic drainage and imbibition in
a sphere pack, demonstrating the sensitivity of averaged quantities to resolution.
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1. Introduction
Multiscale transport phenomena are fundamentally important for multiphase porous

medium applications. Two scales are commonly of interest: the microscale and the
macroscale. At the microscale, the locations of all phases are resolved explicitly.
Complete knowledge of quantities such as the distribution of the solid phase, the
resultant pore morphology and topology, fluid velocities, the location of boundaries
between phases, and curves that form along the joint boundary formed at the common
edge of three phases are fully resolved. The maximum length scales that can typically
be studied for natural porous medium systems using microscale approaches are
typically less than a centimetre (Blunt et al. 2013; Ovaysi, Wheeler & Balhoff 2014).
At the macroscale, system properties at a ‘point’ are described in an averaged sense
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(Hubbert 1956; Bear 1972; Luckner, van Genuchten & Nielsen 1989). Macroscale
approaches are essential to describe transport processes that occur over length scales
of metres to kilometres that are routinely of interest in subsurface systems. At these
length scales, the system is represented as an overlapping continuum, using some set
of averaged quantities such as porosity, volume fractions and specific interfacial areas.
While the macroscale is the typical scale at which porous medium continuum models
are posed, solved and applied, microscale modelling can be used to evaluate, close
and validate macroscale models (Whitaker 1986; Wood 2009; Gray & Miller 2014).

Multiscale modelling approaches can only be successful when the closure relations
used to produce solvable macroscale models are based upon and consistent with
the behaviour of microscale systems in some averaged sense; the microscale details
of such systems must be understood, at least for some model cases, to connect
the scales and realistically and rigorously close macroscale models. Thus microscale
modelling is of considerable importance for advancing fundamental understanding and
for the evolution of porous medium models that seek to rigorously connect disparate
length scales. As an example, the thermodynamically constrained averaging theory
(TCAT) is an approach for precisely describing macroscale transport phenomena in
terms of specifically defined microscale quantities, making the connection across
scales clear and transparent (e.g. Gray & Miller 2005, 2014; Miller & Gray 2005;
Jackson, Miller & Gray 2009). Within this context, sources of microscale information
represent an essential model development tool, providing a resource to measure
quantities that impact macroscopic behaviour, assess model assumptions and inform
closure relationships. In particular, interface and common curve phenomena are
thought to be important to fully characterize the behaviour of multiphase porous
medium systems; existing macroscopic models do not track this behaviour explicitly
(Miller et al. 2013).

Pore-scale models of multiphase flow in porous medium systems have been
deployed widely as a way to obtain microscale information based on first principles
while mimicking macroscopic behaviour (Celia, Reeves & Ferrand 1995; Reeves
& Celia 1996; Blunt & Hilpert 2001; Pan, Hilpert & Miller 2004; Schaap et al.
2007; Joekar-Niasar, Hassanizadeh & Leijnse 2008; Joekar-Niasar, van Dijke &
Hassanizadeh 2012). Pore-scale studies have proved useful as a way to study
limitations of macroscopic models for multiphase flow by directly simulating
phenomena that are not incorporated in traditional macroscopic formulations (Li,
Pan & Miller 2005; Porter, Schaap & Wildenschild 2009; Porter et al. 2010). A
topic of considerable interest is the relationship between transport phenomena in a
multiphase porous medium system at the microscale and a corresponding macroscale
representation of the same system (Joekar-Niasar et al. 2012; Blunt et al. 2013;
Herring et al. 2013). Many constitutive relationships have been posited in evolving
models for two-fluid-phase flow in porous medium systems (Gray & Miller 2014), but
only a fraction of these have been studied. A prominent example that has been a topic
of sustained study is the equilibrium relationship involving fluid saturations, pressures
and interfacial areas (Reeves & Celia 1996; Held & Celia 2001a,b; Dalla, Hilpert &
Miller 2002; McClure et al. 2004; Niessner & Hassanizadeh 2008; Porter et al. 2009,
2010; Raeesi & Piri 2009; Joekar-Niasar, Hassanizadeh & Dahle 2010a; Joekar-Niasar
et al. 2010b; Porter & Wildenschild 2010; Ahrenholz et al. 2011; Landry, Karpyn
& Piri 2011; Joekar-Niasar & Hassanizadeh 2012). Beyond the determination of
interfacial areas, the measurement of microscale interfacial curvatures has also
been applied to porous medium systems (Armstrong, Porter & Wildenschild 2012).
Approaches have also been advanced to study the contact angle in both simulated
and experimental systems (Huang et al. 2007; Andrew, Bijeljic & Blunt 2014).
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Tracking interface and common curve dynamics 213

While computational approaches have been advanced to analyse static configurations,
macroscale models for two-phase flow must be able to accurately model dynamic
processes. Interfacial displacements occur for any cases that involve changing fluid
saturations. Macroscale models to predict the rate of change in saturation are therefore
of great interest, and an area of active research. Among the quantities of interest
are the kinematic velocities of the interfaces and the common curve (Gray et al.
2015). Accurate calculation of these quantities is often hindered by the presence of
spurious currents that arise in the vicinity of interfaces as a consequence of numerical
instabilities. These instabilities are well known for many numerical methods, including
lattice-Boltzmann methods (LBMs) (Hou et al. 1997), as well as finite-element
method (FEM) schemes and other methods that represent the interfacial region in a
diffuse manner (Hysing 2012; Zahedi, Kronbichler & Kreiss 2012). Spurious currents
have been observed in many multiphase LBMs and have been shown to arise due
to an imbalance in the discretization of the phase pressure terms and the interfacial
stresses (Lee & Fischer 2006; Lee & Liu 2008; Lee 2009). While a variety of
strategies have been developed to reduce or eliminate these currents in the LBM
(Lee & Fischer 2006; Lee 2009) and using other approximation methods (Aulisa,
Manservisi & Scardovelli 2006; Jafari, Shirani & Ashgriz 2007; Nourgaliev, Liou &
Theofanous 2008; Chang, Deng & Theofanous 2013), higher-order approximations
are typically required. The associated computational costs make these methods
impracticable for simulations of multiphase flow in large complex geometries such as
porous media. Methods that can address these errors at reduced computational cost
are therefore desirable for these applications.

The overall goal of this work is to develop an improved numerical approach to
model the dynamic behaviour of the fluid–fluid interface and common curve in
two-fluid-phase flow, and to evaluate this method within a multiscale framework. The
specific objectives of this work are as follows:

(1) to implement an efficient method to compute accurate interface and common
curve velocities that is not sensitive to spurious currents;

(2) to use the approach to show that the static and dynamic contact angles can be
accurately predicted based on a multiphase LBM; and

(3) to demonstrate that the interface and common curve velocities can be computed
consistently for multiphase flow in complex geometries.

2. Approach
2.1. System description

Evolving models of multiphase flow explicitly contain measures of the pore-scale
physics that originate from a first-principles description of microscale systems (e.g.
Gray & Miller 2014). An important use of microscale simulations is to characterize
the macroscale state of the system. This information can be used to supplement
laboratory experiments often used to determine the form and parameter values of
a closure relation. For two-fluid-phase flow we consider simulations performed
within a domain Ω . Three phases are present, including the wetting fluid phase
(w), the non-wetting fluid phase (n) and the solid (s). Each of the phases occupies
a three-dimensional subset of Ω , denoted as Ωw, Ωn and Ωs, respectively. Since
three phases are present, three interfaces are possible, each of which occupies
a two-dimensional domain within Ω . These include the interface between the
wetting and non-wetting fluids, Ωwn, the interface between the wetting fluid and
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the solid, Ωws, and the interface between the non-wetting fluid and the solid,
Ωns. Finally, a common curve can exist where all three phases meet, which is a
one-dimensional subset of Ω denoted by Ωwns. The complete set of entities for
the two-fluid-phase model includes all phases and interfaces in addition to the
common curve, which together form a set of entities with a corresponding index set
I = {w, n, s, wn, ws, ns, wns} =IP ∪II ∪IC, where IP is the index set of phases
IP = {w, n, s}, II is the index set of interfaces II = {wn, ws, ns}, and IC is the
index set of common curves IC = {wns}. The fluid phase domains are Df = {Ωw, Ωn}
with the corresponding index set If = {w, n}.

2.2. Microscale computational approach
Macroscale state variables can be expressed in terms of microscale information that
includes the distribution of phases, and the pressure, density and velocity fields of
the fluids. Any approach that yields all of the needed information with sufficient
accuracy, precision and efficiency could be used to compute the macroscopic state.
The microscale geometry of the solid was provided initially and was invariant with
respect to time. The solid phase morphology and topology were specified analytically
by constructing a signed distance function to represent the boundary of the solid
phase.

An LBM was used to simulate the microscale state. A multiple-relaxation-time
(MRT) ‘colour’ LBM method was used, including in situ analysis capabilities
(McClure et al. 2014b). This approach included the solution of a conservation-
of-momentum equation and a conservation-of-mass equation for each of the two
fluids. The colour LBM was chosen for several reasons. First, the method conserves
exactly both local mass and local momentum. Second, the method is able to resolve
immiscible fluid features without the non-physical shrinkage of bubbles that has
been associated with some other LBMs (Zheng et al. 2014). Finally, the method
does not require higher-order approximations to improve numerical stability, which
allows for computationally efficient implementations that are suitable for simulations
of large three-dimensional flows in complex geometries. A three-dimensional
19-velocity-vector (D3Q19) set was used to construct an LBM that describes the
momentum transport. The three-dimensional seven-velocity (D3Q7) set was used
to describe the conservation of mass. Density values ρw and ρn were obtained by
solving a separate pair of equations that recover the conservation of mass for each
fluid phase, yielding density fields, ρw and ρn, for the wetting and non-wetting
entities, respectively. The associated distribution functions were determined based on
the local density, momentum and colour gradient (Latva-Kokko & Rothman 2005).
The momentum transport equation was coupled to the mass-conservation equation
through the evolution of the non-dimensional density field

φ = ρn − ρw

ρn + ρw
, (2.1)

where the densities of the two fluids are different.
The momentum transport equation was formulated using an MRT collision operator

to approximate the Navier–Stokes equations with anisotropic contributions to the stress
tensor due to interfacial forces (Ahrenholz et al. 2008). The momentum transport
solution provides the microscale pressure fields, pw and pn, and the velocity fields, vw
and vn. The relevant parameters for the momentum transport are the viscosities for
each fluid, µw and µn, and the interfacial tension, γwn, which were chosen explicitly.
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The units of all parameters are specified in terms of the lattice mass m, the lattice
length δx and the lattice time δt. The viscosities are specified in units m(δxδt)−1,
the interfacial tension in units mδt−2 and pressure in units mδx−1δt−2. The lattice
quantities can be associated to physical units with the understanding that the speed of
sound cs = δx/(

√
3δt) does not match the physical speed of sound, and the approach

will only yield a valid approximation for the continuum mechanics when the Mach
number is small.

Conditions at the solid boundary were imposed by enforcing a bounce-back rule for
the momentum transport equation to set a no-slip condition (Ginzburg & d’Humiéres
2003; Lallemand & Luo 2003; Pan, Luo & Miller 2006). For two-fluid-phase
flow, setting the equilibrium contact angle is essential to accurately model the
system behaviour. A boundary condition was determined by setting a constant value
φ(xk)=φs for xk ∈Ωs for the solid phase to yield the desired contact angle (McClure,
Prins & Miller 2014a).

2.3. Approximations of microscale geometric and kinematic quantities
The mean curvature of the wn interface is one of the most important quantities to
evaluate in order to advance macroscopic modelling approaches (McClure et al. 2006;
Armstrong et al. 2012). The mean curvature is defined as Jw =∇′ · nw, where nw is
the outward normal vector to the wetting phase boundary. The normal vector to the
wetting phase can be computed as the gradient of the phase density field evaluated
on Ωwn by

nw = ∇φ|∇φ|
∣∣∣∣
φ=0

. (2.2)

The normal to the solid phase can be computed in a similar way using a signed
distance function ψ to represent the solid interface location, where the vector normal
to the solid surface is obtained by computing

ns = ∇ψ|∇ψ |
∣∣∣∣
ψ=0

. (2.3)

Since the divergence of the normal vector is the curvature, Jw can be computed by
relying on the information from the phase density field φ evaluated on the lattice
(Sethian 1999) as

Jw =∇ · ∇φ|∇φ|
∣∣∣∣
φ=0

. (2.4)

Finite-difference approximations were used for the spatial derivatives to evaluate the
right-hand side of (2.4), and linear interpolation was used to estimate the interface
curvature from the curvature of φ on the mesh.

Many multiphase implementations of the LBM are hindered by the presence of
spurious currents in the vicinity of the interfacial region. These spurious currents
arise due to a small disparity in the way the pressure and interfacial contributions
to the stress tensor are discretized, and alternative formulations have been proposed
to address the issue (Lee & Lin 2005; Lee & Fischer 2006; Lee & Liu 2008; Lee
2009; Kuzmin & Mohamad 2010). However, the colour model implementation used
in this work exhibits spurious currents and for this reason the interfacial velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

21
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.212


216 J. E. McClure, M. A. Berrill, W. G. Gray and C. T. Miller

cannot be evaluated accurately by interpolating the values from the simulated velocity
field. This model does, however, have significant computational advantages compared
to the higher-order methods used to produce accurate interfacial velocities. Therefore,
we compute the interfacial velocity by rearranging a level-set equation to provide the
interface velocity in the direction normal to the interface, which we denote as ζ . The
level-set equation (LSE) is (Sethian 1999)

∂φ

∂t
+ ζ |∇φ| = 0. (2.5)

Most typically, (2.5) is solved to obtain the phase density field φ and as a result
update the position of the interface. In our case, the value of φ is already determined
from the LBM, and we wish to determine ζ . We rearrange the LSE to provide

ζ =−∂φ
∂t

/
|∇φ|, (2.6)

which must then be evaluated numerically. Both ∇φ and the time derivative of φ are
computed using second-order finite-difference approximations.

In our formulation, the normal velocity ζ at time t cannot be computed until time
t+ δt. However, since this information is not needed to advance the simulation, it has
no impact on the viability of the analysis procedure. In order to advance the analysis,
a short time history must be retained including φ(x, t − δt), φ(x, t) and φ(x, t + δt).
Once the time derivative of φ has been computed at all lattice sites, the value of ζ can
be approximated at points on the interface by interpolation. The kinematic interfacial
velocity vector at points on the interface is then provided by

wwn = ζnw. (2.7)

The contact angle is an indicator of the tendency of each fluid to wet the solid
surface, which is commonly called the wettability. The ability to measure contact
angles is valuable since the wettability of natural porous media often varies in both
time and space, and it has a significant impact on phase connectivity and transport
phenomena. At the microscale, the contact angle can be expressed in terms of the
normal vectors to the boundaries of wetting phase and solid phase surfaces, defined in
(2.2) and (2.3), respectively. Interpolating the normal vectors to points on the common
curve allows the microscale contact angle to be computed as

cos ϕws,wn = nw · ns. (2.8)

The averaging for the macroscale contacts is defined such that the Pythagorean identity
holds at the macroscale. To accomplish this, the sine of the contact angle is also
evaluated at the microscale,

sin ϕws,wn =
√

1− cos2 ϕws,wn. (2.9)

The approach described to evaluate the kinematic velocity of the wn interface
can be extended to consider the kinematic velocity of the common curve. The key
modification needed to accomplish this is to restrict the colour gradient operator so
that it includes only those components tangential to the solid surface,

∇
′φ =∇φ − (∇φ · ns)ns. (2.10)
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The normal speed of the common curve is then computed in an analogous fashion
to (2.6),

ζ ′ =−∂φ
∂t

/
|∇′φ|. (2.11)

Using the fact that both φ and ψ are constant on the common curve, it is clear that
the normal to the common curve within the solid surface is

nws = ∇
′φ
|∇′φ| . (2.12)

The kinematic velocity of the wns common curve is then

wwns = ζ ′nws. (2.13)

2.4. Measures of macroscale state
Macroscale measures of the system state are computed by averaging of microscale
quantities over the phases, interfaces and the common curve. The averages of interest
can be computed with an averaging operator of the general form

〈Pi〉Ωα ,Ωβ ,W =

∫
Ωα

WPi dr∫
Ωβ

W dr
, (2.14)

where Pi is the microscale quantity being averaged and W is a weighting function,
which is typically either 1 or some grouping of microscale variables. If W is not
explicitly noted in the specification of the averaging operator, then its value is unity.
While the regions of integration have been denoted as domains in (2.14), these regions
can also be specified as some subset of the boundary of Ω or some boundary of
an entity within Ω , which will also be a lower-dimensional entity. For example, the
domain of the wetting phase Ωw has a boundary Γw = Γwe ∪ Γwi that consists of an
external boundary where Γwe ⊂ Γ and an internal boundary where Γwi = Ωws ∪ Ωwn.
When the region of integration can be specified with a domain of integration for an
entity, the notation in (2.14) will be used. However, when it is necessary to integrate
over an external boundary, this will be denoted explicitly.

Four types of averages will be used to denote macroscale measures of the state of
the system, an intrinsic average

f α = 〈 fα〉Ωα ,Ωα , (2.15)

a density-weighted average
f α = 〈 fα〉Ωα ,Ωα ,ρα , (2.16)

and an average of a property of a higher-dimensional entity over a lower-dimensional
entity (e.g. phase evaluated at an interface or common curve)

f βα = 〈 fα〉Ωβ ,Ωβ , (2.17)

where dimβ <dimα. Uniquely defined averages for some variables, which are denoted
as a variable that is superscripted with a double-barred symbol, are explicitly defined.
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Specific extent measure quantities such as the volume fractions, specific interfacial
areas and specific common curve length are examples of specially defined averages,
because the form does not fit any of the three standard defined averages. These
measures can be formulated in terms of defined averages of the microscale indicator
function defined as

Υα(x)=
{

1, x ∈Ωα,

0, x /∈Ωα,
(2.18)

where x is a spatial position vector. Equation (2.18) can be used to formulate the
specific entity measures as

εα = 〈Υα〉Ω,Ω for α ∈I , (2.19)

where volume fractions correspond to the case in which α ∈ IP, specific interfacial
areas correspond to the case in which α ∈II , and the specific common curve length
corresponds to the case in which α ∈IC.

The porosity can be formulated as

ε = 〈Υf 〉Ω,Ω, (2.20)

where f is an index that refers to the pore space, which is occupied by a fluid phase.
Fluid saturations are a common related set of fluid entity extent measures defined as

sα = 〈Υα〉Ωf,Ωf
for α ∈If . (2.21)

Macroscale fluid pressures can be computed in a variety of ways that are relevant
for multiphase flow in a porous medium system. An intrinsic average of the fluid
pressure is expressed as

pα = 〈pα〉Ωα ,Ωα for α ∈If , (2.22)

where pα is the microscale fluid pressure. Traditional laboratory and computational
experiments to measure the state of a multiphase systems often control the fluid
pressures and fluid flow at the boundaries of the domain, leading to a fluid pressure
that is averaged over a segment of the boundary of the system given as

pΓi
α = 〈pα〉Γi,Γi

for α ∈If , (2.23)

where Γi is a segment (e.g. one face) of the boundary of Ω . A third pressure of
interest for two-fluid-phase systems is the interface-averaged pressure defined as

pκα = 〈pα〉Ωκ ,Ωκ for α ∈If , κ ∈Icα, (2.24)

where Icα is the index set of entities connected to the α fluid within Ω , which must
consist of an interface entity. For example, the w fluid meets the n fluid at the wn
interface and the solid phase at the ws interface.

The macroscale pressures defined in (2.22)–(2.24) all arise as important measures in
describing two-fluid-phase systems. In general, these pressures will not be equivalent.
Thus care is needed in analysing the state of a two-fluid-phase system. It should also
be noted that, in general, only the pressure defined by (2.23) is typically measured
in traditional laboratory experiments, and this is often true even for state-of-the-art
experiments that include high-resolution imaging. On the other hand, computational
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approaches provide a means to compute all of the defined pressures, yielding a basis
to deduce a more complete understanding of the macroscale behaviour of the system
than is possible when only the fluid pressures on the boundary of the domain can be
controlled and observed.

Phase densities are computed as intrinsic averages by

ρα = 〈ρα〉Ωα ,Ωα for α ∈IP, (2.25)

where the density is accessible through microscale computational results, which in turn
will rely upon a microscale continuum equation of state.

Two types of velocity are of interest in evolving models of multiphase flow (e.g.
Gray & Miller 2014). The first is the density-weighted average velocity vα for α ∈I .
A second velocity of interest is the kinematic velocity of an interior boundary, which
is the velocity of an interface or a common curve. The kinematic velocity is the
velocity of the boundary of an entity, not the velocity of the material within the entity.
To see the difference, consider steady-state co-current flow of two fluids through a
pore with a rectangular cross-section. The wetting fluid will occupying the corners
of the domain and a non-wetting fluid will occupy the central portion of the domain.
Since the system is at steady state, the interface that forms the boundary between
the two fluids is stationary, so the kinematic velocity vanishes. However, material
may move through the pore without moving the interfaces, so the density-weighted
interface velocity need not vanish. A boundary entity (interface or common curve)
can have a velocity in the normal directions to the entity, and the boundary of the
boundary entity itself can also change in the tangential direction. For example, the
edge of an interface in a two-fluid-phase system is a common curve. This common
curve can slide in a direction tangent to the interface.

We define a macroscale kinematic velocity of an interface as

wα = 〈nβnβ · vα
〉
Ωα ,Ωα

= 〈(I − I ′α
)
· vα
〉
Ωα ,Ωα

for α ∈II, (2.26)

where Ωα = Ω̄β ∩ Ω̄γ , Ω̄β = Ωβ ∪ Γβ is a closed domain, which states that the α
interface is defined as the internal boundary between the β and γ phases, I is the
identity tensor, and I ′α is the identity tensor in the surface. Thus wα is the macroscale
kinematic velocity of the α interface in the direction normal to the interface.

Similarly, the macroscale normal kinematic velocity of the common curve is

wwns = 〈(I − lwnslwns) · vwns〉Ωwns,Ωwns
= 〈(I − I ′′wns

)
· vwns

〉
Ωwns,Ωwns

, (2.27)

where lwns is the unit vector tangent to the common curve, and I ′′wns is the identity
tensor in the common curve. Thus, the common curve can move in two directions
that are normal to the curve. These directions of kinematic common curve movement
are tangent and normal to the solid phase surface. If the solid phase is incompressible
and fixed, the normal component of the kinematic velocity vanishes.

The curvature of the boundary of a phase β is defined at the microscale as

Jβ =∇′ · nβ for β ∈IP, x ∈ Γβi, (2.28)

where ∇′·= (I − nβnβ) · ∇·= I ′α · ∇· is the microscale divergence operator restricted
to an interface α. Note that the internal boundary of phase β denoted Γβi is formed at
the transition between phases, which is an interface. Because interfaces are a subset
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of <2 and do not have thickness, the curvature of the boundary of the phase is also
the curvature of the interface that comprises the boundary. The macroscale interfacial
curvature is specified by the microscale phase normal direction and the interface over
which the average is computed, yielding the standard form

J αβ =
〈
Jβ
〉
Ωα ,Ωα

=−〈Jγ 〉Ωα ,Ωα for α ∈II, (2.29)

where Ωα = Ω̄β ∩ Ω̄γ .
The capillary pressure of the wn interface is given at the microscale as

pwn =−γwnJw, (2.30)

where γwn is the interfacial tension of the wn interface. The capillary pressure is only
approximately equal to the difference in the volume-averaged pressures of the fluids
on each side of the interface when the system is in equilibrium. The macroscale
capillary pressure is defined as

pwn =−〈γwnJw〉Ωwn,Ωwn
, (2.31)

which, for the case of a constant interfacial tension at the microscale, allows for

pwn =−γ wnJwn
w . (2.32)

For the case described by (2.32), a two-fluid-phase porous medium system at
equilibrium has the property that

pwn = pwn
n − pwn

w ≈ pn − pw. (2.33)

The contact angle is a microscale common curve property, appearing under
equilibrium conditions in both Young’s equation and the Young–Laplace equation.
In a non-equilibrium system, the contact angle varies depending on the velocity of
the common curve (Jiang, Oh & Slattery 1979; Li & Slattery 1991; Brochardwyart
& DeGennes 1992; Sagis & Slattery 1995; Seppecher 1996; Dhori & Slattery 1997;
Shikhmurzaev 1997; Jacqmin 2000; Siebold et al. 2000; Pomeau 2002; Slattery, Oh
& Fu 2004; Blake 2006). The microscale contact angle is expressed as ϕws,wn and
is the angle between the ws and the wn interfaces. A macroscopic average contact
angle can be computed according to

cos ϕws,wn =
〈
cos ϕws,wn

〉
Ωwns,Ωwns(〈

cos ϕws,wn

〉2

Ωwns,Ωwns
+ 〈sin ϕws,wn

〉2

Ωwns,Ωwns

)1/2 , (2.34)

where cos ϕws,wn is defined to ensure that the identity

cos2 ϕws,wn + sin2 ϕws,wn = 1 (2.35)

is satisfied.
The state properties defined above require averaging of microscale quantities, which

in turn requires a representation of the microscale state variables. Both high-resolution
experimental and computational approaches can yield some of the state variables. Only
computational approaches are currently able to yield all microscale state variables.
Our LBM simulator is coupled to an in situ data analysis framework that is used
to continuously analyse the simulation state as it progresses such that the temporal
behaviour of averages can be studied at high resolution (McClure et al. 2014b). In this
approach, the phase volumes, interfaces and the common curve are determined from
image processing (McClure et al. 2007). The interface and common curve entities
were constructed, and averages were determined by applying low-order interpolation
and integration to approximate the averages listed in this section.
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3. Results and discussion
3.1. Validation

Validation cases were designed to verify that the simulator and analysis framework
recovers correct averages for both static and dynamic processes. Three cases are
included: (1) a bubble test, which demonstrates that the interfacial tension is modelled
correctly by the LBM; (2) simulation of a bubble trapped in a cylindrical capillary
tube, which demonstrates that various equilibrium contact angles can be recovered;
and (3) piston displacement in a cylindrical capillary tube, which demonstrates that
the kinematic velocities of the interface and common curve are consistent with other
flow measures and that the dynamic contact angle matches well-known behaviour
based on our implementation of the LBM. Quantities are plotted in non-dimensional
form when appropriate.

The bubble test is a standard validation for multiphase LBMs (Shan & Chen 1994;
Martys & Chen 1996; Chen & Doolen 1998; Lee & Fischer 2006; Shan & Chen
2007). It shows that the measured difference in the equilibrium phase pressures at the
microscale is equivalent to the product of the interfacial tension and the curvature as
given by Laplace’s law,

pn − pw =−γwnJw. (3.1)

In the bubble test, a sequence of bubbles of one fluid are immersed in a second fluid.
Simulations were performed using a lattice length δx = 2 µm, dynamic viscosities
µw = µn = µ = 1 × 10−3 Pa s and densities ρw = ρn = 1.0 g cm−3. The radius of
curvature is determined at equilibrium based on the volume of each immersed bubble.
Plotting the pressure difference as a function of the radius of curvature for several
bubble sizes provides the interfacial tension as the slope of the line. Here, we compute
the interfacial curvature directly from the microscale, so the test can also be used to
confirm that the average phase pressure and interfacial curvature are consistent with
the value of γ wn. At equilibrium, the macroscale phase pressures, interfacial tension
and interfacial curvature are constant, which means that

pn − pw =−γ wnJ wn
w . (3.2)

The microscale interfacial curvature is averaged over the fluid–fluid interface to obtain
the macroscopic curvature J wn

w . A range of bubble sizes were instantiated for five
different interfacial tensions γ wn, with the results for each bubble test plotted in
figure 1.

Similar to the bubble test, a trapped bubble of non-wetting phase within a
cylindrical tube provides a way to numerically measure the equilibrium contact
angle that results from a particular choice of simulation parameters (Huang et al.
2007; McClure et al. 2014a). Based on the equilibrium configuration, averages were
computed for pw, pn, ϕws,wn and J wn

w .
In a tube with radius R, the capillary pressure can be analytically determined based

on the equilibrium contact angle ϕws,wn according to

pn − pw =
2γwn cos ϕws,wn

R
. (3.3)

In the absence of external forces and at equilibrium, the pressures pn and pw are
constant, and the contact angle is invariant along the common curve. As a result, for
an equilibrium configuration, it must be true that pn = pn, pw = pw and ϕws,wn = ϕws,wn.
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FIGURE 1. Bubble tests show the equilibrium relationship between the average phase
pressure difference pn − pw, the curvature J wn

w and the interfacial tension γ wn.

The interfacial tension γ wn is independently determined based on the bubble test as
described in the previous section. Inserting the averages into (3.3), we conclude that,
at thermodynamic and mechanical equilibrium, the contact angle should satisfy

cos ϕws,wn = (p
n − pw)R
2γ wn

= pwnR
2γ wn

. (3.4)

The contact angle was computed geometrically as described in the previous section.
At equilibrium, the value should agree with the right-hand side of (3.4) and with the
interfacial curvature. These three quantities are plotted in figure 2 based on simulations
performed by inserting a bubble of non-wetting phase into a cylindrical tube with
radius R = 18δx. To change the contact angle, the value of the phase density field
within the solid phase was chosen as φs= 0.0, 0.15, 0.3, 0.45, 0.6, 0.75 and 0.9. The
system was then allowed to equilibrate for an elapsed time of 1× 105 δt, obtaining a
configuration at mechanical equilibrium. Reasonable agreement among the three values
is observed, with deviations expected due to the smeared interfacial regions for the
LBM. The measured interfacial curvature and pressure can deviate from the value
implied by the contact angle as a consequence. The three independently measured
quantities are plotted in figure 2.

An advantage of in situ analysis is the capability to efficiently extract information
about the system dynamics at high temporal resolution. Piston displacement in a
cylindrical capillary tube is considered as a demonstrative example and as a validation
case. Reservoirs of wetting and non-wetting fluids were established at opposite ends
of a capillary tube of length L = 400δx. The total domain size was 40 × 40 × 400,
with a capillary tube radius of R = 18δx to match the prior case of a static trapped
bubble. Initially the capillary tube was saturated with the wetting fluid, and a pressure
boundary condition was applied to induce flow of non-wetting phase into the tube.
Pressure values for the inlet and outlet were set such that the pressure difference
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FIGURE 2. Agreement between the geometrically measured contact angle value and the
equilibrium interfacial curvature and phase pressures plotted as a function of the solid
boundary value φs as determined using a trapped bubble test in a three-dimensional
capillary tube with width R= 18δx.

L

FIGURE 3. (Colour online) Piston displacement driven by pressure boundary conditions
in a cylindrical tube. The radius of the tube was R= 18δx and the length of the tube was
L= 400δx.

exceeds the equilibrium values measured for the static case. The geometry is shown
in figure 3. Equilibrium measurements are known from figure 2, since the capillary
tube diameter was identical for both static and dynamic simulations.

Simulations of displacement were performed using three different equilibrium
contact angles corresponding to φs = 0.0, 0.3 and 0.6. Different capillary numbers
were simulated by varying the boundary pressure difference and the interfacial tension.
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The capillary number was defined as

Ca= µU
γwn

, (3.5)

where U = |wwns|. This is a non-standard definition for the capillary number based
on the velocity of the common curve. More typically, one of the phase velocities is
used in the definition of the capillary number. However, for a steady displacement
in a capillary tube, vw

z = vn
z = wwns

z = U. This equivalence will not hold when the
displacement is not steady, such as when the configuration of the wn interface is
changing.

Each of the averages defined in § 2.4 was computed every 1000 time steps
throughout the course of the simulation. The rate of change in saturation was
determined by fitting a smoothing spline to the saturation values measured from the
simulation. At steady state, the change in sw is linear in time due to the geometry,
with the slope of the line given by

∂sw

∂t
= U

L
. (3.6)

Partial derivatives with respect to time were computed by fitting a third-order
polynomial spline function to the time history of the variable of interest. An analytical
relationship between the rate of change in saturation and the rate of the deformation
of Ωwn can be obtained by applying the transport theorem for a phase

ε
∂sw

∂t
= 1

V

∫
Ωwn

wwn · nw dr, (3.7)

where V is the total volume of the domain. This expression is exact provided that
the solid is immobile and non-deformable (Gray et al. 2015). In figure 4, the rate of
change in saturation is plotted against scaled measurements of the phase velocities vw

z

and vn
z , the kinematic velocity of the common curve wwns

z and (3.7). Good agreement is
obtained among the four independently measured values shown. Of the four measures,
errors in the common curve velocity wwns are largest. These results demonstrate that
our approach to compute interface and common curve velocities delivers results that
are consistent with other measures in the steady displacement.

Dynamic measurements of the contact angle were determined for each steady-state
displacement. The dynamic behaviour of the contact angle in a two-fluid system has a
long history of study, with the contact angle changing from its equilibrium value for
a moving common curve (e.g. Jiang et al. 1979; Li & Slattery 1991; Brochardwyart
& DeGennes 1992; Sagis & Slattery 1995; Seppecher 1996; Dhori & Slattery 1997;
Shikhmurzaev 1997; Jacqmin 2000; Siebold et al. 2000; Pomeau 2002; Slattery et al.
2004; Blake 2006). The multiphase LBM has previously been shown to recover
established models for the dynamic contact angle without a need to explicitly set
the slip length or other parameters. Instead, the dynamic behaviour arises naturally
due to uncompensated stresses in the vicinity of the common curve (Latva-Kokko
& Rothman 2007). A linear dependence on the capillary number was proposed by
Sheng & Zhou (1992):

cos ϕws,wn − cos ϕwn,ws
eq =Ca log (KD/ls) , (3.8)
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FIGURE 4. (Colour online) Agreement between measured rate of saturation change,
average velocity of the phases and kinematic velocity of the common curve.

where K is a constant and ls/D is the slip length. Equation (3.8) can be shown to
approximate the well-known slip model derived by Cox (1986). In figure 5, we show
that our implementation recovers (3.8); the dynamic contact angle is a linear function
of the capillary number, with the same slope obtained for different equilibrium
contact angles based on averaged measurements obtained from simulations of piston
displacement.

The approach used to compute the microscale kinematic velocity of the interface
and common curve is particularly useful for dealing with issues associated with
parasitic currents in the LBM. Owing to parasitic currents, the phase velocity tends
to be inaccurate in the vicinity of the interfaces and common curve. The normal
velocity of the interface can be computed accurately according to (2.6). Furthermore,
it can be used to determine the velocity of the common curve even though a no-slip
boundary condition is applied in the momentum transport solution.

3.2. Porous medium system
To evaluate the accuracy of the simulations in a realistic porous medium geometry, a
resolution study was performed using a periodic pack of 229 equally sized spheres in
a cubic domain. Simulations were performed at four different resolutions, which
corresponded to cubic domain sizes of 643, 1283, 2563 and 5123. For these
simulations, the sphere diameters were D= 13.6δx, 27.2δx, 54.5δx and 109δx, respect-
ively. Fast drainage and imbibition sequences were carried out following Ahrenholz
et al. (2008). The system was initially saturated with a wetting fluid phase, and
reservoirs of wetting and non-wetting fluids were imposed at opposing ends of the
domain. Pressure boundary conditions were then chosen to drive fluid displacement.
The simulation time was set as

tmax = µL
γ wn

tref , (3.9)
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FIGURE 5. (Colour online) Dynamic contact angle as a function of the capillary number
plotted for three different equilibrium contact angles.

where the non-dimensional quantity tref =4075.312 was chosen to allow sufficient time
for the fluid displacement to occur. The boundary pressures were then chosen to be
linear functions of time,

pΓα (t)= pΓα (0)+
pΓα (tmax)− pΓα (0)

tmax
for α ∈ {w, n}. (3.10)

The initial and final values for the pressure were specified for each of the
two reservoirs. Pressure boundary conditions were chosen to ensure identical
non-dimensional behaviour for each the four resolutions. For drainage, these boundary
pressure values were [

pΓn (0)− pΓw (0)
]

D/γ wn = 4.7, (3.11)[
pΓn (tmax)− pΓw (tmax)

]
D/γ wn = 28.12, (3.12)

and for imbibition [
pΓn (0)− pΓw (0)

]
D/γ wn = 12.53, (3.13)[

pΓn (tmax)− pΓw (tmax)
]

D/γ wn = 1.6. (3.14)

The number of time steps required for each process (drainage and imbibition) was then
determined for each resolution as 3 × 105δt, 6 × 105δt, 1.2 × 106δt and 2.4 × 106δt,
respectively.

In a traditional experimental set-up, fluid pressures are only measured at the
boundary reservoirs. In our simulations, this value was set explicitly; the resulting
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FIGURE 6. (Colour online) Behaviour of three average quantities as a function of
fluid saturation measured during simulated drainage and imbibition performed using four
different resolutions: (a) boundary pressure difference; (b) phase pressure difference.

saturation values are shown in figure 6(a). While the curves indicate a well-behaved
trend towards convergence as the resolution increases, the result cannot be considered
fully grid-independent even at a resolution D = 109δx. The largest differences are
observed during drainage for irreducible wetting phase saturation. This is due to the
fact that wetting phase tends to be trapped in very small spaces in the vicinity of grain
contacts. Resolving these features requires high resolution, and, as more pendular rings
are resolved, the observed irreducible wetting phase saturation increases. Resolving
pendular rings does not appear to have a large effect on the subsequent dynamics of
imbibition, however. Trapped non-wetting phase, which is obtained after imbibition,
tends to occupy large pores that are more easily resolved. Predicted values for the
entrapped non-wetting phase agree quite well for D = 54.5δx and D = 109δx, with
final residual non-wetting phase occupying 10.1 % and 10.3 % of the total pore
volume at these two resolutions.

Macroscopic theory is expressed in terms of the averaged phase pressures pw and pn.
These values differ from the boundary measurements because internal pressure values
vary throughout the domain, and the pressures of features that are disconnected from
the boundary need not have the same pressure as the boundary values. The measured
difference between the average phase pressures is shown in figure 6(b). Close
agreement is observed between results obtained for D = 27.2δx, 54.5δx and 109δx.
Since the phase-averaged pressures reflect the dynamics of the system, fluctuations are
observed as a result of Haine’s jumps during drainage and snap-off during imbibition.
These dynamics are similar for the three most well-resolved cases.

The rate of change in saturation is plotted against the rate of boundary deformation
for all four resolutions in figure 7. For a sharp interface, in the absence of numerical
error, the two terms will be equal. However, since the interfacial region simulated by
the LBM is diffuse, the location of the interface must be determined approximately
within the interfacial region. The errors associated with (3.7) therefore decrease as the
width of the interfacial region decreases relative to the overall resolution. Figure 7(a)
shows consistency between the right- and left-hand sides of (3.7). Agreement improves
as the resolution increases. A box plot for the associated error distribution is shown in
figure 7(b). The variances for error obtained at the four resolutions were 8.16× 10−6,
4.96× 10−6, 1.56× 10−6 and 7.78× 10−7, respectively, for D= 13.6δx, 26.2δx, 54.5δx
and 109δx. In each case, we find that doubling the resolution decreased the variance
in the error by slightly more than a factor of two.
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FIGURE 7. (Colour online) Consistency of the rate of change in saturation and the rate of
boundary deformation as a function of resolution for multiphase displacement in a sphere
pack: (a) agreement with (3.7); (b) box plot showing the error distribution.

4. Conclusions
An approach was implemented to evaluate the microscale kinematic velocity of the

fluid–fluid interface and the common curve, which was shown to accurately determine
these quantities for simulations where parasitic currents were present. The analysis
approach used to extract kinematic information is formulated in terms of the level-
set equation, and may also be applied to analyse the kinematics of experimentally
generated data. In this work, a multiphase lattice-Boltzmann simulator was used to
demonstrate the analysis capabilities for dynamic systems and validate the approach.
A range of equilibrium contact angles were considered, and steady displacement in
a cylindrical capillary tube was used to verify that the dynamic behaviour of the
contact curve could be determined accurately. Under dynamic conditions, the contact
angle was shown to be consistent with widely used slip models without the need
for additional parameters. These results were obtained by using the common curve
velocity directly.

We note that, while higher-order methods are able to reduce the effects of spurious
currents, numerics that rely on a diffuse interface are still inherently limited by the
errors associated with the interface representation. As with many other numerical
methods, LBMs represent the interfacial region by smoothing it across several grid
points so that derivatives can be computed. This is not an ideal approximation for
real immiscible fluids; a jump condition would provide the best approximation. The
accuracy of the coupled approach is limited by interfacial approximations made in
the LBM rather than the quadrature scheme used to determine the averages. The
thickness of the interfacial region in the LBM results in boundary effects at the solid
surface. The effect is most significant for small contact angles.

A resolution study was performed for fast drainage and imbibition sequences in
a pack of 229 equally sized spheres. Four resolutions were considered in which
each sphere diameter was resolved with 13.6, 26.2, 54.5 and 109 lattice lengths,
respectively. The ability to predict the distribution of the entrapped non-wetting phase
that forms during imbibition was achieved at a resolution of 54.5 lattice lengths.
For displacement in the complex geometry, transport theorem results were used to
determine the accuracy of the interfacial kinematics. We find that high resolution is
essential to recover this behaviour accurately. Convergence was not obtained for the
interfacial kinematics until a resolution of 109 lattice lengths per sphere diameter was
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used; this would be considered a very well-resolved simulation based on previously
published work.
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