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SUMMARY

In this paper, an optimization design of a 6 DOF parallel measuring system is analyzed. First, a
closed form direct kinematics formulation based on Cayley—Menger determinants is considered
in the objective function, in order to measure the manipulator singularities, then an estimation of
distribution algorithm is proposed to solve the optimization problem. It is shown that the evolutionary
algorithm can find close to optimal solutions for minimum pose error estimation. Additionally, these
global optimizers significantly reduce the computational burden in comparison with exhaustive
search and other global optimization techniques. The sensitivity of the pose error estimation in the
prescribed robots’ workspace is analyzed and used to guide a designer in choosing the best structural
configuration. Numerical examples are discussed to show the feasibility of the proposed optimization
methodology.

KEYWORDS: Robotics; Parallel mechanism design; Tracking system; Optimization; Estimation of
distribution algorithms.

1. Introduction

Calibration of robotic systems requires to measure the pose (position and orientation) of end-
effectors for the purpose of compensating parameter errors and improving accuracy. Several
measuring systems have been used to determine the pose of movable rigid bodies often by means of
expensive measurement devices such as laser tracking systems,” vision-based measure devices,?> 2> or
redundant systems.'? Nevertheless, often measuring systems cannot measure position and orientation
simultaneously or have limited accuracy.’” The option of cable-based measuring systems is a feasible
and cheap alternative for the identification of kinematic parameters on robotic systems. In fact, these
systems can be a good compromise between expected accuracy and low cost. Some works have
been focused on this type of architecture and parallel cable mechanisms have been presented for
pose measuring purposes.'* At LARM (Laboratory of Robotics and Mechatronics) in Cassino, a
cable-based measuring system has been studied and designed since late 90s. It is named as CaTraSys
(Catrasys Tracking System) and has been used to evaluate the serial robot workspace.!® In addition,
a characterization of singularities and error analysis have been presented for this system.®!” Based
on the design of CaTraSys, a measuring system has been developed at LARM for fine calibration.® 3
This system, shown in Fig. 1, has been named as Milli-CaTraSys. It is a cable-based tracking
system capable of measuring displacements and orientation variations of complex movable multibody
systems.
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Fig. 1. A prototype built at LARM in Cassino.

Another advantage of using this measuring system consists in the possibility of applying a
known wrench and measuring its effect on the end-effector of multibody robotic systems. One
can simultaneously measure the linear and angular compliant displacements. Since known masses
can be applied to the free ends of its cables, the system can be used for analyzing stiffness features
as described in refs. [5, 13]. Thus, an experimental evaluation procedure of stiffness performance
can consist in measuring the compliant displacements due to known external wrench. In addition,
the measurement of a set of small angular compliant displacements can be very complex to
achieve through commercially available sensors. Many applications in robotics, construction, and
manufacturing require effective real-time measurement of Cartesian pose of end-effectors, tools, and
materials. In this form, similar cable-based measuring systems have been used for identification of
human walking characteristics'>'® or for assisting measurement in potential sculpture surfaces.

In this work, a kinematic design optimization of a 6 DOF cable-based parallel tracking system for
minimum pose error estimation is analyzed. We intend to find the position on the base for six cables
in order to reduce singularities, maintaining a large determinant (which is related with the volume of
the tetrahedral shaped by the cables), additionally, we intend to maintain a similar volume during the
whole trajectory, in order to perform a soft trajectory, it means without abrupt changes on the cables.
Finally, our objective function also considers that the cables must be as farthest as possible from each
other in the base platform.

The forward kinematics of the device in terms of Cayley—Menger determinants is used
to measure singularities and subsequent pose errors of the end-effector. An estimation of
distribution algorithm is developed and tested to solve the optimization problem. It is shown
that the evolutionary algorithm can find close to optimal solutions with minimum pose error
estimation.

In recent years, evolutionary algorithms have been considered for addressing optimization
problems, as well as in robotics area. For example, genetic algorithms have been used to optimal
planning of experiments for calibration problem in serial robots,* or addressing an optimal control
of parallel manipulators.'® In addition, a hybrid method based on a genetic algorithm has been
implemented to solve the direct kinematics of the Stewart platform, by finding all real solutions.>*
The optimized design of parallel mechanisms have been also studied by using differential evolution®
or neuro-genetic algorithms.'

The paper is organized as follows. Section 2 presents the system architecture and operation modes.
In Section 3, the kinematics is analyzed in terms of Cayley—Menger determinants. The optimization
problem is formulated in Section 4 and solved by using an Estimation of Distribution Algorithm (EDA)
in Section 5. In Section 6, results and a sensitivity analysis are presented, and finally, conclusions are
drawn in Section 7.

2. System Architecture
Milli-CaTraSys can be considered as a Gough—Stewart parallel manipulator with 3-2-1 configuration.
It consists of two rigid body platforms that are linked through six cables of variable lengths. Namely,
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Fig. 2. A 3D scheme with reference frame.

the two rigid bodies are a base platform, and a moving platform that can be considered as end-
effector, as shown in Figs. 1 and 2. By using Milli-CaTraSys, it is possible to evaluate the linear and
angular compliant displacements occurring to a reference frame that is attached to the end-effector by
measuring only linear distances of the cables. These linear distances are the lengths of cables that are
measured by means of six LVDT transducers. Figure 2 shows the location of LVDT transducers on
the fixed Milli-CaTraSys platform and the masses m; (i =1,...,6) that are applied on the free ends of
the six cables, in order to guarantee that all cables are always pulling (in tension). Two types of LVDT
sensors have been tested to be implemented on Milli-Catrasys prototype. The first type of LVDT
sensors has a full scale measuring range of 200 mm and an accuracy of 0.25% of the full scale. The
Milli-CaTraSys prototype can have an overall accuracy of 0.5 mm and 9.5e—3 rad when equipped
with this type of sensors. The second type of LVDT sensors has a full scale measuring range of 5 mm
and an accuracy of 0.25% of the full scale. The system can have an overall accuracy of 0.01 mm and
le—5 rad when equipped with this type of sensors. It is worth noting that the measuring error can
be considered as negligible when the distance from the base plane is large. The data acquisition and
the signal conditioning for the six transducers are implemented through a NI DAQ Acquisition board
PCI 6024, six LVDT transducers (with proper power supply and amplifiers) and a virtual instrument
in LabVIEW environment.'!® This virtual instrument has been developed to measure the data from
the amplifiers of the LVDT transducers. In general, it consists of six channels to make the acquisition
of analogical inputs and a filter stage for the six signals. Then, data are stored in a suitable data file.
Applications of this measurement device include evaluation workspace and parameters identification
of multibody robotic systems. Milli-CaTraSys has been already successfully used for evaluation of
workspace.5 Moreover, Milli-CaTraSys can be used to apply a known wrench on the end-effector
of a robotic system. Since known masses can be applied to the free ends of its cables, one can use
Milli-CaTraSys for analyzing stiffness features of robotic systems t00.

3. Kinematics and Error in Pose Estimation
Considering the scheme that is shown in Fig. 3, B;(B,y, By, 0) (with i = 1, 6) represent the vectors
joining the origin with the points B;, which are the sources of the cable lengths on the fixed base
platform. The origin of the reference frame could be posed in any place on the base platform. In
our calculations, we posed it in a corner as it is shown in Fig. 2. Similarly, Pi(P;;, P;,, P;;) (with
i =1, 2, 3) represent the vectors joining the origin with P; points, which are the attaching points of
the cables on the end-effector. The centroid point on the Milli-CaTraSys end-effector is identified as
C(Cx, Cy, Cz).

The inverse kinematic model expresses the relationship between the cable lengths and the pose.
Indeed, when the pose of the end-effector is given, the solution of the inverse kinematic problem
gives the cable lengths in the form:

l; =dist(Bi, Py, i=1,23 (D)
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Fig. 3. A set of three trilateration operations for the direct kinematic model of the parallel tracking system.
Given a set of six cable lengths, there are three tetrahedrons and two possible solutions for the location of Py,
P>, and P; points.

Where dist(-) is the distance. The problem of finding the Cartesian position and orientation of the
movil platform associated with given cable lengths is discussed as follows. The position of P; on the
robot end-effector can be defined as the position of the point at which three arcs intersect. These arcs
are defined by three spheres equations.

The direct kinematics of the 3-2-1 configuration can be solved by three consecutive trilateration
operations, as shown in Fig. 3. Using Eq. (1) the coordinates of P; can be obtained by referring
to a tetrahedron with known edge lengths /;, I3, and Is. Thus, the solution of Eq. (1) provides two
mirror coordinates of P;. However, the suitable solution can be chosen as the positive one. Then, the
coordinates of P, can be obtained by referring to a second tetrahedron that is defined by referring the
cable lengths /4, [, and the known distance from P; to P,. Finally, a third tetrahedron is defined by
referring the cable length /g and the known distances P; to P; and P, to P5 . Once points P;, P,, and
P; have been located, they can be used to compute the pose of the end-effector of Milli-CaTraSys
as given by the coordinates of C and, three orientation angles «, 8, and ¢. Note that this completely
solves the direct kinematics of the 3-2-1 configuration.

For Milli-CaTraSys, the above-mentioned direct kinematics procedure can be solved by
implementing the formulation in ref. [27].

This formulation uses the concept of Cayley—Menger bideterminants and gives a closed-form
solution to this problem. The performance of a 3-2-1 tracking system can be also analyzed in terms
of these determinants.
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The Cayley—Menger bideterminant D of two sequences of points [pl, p2,..., p,] and
g1, g2, - - -, gu] is defined as ref. [26]:

0 1 1 1 1
v 1 D(pr,G1) D(p1,G2) --- D(p1,Gn)
DGr . i, ,qn):2(7> I D(prg) Dprd) - D), ()
1 D(u. @) D) -+ D(Pu.Gn)

where D(p;, § ;) denotes the squared distance between the points p;, §;. When the sequences of
points are the same, it is to say D(py, ..., Pn; P1» - - -» Pu), We use the notation D(py, ..., p,). Itcan
be shown that D(py, 3, p,) is (n — 1)!)? times the squared hypervolume of the simplex spanned by
the points py, ..., px.

Thus, given three points in space, p;, p», and ps, the trilateration problem can be solved by finding
the location of another point, ps, where the distance from it to these points is known. According to
this formulation,?”-?® the point p4 can be expressed as

D4 = P1 + Ci(=Crty + G300, £/ Cua(¥1 X 1)), 3)

where ), = p, — p; and U, = p3 — P, the &£ sign gives two mirror symmetric coordinates for pg
point, and

1 1

Cl = = = = = = ~
D(p1, p2, p3)  |lUh — D2l

“)

Cy = D(p1, P2, P35 P1> P3» Pa) = [(P1 — P3) X (P2 — P3)] - [(P1 — Pa) X (D3 — Pa)] (5)
Cs = D(p1, P2, P3; P1> P2, Pa) = [(P1 — P3) X (P2 — P3)] - [(P1 — P2) X (P2 — Pa)] (6)

Ca = D(pr, P2, Pa)- (N

The formulation is not expressed according to a specific coordinate frame and it is coordinate-free.
Moreover, the main advantage of this formulation is that all the involved terms are determinants with
geometric meaning, representing side areas or volumes of tetrahedrons. In this form, effects caused
by error pose estimation and singularities can be investigated in a straight way. It has been reported®
that there are certain singular sets of cable lengths in which the number of solutions are not two,
for at least one of the three trilateration operations. In fact, the moving platform is in a singular
configuration in which at least one of the following equations is satisfied:

D(By, B3, Bs, P1) =0, D(B3, Bs, P1, P,) =0, 0rD(Bs, P1, P2, P3) =0. (8)

These conditions characterize all singularities for the three trilateration operations in Fig. 3. During
normal operation, it is desirable that the tracking system works in a region without singularities.
Indeed, near a singularity, small errors in the cable lengths induce important errors in the pose
estimations, i.e., noise amplification occurs near a singularity not only for their variances but also in
their biases. In addition, the bias error becomes relevant as the moving platform approaches the base
plane.!>?7

Thus, the forward kinematics of the tracking system can be performed in terms of Cayley—
Menger determinants to measure singularities and subsequent pose errors of the end-effector. With
this formulation, a design optimization problem can be proposed to find a set of device parameters
for a given path, that satisfy user requirements and returns adequate coordinates for the base. The
optimization procedure is explained in the next section.
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4. Optimization

The optimization problem of the system can be defined as: to find the position of the cables sources
in the base which maximizes the determinant of the system during the complete trajectory (a given
path), and avoiding as possible cable intersections.

In order to tackle the problem as stated above, we use an Estimation of Distribution Algorithm,
this kind of algorithm intends to find an optimum by estimating and sampling from a probability
distribution. They are used when the objective function is not explicitly defined, is not derivable, or
have multiple maxima/minima. Any or all of the characteristics mentioned above is a reason to use
a population-based optimizer. In the particular case of highly correlated variables, there is evidence
about the effectiveness of Estimation of Distribution Algorithms.?*2! In this case, we expect that the
variables be highly correlated, because they are the positions of the cables, then all together impact
in the system precision.

4.1. Objective function
The objective function is stated as follows:

6 Nder
Hdet 1
d t’ Dmln = - 4 D’n[n j - Il YR ’ 9
max f(de ) (mde, n 1) [120in. ; exp (0.001 +det,-) ©)

j=1

where det; is the determinant in the i position, and D,,;, ; is the distance of the j point in the base to
the closest point different than itself. By maintaining a separation as greater as possible among the
cables we intend to avoid cable intersections, this is the purpose of D,,;, ; product. tt4,; is the average
of the determinant considering all the positions, and sdy,, the standard deviation. /; is an indicator
function it is 1 if det; < 1 and O otherwise.

Note how the different components of the function consider the optimization goal, first the average,
in the first term of the equation is maximized, as it is divided by the standard deviation, then we are
asking for points that are not collapsed in the based. The product in the second parenthesis considers
the distances among each point and its closest neighbor, if a point is very close to another, then this
product reduces the function value. This is another criterion, together with the standard deviation,
which is used to maintain sparse points in the base. The second term is only used when a determinant
in any position is too small, then it is penalized exponentially.

The pure condition!? measures the singularities as well as our objective function, both are related
with the volume of the tetrahedral formed by a set of points. An advantage of our objective function is
that it measures the singularities in the first term, additionally intends to maximize the determinants
during the whole trajectory by maximizing the mean, and maintaining a similar determinant for each
point in the trajectory, hence we do not expect abrupt changes of the cable positions during the
trajectory. Finally, our objective function penalizes determinants smaller than 1, which means that
we do not allow negative or near to O determinants, a negative determinant implies that a plane of the
tetrahedral passes through another (a possible intersection of cables), and a determinant close to 0 is
a singularity as mentioned. We could use the pure condition as objective function, we consider that
the pure condition does not contribute with additional information and lacks of the extra information
that is already in our objective function.

5. Estimation of Distribution Algorithm-based Approach
An Estimation of Distribution Algorithm is an optimization method based on estimating and sampling
a probability distribution. Usually, it starts with a random population sampled from a uniform
distribution defined on a search space, then a subset of the best solutions is selected in order to
be used for estimating a new probability distribution. The new distribution is sampled, and the sample
replaces the old population, and so on. Usually a subset of the best solutions is preserved from one
generation to the next one, in order to ensure convergence and to get a better bias. The aim is that the
EDA, eventually, samples the optimum.

The EDAs have shown an excellent capacity for finding and using correlations among variables,
which is a desirable property when the optimization process involves interconnected elements of a
system. On the other hand, various studies suggest that EDAs suffer from premature convergence, it

20,21
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Table I. Normal multivariate EDA based on the potential selection.

Problem parameters:

Xinf» Xsup vectors of inferior and superior limits respectively.
€:o1 Minimum covariance matrix norm, for stopping criterion.
3 nyar Number of variables

User given parameters:
4 N Population size

N —

5 X <= uniform(N, Xinf, Xsup)
6 F <« evaluation(X)
Truncation selection according Algorithm 5.
7 IS < selection(F)
Potential of the selected set, Eq. (10).
plI5] < potential(F[I5])
9 M <= Xpest
Covariance matrix computation
10 For i = 1.ny,,
11 Forj = 1.ny,,
2 5 = Y owers i — i)k j — 1) pr
' Dkers Pk
13 While |[Z]| > ¢,
14 X < Normal(N, X, w, Xinf, Xsup)
15 F <« evaluation(X)
16 IS <« selection(F)
17  Potential of the selected set, Eq. 10.
18  p[I®] < potential(F[I5])
19 M <= Xpest
20  Fori = l.ny,

e 2]

21 For j = L.y,
22 Ei,j — Zke[‘s(xk,i - ﬂi)(xkqj — .“j)Pk
Zkels Pk
Output

23 Xpes: Best optimum approximation.

is to say that the population collapses in a single point before the search space has been adequately
explored.>*233! In this approach, we use an EDA based in a Gaussian distribution as most of the
EDAs for continuous spaces.11 The EDA uses the so-called Potential Selection, a kind of selection
and weighting method that improves the exploration of the search space, preventing from premature
convergence. The algorithm was proposed as a general optimization method?® and is presented in the
algorithm of Table I.

In Table I, line 1 is the set of search limits, in this case the base platform limits. €., in line 2,
is an stopping criterion when the norm of the covariance matrix of the normal distribution used for
searching is too small, it means that the algorithm is not searching anymore, hence it is stopped. The
€:o; Must be always smaller than the physical error desired. Line 3 is the number of parameters (12
in this case, for 6 positions in x and y coordinates). Line 4 is the unique user given parameter: the
population size, usually the greater the population is the better the performance of the algorithm, but
also the greater the computational effort needed to solve the problem. In step 5, the initial population
is uniformly and randomly sampled in the search space, hence X is a matrix of candidate solutions.
In step 6, the candidate solutions are evaluated by means of Eq. (9). In step 7, a subset of the best
solutions are selected by using the algorithm in Table II. In step 8, the potential value for each
candidate solution in the selected set is computed by using Eq. (10). In step 9, the mean of the search
distribution (the distribution used for sampling new candidate solutions) is computed. Steps 10-12
are the computation of the covariance matrix of the search distribution. Line 13 is the beginning
of the main loop. The steps just mentioned are repeated, with the difference that the new candidate
solutions X are sampled from a Normal distribution instead of the uniform.
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Table II. Truncation method to ensure increasing mean of the
objective function and convergence to the elite individual.
Maximization case.

Input:
F vector of objective function values of size N.
0" a threshold.

N =

IS < sort(F ,decreasing,return_index).

7 ~

1%« {1:(1\//2)- .

IS « [¥foralli € I® such that Fjs > 6"
M < sizeof(I®).

ot «— 1 AS,I

~N O N bW

Output
IS vector of indexes of selected individuals of size M.
0'*! threshold for the next selection.

The truncation method presented in Table 2 receives as input a vector of the objective function
values F' a truncation threshold 6;, the threshold 6, for the first call of the method is the worst objective
value known, from the second to the last call it is returned by the same method. In step 3, the objective
values are sorted and the indices of the sorting are stored, then the indices are truncated to the half in
step 4, from this last vector of indices we verify that all of them be greater or equal than the current
threshold, if any of them is below the threshold then it is truncated from the vector. Then, we obtain
the number M of solutions which remain in the selected set, and update the threshold to the last
individual (the worst) in the selected set. The selected set then is used in the algorithm in Table 1
for updating the search distribution. This method ensures convergence of the method and pushes the
population to the best regions in the search space.

The potential equation is presented in Eq. (10), which is used in algorithm 1 in order to weight the
most diverse solutions and to maintain an adequate exploration. It assigns a large weight to the most
promising solution as well as to the most diverse solution, or solutions that are in the subset of the
best ones but are the farthest from the best solution known.

p(xi)

Zi ﬁ(xi)’

plx;) = for i in the selected set. (10)

Where:

Pa(x;) — min(pa(x;)))
max(Pa(x;)) — min(Pa(x;))’

p(xi) = max(pa(x;), py(xi)),  palxi) =

S (xi) — min(f(x;))
max(f(x;)) — min(f(x;))’

n
pr(xi) = and py(x)) = | Y (X1 = Xpest, )

j=1

f(x;) is the objective function of the individual x;, and n the number of variables. The potential
function in Eq. (10) returns the greatest value for the elite as well as for the farthest individual to the
elite.

Pa(x;) basically is the distance between the i candidate solution to the best solution known, hence
pa(x;) is a normalized distance. pr(x;) is a normalized difference of the objective function of the
candidate solution i to the worst solution in the selected set. Thus, p(x;) is the maximum between this
two distances, and p(x;) has the same meaning but is also a probability, hence the farthest individuals
to the best as well as the best individual have the maximum probability.
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Density of the best solutions, Point 1 Density of the best solutions, Point 2

=
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Density of the best solutions, Point 3 Density of the best solutions, Point 4

xT

Density of the best solutions, Point § Density of the best solutions, Point 6
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Fig. 4. Results of the 30 best executions with the modified-final ranges. We plot the density of the best positions
found, the greater the density the higher the number of solutions we found in that region. As explained in the text
we reduce the search space in order to refine the optimum position approximation. These are plots are obtained
from the final search in the reduced intervals mentioned in the text. The red rectangles are the regions in which
most probably the actual optimum position is at the end of the search process.

H. E'2.

6. Results

The EDA used in this approach only needs two parameters: the population size, and an stopping
criterion which can be a minimum norm of the variance in the search distribution or a number of
generations. We perform 150 executions of the algorithm with the following parameters: 300 of
population size, and 600 generations or a minimum variance norm of 1.0e — 22.

Using this parameters we obtain the positions in Fig. 4. We plot the results of the best 30 executions,
the color represents the approximate density of the best solutions, it is to say the greater value in
the color bar the greater number of solutions are in such region. The red rectangles enclose the
region where the best solutions are with the greatest probability, to compute these rectangles we
apply the following procedure: we use the Boostrap methodology to compute confidence intervals
for the best parameters at 99% of confidence. Then, we increase the interval by 20%, if some
value is out of the search interval we make it equal to the bound of the interval. Using this region
where the best solution is, we execute 150 executions with the limits of the search space updated.
The process is repeated until there is not a reduction in (all) the limits, that is three times in our
calculations, then we found the regions where most probably is the adequate position, as it is
shown in Fig. 4. The black asterisk in Fig. 4 represents the best solution found, which coordinates are
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Fig. 5. Best solutions for a given path of the parallel tracking system (red) and original base coordinates (blue).
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Fig. 6. Determinant for the best solution found.

the following: X = {370.87979, 258.65610, 87.23333, 499.96070, 204.42310, 131.88560},and ¥ =
{ —149.32958, —65.48691, —374.13420, —148.40912, —427.06850, —87.14045}. This solution is
shown in Fig. 5, blue points on the base represent the original base coordinates of the parallel tracking
system, meanwhile red points represent the best solution given by the optimization process. The
objective function value for these coordinates is: 525434179749. We have not found any singularity
in the determinant computation for these coordinates.

Figure 6 shows the determinant measured for 100 points in a linear path, as can be seen in the figure,
the differences between the average value (red line in the middle of the plot), and the other values
is really small between [—0.07452393, 0.06140137] around the average. It means that actually our
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optimization process is successful, because we found position coordinates with a high determinant
for the whole path, additionally the determinant is almost the same for each point in the path.

7. Conclusions

In this paper, the kinematic design of a cable-based parallel tracking system for minimum pose
error estimation is analyzed. An evolutionary algorithm from the family of estimation of distribution
algorithms is utilized to solve an optimization problem. In particular, an EDA formulation is developed
and tested, by considering a formulation based on Cayley—Menger determinants for characterizing
singularities. The EDA converged to close to optimal solutions that are characterized by multiple
sets of optimal kinematic parameters. Moreover, the EDA provides a representative solution set of
the parameters. The performance obtained shows that it is possible to find a set of coordinates for a
given path that fulfills the designer criteria and returns adequate coordinates for the base, with high,
uniform, and non-singular determinants.

Since an optimization algorithm draws several optimal solutions, a sensitivity analysis (computing
confidence intervals) is performed in order to guide the robot designer to select the best structural
configuration, the analysis reveals that some architectures might be preferred. The approach can be
easily generalized and used in other global optimization problems.

Acknowledgments
The authors would like to thank CONACYT and SIP-IPN for supporting part of this work through
the research project grants CB-2011-01-169132, SIP20121377, and SIP20131372.

References

1. M. Barbosa, E. Pires and A. Lopes, “Optimization of Parallel Manipulators using Evolutionary Algorithms,”
In: Soft Computing Models in Industrial and Environmental Applications, 5th International Workshop
(SOCO 2010) Advances in Intelligent and Soft Computing, vol. 73 (E. Corchado, P. Novais, C. Analide
and J. Sedano, eds.)(Springer, Berlin, 2010) pp. 79-86.

2. P. A. Bosman and D. Thierens, “Adaptive Variance Scaling in Continuous Mutli-Objective Estimation-of-
Distribution Algorithms,” Proceedings of the 2007 Conference on Genetic and Evolutionary Computation
(GECCO ’07), ACM (2007) pp. 500-507.

3. J. Cabrera, J. Castillo, F. Nadal, A. Ortiz and A. Simén, “Synthesis of Mechanisms with Evolutionary
Techniques,” In: Proceedings of EUCOMES 08 (M. Ceccarelli eds.) (Springer, Netherlands, 2009)
pp- 167-174.

4. Y. Cai, X. Sun, H. Xu and P. Jia, “Cross Entropy and Adaptive Variance Scaling in Continuous Eda,”
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO ’07),
ACM, New York, NY, USA (2007) pp. 609-616.

5. G. Carbone, “Stiffness Performance of Multibody Robotic Systems,” IEEE International Conference on
Automation, Quality and Testing, Robotics, vol. 2 (2006) pp. 219-224.

6. G. Carbone and M. Ceccarelli, “Experimental tests on feasible operation of a finger mechanism in the larm
hand,” Mech. Based Des. Struct. Mach. 36(1), 1-13 (2008).

7. M. Ceccarelli. Fundamentals of Mechanics of Robotic Manipulation (Springer, International Series on
Microprocessor-Based and Intelligent Systems Engineering, Netherlands, 2004).

8. M. Ceccarelli, C. Avila Carrasco and E. Ottaviano, “Error Analysis and Experimental Tests of Catrasys
(Cassino Tracking System),” 26th Annual Confjerence of the IEEE Industrial Electronics Society (IECON
2000), vol. 4 (2000) pp. 2371-2376.

9. K.-S. Chai, K. Young and I. Tuersley, “A practical calibration process using partial information for a
commercial stewart platform,” Robotica 20, 315-322 (2002).

10. Y.-J. Chiu and M.-H. Perng, “Self-calibration of a general hexapod manipulator with enhanced precision
in 5-dof motions,” Mech. Mach. Theory 39(1), 1-23 (2004).

11. W. Dong and X. Yao, “Unified eigen analysis on multivariate gaussian based estimation of distribution
algorithms,” Inf. Sci. 178(15), 3000-3023 (2008).

12. D.M. Downing, A. E. Samuel and K. H. Hunt, “Identification of the special configurations of the octahedral
manipulator using the pure condition,” Int. J. Robot. Res. 21, 147-159 (2002).

13. E. E. Herndndez-Martinez, M. Ceccarelli, G. Carbone, C. S. Lépez-Cajin and J. C. Jauregui-Correa,
“Characterization of a cable-based parallel mechanism for measurement purposes,” Mech. Based Des.
Struct. Mach. 38(1), 25-49 (2010).

14. J. W. Jeong, S. H. Kim, Y. K. Kwak and C. C. Smith, “Development of a parallel wire mechanism for
measuring position and orientation of a robot end-effector,” Mechatronics 8(8), 845-861 (1998).

https://doi.org/10.1017/50263574714000484 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574714000484

610 Design optimization of a tracking system by using evolutionary algorithms

15. T. Li and M. Ceccarelli, “An experimental analysis of human straight walking,” Frontiers Mech. Eng. 8(1),
95-103 (2013).

16. A. Omran, G. El-Bayoumi, M. Bayoumi and A. Kassem, “Genetic algorithm based optimal control for a
6-dof non redundant stewart manipulator,” Int. J. Aerosp. Mech. Eng. 2(2), 73-79 (2008).

17. E. Ottaviano and M. Ceccarelli, “Numerical and experimental characterization of singularities of a six-wire
parallel architecture,” Robotica 25, 315-324 (2007).

18. E. Ottaviano, M. Ceccarelli and F. Palmucci, “An application of catrasys, a cable-based parallel measuring
system for an experimental characterization of human walking,” Robotica 28, 119—133 (2010).

19. E. Ottaviano, M. Ceccarelli, M. Toti and C. Carrasco, “Catrasys (cassino tracking system): A wire system
for experimental evaluation of robot workspace,” J. Robot. Mechatronics 14, 78-87 (2002).

20. M. Pelikan, D. E. Goldberg and E. Canti-Paz, “BOA: The Bayesian Optimization Algorithm,” In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99) vol. I (W. Banzhaf,
J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela and R. E. Smith, eds.) (Morgan Kaufmann
Publishers, San Fransisco, CA, Orlando, FL, 1999) pp. 525-532.

21. M. Pelikan, K. Sastry and E. Cantd-Paz (eds.), Scalable Optimization via Probabilistic Modeling, Studies
in Computational Intelligence, vol. 33 (Springer Berlin Heidelberg, 2006).

22. A. Rauf, A. Pervez and J. Ryu, “Experimental results on kinematic calibration of parallel manipulators
using a partial pose measurement device,” IEEE Trans. Robot. 22(2), 379-384 (2006).

23. P. Renaud, N. Andreff, J.-M. Lavest and M. Dhome, “Simplifying the kinematic calibration of parallel
mechanisms using vision-based metrology,” IEEE Trans. Robot. 22(1), 12-22 (2006).

24. L. Rolland and R. Chandra, “On Solving the Forward Kinematics of the 6-6 General Parallel Manipulator
with an Efficient Evolutionary Algorithm,” In: ROMANSY 18 Robot Design, Dynamics and Control, CISM
International Centre for Mechanical Sciences, vol. 524 (V. Parenti Castelli and W. Schiehlen, eds.) (Springer,
Vienna, 2010) pp. 117-124.

25. J. L. Shapiro, “Diversity Loss in General Estimation of Distribution Algorithms,” Proceedings of the 9th
international conference on Parallel Problem Solving from Nature (PPSN’06) (Springer-Verlag, Berlin,
2006) pp. 92-101.

26. F. Thomas, E. Ottaviano, L. Ros and M. Ceccarelli, “Coordinate-Free Formulation of a 3-2-1 Wire-Based
Tracking Device Using Cayley—Menger Determinants,” Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’03) vol. 1 (2003) pp. 355-361.

27. F. Thomas, E. Ottaviano, L. Ros and M. Ceccarelli, “Performance analysis of a 3-2-1 pose estimation
device,” IEEE Trans. Robot. 21(3), 288-297 (2005).

28. F. Thomas and L. Ros, “Revisiting trilateration for robot localization,” IEEE Trans. Robot. 21(1), 93—-101
(2005).

29. S.-I. Valdez, A. Hernandez-Aguirre and S. Botello, “Adequate Variance Maintenance in a Normal Eda
Via the Potential-Selection Method,” In: EVOLVE-A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation II (O. Schiitze, C. Coello, A. Carlos, A.-A. Tantar, E. Tantar, P. Bouvry,
P. Del Moral and P. Legrand, eds.) (Springer Berlin Heidelberg, 2013) pp. 221-235.

30. R. Williams, J. Albus and R. Bostelman, “3d cable-based cartesian metrology system,” J. Robot. Syst. 21,
237-257 (2004).

31. B. Yuan and M. Gallagher, “On the Importance of Diversity Maintenance in Estimation of Distribution
Algorithms,” Proceedings of the 2005 Conference on Genetic and Evolutionary Computation (GECCO’05)
(ACM, New York, NY, USA, 2005) pp. 719-726.

32. Q. Zhang and H. Miihlenbein, “On the convergence of a class of estimation of distribution algorithms,”
IEEE Trans. Evolutionary Comput. 8(2), 127-136 (2004).

33. H. Zhuang, J. Wu and W. Huang, “Optimal Planning of Robot Calibration Experiments by Genetic
Algorithms,” Proceedings od the IEEE International Conference on Robotics and Automation vol. 2 (1996),
pp. 981-986.

https://doi.org/10.1017/50263574714000484 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574714000484

