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Abstract

In his well-known textbook Probability with Martingales, David Williams (1991)
introduces the Mabinogion sheep problem in which there is a magical flock of sheep,
some black, some white. At each stage n = 1, 2, . . . , a sheep (chosen randomly from the
entire flock, independently of previous events) bleats; if this bleating sheep is white, one
black sheep (if any remain) instantly becomes white; if the bleating sheep is black, one
white sheep (if any remain) instantly becomes black. No births or deaths occur. Suppose
that one may remove any number of white sheep from the flock at (the end of) each
stage n = 0, 1, . . . . The object is to maximize the expected final number of black sheep.
By applying the martingale optimality principle, Williams showed that the problem is
solvable and admits a simple nice solution. In this paper we consider a generalization
of the Mabinogion sheep problem with two parameters 0 ≤ p, q ≤ 1, denoted M(p, q),
in which at each stage, when the bleating sheep is white (black, respectively), a black
(white, respectively) sheep (if any remain) instantly becomes white (black, respectively),
with probability p (q, respectively) and nothing changes with probability 1 − p (1 − q,
respectively). Note that the original problem corresponds to (p, q) = (1, 1). Following
Williams’ approach, we solve the two cases (p, q) = (1, 1

2 ) and ( 1
2 , 1) which admit

simple solutions.
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1. Introduction

In the tale of Peredur Son of Efrawg in the Welsh folk tales The Mabinogion, there is a
river valley with a flock of white sheep on one side of the river and a flock of black sheep
on the other. Whenever one of the white sheep bleats, one of the black sheep would cross
over and become white; and when one of the black sheep bleats, one of the white sheep
would cross over and become black. With this story in mind, in his well-known textbook [3]
David Williams introduces the Mabinogion problem as follows. There is a magical flock of
sheep, some black, some white. At each stage n = 1, 2, . . . , a sheep (chosen randomly from
the entire flock, independently of previous events) bleats; if this bleating sheep is white, one
black sheep (if any remain) instantly becomes white; if the bleating sheep is black, one white
sheep (if any remain) instantly becomes black. No births or deaths occur. This transition
process continues until all the sheep are of the same color. Suppose that this system can be
controlled by removing any number of white sheep at (the end of) each stage n = 0, 1, . . . . The
object is to maximize the expected final number of black sheep. More precisely, let Wn (Bn,
respectively) denote the number of white sheep (black sheep, respectively) at (the beginning of)
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stage n = 0, 1, . . . with initial state (W0, B0) = (w, b) ∈ Z
+ × Z

+ = {0, 1, . . .} × {0, 1, . . .}.
Given (Wn, Bn) = (wn, bn) (with wn > 0 and bn > 0), if all white sheep are removed, then
the next state (Wn+1, Bn+1) = (0, bn) with probability 1; if an white sheep (0 ≤ an < wn)
are removed, then the next state (Wn+1, Bn+1) = (wn − an + 1, bn − 1) (with probability
(wn − an)/(wn − an + bn)) or (wn − an − 1, bn + 1) (with probability bn/(wn − an + bn)).
The object is to maximize Vπ(w, b) := Ew,b [B∞(π)] over all policies π ∈ A where the
subscript w and b in Ew,b refers to the initial state (W0, B0) = (w, b), A is the class of all
policies π = (a0, a1, . . .) (a sequence of actions with 0 ≤ an ≤ Wn white sheep removed at
the end of stage n), and B∞(π) represents the final number of black sheep for the controlled
process under policy π . A policy π∗ ∈ A is optimal if

Vπ∗(w, b) = sup
π∈A

Vπ(w, b)

holds for every initial state (w, b); and Vπ∗(w, b) is the (optimal) value function.
By the usual method of guess-and-verify with some martingale properties of the value

function, Williams [3, Section 15.3] showed that the optimal policy π∗ takes the following form:
if the current state is (w, b) with w, b > 0, do nothing if w < b; otherwise, immediately reduce
the white population to b−1. In other words, it is optimal to remove max{Wn(π

∗)−Bn(π
∗)+

1, 0} white sheep at the end of each stage!n until all the sheep are of the same color, where
Wn(π

∗) (Bn(π
∗), respectively) denotes the number of white sheep (black sheep, respectively)

at stage n under policy π∗. More specifically, Williams established that Vπ∗(w, b) ≥ Vπ∗(w −
1, b) and Vπ∗(w, b) ≥ (w/(w + b))Vπ∗(w + 1, b − 1) + (b/(w + b))Vπ∗(w − 1, b + 1) for
w > 0 and b > 0, thereby implying that for any policy π ∈ A, {Vπ∗(Wn(π), Bn(π))}n≥0 is a
supermartingale with respect to the filtration generated by {(Wn(π), Bn(π)) : n ≥ 0}. Applying
the martingale optimality principle yields the optimality of policy π∗. In the literature, Chan [1]
considered various diffusion models of the Mabinogion sheep problem and investigated the
extent to which the essential results of the original discrete-time problem still hold in the
diffusion analogues. Apart from such stochastic control problems, by applying a time-reversal
transformation to the classical Ehrenfest urn and using the techniques based on the general
principles of analytic combinatorics, Flajolet and Huillet [2] carried out the detailed asymptotic
analysis for the distribution of the stopping time (i.e. the time until all the sheep are of the same
color without the availability of control to remove white sheep at the end of each stage).

Motivated by the simple optimal policy π∗, in this paper we consider two variants of the
Mabinogion sheep problem which are solvable and admit simple solutions. Specifically, we
generalize the original problem with two parameters 0 ≤ p, q ≤ 1 (denoted M(p, q)), in which,
at each stage, when the bleating sheep is white (black, respectively), a black (white, respectively)
sheep (if any remain) instantly becomes white (black, respectively) with probability p (q,
respectively) and nothing changes with probability 1 − p (1 − q, respectively). Note that the
original problem corresponds to (p, q) = (1, 1).

For an arbitrary policy π̃ ∈ A, under model M(p, q), let Ṽ (w, b) = Vπ̃ (w, b), the expected
final number of black sheep when π̃ is employed. If the policy is to do nothing for state (w, b)

with w > 0 and b > 0, then we have, by the first-step analysis,

Ṽ (w, b) = w

w + b
(pṼ (w + 1, b − 1) + (1 − p)Ṽ (w, b))

+ b

w + b
(qṼ (w − 1, b + 1) + (1 − q)Ṽ (w, b)),
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which reduces to

Ṽ (w, b) = pw

pw + qb
Ṽ (w + 1, b − 1) + qb

pw + qb
Ṽ (w − 1, b + 1). (1.1)

Inspired by the policy π∗ for model M(1, 1) and in view of (1.1), we propose and investigate
the optimality of the following policy for model M(p, q).

• Policy πp,q : if the current state is (w, b) with w, b > 0, do nothing if pw < qb;
otherwise immediately reduce the white population to �qb/p� − 1, where �x� denotes
the smallest integer not less than x. In other words, at the end of each stage n, if the
transition process does not stop then keep min{W ∗

n (πp,q), Wn(πp,q)} white sheep, where
W ∗

n (πp,q) = max{k ∈ Z
+ : pk < qBn(πp,q)}.

Note that π∗ = π1,1. We shall show that πp,q is optimal for M(p, q) when (p, q) = (1, 1
2 )

and ( 1
2 , 1). However, πp,q is in general not optimal for M(p, q). Consider model M( 13

14 , 1)

and let V̂ (w, b) be the (optimal) value function. Obviously, V̂ (0, 2) = 2 and V̂ (2, 0) = 0.
To determine the value of V̂ (1, 1), we need to consider two options for state (1, 1): either to
remove the single white sheep or to do nothing. For the former option, the system ends with
one black sheep. For the latter option, by (1.1), the expected final number of black sheep is

13/14

13/14 + 1
V̂ (2, 0) + 1

13/14 + 1
V̂ (0, 2) = 28

27
> 1,

implying that it is optimal to do nothing in state (1, 1) and V̂ (1, 1) = 28
27 . Thus, we obtain the

values of V̂ (w, b) for (w, b) with w + b = 2. Continuing in this manner, we obtain the values
of V̂ (w, b) for (w, b) with w + b = 3, 4, i.e.

V̂ (2, 2) = V̂ (1, 2) = 2632
1107 ,

V̂ (3, 1) = V̂ (2, 1) = V̂ (1, 1), and V̂ (1, 3) = 220 192
60 885 > 3 = V̂ (0, 3).

In particular, V̂ (2, 2) = V̂ (1, 2) = 2632
1107 , implying that it is optimal to remove one white sheep

in state (2, 2). However, the policy π13/14,1 is to do nothing in this state since pw = 13
14 · 2 <

1 · 2 = qb, so that the expected final number of black sheep under π13/14,1 is equal to

13/7

13/7 + 2
V̂ (3, 1) + 2

13/7 + 2
V̂ (1, 3) = 3 903 508

1 643 895
<

2632

1107
= V̂ (2, 2).

Therefore, π13/14,1 is not optimal for M( 13
14 , 1). Moreover, we also find that πp,q is optimal for

M( 1
3 , 1) provided that w + b ≤ 34, but it is not optimal when (w, b) = (26, 9).

The rest of this paper is organized as follows. In Section 2 we present our main results,
Theorems 2.1 and 2.2, showing that π1,1/2 and π1/2,1 are optimal for M(1, 1

2 ) and M( 1
2 , 1),

respectively. Since their proofs are similar, we prove Theorem 2.1 only. Following Williams’
approach, we need to verify conditions (S1) and (S2) (see Section 2) in order to prove Theo-
rem 2.1, which requires tedious calculations and is done in Sections 3 and 4. In Section 3 we
present several key lemmas and then use them to verify (S1) and (S2). The key lemmas are
proved in Section 4. Finally, Section 5 contains concluding remarks and asymptotic results for
the value functions under M(1, 1

2 ) and M( 1
2 , 1).
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2. Main results

For model M(p, q), if the current state is (w, b) with w, b > 0 (possibly with some white
sheep just removed), then the next state is either (w + 1, b − 1), (w − 1, b + 1), or (w, b) with
respective probabilities pw/(w + b), qb/(w + b), 1 − (pw + qb)/(w + b). Thus, given that
a transition of the state has occurred, the next state is either (w + 1, b − 1) or (w − 1, b + 1)

with respective (conditional) probabilities pw/(pw + qb), qb/(pw + qb) (see (1.1)). In light
of this observation, it is readily seen that model M(p, q) is equivalent to M(1, q/p) for p ≥ q

and equivalent to M(p/q, 1) for p ≤ q. So it suffices to consider M(1, q) and M(p, 1) with
0 < p, q < 1. (The M(1, 1) case is the original Mabinogion problem, while the M(1, 0) and
M(0, 1) cases are trivial.)

We now present our main results.

Theorem 2.1. The following policy π1 = π1,1/2 is optimal for M(1, 1
2 ).

• Policy π1: if the current state is (w, b) with w, b > 0, do nothing if w < b/2; otherwise,
immediately reduce the white population to just less than half the black population.

Theorem 2.2. The following policy π2 = π 1
2 ,1 is optimal for M( 1

2 , 1).

• Policy π2: if the current state is (w, b) with w, b > 0, do nothing if w < 2b; otherwise,
immediately reduce the white population to just less than twice the black population.

As the proof of Theorem 2.2 is similar to that of Theorem 2.1, we shall deal only with the
M(1, 1

2 ) case. For w, b ∈ Z
+, let V (w, b) = Vπ1(w, b), the expected final number of black

sheep when π1 is employed and there are w white and b black sheep at time 0. Following [3],
to prove Theorem 2.1, it suffices to show that

(S1) V (w, b) ≥ V (w − 1, b) for w > 0 and b > 0;

(S2) V (w, b) ≥ (2w/(2w + b))V (w + 1, b − 1) + (b/(2w + b))V (w − 1, b + 1) for w > 0
and b > 0.

Here, (S2) comes from rearranging the inequality

V (w, b) ≥ w

w + b
V (w + 1, b − 1) + b

w + b

(
1

2
V (w − 1, b + 1) + 1

2
V (w, b)

)
.

The task of verifying (S1) and (S2) is much more involved than that for M(1, 1) in [3].
In Section 3 we prove (S1) and (S2) with the help of several lemmas, whose proofs are given
in Section 4.

3. Proofs of (S1) and (S2)

For w, b ∈ Z
+, let V (w, b) = Vπ1(w, b). Then the following hold:

(a1) V (0, b) = b and V (w, 0) = 0;

(a2) V (w, b) = V (w − 1, b) whenever 2w ≥ b and w > 0;

(a3) V (w, b) = (2w/(2w + b))V (w + 1, b − 1) + (b/(2w + b))V (w − 1, b + 1) whenever
0 < 2w < b.
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Define vk = V (k, 2k). Referring to (a1), (a2), and (a3), we have, for k ≥ 1,

V (k − i, 2k + i) = vk + (3k − vk)

( k−1∑
j=k−i

(3k−1
j

)
2j

/ k−1∑
j=0

(3k−1
j

)
2j

)
, i = 1, 2, . . . , k, (3.1)

V (k + 1 − i, 2k + i) = vk + (3k + 1 − vk)

( k−1∑
j=k−i

( 3k
j+1

)
2j+1

/ k∑
j=0

(3k
j

)
2j

)
,

i = 1, 2, . . . , k + 1, (3.2)

V (k + 2 − i, 2k + i) = V (k, 2k + 1)

+ (3k + 2 − V (k, 2k + 1))

( k−2∑
j=k−i

(3k+1
j+2

)
2j+2

/ k∑
j=0

(3k+1
j

)
2j

)
,

i = 1, 2, . . . , k + 2, (3.3)

For k ≥ 1, let

Ak = 3

2

k−1∑
j=0

(3k−1
j

)
2j

/(3k−1
k−1

)
2k−1 .

Then we see that Ak ≥ 3
2 and Ak ≤ 3k/2 (since

(3k−1
j

)
/2j is increasing in 0 ≤ j ≤ k − 1) for

all k ≥ 1.
To prove (S1) and (S2), we need some useful identities in terms of Ak , as stated in Lemma 3.1

below.

Lemma 3.1. For each k = 1, 2, . . . , the following relations hold:

k∑
j=0

(3k
j

)
2j

=
(3k

k

)
2k

[
2

3
(Ak + 1)

]
,

k∑
j=0

(3k+1
j

)
2j

=
(3k

k

)
2k

(
Ak + 1

2

)
, (3.4)

V (k, 2k + 1) = vk + (3k + 1 − vk)
3

2(Ak + 1)
,

V (k, 2k + 3) = vk+1 + (3k + 3 − vk+1)
3

2Ak+1
,

(3.5)

vk+1 =
(

1 − (3k + 1)/(2k + 1)

Ak + 1/2

)[(
1 − 3

2(Ak + 1)

)
vk + 3

2(Ak + 1)
(3k + 1)

]

+ (3k + 1)/(2k + 1)

Ak + 1/2
(3k + 2), (3.6)

Ak+1 = k + 1

(3k + 1)(3k + 2)

[
9

2
(2k + 1)Ak + 3

4

]
. (3.7)

In the next lemma we give bounds for vk , which play a significant role in the proofs of (S1)
and (S2).
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Lemma 3.2. For each k = 1, 2, . . . ,

3k − Ak ≤ vk ≤ (3k + 1)(6k + 1)

2Ak + 6k + 3
. (3.8)

With Lemmas 3.1 and 3.2, we are now ready to prove (S1).

Proof of (S1). By (a2), (S1) holds when 2w ≥ b > 0. Hence, we need only to establish (S1)
when 0 < 2w < b. Now if 0 < 2w < b and w+b ≡ 1(mod 3), then (w, b) = (k+1−i, 2k+i)

for some k ≥ 1 and i with i = 1, 2, . . . , k. In view of (3.1) and (3.2), it is enough to show that,
for � = k − i, k − i + 1, . . . , k − 1,

(3k + 1 − vk)

(( 3k
�+1

)
2�+1

/ k∑
j=0

(3k
j

)
2j

)
≥ (3k − vk)

((3k−1
�

)
2�

/ k−1∑
j=0

(3k−1
j

)
2j

)
;

moreover, since (
( 3k
�+1

)
/2�+1)/(

(3k−1
�

)
/2�) = 3k/2(� + 1) is decreasing in �, we only need to

establish the case � = k − 1, i.e.

(3k + 1 − vk)

((3k
k

)
2k

/ k∑
j=0

(3k
j

)
2j

)
≥ (3k − vk)

((3k−1
k−1

)
2k−1

/ k−1∑
j=0

(3k−1
j

)
2j

)
,

or, equivalently, in terms of Ak and using (3.4),

(3k + 1 − vk)
1

Ak + 1
≥ (3k − vk)

1

Ak

,

which reduces to
vk ≥ 3k − Ak.

This is just a part of Lemma 3.2, so (S1) is verified for the w + b ≡ 1(mod 3) case.
The proof of (S1) for the w+b ≡ 2(mod 3) and w+b ≡ 0(mod 3) cases follow in a similar

manner and we omit the details. �
Next, we state a few more lemmas, in order to prove (S2).

Lemma 3.3. For w, b ∈ Z
+ with 0 ≤ 2w ≤ b,

V (w, b + 1) − V (w, b) ≥ 1.

Lemma 3.4. For each k = 0, 1, . . . ,

(i) ((k + 1 + �)/(2k + 2 + �))V (k, 2k + 1) + ((k + 1)/(2k + 2 + �))V (k + �, 2k + 3) is
decreasing in � ≥ 1;

(ii) (2(k + 1 + �)/(4k + 2� + 3))V (k, 2k) + ((2k + 1)/(4k + 2� + 3))V (k + �, 2k + 2) is
decreasing in � ≥ 1.

Lemma 3.5. For each k = 1, 2, . . . ,

(i) we have
V (k, 2k + 2) ≥ 1

2V (k, 2k + 1) + 1
2V (k, 2k + 3) (3.9)

is equivalent to

vk ≤ (3k + 1)(6k + 1)

2Ak + 6k + 3
; (3.10)
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(ii) and

V (k, 2k + 1) ≥ 2k + 2

4k + 3
V (k, 2k) + 2k + 1

4k + 3
V (k, 2k + 2)

is equivalent to

vk ≤ (3k + 1)(Ak + 3k + 1)

2Ak + 3k + 2
.

Proof of (S2). Because of (a3), (S2) automatically holds when 0 < 2w < b, so we need to
establish it only when 2w ≥ b > 0, i.e. for k and � in Z

+,

V (k + � + 1, 2k + 2) ≥ k + 1 + �

2k + 2 + �
V (k + 2 + �, 2k + 1) + k + 1

2k + 2 + �
V (k + �, 2k + 3)

and

V (k + � + 1, 2k + 1) ≥ 2(k + 1 + �)

4k + 2� + 3
V (k + 2 + �, 2k) + 2k + 1

4k + 2� + 3
V (k + �, 2k + 2),

which, via (a2), reduce, respectively, to

V (k, 2k + 2) ≥ k + 1 + �

2k + 2 + �
V (k, 2k + 1) + k + 1

2k + 2 + �
V (k + �, 2k + 3) (3.11)

and

V (k, 2k + 1) ≥ 2(k + 1 + �)

4k + 2� + 3
V (k, 2k) + 2k + 1

4k + 2� + 3
V (k + �, 2k + 2). (3.12)

By Lemma 3.4, it suffices to show that (3.11) and (3.12) hold for all k ≥ 0 with � = 0 and
� = 1, i.e. for all k ≥ 0,

V (k, 2k + 2) ≥ 1
2V (k, 2k + 1) + 1

2V (k, 2k + 3), (3.13)

V (k, 2k + 2) ≥ k + 2

2k + 3
V (k, 2k + 1) + k + 1

2k + 3
V (k + 1, 2k + 3), (3.14)

V (k, 2k + 1) ≥ 2k + 2

4k + 3
V (k, 2k) + 2k + 1

4k + 3
V (k, 2k + 2), (3.15)

V (k, 2k + 1) ≥ 2k + 4

4k + 5
V (k, 2k) + 2k + 1

4k + 5
V (k, 2k + 2). (3.16)

Clearly, by using (a1), (a2), and (a3), it can be verified that (3.13)–(3.16) hold for k = 0.
It remains to show that (3.13)–(3.16) hold for all k ≥ 1. We prove this by the following four
steps. We shall first show in step 1 that (3.13) holds for all k ≥ 1 and then prove in steps 2–4
that (3.13) implies (3.14), (3.13) implies (3.15), and (3.15) implies (3.16).

Step 1. By Lemma 3.5(i), (3.13) is equivalent to

vk ≤ (3k + 1)(6k + 1)

2Ak + 6k + 3
. (3.17)

This is just a part of Lemma 3.2, so (3.13) holds for all k ≥ 1.
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Step 2. We now prove that (3.13) implies (3.14). Obviously, (3.14) holds if we can show
that

Fk := 1

2
V (k, 2k + 1) + 1

2
V (k, 2k + 3)

≥ k + 2

2k + 3
V (k, 2k + 1) + k + 1

2k + 3
V (k + 1, 2k + 3)

:= Tk.

Now,

Fk − Tk = −1

2(2k + 3)
V (k, 2k + 1) + 1

2
V (k, 2k + 3) − k + 1

2k + 3
V (k + 1, 2k + 3)

= 1

2k + 3

{
V (k, 2k + 3) − V (k, 2k + 1)

2

− (k + 1)[V (k + 1, 2k + 3) − V (k, 2k + 3)]
}

= 1

2k + 3

{
V (k, 2k + 3) − V (k, 2k + 1)

2
− 3(k + 1)(Ak+1 + vk+1 − 3k − 3)

2Ak+1(Ak+1 + 1)

}

≥ 1

2k + 3

{
1 − 3(k + 1)(Ak+1 + vk+1 − 3k − 3)

2Ak+1(Ak+1 + 1)

}
.

Here the third equality follows by performing some calculations using the fact that V (k +
1, 2k + 3) = vk+1 + (3k + 4 − vk+1)(3/2(Ak+1 + 1)) (see (3.5)) and V (k, 2k + 3) = vk+1 +
(3k+3−vk+1)(3/2Ak+1) (from (3.1) and the definition of Ak+1). The inequality follows from
V (k, 2k + 3) − V (k, 2k + 1) ≥ 2, which is a consequence of Lemma 3.3. Therefore, Fk ≥ Tk

holds if we can show that
3(k + 1)(Ak+1 + vk+1 − 3k − 3)

2Ak+1(Ak+1 + 1)
≤ 1,

which is equivalent to

vk+1 ≤ 3k + 3 − Ak+1 + 2Ak+1(Ak+1 + 1)

3(k + 1)
. (3.18)

By Lemma 3.2, the following holds for all k ≥ 1:

vk+1 ≤ (3k + 4)(6k + 7)

2Ak+1 + 6k + 9
= 3k + 3 − Ak+1 + (2Ak+1 + 1)(Ak+1 + 1)

2Ak+1 + 6k + 9
,

which implies that (3.18) holds if

(2Ak+1 + 1)(Ak+1 + 1)

2Ak+1 + 6k + 9

/
2Ak+1(Ak+1 + 1)

3(k + 1)
≤ 1.

To show that this latter inequality holds, we have

(2Ak+1 + 1)(Ak+1 + 1)

2Ak+1 + 6k + 9

/
2Ak+1(Ak+1 + 1)

3(k + 1)
=

(
1 + 1

2Ak+1

)
3k + 3

2Ak+1 + 6k + 9

≤ 4(3k + 3)

3(6k + 12)

< 1,

where the first inequality follows from the fact that Ak+1 ≥ 3
2 . Hence, (3.14) holds.
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Step 3. We prove that (3.13) (which is equivalent to (3.17)) implies (3.15). By Lemma 3.5(ii),
(3.15) is equivalent to

vk ≤ (3k + 1)(Ak + 3k + 1)

2Ak + 3k + 2
. (3.19)

In view of (3.17), (3.19) holds if we can prove that

6k + 1

2Ak + 6k + 3

/
Ak + 3k + 1

2Ak + 3k + 2
< 1 for all k ≥ 1.

In fact, we have

6k + 1

2Ak + 6k + 3

/
Ak + 3k + 1

2Ak + 3k + 2
= 6k + 1

2Ak + 6k + 3

(
1 + Ak + 1

Ak + 3k + 1

)

≤ 6k + 1

2Ak + 6k + 3

(
1 + Ak + 1

3k + 5/2

)

= 6k + 1

2Ak + 6k + 3

(
2Ak + 6k + 7

6k + 5

)

= 6k + 1

6k + 5

(
1 + 4

2Ak + 6k + 3

)

≤ 6k + 1

6k + 5

(
1 + 4

6k + 6

)

= 18k2 + 33k + 5

18k2 + 33k + 15
< 1,

where the first and second inequalities follow since Ak ≥ 3
2 . Thus, (3.15) holds.

Step 4. We show that (3.15) implies (3.16). In fact, this implication holds if we can show
that

2k + 2

4k + 3
V (k, 2k) + 2k + 1

4k + 3
V (k, 2k + 2) ≥ 2k + 4

4k + 5
V (k, 2k) + 2k + 1

4k + 5
V (k, 2k + 2),

which holds since V (k, 2k + 2) ≥ 2 + V (k, 2k) > V (k, 2k), by Lemma 3.3. This completes
the proof of (S2). �

4. Proofs of the key lemmas

In this section, we prove Lemmas 3.1–3.5. We first prove Lemma 3.1,which is based on
Pascal’s formula and (3.1)–(3.3).

Proof of Lemma 3.1. (i) Recalling that

Ak = 3

2

k−1∑
j=0

(3k−1
j

)
2j

/(3k−1
k−1

)
2k−1 ,
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we have, by Pascal’s formula,

k∑
j=0

(3k
j

)
2j

=
k∑

j=0

(3k−1
j

)
2j

+
k∑

j=1

(3k−1
j−1

)
2j

= 3

2

k−1∑
j=0

(3k−1
j

)
2j

+
(3k−1

k

)
2k

=
(3k−1

k−1

)
2k−1 (Ak + 1)

=
(3k

k

)
2k

[
2

3
(Ak + 1)

]
.

Similarly,
k∑

j=0

(3k+1
j

)
2j

=
(3k

k

)
2k

(
Ak + 1

2

)
. (4.1)

(ii) It follows from (3.2) with i = 1,

V (k, 2k + 1) = vk + (3k + 1 − vk)

((3k
k

)
2k

/ k∑
j=0

(3k
j

)
2j

)

= vk + (3k + 1 − vk)
3

2(Ak + 1)
, (4.2)

where the second equality is by (i). Similarly, from (3.1) and the definition of Ak+1, we have

V (k, 2k + 3) = vk+1 + (3k + 3 − vk+1)

((3k+2
k

)
2k

/ k∑
j=0

(3k+2
j

)
2j

)

= vk+1 + (3k + 3 − vk+1)
3

2Ak+1
.

(iii) Applying (3.3) with i = 2 and noting that vk+1 = V (k + 1, 2k + 2) = V (k, 2k + 2), we
have

vk+1 = V (k, 2k + 1) + (3k + 2 − V (k, 2k + 1))

((3k+1
k

)
2k

/ k∑
j=0

(3k+1
j

)
2j

)
(4.3)

= V (k, 2k + 1) + (3k + 2 − V (k, 2k + 1))

(
3k + 1

2k + 1

/
Ak + 1

2

)
, (4.4)

where the second equality follows by substituting (4.1) into (4.3). After substituting (4.2) into
(4.4) and performing a bit of algebra, we see that the claimed expression holds. The proof of
(iv) is similar to (i) and is thus omitted. �

We are now in a position to prove Lemma 3.2.
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Proof of Lemma 3.2. We proceed to prove by induction on k. Since A1 = 3
2 and v1 = 2,

it can be seen that (3.8) holds for k = 1. Now, making the induction hypothesis on (3.8), we
have to prove that

3(k + 1) − Ak+1 ≤ vk+1 ≤ (3k + 4)(6k + 7)

2Ak+1 + 6(k + 1) + 3
. (4.5)

By (3.6), we have

vk+1 − 3(k + 1) =
(

1 − (3k + 1)/(2k + 1)

(Ak + 1/2

)[(
1 − 3/2

Ak + 1

)
(vk − 3k − 1) − 1

]
− 1

= Ak − 1/2 − k/(2k + 1)

Ak + 1/2

[
Ak − 1/2

Ak + 1
(vk − 3k − 1) − 1

]
− 1. (4.6)

Applying the induction hypothesis that vk − 3k ≥ −Ak to (4.6), it follows that

vk+1 − 3(k + 1) ≥ −Ak −
(

1

2
− k

2k + 1

)

and so

vk+1 − 3(k + 1) + Ak+1 ≥ −Ak −
(

1

2
− k

2k + 1

)
+ Ak+1. (4.7)

By (3.7), we also have

Ak+1 = k + 1

(3k + 1)(3k + 2)

[
9

2
(2k + 1)Ak + 3

4

]
,

which together with (4.7) implies that

vk+1 − 3(k + 1) + Ak+1

≥ −Ak −
(

1

2
− k

2k + 1

)
+ k + 1

(3k + 1)(3k + 2)

[
9

2
(2k + 1)Ak + 3

4

]

> −Ak − 1

2(2k + 1)
+ 1

3(3k + 1)

[
9

2
(2k + 1)Ak + 3

4

]

= 1

2(3k + 1)

[
Ak + 1

2
− 3k + 1

2k + 1

]
> 0,

where the second inequality follows from the fact that (k + 1)/(3k + 2) > 1
3 and the last

inequality follows since Ak ≥ 3
2 > (3k+1)/(2k+1). Therefore, vk+1 −3(k+1)+Ak+1 > 0,

i.e. vk+1 ≥ 3(k + 1) − Ak+1. By induction, this proves that vk ≥ 3k − Ak for all k ≥ 1.
Now, it remains to prove the second inequality of (4.5). We have, by (3.6),

vk+1 = Ak − 1/2 − k/(2k + 1)

Ak + 1/2

[
Ak − 1/2

Ak + 1
vk + 3(3k + 1)/2

Ak + 1

]

+ (3k + 1)(3k + 2)/(2k + 1)

Ak + 1/2
.
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This together with the induction hypothesis vk ≤ (3k + 1)(6k + 1)/(2Ak + 6k + 3) implies
that

vk+1 ≤ Ak − 1/2 − k/(2k + 1)

Ak + 1/2

[
Ak − 1/2

Ak + 1

(
(3k + 1)(6k + 1)

2Ak + 6k + 3

)
+ 3(3k + 1)/2

Ak + 1

]

+ (3k + 1)(3k + 2)/(2k + 1)

Ak + 1/2
,

which reduces to

vk+1 ≤ 4(k + 1)(3k + 1)(3k + 2)

(2k + 1)(2Ak + 6k + 3)
:= Gk. (4.8)

By (3.7), we also have

2Ak+1 + 6(k + 1) + 3 = 3(k + 1)

(3k + 1)(3k + 2)

[
3(2k + 1)Ak + 1

2
+ (2k + 3)(3k + 1)(3k + 2)

k + 1

]
,

which implies that

(3k + 4)(6k + 7)

2Ak+1 + 6(k + 1) + 3

= (3k + 4)(6k + 7)

×
(

3(k + 1)

(3k + 1)(3k + 2)

[
3(2k + 1)Ak + 1

2
+ (2k + 3)(3k + 1)(3k + 2)

k + 1

])−1

:= Hk. (4.9)

In view of (4.8) and (4.9), the second inequality of (4.5) is verified if we can prove that Gk ≤ Hk

for all k ≥ 1. Note that

Gk

Hk

= 18(k + 1)2

(3k + 4)(6k + 7)

[
2Ak + 6k + 6 − 4/3(k + 1) − 1/3(2k + 1)

2Ak + 6k + 3

]

= 18(k + 1)2

(3k + 4)(6k + 7)

[
1 + 3 − 4/3(k + 1) − 1/3(2k + 1)

2Ak + 6k + 3

]

≤ 18(k + 1)2

(3k + 4)(6k + 7)

(
1 + 3

6(k + 1)

)

= 18k2 + 45k + 27

18k2 + 45k + 28
< 1,

where the inequality follows from the fact that Ak ≥ 3/2 and 3−4/3(k+1)−1/3(2k+1) < 3.
Hence, Gk ≤ Hk for all k ≥ 1 and the proof is completed. �

To prove Lemma 3.3 we shall make use of the following lemma.

Lemma 4.1. For w, b ∈ Z
+ with 0 ≤ 2w < b,

V (w, b) > V (w + 1, b − 1).
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Proof. We shall treat only thew+b ≡ 0(mod 3) case. The other two casesw+b ≡ 1(mod 3)

and w + b ≡ 2(mod 3) can be proved in a similar manner. Suppose that w + b = 3k for some
k ∈ N. Clearly, V (0, 3k) = 3k > V (1, 3k − 1). It follows from (a3) that, for 1 ≤ i ≤ k − 1,

V (i, 3k − i) = 2i

3k + i
V (i + 1, 3k − i − 1) + 3k − i

3k + i
V (i − 1, 3k − i + 1),

so

V (i, 3k − i) − V (i + 1, 3k − i − 1) = 3k − i

2i
[V (i − 1, 3k − i + 1) − V (i, 3k − i)].

Since V (0, 3k) − V (1, 3k − 1) > 0, it follows that V (i, 3k − i) − V (i + 1, 3k − i − 1) > 0
for i = 1, 2, . . . , k − 1, completing the proof. �

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. We shall treat only the w + b ≡ 0(mod 3). The other two cases
w + b ≡ 1(mod 3) and w + b ≡ 2(mod 3) can be proved in a similar manner. Suppose that
w + b = 3k for some k ∈ N. Let

d = min{V (i, 3k − i + 1) − V (i, 3k − i) : i = 0, 1, . . . , k}.
Our goal is to prove that d = 1, which surely implies the desired result. Letting 0 < i < k,
u = V (i + 1, 3k − i − 1), and w = V (i − 1, 3k − i + 1), we have, from (a3),

V (i, 3k − i + 1) = 2i

3k + i + 1
(u + ε1) + 3k − i + 1

3k + i + 1
(w + ε2),

V (i, 3k − i) = 2i

3k + i
u + 3k − i

3k + i
w,

where

ε1 = V (i + 1, 3k − i) − V (i + 1, 3k − i − 1),

ε2 = V (i − 1, 3k − i + 2) − V (i − 1, 3k − i + 1).

Note that ε1, ε2 ≥ d , by the definition of d . Then

V (i, 3k − i + 1) − V (i, 3k − i)

= 2i

(3k + i)(3k + i + 1)
(w − u) + 2i

3k + i + 1
ε1 + 3k − i + 1

3k + i + 1
ε2

≥ 2i

(3k + i)(3k + i + 1)
(w − u) + d

> d,

where the first inequality follows since ε1, ε2 ≥ d and the second inequality follows from
Lemma 4.1, which gives w − u = V (i − 1, 3k − i + 1) − V (i + 1, 3k − i − 1) > 0.

So far we have proved that V (i, 3k − i +1)−V (i +1, 3k − i −1) > d for 0 < i < k. Since
V (0, 3k + 1) − V (0, 3k) = 1, it suffices to show that V (k, 2k + 1) − V (k, 2k) ≥ 1. By (3.5),

V (k, 2k + 1) − V (k, 2k) = V (k, 2k + 1) − vk = (3k + 1 − vk)
3

2(Ak + 1)
.
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Thus, we need to show that (3k + 1 − vk)(3/2(Ak + 1)) ≥ 1, which reduces to

vk ≤ 3k + 1

3
− 2Ak

3
. (4.10)

By Lemma 3.2, we have

vk −
(

3k + 1

3
− 2Ak

3

)
≤ (3k + 1)(6k + 1)

2Ak + 6k + 3
−

(
3k + 1

3
− 2Ak

3

)

= 2(2Ak − 3k)(Ak + 1)

2Ak + 6k + 3

≤ 0,

where the last inequality follows from the fact that Ak ≤ 3k/2 for all k ≥ 1. Hence, (4.10)
holds and the proof is complete. �

Finally, we prove Lemmas 3.4 and 3.5.

Proof of Lemma 3.4. The proofs for (i) and (ii) are similar, so we prove (i) only. For k ≥ 0
and � ≥ 1, define

f (k, �) = k + 1 + �

2k + 2 + �
V (k, 2k + 1) + k + 1

2k + 2 + �
V (k + �, 2k + 3).

Note that

f (k, �) − f (k, � + 1) =
(

k + 1 + �

2k + 2 + �
− k + 2 + �

2k + 3 + �

)
V (k, 2k + 1)

+ (k + 1)

(
1

2k + 2 + �
− 1

2k + 3 + �

)
V (k + �, 2k + 3)

= k + 1

(2k + 2 + �)(2k + 3 + �)

[
V (k + �, 2k + 3) − V (k, 2k + 1)

]

≥ k + 1

(2k + 2 + �)(2k + 3 + �)

[
V (k, 2k + 3) − V (k, 2k + 1)

]
> 0,

where the first inequality is due to V (k + �, 2k + 3) ≥ V (k, 2k + 3), by (S1); and the last
inequality follows from Lemma 3.3 that V (k, 2k + 3) − V (k, 2k + 1) ≥ 2 > 0. The proof is
complete. �

Proof of Lemma 3.5. As the proofs for (i) and (ii) are similar, we prove (i) only. By the
definition of vk and (a2), we have

V (k, 2k + 2) = V (k + 1, 2k + 2) = vk+1. (4.11)

From (a2) and (3.5),

V (k, 2k + 1) = vk + (3k + 1 − vk)
3

2(Ak + 1)
, (4.12)

and

V (k, 2k + 3) = vk+1 + (3(k + 1) − vk+1)
3

2Ak+1
. (4.13)
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We also have, by (3.7),

Ak+1 = k + 1

(3k + 1)(3k + 2)

[
9

2
(2k + 1)Ak + 3

4

]
. (4.14)

After substituting (4.14) into (4.13), (4.13) can be written as

V (k, 2k + 3) = vk+1 + (3(k + 1) − vk+1)
3(3k + 1)(3k + 2)

(k + 1)[9(2k + 1)Ak + 3/2] . (4.15)

Substituting (4.11), (4.12), and (4.15) into (3.9) and performing some calculations, we see that
(3.9) becomes(

1 + 3(3k + 1)(3k + 2)

(k + 1)[9(2k + 1)Ak + 3/2]
)

vk+1

≥
(

1 − 3

2(Ak + 1)

)
vk + 3(3k + 1)

2(Ak + 1)
+ 9(3k + 1)(3k + 2)

9(2k + 1)Ak + 3/2
. (4.16)

By using the recurrence relation for vk (see (3.6)), (4.16) can be expressed as(
1 + (3k + 1)(3k + 2)

(k + 1)(3(2k + 1)Ak + 1/2)

)

×
(

Ak − 1/2 − k/(2k + 1)

Ak + 1/2

[
Ak − 1/2

Ak + 1
vk + 3(3k + 1)/2

Ak + 1

]

+ (3k + 1)(3k + 2)/(2k + 1)

Ak + 1/2

)

≥ (2Ak − 1)

2(Ak + 1)
vk + 3(3k + 1)

2(Ak + 1)
+ 3(3k + 1)(3k + 2)

3(2k + 1)Ak + 1/2
.

Collecting together the terms in vk , transposing terms, and after simplifying, we obtain

(2Ak − 1)

2(Ak + 1)
vk

≤ − 3(3k + 1)

2(Ak + 1)
(4.17)

+
[(

1 + (3k + 1)(3k + 2)

(k + 1)(3(2k + 1)Ak + 1/2)

)
(3k + 1)(3k + 2)/(2k + 1)

Ak + 1/2

− 3(3k + 1)(3k + 2)

3(2k + 1)Ak + 1/2

]

×
[

1 −
(

1 + (3k + 1)(3k + 2)

(k + 1)(3(2k + 1)Ak + 1/2)

)(
Ak − 1/2 − k/(2k + 1)

Ak + 1/2

)]−1

.

(4.18)

After some manipulation, the last term on the right-hand side of (4.17) can be expressed as

2(3k + 1)(3k + 2)

2Ak + 6k + 3
. (4.19)
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In view of (4.17) and (4.19), we have

(2Ak − 1)

2(Ak + 1)
vk ≤ − 3(3k + 1)

2(Ak + 1)
+ 2(3k + 1)(3k + 2)

2Ak + 6k + 3
,

which reduces to

vk ≤ (3k + 1)(6k + 1)

2Ak + 6k + 3
,

as claimed in (3.10). This completes the proof. �

5. Concluding remarks

In the stochastic control literature, the Mabinogion sheep problem was first proposed by
Williams [3], who showed that the simple policy π∗ is optimal. Inspired by his work, we
have proposed a more general model M(p, q) and corresponding policy πp,q which reduces to
Williams’ model and policy for p = q = 1. Following Williams’ method of proof, we showed
that πp,q is optimal for M(p, q) in the two cases (p, q) = (1, 1

2 ) and ( 1
2 , 1). We also pointed

out by counterexample that πp,q is in general not optimal for M(p, q). It should be remarked
that both the model M(p, q) and the policy πp,q depend on (p, q) only through their ratio p/q.
In particular, when p = q, M(p, q) is equivalent to M(1, 1) (Williams’ model) and πp,q

coincides with π∗ (Williams’ policy). Thus, π∗ is optimal for M(p, q) when p = q. In view
of the main results of this paper together with Williams’ result, model M(p, q) is solvable and
admits a simple solution when p/q ∈ {1, 1

2 , 2}. On the other hand, it appears to be difficult to
solve the general (p, q)-problem whose solution is likely to be complicated.

It may be of interest to consider the following (seemingly ‘intuitively clear’) statements
for general M(p, q) concerning threshold-structure properties of the optimal policy under
M(p, q):

(A) V (w, b) = V (w − 1, b) implies V (w + 1, b) = V (w, b);

(B) V (w, b) = V (w − 1, b) implies V (w, b − 1) = V (w − 1, b − 1);

(C) V (w, b) = V (w − 1, b) implies V (w + 1, b − 1) = V (w, b − 1),

where V (w, b) denotes the optimal value at state (w, b) under M(p, q). While (C) can be
established, the proofs of (A) and (B) remain elusive. Note that (A) and (B) together imply (C).
Note also that (A), (B), and (C) are equivalent to saying that if to do nothing is not optimal at
state (w, b), then to do nothing is not optimal at state (w+1, b), (w, b−1), and (w+1, b−1),
respectively.

Finally, we state (without proof) some asymptotic results for the optimal value functions
under M(1, 1

2 ) and M( 1
2 , 1).

Theorem 5.1. (i) Let V be the value function under the M(1, 1
2 ) model. Then

V (k, 2k) = 3k −
√

3πk

2
+ 1

6
+ π

8
+ o(1) as k → ∞.

(ii) Let U be the value function under the M( 1
2 , 1) model. Then

U(2k, k) = 3k − √
3πk − 1

3
+ π

2
+ o(1) as k → ∞.
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