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ON ISOMORPHISM CLASSES OF COMPUTABLY ENUMERABLE
EQUIVALENCE RELATIONS

URI ANDREWS AND SERIKZHAN A. BADAEV

Abstract. We examine how degrees of computably enumerable equivalence relations (ceers) under com-
putable reduction break down into isomorphism classes. Two ceers are isomorphic if there is a computable
permutation of � which reduces one to the other. As a method of focusing on nontrivial differences in
isomorphism classes, we give special attention to weakly precomplete ceers. For any degree, we consider
the number of isomorphism types contained in the degree and the number of isomorphism types of weakly
precomplete ceers contained in the degree. We show that the number of isomorphism types must be 1 or�,
and it is 1 if and only if the ceer is self-full and has no computable classes. On the other hand, we show that
the number of isomorphism types of weakly precomplete ceers contained in the degree can be any member
of [0, �]. In fact, for any n ∈ [0, �], there is a degree d and weakly precomplete ceers E1, . . . , En in d so
that any ceer R in d is isomorphic to Ei ⊕ D for some i ≤ n and D a ceer with domain either finite or
� comprised of finitely many computable classes. Thus, up to a trivial equivalence, the degree d splits into
exactly n classes.
We conclude by answering some lingering open questions from the literature: Gao and Gerdes [11]

define the collection of essentially FC ceers to be those which are reducible to a ceer all of whose classes are
finite. They show that the index set of essentially FC ceers is Π03-hard, though the definition is Σ

0
4. We close

the gap by showing that the index set is Σ04-complete. They also use index sets to show that there is a ceer all
of whose classes are computable, but which is not essentially FC, and they ask for an explicit construction,
which we provide.
Andrews and Sorbi [4] examined strong minimal covers of downwards-closed sets of degrees of ceers.

We show that if (Ei ) is a uniform c.e. sequence of nonuniversal ceers, then {⊕i≤jEi | j ∈ �} has infinitely
many incomparable strong minimal covers, which we use to answer some open questions from [4].
Lastly, we show that there exists an infinite antichain of weakly precomplete ceers.

§1. Introduction. Computable reduction, a natural computability-theoretic ana-
log of borel reduction and first introduced by Ershov [9, 10] as a computable
representation for monomorphisms of numbered sets is defined by letting a binary
relation R on � reduce to a binary relation S on � (written R ≤c S) if there is a
computable function f so that for every x, y ∈ �, xR y if and only if f(x)S f(y).
The situation when R and S are equivalence relations, as in the borel theory, is of
particular interest. In this article, we continue the trend from [1]–[6] of examining the
structure of the set of computably enumerable equivalence relations (ceers) under
computable reduction. There has also been a study of the relationship between ceers
and the algebraic structures which have the ceer as its domain, see, e.g., [11, 13–16].
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We also consider isomorphisms defined as follows:R ∼= S if there is a computable
functionf which is a permutation of� so thatxRy if andonly iff(x)Sf(y). In this
article, we examine the question of how a≤c-degree splits into isomorphism classes.
We show, in particular, that every degree contains either exactly 1 or infinitely many
isomorphism classes, but there are degrees with “essentially” any finite number of
isomorphism classes. Rigorously, this means that for any n, there are ≤c-classes
which contain n ceers E0, . . . , En−1 which are each nonisomorphic and have no
computable classes so that any ceer R in the class is isomorphic to Ei ⊕ D where
D is a ceer (possibly on a finite domain) comprised of finitely many computable
classes.
We also use the idea of a weakly precomplete ceer [6] as the idea of a ceer which is
far from having any computable classes. Formally, a ceer E is weakly precomplete
if it has no total computable diagonal function, i.e., there is no total computable
f so that for every x, x�E f(x). Every two classes in a weakly precomplete ceer
are computably inseparable, so such ceers are far from having computable classes.
We examine some further properties of weakly precomplete ceers, but our main use
is in constructing the ceers Ei above, which we make weakly precomplete, so that
we cannot have Ei ⊕ Di ∼= Ej ⊕ Dj where Di and Dj are ceers with computable
classes.
In Sections 4, 5, and 6, we also answer some lingering questions in the literature
regarding strong minimal covers of some natural subsets of ceers under ≤c , about
the set of ceers which are ≤c a ceer with only finite classes (the essentially FC ceers
in [11]), and about antichains of weakly precomplete ceers.

§2. Preliminaries. We begin with some standard definitions regarding ceers:
Definition 2.1. We let Idn represent the ceer given by congruence modulo n.
Note that any ceer with exactly n equivalence classes is ≡c Idn.
We let Id represent the ceer given by equality, i.e., x Id y if and only if x = y.

Definition 2.2 (The jump operation). For any ceer R, we define R′ to be the
ceer given by x R′ y if and only if x = y or ϕx(x) R ϕy(y) where both ϕx(x) and
ϕy(y) converge.

The following observation will be helpful for building isomorphisms between
ceers.

Lemma 2.3. If ϕ is a reduction of X to Y which is onto the classes of Y , and both
X and Y have no finite classes, then X ∼= Y .
Proof. We define a reduction f and a supplementary function g inductively in
stages, so f =

⋃
i fi . We ensure that each fi is a partial reduction of X to Y , and

we ensure i ∈ domain(fi+1)∩ range(fi+1). We let f0 = ∅. If i ∈ domain(fi), then
we let gi = fi . Otherwise, we enumerate [ϕ(i)]Y until we see some member j of
[ϕ(i)]Y � range(fi). We then add (i, j) to fi , to form gi . Now, if i ∈ range(gi ),
then we let fi+1 = gi . Otherwise, we wait until we find some x so that ϕ(x) ∈ [i ]Y
(since ϕ is onto the classes of Y ), and we enumerate [x]X until we find a member
k which is not in domain(gi). We then add (k, i) to gi to form fi+1. On classes,
f = ϕ, so f is also a reduction of X to Y . By construction, f is a bijection. 	
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Definition 2.4. IfE andR are ceers, thenE⊕R is the ceer defined by x E ⊕R y
if and only if either x = 2n and y = 2m and n E m or x = 2n + 1 and y = 2m + 1
and n R m.

Observation 2.5. If E andR are incomparable, then the degree of E ⊕R does not
contain a weakly precomplete ceer.

Proof. Suppose A is weakly precomplete and A reduces to E ⊕R via f, then A
reduces to eitherE orR, since every pair of classes ofA are computably inseparable.
That is, {x | f(x) is odd} and {x | f(x) is even} provides a separation of two
classes, unless one is empty. Thus f reduces A to either E or R. Since E ⊕R does
not reduce to E or R, there can be no weakly precomplete A in the same degree as
E ⊕R. 	
Observation 2.6. The degrees of weakly precomplete ceers are not closed upwards.

Proof. Let E be weakly precomplete and nonuniversal, which exists by [6].
Let R be any ceer which is ≤c-incomparable with E (see e.g., [3, Theorem 2.1]).
Then consider E ⊕R. This cannot be a weakly precomplete degree by Observation
2.5. 	
We also remind the reader of a useful definition which first appears in [5].

Definition 2.7. A ceer E is self-full if E <c E ⊕ Id1. Equivalently (see [5]), and
motivating the name, E is self-full if whenever ϕ is a ≤c-reduction of E to itself, ϕ
is onto the classes of E (i.e., for every j, im(ϕ) ∩ [j]E is nonempty).
We also note the following, which we will use to show hardness of an index set
below:

Observation 2.8. For every binaryΠ03-predicateP(x, y) there exists a computable
binary function g so that P(x, y) ⇐⇒ Wg(x,y) is coinfinite.

Proof. By [17, Corollary 14-XVI], {x :Wx is cofinite} is Σ03-complete set. Then,
{〈x, y〉P(x, y)} �1 {x : Wx is coinfinite} by some computable function f. Define
g(x, y) = f(〈x, y〉). 	

§3. Isomorphism types inside degrees of ceers. Badaev and Sorbi [6] showed that
there are infinitely many isomorphism types of universal weakly precomplete ceers.
It is natural to ask whether there are nonuniversal weakly precomplete ceers which
are ≤c-equivalent, but not isomorphic. We answer this question, introducing some
techniques (especially the strategy for D-requirements) which will appear in the
following theorems.

Theorem 3.1. There are nonisomorphic weakly precomplete ceers which are
equivalent and nonuniversal.

Proof. We construct ceers E, F , and X so that E and F are equivalent, non-
isomorphic, weakly precomplete, and X �≤c E. During the construction, we will
choose sequences of numbers (ai)i ∈ � and (bi)i∈� , and we satisfy the following
requirements:

RE→F : For every pair i, j, i E j ⇔ ai F aj.
RF→E : For every pair i, j, i F j ⇔ bi E bj.
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WPiE : If ϕi is a total function, then for some x, ϕi(x) E x.

WPiF : If ϕi is a total function, then for some x, ϕi(x) F x.

Di : ϕi is not an isomorphism of E to F .

NUi : ϕi is not a reduction of X to E.

Note that the R-requirements are not subject to injury, but the others can be
injured and reinitialized. We begin by describing the strategies for each requirement:

RE→F :Weneed to do 2 things to satisfy this requirement: chooseak, and collapse
to maintain consistency. For the least k where ak is not defined, we choose ak to
be a fresh number (i.e., larger than any number mentioned in the construction). We
collapse ai to aj in F if we see i E j. We will ensure—see Corollary 3.6—that no
other requirement collapses a pair ai and aj (i.e., ai F aj only happens if we already
see i E j).

RF→E : This is symmetric.

WPiE : Choose a witness x to be fresh. Wait for ϕi (x) to converge. Then E-
collapse x with ϕi(x). After this collapse, we no longer consider the requirement
active.

WPiF : This is symmetric.

Di : Let x, x′, and z be fresh. We wait for a stage t where ϕi (x) and ϕi(x′)
converge and ϕi(y) = z for some y. If ϕi(x) F t ϕi(x′), then we do nothing further
(we will see that, unless injured, x�E x′) and no longer consider the requirement
active. Otherwise, by possibly reversing x and x′, we may assume that ϕi(x)��F t z.
Let w = ϕi(x). We collapse x E y. We will see below that (unless injured) z�F w.
After this collapse, we no longer consider the requirement active.

NUi : Take two fresh numbers x and y. Wait for ϕi(x) and ϕi(y) to con-
verge. If ϕi(x)�E ϕi(y), then collapse x X y. We will see below that reinitializing
lower priority requirements will suffice to guarantee that ϕi(x)�E ϕi(y) remains
true.
Construction.Wefix some priority ordering in order type� of theWP-,D-, and
NU -requirements. As they are not subject to injury, we do not include RE→F - and
RF→E -requirements in our priority order. We deal with each ofD-,WP-, andNU -
requirements at infinitely many stages, one at every stage s > 0 of the construction.
And we deal with the R-requirements at each stage of the construction.WPiE - and
WPiF -requirements can have a parameter x. Di -requirements can have parameters
x, x′, and z. NUi -requirements can have parameters x and y. When a requirement
is initialized, each parameter is set to be undefined and the requirement is set to
be active. We say that a requirement requires attention if any of its parameters are
undefined, or if it is an activeWPi -requirement and ϕi (x) has converged, or it is an
activeDi -requirement and ϕi(x), ϕi (x′) converge and some ϕi(y) = z, or if it is an
active NUi -requirement and ϕi(x) and ϕi (y) have both converged.
When a strategy for aWP-,D-, or NU -requirement acts, it reinitializes all lower
priority D-, WP-, or NU -requirements. Any reinitialized requirement becomes
active immediately.
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Stage 0. Initialize eachWP-, D-, andNU -requirements. Set E0 = Id, F 0 = Id.
Stage s + 1. Let s = 〈s0, s1〉 and let Q be the strategy with priority equal to s0.
If Q does not require attention, then end the stage. Otherwise, we say that Q acts,
thus reinitializing all lower priority requirements. We consider cases depending on
which type of requirement Q is:

Case 1. SupposeQ is aWPiE -requirement. If the parameter x is not yet defined,
define it to be a fresh number (in particular [x]Es = {x} and x is not a parameter of
any other requirement). Otherwise, we have x defined and ϕi(x) converged. Then
we E-collapse x with ϕi(x) and declareWPiE to be inactive.

Case 2. Suppose Q is aWPiF -requirement. We act exactly as in case 1, but with
F -collapse.

Case 3. SupposeQ is aDi -requirement. If x, x′, and z are undefined, then select
them to be distinct fresh numbers. Otherwise, we have ϕi(x), ϕi (x′) converged and
ϕi(y) = z for some y. If ϕi (x)Fϕi(x′), we declareDi to be inactive and do nothing
else. Otherwise, by possibly switching the roles of x and x′, we may assume that
ϕi(x)��F s z. We E-collapse x with y and declare the requirement Di to be inactive.

Case 4. Suppose Q is a NUi -requirement. If x and y are not defined, then we
select them tobe fresh numbers.Otherwise,wehaveϕi(x) andϕi(y) both converged.
If ϕi (x) E ϕi(y), then we declare NUi to be inactive. Otherwise, we X -collapse x
and y and declare NUi to be inactive.

In any case, we finish the stage with the following:
Coding Step.Define as and bs to be fresh numbers. Lastly, if we haveE-collapsed
x and y, and ax and ay are defined, then F -collapse ax and ay . Similarly, if we have
F -collapsed x and y, and bx and by are defined, then E-collapse bx and by . We
apply this asmany times as necessary, but at stage s+1,we have only defined finitely
many values of ax and bx , so this only causes finitely many collapses.
Verification. We proceed through a sequence of lemmas to show that all
requirements are satisfied.

Definition 3.2. Let Q be a WP-, D-, or NU -requirement. We say that x is a
Q-number at stage s if x is a parameter of an active Q-requirement.
We say that x is an RE→F -number at stage s if it is defined to be ai for some i so
that i is the least member of [i ]E at stage s .
We say that x is an RF→E -number at stage s if it is defined to be bi for some i so
that i is the least member of [i ]F at stage s .
In each case, we say that the number x is active at stage s .

Lemma 3.3. Let x and y be distinct active numbers at stage s . Then x��Es y and
x��F s y.

Proof. This is clearly true at stage 0. Suppose s+1 is the least stage at which this
lemma fails. Let x, Q1, y, and Q2 witness this. Let us consider the action at stage
s which brought about this situation. At stage s , we must have done more than
just defining new parameters because all new parameters are chosen to be fresh. In
particular, if z is fresh, then [z]Es = [z]F s = {z}, so it cannot contribute to violating
our lemma.
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There are two parts of the construction at stage s : The action in each of the 4
cases, and then the coding step. We verify that after each of these actions, we have
not violated our lemma.
In each of the 4 cases where we can cause a collapse, we have a requirement Q-
which collapses one of its parameters z to some other element w. We then declare
Q to be inactive. By inductive hypothesis, [z]E and [z]F contain only one active
number, namely, z. Thus, since z is not active at stage s + 1 since Q becomes
inactive, we have added no new active numbers to [w]E or [w]F .
Lastly, we have to check that our collapses during the coding step do not cause
us to violate this lemma. These are of the form of F -collapsing ai with aj if we have
E-collapsed i with j or of the form ofE-collapsing bi with bj if we haveF -collapsed
i with j. We consider the former case as the latter case is the same. We can assume
that prior to E-collapsing i with j, both were least in their E-classes. Thus, both
ai and aj were active. It follows that [ai ]F and [aj ]F had only one active element,
namely, ai and aj . But since i and j have collapsed, one has stopped being active.
So the newly formed class [ai ]F ∪ [aj ]F still contains only one active element. 	
Lemma 3.4. Let x = bi . Then for every s > i there exists a j ≤ i so that xEsbj
and bj is active at stage s .
Let x = ai . Then for every s > i there exists a j ≤ i so that xF saj and bj is active
at stage s .
Proof. We prove the first claim. Let j be the least number in [i ]F s . Then j ≤ i
and bj is active. By the coding step of our construction, i F s j implies bi Es bj . 	
Lemma 3.5. Let x be a number mentioned before stage s . Suppose that x is not
Es -equivalent to any active number at stage s . Then at all stages t > s , x is not
Et-equivalent to any active number at stage t.
Similarly for F -equivalence.
Proof. Suppose otherwise, and consider the first stage t > s at which x becomes
Et-equivalent to an active number at stage t. This cannot be caused by an assignment
of parameters, since all parameters are assigned to be fresh. By the same analysis as
in Lemma 3.3, any active z which is collapsed with x must simultaneously become
inactive. Similarly, this cannot be caused by collapsing bi with bj for the sake of
coding because x cannot already be in [bi ]E or [bj ]E , since these each contain active
members. 	
Corollary 3.6. For every i, j < s , i Es j if and only if ai F s aj . For every k, l < s ,
k F s l if and only if bk Es bl .
Proof. We prove only the first claim as the second is symmetric. By the coding
step, i Es j implies that ai F s aj . To see the reverse, suppose that i��Es j and let i0 be
least in [i ]Es and j0 be least in [j]Es . It follows by the coding step that ai0 F

s ai and
aj0 F

s aj . Then ai0 and aj0 are both active numbers at stage s . It follows by Lemma
3.3 that they cannot be F s -equivalent. Thus ai��F s aj . 	
It follows that the R-requirements are satisfied.
Lemma 3.7. Every requirement is reinitialized only finitely often.
Proof. Straightforward by induction in priority of the requirements. 	
Lemma 3.8. Suppose that x and y are numbers considered before stage s and
x��Es y. Suppose thatQ is a requirement which is deactivated at stage s (thus all lower
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priority requirements are reinitialized at stage s). Suppose further that no requirement
of higher priority than Q acts after stage s . Then x�E y. Similarly for F .

Proof.

Case 1.Neither x nor y is Es -equivalent to any active number. Then by Lemma
3.5, this is true at every t > s . Then at any stage t > s we cannot collapse x with y
because neither are equivalent to any active numbers.

Case 2. Suppose that either x or y is Es -equivalent to a Q̂-number at stage s for
Q̂ aWP-, D-, or NU -requirement of higher priority than Q. WLOG, we suppose
this is true of x. Suppose towards a contradiction that xE y. Let t > s be the stage
at which we cause this collapse. Since Q̂ does not act after stage s , we know that x
is also Et-equivalent to a Q̂-number at stage t, and thus cannot be Et-equivalent
to any other active number by Lemma 3.3. Thus, the collapse must be caused by an
active number Et-equivalent to y.

Case 2a. Suppose that y is notEs -equivalent to an active number at stage s . Then
by Lemma 3.5, this is true at stage t also, so the collapse cannot occur at stage t.

Case 2b. Suppose that y is Es -equivalent to bj for some j. Then by Lemma 3.4,
y is Et-equivalent to some active bk for some k. Thus, it is not equivalent to a
Q′-number at stage t for Q′ anyWP-, D-, or NU -requirement. Since x cannot be
equivalent to any bl (since Lemma 3.4 shows that it would then be Et-equivalent to
two active numbers contradicting Lemma 3.3), the collapse can also not occur due
to the coding.

Case 2c. Suppose that y is also Es -equivalent to a Q′-number at stage s for
Q′ a WP-, D-, or NU -requirement of higher priority than Q. Then, y is also Et-
equivalent to aQ′-number at stage t, and thus cannot beEt-equivalent to any other
active number by Lemma 3.3. Thus, since neither Q′ nor Q̂ can act at stage t, we
cannot cause the collapse at stage t.

Case 3. Suppose that x Es bi and y is not Es -equivalent to any active number.
Then Lemma 3.4 shows that [x]Et contains an active number for every t > s whereas
Lemma 3.5 shows that y is never Et-equivalent to an active number, so x and y can
not be Et-equivalent for any t > s .

Case 4. We have x Es bi and y Es bj for some i, j. Then the only cause of the
collapse of xE y is due to the coding step, since neither can ever beEt-equivalent to
any other active number. But then we can consider why we collapse i F j. By Case
3, the only possibility is that this, in turn was due to Case 4, namely, due to a coding
step. But the coding step at any given stage is finite and originates in a collapse for
aWP-, D-, or NU -requirement, which we have ruled out in the cases above. 	
Lemma 3.9. WPiE - andWP

i
F -requirements are satisfied.

Proof. Consider the last time the requirement is reinitialized. When it next
chooses its witness x, this choice is permanent. If ϕi(x) does not converge, then
the requirement is satisfied. Otherwise, once it converges, the requirement will act
(since no higher priority requirement can act) by collapsing x with ϕi (x) satisfying
the requirement. 	
Lemma 3.10. The Di -requirement is satisfied.
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Proof. Consider the last time the requirement is reinitialized. When it next
chooses its witnesses x, x′, and z, this choice is permanent. If ϕi(x) or ϕi(x′) does
not converge or no ϕi (y) converges to equal z, then ϕi is not a bijection and the
requirement is satisfied. Now, suppose ϕi(x) and ϕi (x′) converge and ϕi (y) con-
verges to equal z, and let t be the first stage after this when this requirement is next
considered by the construction. Ifϕi(x)F tϕi(x′), the requirement does nothing. As
x and x′ were active at stage t, they were not Et-equivalent. By Lemma 3.8, we see
x�Ex′. Otherwise, (possibly after reversing x and x′), we haveϕi(x) = w��F s z. Then
we E-collapsed x with y. It suffices to show that w�F z. Since z is not equivalent to
any ai , w and z do not collapse at stage t. Since w and z are certainly considered
at stage t, the Di -requirement becomes inactive at stage t, and we have supposed
that no higher priority requirement acts after stage t (as this would reinitialize the
Di -requirement), Lemma 3.8, guarantees that w�F z. 	
Lemma 3.11. The requirement NUi is satisfied.

Proof. Consider the last time that NUi is reinitialized. When it next picks its
witnesses xandy, this is permanent. If ϕi (x) or ϕi (y) never converge, then the
requirement is satisfied. Otherwise, consider the next stage s where NUi acts. If
ϕi (x)Esϕi(y) then simply notX -collapsingx andy guarantees that the requirement
is satisfied. So, we must consider the case that ϕi(x)��Es ϕi(y) and we must show
that ϕi (x)�E ϕi(y). This follows immediately by Lemma 3.8 	
Thus, every requirement eventually succeeds, and we have built ceers E and F as
needed. 	
Theorem 3.12. There are nonuniversal weakly precomplete ceers Ei for i ∈ � so
that they are equivalent and pairwise nonisomorphic.

Proof. This is the same argument as the previous theorem with no new com-
plications. We construct infinitely many ceers, but the requirements each men-
tion at most two ceers and are handled with strategies identical to the previous
argument. 	
Definition 3.13. For a ceerE, we defineN(E) to be the number of isomorphism
types inside the≤c-degree ofE. We defineN∗(E) to be the number of isomorphism
types of weakly precomplete ceers inside the ≤c-degree of E.
Theorem 3.14. N(E) = 1 if and only if E is self-full and has no computable
classes. Otherwise, N(E) = �.

Proof. We prove the theorem in cases:

Lemma 3.15. If E is self-full and has no computable classes then N(E) = 1.

Proof. Suppose X ≡c E. Then consider the reductions E ≤c X ≤c E. Since E
is self-full, it follows that the composed reduction is onto the classes ofE, therefore,
the reductionE ≤c X is onto the classes ofX . Thus,X cannot have any computable
classes either, so all of the classes of X are infinite. Thus E ∼= X by Lemma 2.3. 	
Lemma 3.16. If E has no computable classes and is non–self-full, thenN(E) = �.

Proof. Consider the set of equivalence relationsE⊕ Idn for various n. These are
all nonisomorphic because E ⊕ Idn has exactly n computable classes, yet they are
all ≤c-equivalent by non–self-fullness of E. 	
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Lemma 3.17. If E has a computable class, thenN(E) = �.

Proof. Suppose, towards a contradiction, that N(E) = k and let
E0, E1, . . . , Ek−1 be representatives of every isomorphism type in the degree of
E.

Claim 3.18. For some i < k, there are infinitely many m so that Ei has a finite
class of size m.

Proof. For each m ∈ �, let Rm be the ceer formed by replacing a computable
class in E by a class of size m. Let F (m) be the i < k so that Rm ∼= Ei . By the
pigeonhole principle, there is an infinite set of m on which F is constant. 	
Without loss of generality, we assume E0 has this property.

Claim 3.19. For all positive n ∈ �, there is anEi with infinitely many finite classes,
but none of size ≤n.
Proof. For each n > 0, consider the ceer Qn formed by taking E0 and fattening
every point by n numbers. That is, we say x Qn y if and only if

⌊
x
n

⌋
E0

⌊ y
n

⌋
. 	

For each i < k, let li ∈ � be greater than the size of the smallest finite class of Ei ,
if there is one, and 1 otherwise. Applying the previous claim with n = Σi<k li gives
Qn, a new isomorphism type in the degree of E. 		
It may seem like a very weak argument that N(E) is infinite in Lemmas 3.16
and 3.17. One might argue that appending finitely many computable classes to E
may yield a new isomorphism type, but it does not give a substantively different
isomorphism type. We will see that for some ceers E, the only way to produce other
isomorphism types in the same degree is to append finitely many computable classes
to E.

Corollary 3.20. There is a weakly precomplete ceerE so that for anyX ,X ≡c E
implies X ∼= E.
Proof. It is shown in [6] (or see Theorem 6.3) that there are weakly precomplete
ceersE which are dark, i.e., Id �≤c E . It is shown in [5] that all dark ceers are self-full.
Lastly, since the classes of weakly precomplete ceers are computably inseparable,
no class can be computable. So, a dark weakly precomplete ceer E has N(E) = 1
by Lemma 3.15. 	
Theorem 3.21. The range of N∗ is [0, �].

Proof. The fact that 0, 1, and � are in the range follows from Observation
2.5, Lemma 3.15, and Theorem 3.12. For n ∈ (1, �), we give the following
construction:
We build ceers E0, . . . , En , and we will makeE0 = En. Towards this, whenever we
give instructions to E0-collapse some pair, it is understood that we simultaneously
En-collapse and vice versa. We also build functions �i for i = 1, . . . , n so that �i
reduces Ei−1 to Ei . Thus � = �n ◦ �n−1 ◦ · · · ◦ �1 is a reduction of E0 to itself. We
attempt to ensure that the set of weakly precomplete ceers in the degree of E0 is
exactly {E0, . . . , En−1}, and these are pairwise nonisomorphic, thus N∗(E0) = n.
We build these ceers with the following requirements (where we consider i, i ′ < n
distinct and any j, k ∈ �):
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C i : Pick numbers ai+1j for each j so that j Ei k if and only if ai+1j Ei+1 a
i+1
k .

WPij : If ϕj is a total function, then it has an Ei -fixed point.

Di,i
′

j : ϕj is not an isomorphism from Ei to Ei′ .

T ij,k : IfWj intersects infinitely many Ei -classes which do not contain any element

of the form ail , thenWj intersects [k]Ei .

Sj : If ϕj is a reduction of E0 to E0, then for some k, [im(ϕj)]E0 ∩
(
[im(�k)]E0�

[im(�k+1)]E0
)
contains infinitely many classes.

See Lemmas 3.32 and 3.33 forwhy the requirements, especiallyT ij,k andSj , suffice
for the theorem. Intuitively, � gives us a nested layering of E0 by smaller copies of
itself, and Sj shows that any ceer R equivalent to E0 must in its reduction to E0
intersect one annulus infinitely.We then stratify that annulus in terms of theEi ’s and
see that one of these strata must be hit infinitely. Then T ij,k shows that the entirety
of this copy of Ei must be hit, which is enough for us to analyze the ceer R.
We enumerate allWP,D, T and S-requirements in order type� asQ0 ≺ Q1 · · · .
At this point, the strategies forC i,WPij , andD

i,i′
j should be familiar.Wehighlight

the strategies for T ij,k and Sj and their conflict.
T ij,k- strategy. Wait forWj to enumerate a number x which is not Ei -equivalent
to any number mentioned by a higher priority requirement and is also not Ei -
equivalent to any element of the form ail . Then collapse k Ei x.

Sj -strategy. Througout the description, we let l be maximal so that yl is defined.

Step 1. Pick new y0, y1, and keep y0��E0 y
1 and that neither y0 nor y1 will ever be

equivalent to an element of the form ank for any k (this will be automatic via Lemma
3.25, which is analogous to Lemma 3.3). Wait for ϕj(y0) and ϕj(y1) to converge.
Once this happens, go to Step 2.
Step 2. If for some k we have {[ϕj(y0)]E0 , [ϕj(yl )]E0} = {[�ky0]E0 , [�kyl ]E0},
then go to Step 3. Otherwise, we have two cases: If ϕj(y0) E0 ϕj(yl ) already,
then we simply maintain that y0��E0 y

l and do nothing. Otherwise, we collapse y0

with yl , and we will not be forced to collapse ϕj(y0) with ϕj(yl ). We reinitialize
lower priority requirements to ensure that they will not cause ϕj(y0) and ϕj(yl ) to
E0-collapse. We do nothing further.
Step 3. Choose a new number y that is not equivalent to any element of the form
ank and assign this to be y

l+1. Wait for ϕj(yl+1) to converge, then go back to Step 2
(with the newly increased value of l).
The possible outcomes of one Sj strategy are either infinite cycling through Steps
2 and 3, or it gets stuck in Step 1, 2, or 3. If it cycles through Steps 2 and 3 infinitely
often, this will force that for a single k, everym satisfiesϕj(ym)E0�kym (see Lemma
3.30). Furthermore, since ym��E0 �(d ) for every d , we have that �

kym��E0 �
k+1d for

every d . Thus this gives that [im(ϕj)]E0 ∩ [im(�k)]E0 � [im(�k+1)]E0 is infinite as
needed. If it gets stuck in Step 1 or Step 3, then ϕj is not total, and if it gets stuck
in Step 2, then we diagonalize ensuring that ϕj is not a reduction of E0 to itself.
Now, note that Sj has infinitely many parameters if it cycles through Steps 2 and
3 infinitely often, which is inconsistent with T ij,k-strategies (it causes no problems
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to D orWP-strategies as these can only cause a collapse involving at least one new
number, whereas T ij,k-strategies use numbers chosen by Wj). In particular, if Wj
enumerates {ym | m ∈ �} chosen by a higher priority Sj -requirement, it would not
be able to be satisfied. This problem is fixed by allowing a high enough priority T ij,k-
requirement, say it is requirement Qp to only respect values ym form < p. In other
words, the lower priority T -requirement may steal the S-requirement’s parameter
yk for k ≥ p. Still, only finitely many T -strategies may steal this parameter, so if S
cycles through 2 and 3 infinitely often, it will eventually define each ym.
The remainder of the proof is handled via the usual priority machinery.
Construction.We build equivalence relations Es0 , E

s
1 , . . . , E

s
n−1 as approxima-

tions to the equivalence relations E0, E1, . . . , En−1. WP-requirements can have a
parameter x. D-requirements can have parameters x, x′, and z. T -requirements
can have a parameter r. S-requirements can have, as parameters, a finite sequence
of numbers y0, . . . , yl .
We say that a WP-requirement demands attention if it is active and either x is
undefined orϕj(x) has converged.We say that aD-requirement requires attention if
it is active and either its parameters are undefined or ϕj(x), ϕj(x′) have converged
and some ϕj(y) = z. We say a T ij,k-requirement requires attention if it is active
and either r is undefined or some number x has been enumerated intoWj so that
x is not Esi -equivalent to any a

i
l or any number less than r. We say that an Sj -

requirement requires attention if it is active and either y0 is undefined or, for l being
greatest so that yl is defined, we have both ϕj(y0) and ϕj(yl ) converged and either
{[ϕj(y0)]E0 , [ϕj(yl )]E0} = {[�ky0]E0 , [�kyl ]E0} for some k or ϕj(y0)��E0 ϕj(yl ).
When a requirement is initialized, each parameter is set to be undefined and the
requirement is set to be active. For aWP-,D-, T -, or S-requirement Q, let #(Q) be
the number m so that the requirement is Qm. At stage s + 1 = 〈m,k〉, we consider
the requirement Qm; thus, each requirement is considered infinitely often.

Stage 0. Initialize all requirements. For every i < n, set E0i = Id.

Stage s + 1. Denote by Q the requirement that we consider at stage s + 1. If
Q does not require attention, then go to the next stage, otherwise we execute the
strategy forQ below, followed by the coding step:
Case 1.Q is theWPij -requirement for some i < n and j ∈ �.
Case 1.1. If a parameter x forWPij is not defined, then choose x to be a fresh

number. Reinitialize all lower priority requirements.

Case 1.2. If x is the parameter for WPij and ϕ
s
j (x) has converged, then

collapse xEs+1i ϕj(x), reinitialize all lower priority requirements, and declare the
WPij -requirement to be inactive.

Case 2.Q is the Di,i′j -requirement with i, i ′ < n, i �= i ′, and j ∈ �.
Case 2.1. If no parameters forDi,i

′
j are defined, then pick three fresh numbers

x, x′, and z and set them to be the parameters forDi,i
′

j . Reinitialize all lower priority
requirements.

Case 2.2. If the parameters x, x′, and z for Di,i
′

j are defined and
ϕsj (x) and ϕ

s
j (x

′) are converged, and for some y, ϕsj (y) = z, then: If ϕj(x) E
s
i′
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ϕj(x′), we declare Di to be inactive and do nothing else. Otherwise, by possibly
switching the roles of x and x′, we may assume that ϕi (x)��E

s
i′ z. We Ei -collapse

x with y and declare the requirement Di,i
′

j to be inactive. We reinitialize all lower
priority requirements.

Case 3. Q is the T ij,k-requirement with i < n and j, k ∈ �.
Case 3.1. If k ∈ [Ws

e ]Ei,s then declare T
i
e,k-requirement to be inactive.

Case 3.2. If k /∈ [Ws
e ]Ei,s and r is not defined, then choose r to be a fresh

number. Reinitialize all lower priority requirements.

Case 3.3. If there is an x inWj so that x is not Ei -equivalent to any number
less than r and also not Ei -equivalent to ail for any l , then Ei -collapse x with k.
We declare Q to be inactive and reinitialize all lower priority requirements. If this
number x is already Ei -equivalent to a higher priority Sj -requirement’s parameter
ym , then we undefine the Sj -requirement’s parameters ym

′
for every m′ ≥ m. (In

Lemma 3.22, we will see that this can only happen if m > #(Q).)

Case 4.Q is theSj -requirement. IfSj does not require attention, then do nothing.
Otherwise:

Case 4.1. The parameter y0 is not defined. Then choose y0 and y1 to be fresh
numbers. Reinitialize all lower priority requirements.
If the parameter y0 is defined, then let l be largest so that the parameter yl is
defined.

Case 4.2. We have ϕj(y0) and ϕj(yl ) both converged and {[ϕj(y0)]Es0 ,
[ϕj(yl )]Es0 } = {[�ky0]Es0 , [�kyl ]Es0 } for some k. In this case, define the parameter
yl+1 to be fresh and initialize all lower priority requirements R so that #(R) ≥ l .

Case 4.3. We have ϕj(y0) and ϕj(yl ) both converged and {[ϕj(y0)]Es0 ,
[ϕj(yl )]Es0 } �= {[�ky0]Es0 , [�kyl ]Es0 } for any k, and ϕj(y0)��Es0 ϕj(yl ). Then E0-
collapse y0 and yl and reinitialize all lower priority requirements. Declare Sj to be
inactive.

Coding Step. For each i = 1, . . . n, choose distinct fresh numbers to be ais . For
each i < n, if we have Ei -collapsed j with k, and ai+1j and ai+1k are defined, then
Ei+1-collapse ai+1j and ai+1k . Note that since we have only finitely many a

i+1
j -values

defined, this causes only finitely many collapses.
Verification.

Lemma 3.22. If a T -requirement undefines an S-requirement’s parameter ym, then
#(T ) < m.

Proof. It must be that x Ei ym , but x��Ei z for every z ≤ r. Thus ym > r. In
particular, ym was chosen to be a parameter after the T -requirement assigned the
parameter r. So when ym was assigned in Case 4.2, the T -requirement was not
reinitialized, thus #(T ) < m. 	
Lemma 3.23. Each requirement is reinitialized only finitely often.

Proof. Suppose towards a contradiction that Q is the highest priority require-
ment reinitialized infinitely often. Theremust be a single higher priority requirement
R which reinitializes Q infinitely often. Let s be a stage after whichR is never reini-
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tialized. IfR is aWP-,D-, or T -requirement, then it can act only once more, after
which it becomes inactive. ThusR must be an S-requirement. ForR to injure Q, it
does so in Case 4.1, 4.2, or 4.3 infinitely often. It can do so in Cases 4.1 and 4.3 only
once after stage s , as it is not reinitialized after stage s . Thus, it must infinitely often
injure Q via Case 4.2. In this case, it infinitely often increases the maximal l for
which al is defined.We need only show that after finitely many stages, this l will per-
manently exceed #(Q). Otherwise, infinitely often, we must have a T -requirement
with #(T ) < #(Q) which undefines R’s parameter y#(Q). But each such #(T ) can
do this only once. This is because a T ij,k-requirement acts in Case 3.3 by making
k ∈ [Ws

e ]Ei,s . But then it can never be in Case 3.3 again, as it would be in Case 3.1
instead. Thus, each T -requirement with #(T ) < #(Q) can undefineR’s parameter
y#(Q) at most once, so it will eventually be permanently defined and R will not
reinitialize Q after that. 	
Definition 3.24. Let Q be a WPij -requirement. We say that x is an i-active
Q-number at stage s if x is a parameter of Q at stage s . Let Q be an active
Di,i

′
j -requirement with parameters x, x

′, and z. Then we say that x, x′ are i-active
Q-numbers at stage s and z is an i ′-active Q-number at stage s . Let Q be an S-
requirement and x be a parameter of Q. We say that x is a 0-active and n-active
Q-number at stage s .
We say that x is an i +1-active Ci -number at stage s if it is defined to be ai+1x for
some x so that x is the least member of [x]Ei at stage s . If i + 1 = n, we also say
that x is 0-active.

Lemma 3.25. Let x and y be distinct i-active numbers at stage s . Then x��E
s
i y.

Proof. This is clearly true at stage 0. Suppose s+1 is the least stage at which this
lemma fails. Let x, Q1, y, and Q2 witness this. Let us consider the action at stage
s which brought about this situation. At stage s , we must have done more than
just defining new parameters, because all new parameters are chosen to be fresh. In
particular, if z is fresh, then [z]Esi = {z}, so it cannot contribute to violating our
lemma.
There are two parts of the construction at stage s : The action in each of the 4
cases, and then the coding step. We verify that after each of these actions, we have
not violated our lemma.
In each of cases 1, 2, and 4, where we can cause a collapse, we have a requirement
Q which Ei -collapses one of its parameters z to some other element w. We then
declare Q to be inactive. By inductive hypothesis, [z]Ei contains only one i-active
number, namely, z. Thus, since z is not i-active at stage s + 1 since Q becomes
inactive, we have added no new active numbers to [w]Ei .
In case 3 where Q = T ij,k where we cause collapse, we collapse k (which may be
equivalent to an active number for another requirement) with x, which is >r and
not equivalent to ail for any l . Since x > r, it is not equivalent to any parameter for a
higher priorityWP orD requirement. If it is equivalent to the parameter of a higher
priority S-requirement, then we undefine the S-requirement’s parameter. Similarly,
if it is equivalent to a lower priority requirement’s parameter, then we undefine this
parameter via reinitialization. Either way, we add no new i-active numbers to the
Ei -class of k.
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Lastly, we have to check that our collapses in the coding step do not cause us to
violate this lemma. These are of the form of Ei -collapsing ax with ay if we have
Ei−1-collapsed1 x with y. We can assume that prior to Ei−1-collapsing x with y,
both were least in their Ei−1-classes. Thus, both ax and ay were i-active. It follows
that [ax]Ei and [ay ]Ei had only one i-active element, namely ax and ay . But since
x and y have collapsed, one has stopped being active. So the newly formed class
[ax ]Ei ∪ [ay]Ei still contains only one i-active element. 	
Lemma 3.26. Let x = ai+1k . Then for every s > k, there exists a j ≤ k so that
x Esi+1 a

i+1
j and ai+1j is i + 1-active at stage s .

Proof. Let j be the least number in [k]Ei . Then j ≤ k and ai+1j is i + 1-active.
By the coding step, j Ei k implies ai+1j Ei+1 a

i+1
k . 	

Lemma 3.27. Let x be a number mentioned before stage s . Suppose that x is
not Esi -equivalent to any i-active number at stage s . Then for all t > s , x is not
Eti -equivalent to any i-active number at stage t.

Proof. Consider the first stage at which x becomes Ei -equivalent to an i-active
number. This cannot be caused by our assignment of parameters, since all param-
eters are assigned to be new. By the same analysis as in Lemma 3.25, any active z
which is collapsed with x must simultaneously become inactive. Similarly, this can-
not be caused by collapsing for the sake of coding, as this collapses two Ei -classes
which already contain i-active numbers by Lemma 3.26. 	
Corollary 3.28. For every i < n and j, k < s , j Esi k if and only if a

i+1
j E

s
i+1 a

i+1
k .

Proof. In the Coding stage, we guarantee that j Esi k implies that a
i+1
j E

s
i+1 a

i+1
k .

To see the reverse, suppose that j��E
s
i k and let j0 be least in [j]Esi and k0 be least in

[k]Esi . It follows by construction that a
i+1
j0
Esi+1 a

i+1
j and ai+1k0 E

s
i+1 a

i+1
k . Then a

i+1
j0

and ai+1k0 are both active numbers at stage s . It follows by Lemma 3.25 that they
cannot be Esi+1-equivalent. Thus a

i+1
j ���Esi+1 a

i+1
k . 	

Lemma 3.29. Suppose that x and y are numbers considered before stage s and
x��E

s
i y. Suppose thatQ is a requirement which is deactivated at stage s (thus all lower

priority requirements are reinitialized at stage s). Suppose further that Q is never
reinitialized after stage s . Then x��Ei y.

Proof.

Case 1.Neither x nor y is Esi -equivalent to any i-active number at stage s . Then
by Lemma 3.27, this is true at every t > s . Then at any stage t > s we cannot
collapse x with y by a WP, D, or S-strategy or during the coding step because
neither are equivalent to any active numbers. Lower priority T -requirements will
have parameters r > x, y. Thus these cannot cause the collapse either. No higher
priority T -requirement can cause the collapse as this would reinitialize Q.

Case 2. Suppose that either x or y is Esi -equivalent to an i-active Q-number
at stage s for Q a higher priority WP-, D-, or S-requirement. Without loss of
generality, we suppose this is true of x. Suppose that x Ei y. Let t > s be the
stage at which we cause this collapse. Since Q does not act after stage s , we know

1We define 0− 1 = n − 1.
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that x is also Eti -equivalent to an i-active Q-number at stage t, and thus cannot be
Eti -equivalent to any other i-active number by Lemma 3.25. Thus, the collapse must
be caused by an active number Et-equivalent to y or a T -requirement. It cannot be
due to a T -requirement by the same reason as in case 1. So we now have three cases
to consider:

Case 2a. Suppose that y is not Esi -equivalent to an i-active number at stage s .
Then by lemma 3.27, this is true at stage t also, so the collapse cannot occur at
stage t.

Case 2b. Suppose that y is Esi -equivalent to a
i
j for some j. Then by Lemma 3.4,

y is Eti -equivalent to some i-active a
i
k for some k. Thus, it is not E

t
i -equivalent to

a Q′-number at stage t for Q′ anyWP-, D-, or S-requirement. Since x cannot be
equivalent to any ail (since Lemma 3.26 shows that it would then be E

t
i -equivalent

to two i-active numbers contradicting Lemma 3.25), the collapse can also not occur
due to the coding.

Case 2c. Suppose that y is also Esi -equivalent to an i-activeQ
′-number at stage s

for a higher priorityWP-,D-, or S-requirement. Then, y is also Eti -equivalent to a
Q′-number at stage t, and thus cannot be Eti -equivalent to any other active number
by Lemma 3.25. Thus we cannot cause the collapse at stage t.

Case 3. Suppose that x Esi a
i
j and y is not E

s
i -equivalent to any i-active number.

Then Lemma 3.26 shows that [x]Eti always contains an i-active number for every
t > s and Lemma 3.27 shows that y is never Eti -equivalent to an i-active number.
Thus x and y can not be Eti -equivalent for any t > s .

Case 4. Both x Esi a
i
j and y E

s
i a
i
k . Then the only cause of the collapse of x Ei y is

due to the coding step, since neither can ever be Eti -equivalent to any other i-active
number and T -requirements only use numbers not equivalent to ail for any l . But
then we can consider why we collapse j Ei−1 k. By cases 1–3, the only possibility
is that this, in turn was via a coding step. But the coding step at any given stage is
finite and originates in a collapse for a WP-, D-, T -, or S-requirement, which we
have ruled out in the cases above. 	
Lemma 3.30. Each requirement is satisfied.

Proof. Suppose towards a contradiction that Q is the highest priority require-
ment which is not satisfied. Let s be a stage after which Q will not be reinitialized.
We consider the cases:
Q = WPij : Once the parameter x is chosen after stage s , this is permanent.

Either ϕj(x) diverges or we collapse x Ei ϕj(x). Either way, the requirement is
satisfied.
Q = Di,i

′
j : Once the parameters x, x

′, andz are chosen after stage s , this choice
is permanent. If ϕj(x) or ϕj(x′) do not converge or no ϕj(y) converges to equal
z, then ϕj is not a bijection and the requirement is satisfied. Otherwise let t be
the first stage we consider Q after these convergences are witnessed. Similarly, if
ϕj(x) Eti′ ϕj(x

′), then Lemma 3.29 guarantees that x��Ei x
′ and the requirement is

satisfied. Otherwise (possibly after reversing x and x′), we have ϕj(x) = w��E
t
i′ z.

Then we Ei -collapsed x with y. Thus it suffices to show that w��Ei′ z. This follows
directly from Lemma 3.29.
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Q = T ij,k : Once the requirement chooses its parameter r after stage s , this is
permanent. SupposeWj intersects infinitely many Ei -classes which do not contain
any element of the form ail . ThenWj will enumerate a number x which is not Ei -
equivalent to any number ail and also not Ei -equivalent to any number less than r.
Thus, once we consider the requirement after such a number x is enumerated into
Wj , we will either already have k ∈ [Wt

e ]Ei,t or we will collapse x with k.
Q = Sj : We have two cases to consider:

CaseA.The sequence of parameters y0, y1, . . .which are never removed is infinite.
In this case, each of these yl are i-active permanently. It follows that yl��Ei y

l ′ for
each pair l, l ′. For each one, we have {[ϕj(y0)]E0 , [ϕj(yl )]E0} = {[�ky0]E0 , [�kyl ]E0}
for some k. We next check that this k is the same for each l .

Claim 3.31. If k < k′, then �k(yl )��E0 �k
′
(z) for any z.

Proof. Suppose otherwise that �k(y0) E0 �k
′
(z). Then since � is a reduction of

E0 to itself, we get that y0 E0 �k
′−k(z). But �k

′−k(z) is a number of the form anw for
some w. But then y0 is 0-active and equivalent to another 0-active number of the
form of anw by Lemma 3.26, which contradicts Lemma 3.25. 	
It follows that for each l wehaveϕj(yl )E0�k(yl ) for the samenumberk.Note that
we cannot have, for instance, that ϕj(y0)E0 �k(y1) and ϕj(y1)E0 �k(y0), because
then the condition {[ϕj(y0)]E0 , [ϕj (yl )]E0} = {[�ky0]E0 , [�kyl ]E0}will fail for l = 2.
By the claim, we have that ϕj(yl ) /∈ [im(�k+1)]E0 . Since yl��E0 yl

′
for each pair, we

get that �k(yl )��E0 �
k(yl

′
), and we have that im(ϕj) ∩ ([im(�k)]E0 � [im(�k+1)]E0 )

contains infinitely many classes.

Case B. We only have finitely many stable parameters y0, y1, . . . , yl . By Lemma
3.22, there is a stage s ′ after which yl+1 is never defined. At a stage t > s ′, when the
requirement is considered, it must either have ϕj(yl ) diverge, ϕj(y0) Et0 ϕj(y

l ), in
which case it does nothing, but y0��E0 y

l , since both remain 0-active permanently,
or it must have ϕj(y0)��E

t
0 ϕj(y

l ). In this latter case, we E0-collapse y0 with yl . By
Lemma 3.29, we see ϕj(y0)��E0 ϕj(y

l ), so ϕj is not a reduction of E0 to itself, and
the requirement is satisfied. 	
Lemma 3.32. E0, . . . , En−1 are all equivalent, yet nonisomorphic weakly precom-
plete ceers. They are all non–self-full.

Proof. By the requirements Ci , we have E0 ≤c E1 ≤c · · · ≤c En = E0, thus
they are all equivalent, and by requirements Di,i

′
j , they are nonisomorphic. By

the requirements WPij , they are all weakly precomplete. Since En−1 ≤c En and
En−1 �∼= En, we see by Lemma 2.3 that the reduction �n is not onto the classes of
En. Therefore, the map � is not onto the classes of E0. But then � is a reduction
of E0 to itself which is not onto the classes of E0, showing that E0 is non–self-full.
Self-fullness is a property of degrees, so no Ei is self-full. 	
Lemma 3.33. A ceer R is equivalent toE0 if and only if it is isomorphic to a ceer of
the formEi⊕D whereD is a ceer with either finite or infinite domain and is comprised
of finitely many computable classes.

Proof. Suppose R is of the form Ei ⊕D where D is a ceer comprised of finitely
many computable classes. Then R ≡c Ei ⊕ Idn where n is the number of classes in
D. But since Ei is non–self-full, we have that Ei ⊕ Idn ≡c Ei .
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Suppose R ≡c E0. Then let ϕj be the reduction given by E0 ≤c R ≤c E0,
and let � be the reduction of R to E0. Note that im(ϕj) ⊆ im(�). By Sj , for
some k, [im(ϕj)]E0 ∩ [im(�k)]E0 � [im(�k+1)]E0 is infinite, and, therefore, K =
[im(�)]E0∩[im(�k)]E0�[im(�k+1)]E0 is infinite too. Let k be least so that [im(�)]E0∩
[im(�k)]E0 � [im(�

k+1)]E0 is infinite. Then im(�) intersects only finitely many E0-
classes from � � [im(�k)]E0 with witnesses, say, c1, c2, . . . , cn1 . Since K is the union
of the setsKm = [im(�)]E0 ∩ [im(�k ◦�n ◦ · · · ◦�m+1)]E0 � [im(�k ◦�n ◦ · · · ◦�m)]E0 ,
one of them is infinite. Let m be the biggest such number. Then im(�) intersects
only finitely many E0-classes from [im(�k)]E0 � [im(�

k ◦ �n ◦ · · · ◦ �m+1)]E0 . Let
d1, d2, . . . , dn2 be witnesses of these classes.
Now, consider the c.e. set W = {i | �k ◦ �n ◦ · · · ◦ �m+1(i) ∈ [im(�)]E0}. Then
this W hits infinitely many Em-classes which are not in the range of �m. By the
T -requirements, it intersects everyEm-class. Thus, im(�) contains im(�k ◦�n ◦ · · ·◦
�m+1) along with finitely many more classes [cj ]E0 , [dk ]E0 . Hence, in R, the set of
i so that �(i) ∈ im(�k ◦ �n ◦ · · · ◦ �m+1) is c.e. and the set of i so that �(i) is in⋃
[cj ]E0∪

⋃
[dk ]E0 is c.e., and this gives a finite partition of� into c.e. sets. Therefore,

these sets are computable. Thus R is equivalent to the uniform join of E0 restricted
to the set im(�k ◦ �n ◦ · · · ◦ �m+1) and a ceer with finitely many computable classes.
But E0 restricted to the set im(�k ◦ �n ◦ · · · ◦ �m+1) is isomorphic to the ceer Em by
Lemma 2.3. 		
Corollary 3.34. There is a weakly precomplete ceer E so that for any ceer R,
R ≡c E if and only if R is isomorphic to E ⊕X where X is a c.e. equivalence relation
(on a possibly finite universe) comprised of finitely many computable classes.
Proof. Apply the previous construction with n = 1. Note that we have no D-
requirements, and thus we have to work slightly harder to ensure non–self-fullness.
It suffices to ensure that the class of 0 is not equivalent to any a1j , and to do this it
suffices by Lemma 3.27 to begin the construction by mentioning the number 0. 	

§4. Ceers reducible to one with finite classes.
Theorem 4.1. The index set of the collection of ceers reducible to one with only
finite classes is Σ04-complete.
Proof. This proof is a standard priority construction using a tree of strategies.
This is somewhat unusual in the study of ceers, where most arguments are finite
injury arguments.
It is easy to estimate that the desired index set is Σ04. To prove the theorem we fix
a Σ04-complete set S = {i | ∃jWg(i,j) is coinfinite} and consider requirements:
Pj,k : If [k,�) ⊆

⋂
m≤j
Wg(i,m), then ϕj is not a reduction of E to a ceer with only

finite classes.

Pj,k-strategy: Step 1. Let x0 be a fresh number.
Step 2. Wait for ϕj(xl ) to converge for every xl which has been chosen. If ϕj is
injective on the set of chosen xl , then go to Step 3. Otherwise, we will have xl1 , xl2
so that we keep xl1�E xl2 , yet ϕj(xl1 ) = ϕj(xl2 ), showing that ϕj is not a reduction
of E to any ceer.
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Step 3. Collapse each defined xl to be E-equivalent to x0. Let n be least so xn is
not yet defined. Choose xn to be fresh and go back to Step 2.
We put these strategies on a tree as usual for an infinite-injury construction. We
will omit some details of the construction in favor of clarity.We fix a tree of strategies
with nodes {∞, f}<�. Each strategy on level 〈j, k〉 of the tree will be aPj,k-strategy.
If a node � is a Pj,k-strategy, and � � α∞ where α is a Pj,k′ -strategy, then we say
� is redundant and it never acts.
When visited, a Pj,k-strategy will have outcomes∞ < f. A stage is expansionary
for � , aPj,k-node if the least element of [k,�)�

⋂
m≤j Wg(i,m) is larger at the current

stage then at the last stagewhen � was visited. � only acts on stageswhere � is visited
which are expansionary for � . If it acts and it goes to Step 3 (thus choosing a new
xn), it will take the outcome ∞. Otherwise, it takes the outcome f. As usual, we
define the current path by the outcomes taken by nodes visited, and if we visit a node
left of � , then we reinitialize � . This concludes the description of the construction.
Note that since the strategies each work with fresh elements xi and only collapse
them to other elements chosen by that strategy, if α chooses xl and xn and does not
choose to collapse xl with xn, then xl�E xn.

Lemma 4.2. Suppose that for every j,Wg(i,j) is cofinite. Then no ϕj is a reduction
of E to a ceer whose classes are finite.

Proof. Fix j and let k be least so that [k,�) ⊆ ⋂
m≤j Wg(i,m). Let tp be the true

path, let α be the Pj,k-strategy on tp. Let s be a stage large enough that no node
left of α is visited after stage s . Thus, at any α-expansionary stage t > s , we define
x0 to have its final value. We consider two cases: α∞ � tp or αf � tp. In the first
case, ϕi is injective on the set {xl | l ∈ �}, but we make each of these E-equivalent.
Suppose E ≤c R is witnessed by the reduction ϕj . Then {ϕj(xm) | m ∈ �} either
defines more than one R-class, in which case ϕj is not a reduction of E to R, or it
defines an infinite subset of one class, showing that R has an infinite class.
In the second case, the strategy gets stuck in Step 2: This means that either ϕj is
not total or for some l < k, we have ϕj(xl ) = ϕj(xk), but we never collapse xl and
xk . Thus, ϕj is not a reduction of E to any ceer. 	
Lemma 4.3. Suppose that for some j,Wg(i,j) is coinfinite. Then E is reducible to a
ceer with finite classes.

Proof. Let j be least so that Wg(i,j) is coinfinite. Then for every j′ ≥ j and
any k′, any Pj′ ,k′-strategy has only finitely many expansionary stages. Thus, each
strategy can only create finite classes. Thus, the only strategies which can create
infinite classes in E are the strategies on the true path which are Pj′ ,k′-strategies
with j′ < j. But there are only finitely many of these which are not redundant—at
most one for each j′ < j. Thus E is a ceer with at most j infinite classes. But note
that each of these classes are computable: The strategy chooses x0 < x1 < x2 < · · ·
and this forms the class. We can let R be the ceer formed by replacing each of
these classes by a single point. It is easy to see that E ≤c R, and R has only finite
classes. 	

	
Gao and Gerdes [11] gave an indirect proof that there is a ceer E all of whose
classes are computable, but E is not reducible to any ceer with only finite classes.
They do this by showing that the index set of ceers with all computable classes is
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Π04-complete, but the index set of ceers reducible to one with only finite classes is Σ
0
4

(they only show Π03-hardness). They ask for a direct construction of such a ceer.
Observation 4.4. The proof of Theorem 4.1 gives a direct construction of a ceer
with computable classes which does not reduce to one with only finite classes.
Proof. For any i /∈ S, the ceer E produced in the previous construction has
computable classes (again, since the classes are chosen as x0 < x1 < x2 < · · · ), but
does not reduce to a ceer with only finite classes. 	

§5. Strong minimal covers of sets of degrees of ceers. We now turn our attention
to some questions about least or minimal upper bounds for some subsets in the
structure of ceers. Gao and Gerdes [11] asked whether Id′ is a least upper bound of
{Id′k | k ∈ �} and Andrews and Sorbi [4] asked whether there is a minimal upper
bound for the set {Id(n) | n ∈ �}.
Definition 5.1. If S is a subset of a preodered set 〈P,�〉, we say that c ∈ P is a
strong minimal cover of S if c /∈ S and for every x ∈ P, x � c ⇐⇒ either x ≡ c
or ∃y ∈ S (x � y).
As usual, we write shortly x ≡ y if x � y & y � x and write x < y if x �
y & y � x.
Obviously, every strong minimal cover of S is an upper bound for S. We will deal
with internally unbounded subsets of a preodered set P, i.e., subsets S that have a
following property: ∀x ∈ S∃y ∈ S(x < y). For instance, the sets {Idn | n ∈ �}
and {Id(n) | n ∈ �} are internally unbounded.
Lemma 5.2. (i) Let S be a subset of a preodered set 〈P,�〉 that has a least upper
bound b and a strong minimal cover c. If b ∈ S then b < c , otherwise, c ≡ b.
(ii) If S is internally unbounded set then

• a strong minimal cover of S is a minimal upper bound of S;
• if S has two incomparable strong minimal covers then S has no least upper

bound.
Proof is obvious.
Theorem 5.3. Let (Ei) be a uniform c.e. sequence of nonuniversal ceers. Then

{⊕i≤jEi | j ∈ �} has infinitely many incomparable strong minimal covers.
Proof. We build infinitely many ceers Rk . Throughout the construction, we will
have some columns of Rk reserved for coding. If we reserve the jth column of Rk
as a coding column for Ei , then for every x, y, we ensure that 〈j, x〉Rk 〈j, y〉 if and
only if x Ei y. We say that a column is destroyed if every number in the column
is equivalent to a number in a smaller column. We will ensure that if x, y are in
different coding columns, then x��Rk y.
We construct (Rk)k∈� to satisfy the following requirements:

Cn,k : There is an Rk-coding column for En, i.e., there is a j so that

∀x, y(〈j, x〉 Rk 〈j, y〉 ↔ x En y)
Pi,j,k : IfWi intersects the closures of infinitely many nondestroyed columns in

Rk , thenWi intersects [j]Rk .

De,k,k′ : The function ϕe does not give a reduction of Rk to Rk′ if k �= k′.
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For convenience, we choose to build each Rk so that the first column of Rk is
exactly E0 and the second column is exactly E1. These two columns are coding
columns, and this is not subject to injury.
Cn-strategies. Pick a new column and decide to codeEn into this column. Restrain
this column from being destroyed by a lower priority Pi,j -requirement.

Pi,j -strategies. Wait for some x to enter Wi which is in a column > j which is
not restrained by any higher priority strategy from being destroyed. At this point,
collapse the entire column of x to be equivalent to j. We say this column has been
destroyed.
De,k,k′ -strategies. We first pick a new column j of Rk . As long as it appears that
ϕi gives a reduction of Rk into restrained columns of Rk′ , we will threaten to code
a universal ceer on this column of Rk . We will argue below that we do not succeed
in this coding (in brief, this is because the restrained Rk′ -columns will together be
equivalent to a finite uniform join of the nonuniversalEi ’s, but the universal degree
is uniform-join irreducible [5]), but the threat will suffice to guarantee that ϕe is not
a reduction of Rk into the restrained columns of Rk′ . If the image of ϕe contains
two classes in nonrestrained columns, then we will explicitly diagonalize. We fix T
a universal ceer.
Step 1. We use a parameter n, which begins with n = 1. We choose a0 = 〈j, 0〉
and a1 = 〈j, 1〉. If we see a stage s so that {ai | i ≤ n} ⊆ domain(ϕse ) and for each
x, y ≤ n, ax Rk ay ↔ ϕe(ax)Rk′ ϕe(ay), then we Rk-collapse each pair ax, ay with
x, y ≤ n so that x T s y. We choose the least element of the jth column which is not
Rsk equivalent to any ai with i ≤ n, and let this be an+1, we increment n = n + 1.
While we wait for these convergences and equivalences, at stage s , we collapse any
element of {〈j, i〉 | i ≤ s}� {ai | i ≤ n} with a0 (while doing this, we do not sayD
is acting, and we do not reinitialize lower priority requirements – we do that when
we increment n or act as in Step 2). If, for some x, y, ax��R

s
k ay , ϕe(ax) and ϕe(ay)

converge and are not in columns of Rk′ , which are restrained by higher priority
requirements, then we go to Step 2.
Step 2. If ϕe(ax) Rsk′ ϕe(ay), then we destroy the jth column of Rk by making
every element of [ax]Rsk equivalent to 〈0, 0〉 and every other element equivalent to〈1, 0〉.
Otherwise, we destroy the jth column of Rk by making every element equivalent
to 〈0, 0〉. In addition, we will destroy the columns of ϕe(ax) and ϕe(ay) in Rk′
as follows: If ϕe(ax) and ϕe(ay) are in different columns of Rk′ , then destroy the
column of ϕe(ax) by making every element equivalent to 〈0, 0〉 and destroy the
column of ϕe(ay) by making every element equivalent to 〈1, 0〉. Lastly, if ϕe(ax)
and ϕe(ay) are in the same column of Rk′ , then we destroy the column by making
every element in [ϕe(ax)]Rs

k′
equivalent to 〈0, 0〉 and every other number in the

column equivalent to 〈1, 0〉.
Construction. We construct a supplementary partial computable function
d (e, k, k′, s) along with building the ceers Rk . We fix an ordering of all require-
ments in order type � and fix a computable correspondence between the stages of
the construction and the requirements so that: at any stage s+1 of the construction,
we deal exactly with one of the requirements; every requirement is considered at
infinitely many stages.
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We fix a universal ceer T and its approximation Ts . Let Esn be a computable
approximation of a uniformly c.e. sequence En of nonuniversal ceers.
Reinitializing a Cn,k-strategy means that a coding column of equivalence En in
Rk , if any, is stopped being a coding column. Reinitializing aDe,k,k′-strategy at stage
s +1 means to set d (e, k, k′, s +1) undefined. Reinitializing a Pi,j,k-strategy means
doing nothing.
Stage 0. Initialize all requirements. For every k, set R0k = Id .
Stage s + 1 for Cn,k-requirement with n > 1. If Rk has no chosen coding column
for En, then pick a new, say jth, column in Rk with j > 1 and declare this column
to be the chosen coding column of En in Rk . Restrain the jth column of Rk from
being destroyed by a lower priority requirement.
Correct all coding: for every n′, k′, if the j′-th column of Rk′ is a coding column
of En′ , and x Es+1n′ y, then Rk′ -collapse 〈j′, x〉 with 〈j′, y〉.
Stage s+1 forPi,j,k-requirement. If the equivalence class [j]Rsk does not intersect
Ws
i and there arex and j

′ > 1 so that 〈j′, x〉 ∈ [Ws
i ]Rsk , j < j

′, and the j′-th column
in Rk is not yet destroyed and not restrained by a strategy of higher priority from
being destroyed, then Rk-collapse j with the entire j′-th column. This means that
we add 〈j, 〈j′, z〉〉 into the computable equivalence relationRs+1k for every z. We say
that the j′-th column in Rk has been destroyed. Reinitialize all strategies of lower
priority.
Stage s + 1 for De,k,k′ -requirement.We distinguish the following three cases.

Case 1. If d (e, k, k′, s) is not defined, then pick a new column j > 1 in Rk and
define d (e, k, k′, s + 1) = 〈j, 1〉, denote 〈j, 0〉 and 〈j, 1〉 by a0 and a1. Restrain the
jth column ofRk from being destroyed by a lower priority requirement. Reinitialize
all strategies of lower priority.

Case 2. If d (e, k, k′, s) is defined and equals 〈j, n〉, n ≥ 1, {ai | i ≤ n} ⊆
domain(ϕse ) and, for each x, y ≤ n, ax Rsk ay ↔ ϕe(ax) Rsk′ ϕe(ay), then check
whether there exist x, y so that:

(1) 0 ≤ x < y ≤ n,
(2) ax��R

s
k ay ,

(3) 〈ϕe(ax)〉0 > 1 and 〈ϕe(ay)〉0 > 1,
(4) ϕe(ax) and ϕe(ay) are not in columns of Rk′ which are restrained by higher
priority requirements from being destroyed.

If so, go to Subcase 2.1, otherwise, go to Subcase 2.2.
Subcase 2.1.

(i) If ϕe(ax) Rsk′ ϕe(ay), then destroy the jth column of Rk by Rk-collapsing
every element of [ax]Rsk with 〈0, 0〉 and every other element of the jth column
with 〈1, 0〉.Defined (e, k, k′, s+1) = 〈0, 0〉.Reinitialize all strategies of lower
priority.

(ii) If ϕe(ax)��R
s
k′ ϕe(ay) and ϕe(ax) and ϕe(ay) are in different columns of

Rk′ , then destroy the jth column of Rk by Rk-collapsing every element
of this column with 〈0, 0〉; destroy the column of ϕe(ax) in Rk′ by Rk′ -
collapsing every element of the column with 〈0, 0〉; and destroy the column
of ϕe(ay) by Rk′ -collapsing every element of the column with 〈1, 0〉. Define
d (e, k, k′, s + 1) = 〈0, 0〉. Reinitialize all strategies of lower priority.
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(iii) If ϕe(ax)��R
s
k′ ϕe(ay) and ϕe(ax) and ϕe(ay) are in the same column of

Rk′ , then destroy the jth column of Rk by Rk-collapsing every element
of this column with 〈0, 0〉; destroy the column of ϕe(ax) in Rk′ by Rk′ -
collapsing every element of [ϕe(ax)]Rs

k′
with 〈0, 0〉 and every other element

in the column with 〈1, 0〉. Define d (e, k, k′, s + 1) = 〈0, 0〉. Reinitialize all
strategies of lower priority.

Subcase 2.2.

(i) Rk-collapse each pair ax, ay with x, y ≤ n so that x T s y;
(ii) choose the least 〈j, a〉 which is not yet Rk-equivalent to any ai with i ≤ n,
define d (e, k, k′, s + 1) = an+1 = 〈j, a〉.

Case 3. If Cases 1,2 do not hold, then Rk-collapse any element of {〈j, i〉 | i ≤
s}� {ai | i ≤ n} with a0.
End of stage s + 1. For each k perform the symmetrical and transitive closure of
the set of pairs that have been enumerated into Rk by the end stage s +1. Go to the
next stage.
Verification. The verification is done via the following lemmas. We say that a
column is an active column at stage s if it has not been destroyed by stage s .
Obviously, columns 0 and 1 are active at any stage.

Lemma 5.4. There is no stage s and numbers x and y in different active columns at
stage s so that x Rsk y.

Proof. We collapse elements within the same column at stages for C -
requirements to correct coding or in Subcase 2.2 or 3 at stages for D-requirements
followed by performing End of stage. These collapses are made without destroying
columns. During other collapsing pairs of numbers of different columns, at least
one of these columns is destroyed, thus no longer is an active column. 	
We say that a column of Rk is a permanent coding column if it is chosen to code
some En into Rk by a Cn,k strategy which is never reinitialized after this choice.

Lemma 5.5. If x and y are in different permanent coding columns of Rk , then
x��Rk y.

Proof. From some stage onwards, both x and y are in active columns at stage s .
Thus by the previous lemma, x��R

s
k y for each s , showing that x�R y. 	

Lemma 5.6. At any stage s , if x is in the jth column, and the jth column has been
destroyed, then x is equivalent to an element in an active column.

Proof. When we destroy a column, we make every element equivalent to an
element in a smaller column. Either this column is active, or it is destroyed, making
every element equivalent to an element in a smaller column. Since� is well ordered,
and 0 and 1 are coding columns in eachRk , we see that x is equivalent to an element
in an active column. 	
Lemma 5.7. Each strategy reinitializes lower priority strategies only finitely often.
For every e, k, k′, lims→∞ d (e, k, k′, s) is finite. And each requirement is satisfied.

Proof. We show the result by induction on the priority of requirements, iden-
tifying the claim that lims→∞ d (e, k, k′, s) is finite with the requirement De,k,k′ .
So, we may assume that every strategy of higher priority than S reinitializes
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lower priority requirements only finitely often, is satisfied, and all higher priority
De,k,k′ -requirements have lims→∞ d (e, k, k′, s) finite.
Let s0 be the least stage of the construction so that after stage s0 each strategy of
higher priority than S does not reinitialize lower priority strategies after stage s0.
If S is a Cn,k-strategy, then it never reinitializes lower priority strategies and once it
chooses a coding column after stage s0, this choice of column is permanent, and it
succeeds in coding En into this column of Rk . If S is Pi,j,k-strategy, note that it can
reinitialize lower priority strategies at most once after stage s0. Note that since each
higher priority strategy only restrains at most one column of Rk , if Wi intersects
the closures of infinitely many nondestroyed columns of Rk , then it will intersect
the closure of one which is not restrained by a higher priority requirement, and S
will act satisfying the requirement.
Lastly, we consider the case that S is a De,k,k′ -strategy. A value of the function
�sd (e, k, k′, s)may beundefinedor be any natural number.Note thatDe,k,k′-strategy
reinitializes lower priority strategies only by Subcase 2.1 and if it did so at stage
s1 + 1 > s0 then d (e, k, k′, s1) equals to some number 〈j, n〉 with n ≥ 1 while
d (e, k, k′, s1+1) = 〈0, 0〉. Besides, d (e, k, k′, s) = 〈0, 0〉 for all s ≥ s1+1. Therefore,
De,k,k′ -strategy does not reinitialize lower priority strategies after stage s1 + 1,
since only Case 3 holds at these stages. Note that if we enter Subcase 2.1, we
explicitly diagonalize to ensure that S is satisfied. This only uses that 〈0, 0〉��Rk 〈1, 0〉
for each k. Thus, we have the result if the strategy ever enters Subcase 2.1 after
stage s0.
Now, we prove that the De,k,k′ -requirement is satisfied and lims→∞ d (e, k, k′, s)
is finite, given that it is not reinitialized after stage s0 and that after stage s0, S
never enters Subcase 2.1. Since d (e, k, k′, s) can’t be undefined in all stages after the
stage s0, we can assume that d (e, k, k′, s0) is defined due to Case 1. So, d (e, k, k′, s)
is defined and is different from 〈0, 0〉 and Subcase 2.1 does not hold for every
s ≥ s0. Suppose towards a contradiction that lims→∞ d (e, k, k′, s) is infinite. Then
Subcase 2.2 holds infinitely often and ϕe reduces a universal ceer T to the closures
of finitely many columns of Rk′ . Each of these are restrained from being destroyed
by a higher priority requirement. Since every higher priorityDe′ ,l,l ′-requirement has
lims→∞ d (e′, l, l ′, s) finite, its column is either destroyed or contains only finitely
many classes via cofinitely being in Case 3. Thus, each of these columns in Rk′ is
either destroyed, or is a permanent coding column, or has only finitely many classes.
ThusT ≤c ⊕i≤mEi⊕Idm for somem. But since the universal degree is uniform-join
irreducible [5], we must have that T ≤c Ei for some i , but this contradicts each Ei
being nonuniversal.
Thus we know that lims→∞ d (e, k, k′, s) is finite. Then we must always take Case
3 after some s1 > s0. Therefore, either ϕe is not a total function or the equivalence
ax Rk ay ↔ ϕe(ax) Rk′ ϕe(ay) fails for some x, y ≤ lims→∞〈d (e, k, k′, s)〉1, and
the strategy succeeds. Note that the Rk-closure of 〈d (e, k, k′, s)〉0 column consists
of finitely many equivalence classes. 	
Lemma 5.8. Each Rk is a strong minimal cover for {⊕i≤jEi | j ∈ �}.
Proof. Since each Ei is coded into some column of Rk and these columns have
disjoint Rk-classes, we see that every ceer in {⊕i≤jEi | j ∈ �} is reducible to Rk .
Now, suppose X ≤c Rk via a computable function f. Let Wi be the image of f.
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If it intersects the closures of only finitely many nondestroyed columns, then we
can reduce X to the uniform join of the finitely many Ei or finite ceers coded on
these columns. Thus X ≤c ⊕i≤mEi ⊕ Idn for somem, n. But then X ≤c ⊕i≤m+nEi .
Otherwise, Wi intersects the closures of infinitely many nondestroyed columns.
Then, by the Pi,j -requirements,Wi intersects every class. Since the reduction X ≤c
Rk is onto the classes of Rk , we have that X ≡ Rk . 	

	
We apply Theorem 5.3 combined with Lemma 5.2 to get several corollaries below.
To prove them we need to show that suitable sets of ceers are of the form covered
by Theorem 5.3 and are internally unbounded.
Note that our first corollary provides another proof that there are infinitely many
incomparable dark minimal ceers as in [5, Theorem 3.3].

Corollary 5.9. There are infinitely many strongminimal covers for {Idn | n ∈ �}
and no least upper bound.

Proof. We show that the ≤c-downward closure of {Idn | n ∈ �} is the same as
the ≤c-downward closure of {⊕i≤n Idi | n ∈ �}. The former is clearly internally
unbounded, so we can apply Theorem 5.3 and Lemma 5.2 to yield the result.
To see that these two downward closures are equal, it suffices to see that the
former is closed under uniform-join, which follows from Idn ⊕ Idm ≡c Idn+m. 	
Corollary 5.10. There are infinitely many minimal upper bounds for {Id′n | n ∈
�} and no least upper bound.
Proof. Similarly, we need only show that the downward-closure of this collection
is closed under uniform join. It is not difficult to see that Id′n ⊕ Id′m ≤ Id′n+m. In
fact, E ′ ⊕R′ ≤ (E ⊕R)′ holds for all ceers by [4, Lemma 2.3] 	
Observation 5.11. In fact, Id′ is also not a minimal upper bound of {Id′n | n ∈ �}.
Proof. Consider the ceer ⊕n∈� Id′n. This is an upper bound of {Id′n | n ∈ �},
and a direct reduction shows that it reduces to Id′. But since jumps are uniform join
irreducible [4], this is strictly below Id′. 	
The following answers a question from [4]:

Corollary 5.12. There are infinitely many strong minimal covers and no least
upper bound to the set {Id(n) | n ∈ �}.
Proof. Again, it suffices to show that for n ≤ m, Id(n)⊕ Id(m) ≤c Id(m). This is
true due to [4, Lemma 2.3] that states:R′⊕S′ ≤c (R⊕S)′ for any ceersR,S. Then
by induction, we get: R(n) ⊕ S(n) ≤c (R ⊕ S)(n) for any n. Therefore

Id(n)⊕ Id(m) ≤c Id(m)⊕ Id(m) ≤c (Id⊕ Id)(m) = Id(m) . 	

§6. Observations on minimal ceers. Gao and Gerdes [11] showed that Id1 <c
Id2 <c Id3 <c · · · <c Id and for every n > 1 and any ceer R with infinitely
many classes, Idn <c R. Furthermore, every ceer with finitely many classes is ≡c
to one of Idn. This implies that, when we examine the notion of a minimal ceer,
we should consider minimality within the collection of ceers with infinitely many
classes.
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Definition 6.1. We call a ceer R with infinitely many classes to be minimal if,
for every ceer S, if S ≤c R and S has infinitely many classes, then S ≡c R.
Id is the natural example of a minimal ceer. The following minimality criterion
was used byAndrews and Sorbi [5] to construct minimal ceers, but it was not known
to be an equivalence. We here show the other implication.

Theorem 6.2. A ceer R with infinitely many classes is minimal if and only if
R ≡c Id or, for every c.e. setW , ifW hits infinitely many R-classes then it hits every
R-class.

Proof. Let R be any minimal ceer and let a c.e. set W hit infinitely many but
not all R-classes. Let us show that R ≡c Id . Pick a number a so that [a]R ∩W =
∅. We choose a computable function f with range W and define a seer S by
x S y ⇐⇒ f(x) R f(y). Then S ≤c R via the function f. Since R is minimal
and S has infinitely many classes it follows that x R y ⇐⇒ g(x) S g(y) for some
computable function g and all x, y. Note that a ∈ �� [im(f ◦ g)]R, and, therefore,
a�R (f ◦g)(a). This immediately implies that a, (f ◦g)(a), (f ◦g)(2)(a) are pairwise
nonequivalent relative toR. By iterating the functionf◦gon a, we obtain an infinite
c.e. sequence of numbers lying in distinct R-classes. If h computably enumerates
this sequence then h defines a reduction Id ≤c R. Therefore, Id ≡c R by minimality
of R.
Suppose now that R ≡c Id or, for every c.e. set W , if W hits infinitely many
R-classes then it hits each of them. If R ≡c Id, then we have nothing to prove,
so we suppose we are in the latter case. If a ceer S has infinitely many classes and
S ≤c R via some computable functionf, then the rangeW off hits infinitely many
R-classes, and, therefore im(f) hits each R-class, i.e., S ≤c R is an onto-reduction.
Hence, R ≤c S. 	
Theorem 6.3. There is an infinite ≤c anti-chain of weakly precomplete minimal
ceers.

Proof. Andrews and Sorbi [5, Theorem 3.3] showed that there are infinitely
many incomparable minimal dark ceers. They proceed to build these ceers Ei for
i ∈ � via a finite injury argument where each requirement may cause some col-
lapses (respecting the restraint placed by higher priority requirements) and may
place a finite restraint, i.e., there are finitely many triples (a, b, j) which repre-
sent that a and b are restrained from becoming Ej-collapsed by lower priority
requirements.
We need only note that we can add a requirement of typeWPij to ensure that Ei
has a ϕj -fixed point within this framework. These requirements need to place no
restraint, and they obey such restraints as long as the witness x chosen is distinct
from any of the restrained classes. 	

Acknowledgments. The first author’s research was partially supported by NSF
grant DMS-160022 and by Grant 3952/GF4 of the Science Committee of the
Republic of Kazakhstan. The second author’s research was partially supported
by binational NSF grant DMS-1600625 entitled “Collaboration in Computabil-
ity” and by Grant AP05131579 of the Science Committee of the Republic of
Kazakhstan.

https://doi.org/10.1017/jsl.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.39


86 URI ANDREWS AND SERIKZHAN A. BADAEV

REFERENCES

[1] U. Andrews, S. Badaev, and A. Sorbi, A survey on universal computably enumerable equivalence
relations. Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His
60th Birthday (A. Day, M. Fellows, N. Greenberg, B. Khoussainov, A. Melnikov, and F. Rosamond,
editors), Lecture Notes in Computer Science, vol. 10010, Springer, Berlin, 2017, pp. 418–451.
[2] U. Andrews, S. Lempp, J. S. Miller, K. M. Ng, L. San Mauro, and A. Sorbi, Universal

computably enumerable equivalence relations, this Journal, vol. 79 (2014), no. 1, pp. 60–88.
[3] U. Andrews and A. Sorbi, The complexity of index sets of classes of computably enumerable

equivalence relations, this Journal, vol. 81 (2016), no. 4, pp. 1–21.
[4] , Jumps of computably enumerable equivalence relations. Annals of Pure and Applied Logic,

vol. 169 (2018), no. 3, pp. 243–259.
[5] , Joins andmeets in the structure of ceers.Computability, vol. 8 (2019), no. 3–4, pp. 193–241.
[6] S. Badaev and A. Sorbi, Weakly precomplete computably enumerable equivalence relations.

Mathematical Logic Quarterly, vol. 62 (2016), pp. 111–127.
[7] Y. L. Ershov, Positive equivalences. Algebra and Logic, vol. 10 (1973), no. 6, pp. 378–394.
[8] , Theory of Numberings, Nauka, Moscow, 1977. (Russian).
[9] ,Theory of numberings,Handbook of Computability Theory (E. G.Griffor, editor), Studies

in Logic and the Foundations ofMathematics, vol. 140, North-Holland,Amsterdam, 1999, pp. 473–503.
[10] E. Fokina, B. Khoussainov, P. Semukhin, and D. Turesky. Linear orders realised by c.e.

equivalence relations, this Journal, vo. 81 (2016), no. 2, pp. 463–482.
[11] S. Gao and P. Gerdes, Computably enumerable equivalence realations. Studia Logica, vol. 67

(2001), pp. 27–59.
[12] A. Gavryushkin, B. Khoussainov, and F. Stephan, Reducibilities among equivalence relations

induced by recursively enumerable structures. Theoretical Computer Science, vol. 612 (2016), pp. 137–152.
[13] A. Gavryushkin, S. Jain, B. Khoussainov, and F. Stephan, Graphs realised by r.e. equivalence

relations. Annals of Pure and Applied Logic, vol.165 (2014), no. (7–8), pp. 1263–1290.
[14] B. Khoussainov, A journey to computably enumerable structures (Tutorial Lectures), Sailing

Routes in the World of Computation (F. Manea, R. G. Miller, and D. Nowotka, editors), Springer, New
York, 2018, pp. 1–19.
[15] B. Khoussainov and A. Miasnikov, Finitely presented expansions of groups, semigroups, and

algebras. Transactions of the American Mathematical Society, vol. 366 (2014), no. 3, pp. 1455–1474.
[16] A. H. Lachlan,A note on positive equivalence relations.Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, vol. 33 (1987), pp. 43–46.
[17] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New

York, 1967.
[18] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic,

Omega Series, Springer-Verlag, Heidelberg, 1987.

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF WISCONSIN
MADISON, WI 53706-1388, USA

E-mail: andrews@math.wisc.edu
URL: http://www.math.wisc.edu/∼andrews/
and

DEPARTMENT OF FUNDAMENTALMATHEMATICS
AL-FARABI KAZAKHNATIONAL UNIVERSITY
ALMATY 050040, KAZAKHSTAN

E-mail: serikzhan.badaev@kaznu.kz

https://doi.org/10.1017/jsl.2019.39 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.39

