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We present a theory of large-scale dynamo action in a turbulent flow that has
stochastic, zero-mean fluctuations of the α parameter. Particularly interesting is the
possibility of the growth of the mean magnetic field due to Moffatt drift, which
is expected to be finite in a statistically anisotropic turbulence. We extend the
Kraichnan–Moffatt model to explore effects of finite memory of α fluctuations, in a
spirit similar to that of Sridhar & Singh (Mon. Not. R. Astron. Soc., vol. 445, 2014,
pp. 3770–3787). Using the first-order smoothing approximation, we derive a linear
integro-differential equation governing the dynamics of the large-scale magnetic
field, which is non-perturbative in the α-correlation time τα. We recover earlier
results in the exactly solvable white-noise limit where the Moffatt drift does not
contribute to the dynamo growth/decay. To study finite-memory effects, we reduce
the integro-differential equation to a partial differential equation by assuming that
τα be small but non-zero and the large-scale magnetic field is slowly varying. We
derive the dispersion relation and provide an explicit expression for the growth rate
as a function of four independent parameters. When τα 6= 0, we find that: (i) in
the absence of the Moffatt drift, but with finite Kraichnan diffusivity, only strong
α fluctuations can enable a mean-field dynamo (this is qualitatively similar to the
white-noise case); (ii) in the general case when also the Moffatt drift is non-zero,
both weak and strong α fluctuations can lead to a large-scale dynamo; and (iii) there
always exists a wavenumber (k) cutoff at some large k beyond which the growth
rate turns negative, irrespective of weak or strong α fluctuations. Thus we show that
a finite Moffatt drift can always facilitate large-scale dynamo action if sufficiently
strong, even in the case of weak α fluctuations, and the maximum growth occurs at
intermediate wavenumbers.

Key words: dynamo theory, magnetohydrodynamics, turbulence theory

1. Introduction
The magnetic fields observed in various astrophysical bodies, such as the planets,

the Sun, stars, galaxies, etc., are believed to be self-sustained by turbulent dynamos
(Moffatt 1978; Parker 1979; Krause & Rädler 1980; Ruzmaikin, Shukurov &
Sokoloff 1988; Kulsrud 2004; Brandenburg & Subramanian 2005; Jones 2011). In an
electrically conducting plasma, conversion of the kinetic energy into magnetic energy,
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Moffatt-drift dynamo due to α fluctuations 697

without any electric current at infinity, is known as dynamo action, which leads to
amplification of a weak seed magnetic field. Magnetic fields exhibit coherence over
a range of scales, from smaller to much larger than the outer scale of the turbulence.
Systems lacking ordered motion, such as clusters of galaxies, predominantly host a
fluctuation dynamo (Murgia et al. 2004; Vogt & Enßlin 2005; Kucher & Enßlin 2011;
Bhat & Subramanian 2013), whereas those with large-scale motion, such as the Sun,
galaxies, etc., also support a large-scale dynamo (see Charbonneau 2010; Beck 2012;
Chamandy et al. 2013a,b; Chamandy et al 2014, and references therein). The dynamo
origin of the galactic magnetic field seems unchallenged. Helical turbulence has been
considered to be the key driver for a large-scale dynamo, which could operate even
in systems without mean motion. For example, both analytical calculations and
numerical simulations reveal that, even in the absence of differential rotation or
mean motion, a large-scale magnetic field grows due to helically forced turbulence
by what is known as an α2 effect (Brandenburg & Subramanian 2005). However,
it is not clear whether astrophysical turbulence has a mean helicity that is large
enough to sustain such a large-scale turbulent dynamo. This brings us to a following
natural question: Could the large-scale magnetic fields grow if the helicity of the
turbulence vanishes on average? Kraichnan (1976) was the first to study this problem
by considering α (which is a measure of the mean kinetic helicity of the turbulence)
as a stochastic variable, with zero mean, and demonstrated that the α fluctuations lead
to a decrement of the turbulent diffusivity, and, if sufficiently strong, they could give
rise to the growth of the mean magnetic field by the process of negative diffusion.
Moffatt (1978) generalized this model to include a statistical correlation between
the fluctuating α and its spatial gradient, and found that this contributes a constant
drift velocity to the dynamo action, but it does not affect the dynamo condition.
Both Kraichnan (1976) and Moffatt (1978) have essentially considered white-noise α
fluctuations, as has been explicitly shown by Sridhar & Singh (2014, hereafter SS14),
who extended previous studies by also studying the memory effects, giving rise to
new interesting mechanisms.

The SS14 model is limited to fairly low wavenumbers because their first-order
smoothing approximation (FOSA) calculation of the mean electromotive force
(EMF) ignored turbulent resistivity. The present paper remedies this, obtaining a new
expression for the mean EMF that predicts a significant modification of dynamo action
at intermediate and large wavenumbers. We show that the inclusion of the resistive
term in the present work to determine the mean EMF is a non-trivial extension of
the SS14 model, even leading to qualitatively new predictions for the growth rates
at intermediate and large wavenumbers. Considering deterministic Roberts flows,
Rheinhardt et al. (2014) discussed the role of finite memory for the existence of the
dynamo. Based on numerical experiments of passive scalar diffusion and kinematic
dynamos, Hubbard & Brandenburg (2009) investigated turbulent transport where the
turbulence possesses memory. These works highlight the importance of the memory
effects on the turbulent transport processes and demonstrate that the turbulent transport
coefficients can be significantly different from those cases where the correlation times
of the turbulence are nearly vanishing.

A number of previous studies have exploited the idea of α fluctuations to
study the large-scale dynamo mechanism in a wide variety of contexts. As many
astrophysical sources possess differential rotation, the focus has been on the
understanding of large-scale dynamos due to fluctuating α in a shearing background
(Sokolov 1997; Vishniac & Brandenburg 1997; Silant’ev 2000; Proctor 2007, 2012;
Sur & Subramanian 2009; Richardson & Proctor 2012). In the context of the solar
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698 N. K. Singh

dynamo, Silant’ev (2000) proposed a new dynamo mechanism by considering an
inhomogeneous distribution of α fluctuations in a differentially rotating atmosphere.
The important difference in the present work is that the α fluctuations considered
here are statistically stationary and homogeneous. The numerical simulations of
Brandenburg et al. (2008), Yousef et al. (2008) and Singh & Jingade (2015)
demonstrated large-scale dynamo action in a shear flow with turbulence that is, on
average, non-helical. This problem of the shear dynamo was taken up in a number of
analytical works where the quantity α was assumed to be strictly zero, i.e. it vanishes
pointwise in both space and time (Kleeorin & Rogachevskii 2008; Rogachevskii &
Kleeorin 2008; Sridhar & Subramanian 2009a,b; Sridhar & Singh 2010; Singh &
Sridhar 2011). Based on the results of Sridhar & Subramanian (2009a,b), Sridhar &
Singh (2010) and Singh & Sridhar (2011), it was realized that the mean magnetic
field cannot grow if α vanishes strictly (i.e. if it vanishes everywhere instantaneously).
Heinemann, McWilliams & Schekochihin (2011), McWilliams (2012) and Mitra &
Brandenburg (2012) considered temporal α fluctuations and reported the growth of the
second moment of the mean magnetic field, i.e. the mean magnetic energy. However,
it must be noted that the possibility of the growth of also the first moment existed
in the calculations of Mitra & Brandenburg (2012), where the growth occurs by the
process of negative diffusion. This issue was also clarified in a recent work by Squire
& Bhattacharjee (2015), who proposed an interesting magnetic shear-current effect as
being responsible for shear dynamos.

It was realized in Sridhar & Singh (2014), and also shown in the present work, that
negative diffusion remains the only possibility for driving mean-field dynamos in such
fluctuating α calculations, so long as these fluctuations are delta-correlated in time.
On the other hand, the process of negative diffusion is, in a sense, self-limiting, as it
would increasingly create smaller-scale structures, where the necessary assumption of
scale separation cannot continue to be valid indefinitely. This would eventually lead to
breakdown of the two-scale framework. Given such limitations posed by the process
of negative diffusion, or, in other words, strong α-fluctuation-dominated dynamos, it is
desirable to seek possibilities of mean-field dynamo action when there are only weak
α fluctuations. Sridhar & Singh (2014) found the possibility of the growth of the mean
magnetic field also in the case of weak α fluctuations when they took memory effects
into account. Although many of the previous works included shear in their studies, this
highlights the importance of fluctuations in α, which have indeed been measured in
the simulations of Brandenburg et al. (2008). Estimations of such α fluctuations in
various astrophysical sources will be of immense value.

The aim of the present paper is to explore large-scale dynamo action, arising solely
due to an α that is varying stochastically in space and time, with zero mean. We
define our model in § 2. Using the FOSA, we derive an integro-differential equation
governing the evolution of the large-scale magnetic field in § 3. This equation is non-
perturbative in the α-correlation time τα. We first consider the case of white-noise α
fluctuations (i.e. τα = 0) without any further approximation. Assuming small but non-
zero α-correlation time, τα 6= 0, and slowly varying mean magnetic field, we simplify
the integro-differential equation to a partial differential equation (PDE) in § 4. Without
loss of generality, we explore in § 5 one-dimensional propagating modes and solve the
dispersion relation to obtain an explicit expression for the growth rate function. In § 6
we study dynamo action due to Kraichnan diffusivity and Moffatt drift. We conclude
in § 7.
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Moffatt-drift dynamo due to α fluctuations 699

2. Definition of the model

Let us consider a fixed Cartesian coordinate system with unit vectors (e1, e2, e3),
where x = (x1, x2, x3) denotes the position vector, and t is the time variable. We
model small-scale turbulence in the absence of mean motions as random velocity
fields, {v(x, t)}, and consider an ensemble with its members corresponding to different
realizations of the velocity field v. Denoting by 〈 〉 the ensemble average, which obeys
standard Reynolds rules (see e.g. Brandenburg & Subramanian 2005), and assuming
that the ensemble has (i) zero-mean isotropic velocity fluctuations, (ii) uniform and
constant ensemble-averaged kinetic energy density per unit mass, and (iii) slow
helicity fluctuations, we write

〈vi〉 = 0, 〈vivj〉 = δijv
2
0,

〈
vi
∂vj

∂xn

〉
= εinj µ(x, t), (2.1a−c)

where v2
0 =〈v2/3〉, two-thirds of the ensemble-averaged kinetic energy density per unit

mass, and µ(x, t)=〈v · (∇×v)〉/6, one-sixth of the ensemble-averaged helicity density.
Let `0 be the size of the largest eddies and τc be the velocity correlation time. By
slow helicity fluctuations we mean that the spatial and temporal scales of variation of
µ(x, t) are assumed to be much larger than `0 and τc.

Let B(x, t) be the mesoscale magnetic field, obtained by averaging over the
above ensemble. This requires a scale separation such that the typical scales of
B(x, t) are much larger than `0. Then the space–time evolution of B(x, t) is given
by the following equations (Moffatt 1978; Krause & Rädler 1980; Brandenburg &
Subramanian 2005):

∂B
∂t
=∇× [α(x, t)B] + ηT∇2B, ∇ ·B= 0, (2.2a,b)

where

α =−2τcµ(x, t),
ηT = η+ ηt = total diffusivity,

η=microscopic diffusivity, ηt = τcv
2
0 = turbulent diffusivity.

 (2.3)

The above simple expressions for the turbulent transport coefficients α and ηt are
valid only in specialized conditions – specifically, under the FOSA assuming isotropic
turbulence, when the high-conductivity limit is considered in conjunction with the
so-called ‘short-sudden’ approximation, where the velocity correlation time τc is much
smaller than its turnover time τ0 (Courvoisier, Hughes & Tobias 2006).

In the ‘double-averaging scheme’ being employed here, the helicity fluctuations
are modelled by fluctuating α, which makes (2.2) a stochastic PDE. (The concept
of double averaging has been discussed in a number of previous works (see e.g.
Kraichnan 1976; Sokolov 1997). We refer the reader to § 11 of Moffatt (1983) for
an excellent account of a successive averaging scheme over a number of widely
separated scales, leading to a successive renormalization of turbulent transport.) As
we are finally interested in scales much larger than the scales of the mesoscale field,
with quantity α being smooth around mesoscale but fluctuating at larger scales, we
can repeat the averaging procedure to obtain the evolution of the large-scale field.
Here, the important step is to consider a super-ensemble over which α(x, t) is a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.284


700 N. K. Singh

statistically stationary, homogeneous, random function of x and t, with zero mean,
α(x, t)= 0. The two-point space–time correlation function of fluctuating α is

α(x, t)α(x′, t′)= 2A (x− x′)D(t− t′), (2.4a)

with

2
∫ ∞

0
D(t) dt= 1, A (0)= ηα > 0. (2.4b)

Here ηα is the α diffusivity, introduced first by Kraichnan (1976). Let us define the
correlation time for the α fluctuations as

τα = 2
∫ ∞

0
dt tD(t). (2.5)

The mesoscale field is split as B= B+ b, where B is the large-scale magnetic field,
which is equal to the super-ensemble average of the mesoscale field, and b is the
part of the magnetic field that fluctuates on the mesoscale, simply referred to as the
fluctuating magnetic field from here onwards. Applying Reynolds averaging to (2.2)
and assuming α(x, t)= 0, we obtain the following equations governing the dynamics
of the large-scale magnetic field:

∂B
∂t
=∇× E + ηT∇2B, ∇ ·B= 0, (2.6a,b)

where

E = α(x, t)b(x, t). (2.7)

To calculate E , the mean EMF, we need to solve for the fluctuating field, b(x, t),
whose evolution is determined by

∂b
∂t
=∇× [αB] +∇× [αb− αb] + ηT∇2b, (2.8a)

∇ · b= 0, with initial condition b(x, 0)= 0. (2.8b)

To keep the analysis simple while providing a non-trivial extension to the existing
models, some simplifying assumptions were made, and therefore it is useful to recall
the basic limitations of our model. Equation (2.2) assumes a local and instantaneous
relation between the mesoscale EMF and the corresponding magnetic field. Another
limitation is the choice of isotropic transport coefficients α and ηt, and it is desirable
to understand the effects of fluctuations in all components of more general tensorial αij
and ηij. This is beyond the scope of the present investigation and will be the subject
of a future study.

3. Equation for the large-scale magnetic field
To derive a closed equation for the large-scale magnetic field, we first solve for

the small-scale magnetic field. Following the standard closure technique known as
the FOSA, or, in other words, a quasi-linear approach, where we ignore the mode
coupling term in the fluctuating field equation, we drop the term ∇ × [αb − αb]
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Moffatt-drift dynamo due to α fluctuations 701

from (2.8), but retain the ηT∇2b term. (SS14 dropped the ηT∇2b term too, for
simplicity, from the evolution equation for the fluctuating magnetic field, while
studying the shear dynamo problem. They pointed out that this would result in
overestimation of growth rates for large wavenumbers. This is confirmed later in this
work.) Thus the small-scale magnetic field evolves as(

∂

∂t
− ηT∇2

)
b=∇×M, ∇ · b= 0, b(x, 0)= 0, (3.1a−c)

where M(x, t) = α(x, t)B(x, t) is a stochastic source field. Let us define the spatial
Fourier transform of, say, b(x, t), denoted by b̃(k, t), and its inverse transform as

b̃(k, t)=
∫

d3x exp(−ik · x)b(x, t) and b(x, t)=
∫

d3k
(2π)3

exp(ik · x)b̃(k, t).

(3.2a,b)

Fourier-transforming equation (3.1), we get after some algebra(
∂

∂t
+ ηTk2

)
b̃= ik× M̃, k · b̃= 0, b̃(k, 0)= 0, (3.3a)

where

M̃(k, t)= 1
(2π)3

∫
d3k′ α̃ ∗(k′, t)B̃(k+ k′, t). (3.3b)

The solution to (3.3) satisfying the constraints k · b̃ = 0 and b̃(k, 0) = 0 may be
obtained by direct integration, which gives

b̃(k, t)=
∫ t

0
dt′ exp[−ηTk2(t− t′)] [ik× M̃(k, t′)]. (3.4)

We use (3.4) to calculate the Fourier transform of the mean EMF:

Ẽ (k, t) =
∫

d3x exp(−ik · x)E (x, t)=
∫

d3x exp(−ik · x) α(x, t) b(x, t)

= 1
(2π)3

∫
d3k′ d3k′′ δ(k′ + k′′ − k) α̃(k′, t) b̃(k′′, t)

= 1
(2π)3

∫
d3k′ d3k′′ δ(k′ + k′′ − k)

×
∫ t

0
dt′ exp[−ηTk′′2(t− t′)] [ik′′ × α̃(k′, t)M̃(k′′, t′)]. (3.5)

The above expression for Ẽ (k, t) is given in terms of the quantity α̃(k′, t)M̃(k′′, t′),
which has to be calculated. Using (3.3) for M̃,

α̃(k′, t)M̃(k′′, t′)= 1
(2π)3

∫
d3k′′′ α̃(k′, t)α̃∗(k′′′, t′) B̃(k′′ + k′′′, t′) (3.6)
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702 N. K. Singh

is a convolution of the large-scale magnetic field and the Fourier-space two-point
correlator of the stochastic α. Using (2.4) we write the following expression for the
two-point correlator in Fourier space:

α̃(k′, t)α̃∗(k′′′, t′) =
∫

d3x′ d3x′′′ exp(−ik′ · x′ + ik′′′ · x′′′) α(x′, t)α(x′′′, t′)

= 2D(t− t′)
∫

d3x′ d3x′′′ exp[−i(k′ · x′ − k′′′ · x′′′)]A (x′ − x′′′).

(3.7)

Using new integration variables r= x′ − x′′′ and r′ = (x′ + x′′′)/2, we get

α̃(k′, t)α̃∗(k′′′, t′) = 2D(t− t′)
∫

d3r d3r′ exp[−i(k′ − k′′′) · r′ − 1
2 i(k′ + k′′′) · r]A (r)

= 2D(t− t′)(2π)3 δ(k′ − k′′′)Ã (k′), (3.8)

where

Ã (k)=
∫

d3r exp(−ik · r)A (r) (3.9)

is a complex spatial power spectrum of α fluctuations, with Ã (−k)= Ã ∗(k), because
A (r) is a real function. From equations (3.6) and (3.8) we write

α̃(k′, t)M̃(k′′, t′)= 2D(t− t′)Ã (k′)B̃(k′ + k′′, t′). (3.10)

When (3.10) is substituted in (3.5) we obtain a compact expression for the EMF:

Ẽ (k, t)= 2
∫ t

0
ds D(s)

{
Ũ(k, s)× B̃(k, t− s)

}
, (3.11)

where

Ũ(k, s)=
∫

d3k′

(2π)3
exp[−ηT(k− k′)2s] i(k− k′)Ã (k′). (3.12)

Fourier-transforming equation (2.6), the equations governing the large-scale field are

∂B̃
∂t
= ik× Ẽ − ηTk2 B̃, k · B̃= 0. (3.13a,b)

Thus the set of equations (3.11)–(3.13) describe the evolution of the large-scale
magnetic field, B̃. Solving these in full generality is beyond the scope of the present
investigation, and we study this system of closed equations analytically in useful
approximations.
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3.1. White-noise α fluctuations
Before studying finite-memory effects, we consider the exactly solvable limit of
white-noise (i.e. delta-correlated in time) α fluctuations, for which the normalized
correlation function is DWN(t) = δ(t), the Dirac delta-function. This gives τα = 0
from (2.5), implying that the memory effects are ignored. The focus of this section
is to understand the dynamo behaviour due to white-noise α fluctuations. From (3.11)
the mean EMF for white noise is

ẼWN(k, t)= Ũ(k, 0)× B̃(k, t), (3.14)

which, as expected, depends on the large-scale field at the present time only. The
quantity Ũ(k, 0) may be simplified as

Ũ(k, 0) = ik
∫

d3k′

(2π)3
Ã (k′)−

∫
d3k′

(2π)3
ik′Ã (k′)

= ikA (0)− ∂A (ξ)

∂ξ

∣∣∣∣
ξ=0
= ikηα +VM. (3.15)

Here, ηα is the α diffusivity defined in (2.4), and VM is the Moffatt drift velocity
(Moffatt 1978; Sridhar & Singh 2014). Both ηα and VM are constants by definition.
Substituting (3.14) into (3.13) and using (3.15), we get the following PDE for the
large-scale magnetic field:

∂B̃
∂t
+ [ηKk2 + ik ·VM]B̃= 0, k · B̃= 0. (3.16a,b)

Here

ηK = ηT − ηα =Kraichnan diffusivity, (3.17a)

VM =−
(
∂A (ξ)

∂ξ

)
ξ=0
=
∫ ∞

0
α(x, t)∇α(x, 0) dt=Moffatt drift velocity, (3.17b)

are the two constants that determine the behaviour of the large-scale magnetic field.
Note that the α diffusivity contributes a decrement to the diffusivity, and hence aids
dynamo action (Kraichnan 1976; Moffatt 1978; Sridhar & Singh 2014). The solution
to (3.16) is given by

B̃(k, t)= G̃ (k, t) B̃(k, 0), k · B̃= 0, (3.18)

where

G̃ (k, t)= exp{−ηKk2t− i(VM · k)t}. (3.19)

Equations (3.18) and (3.19) provide complete solution to the problem of white-noise α
fluctuations, where the growth or decay of the mean magnetic field B̃ is determined by
the Green’s function G̃ (k, t). We note some general properties below.

(i) Weak α fluctuations have ηα < ηT so that ηK > 0. In this case, modes of all
wavenumbers k decay.
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(ii) Strong α fluctuations have ηα > ηT so that ηK < 0. This belongs to the
case when the α diffusivity compensates and overcomes the total (turbulent
plus microscopic) diffusivity ηT . This leads to the growth of modes of all
wavenumbers k by the process of negative diffusion which was first obtained
by Kraichnan (1976). It may be noted that the process of negative diffusion is,
in a sense, self-limiting, as it would increasingly create smaller-scale structures,
where the necessary assumption of scale separation cannot continue to be valid
indefinitely. This would eventually lead to breakdown of the two-scale framework.

(iii) The Moffatt drift velocity VM contributes only to the phase and does not
determine the growth or decay of the large-scale magnetic field.

Therefore, the necessary condition for dynamo action for white-noise α fluctuations
is that they must be strong, i.e. ηK < 0. It is necessary to consider D(t) 6= δ(t) to
explore memory effects, which will have τα 6= 0. This is studied in the next section.

4. Large-scale magnetic fields when τα is small

Now we extend our analysis to include the effects of finite memory of fluctuating
α. By assuming small τα, we reduce the general integro-differential equation, given
by (3.11)–(3.13), to a PDE governing the evolution of large-scale magnetic field which
evolves over times much larger than τα. Then we first consider the Kraichnan problem
with non-zero τα, but without Moffatt drift VM, which is studied in detail in § 6.

4.1. Derivation of the governing equation
We note that the normalized time correlation function, D(t), has a singular limit:
i.e. limτα→0 D(t) = DWN(t) = δ(t). Here we wish to consider non-zero but small
τα, which implies that the function D(t) is significant only for times t 6 τα and
becomes negligible for larger times. We simplify the mean EMF given by (3.11),
together with (3.12), by solving the time integral for small τα. Since the limit
limτα→0 Ẽ (k, t)= ẼWN(k, t)= Ũ(k, 0)× B̃(k, t) is evidently non-singular, we make the
ansatz that, for small τα, the EMF can be expanded in a power series in τα:

Ẽ (k, t)= ẼWN(k, t)+ Ẽ
(1)
(k, t)+ Ẽ

(2)
(k, t)+ · · · , (4.1)

where ẼWN(k, t)∼O(1) and Ẽ
(n)
(k, t)∼O(τ n

α ) for n> 1. Below, we verify this ansatz
up to n= 1, for slowly varying magnetic fields.

We wish to determine Ẽ (k, t), which is correct to first order in τα, for t � τα.
Since D(s) is strongly peaked for times s6 τα and becomes negligible for larger s, as
mentioned above, most of the contribution to the integral in (3.11) comes only from
short times 06 s<τα. Hence in (3.11) we can (i) set the upper limit of the s integral
to +∞, and (ii) keep the terms inside the { } in the integrand up to only first order

in s. Below, we first work out Ũ(k, s) and B̃(k, t− s) correct up to O(s).

(i) Ũ(k, s) to O(s): Taylor expansion of the function Ũ(k, s) gives

Ũ(k, s)= Ũ(k, 0)+ s
∂Ũ
∂s

∣∣∣∣∣
s=0

+O(s2). (4.2)
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Let us rewrite Ũ(k, s), correct up to O(s), as

Ũ(k, s)= P(k)+ s Q(k), (4.3)

where

P(k)= Ũ(k, 0)= ikηα +VM (from equation (3.15)), (4.4)

and Q(k)= ∂Ũ
∂s

∣∣∣∣∣
s=0

=−iηT

∫
d3k′

(2π)3
(k− k′)2(k− k′)Ã (k′). (4.5)

The integrand in (4.5) can be expanded to obtain the following expression for
Q(k) (see appendix A):

Q(k)=−ηTk2(ikηα +VM)− 2ηT(k ·VM)k+ ikηTC1 + 2iηTk ·
←→
C2 − ηTC3, (4.6)

where ηα and VM are the constants defined in (2.4) and (3.17), respectively, which
shows that they depend on the spatial correlation function A and its first spatial
derivative. Both these constants have appeared already in Sridhar & Singh (2014).
But C1 (scalar),

←→
C2 (dyad) and C3 (vector) are three new constants given by (see

appendix A)

C1 =
[∇2A (ξ)

]
ξ=0 ,

←→
C2 =

[
∇∇A (ξ)

]
ξ=0 , C3 =

[∇2{∇A (ξ)}]
ξ=0 ,

(4.7a−c)

which depend on second- or third-order spatial derivatives of A . Thus, in general,
the mean EMF will be determined by five constants (ηK,VM,C1,

←→
C2 ,C3), which

can all be explicitly found once the form of the spatial correlation function A (ξ)
is chosen. To keep the analysis simple, we assume that the function A (ξ) is such
that its second- or higher-order spatial derivatives are negligible at ξ = 0, and
therefore we ignore the constants C1,

←→
C2 and C3 in the present work. Thus we

write

Q(k)=−ηTk2P(k)− 2ηT(k ·VM)k. (4.8)

(ii) B̃(k, t− s) to O(s): Taylor expansion of the function B̃(k, t− s) gives

B̃(k, t− s)= B̃(k, t)− s
∂B̃(k, t)
∂t

+ · · · , (4.9)

where it is assumed that |B̃|� s|∂B̃/∂t|� s2|∂2B̃/∂t2|� s3|∂3B̃/∂t3|, etc. In order
to find B̃(k, t− s), which is correct up to O(s), we need ∂B̃/∂t in (4.9) only up
to O(1). Using (4.1) together with (3.14) and (3.15) in (3.13) we find

∂B̃
∂t

∣∣∣∣∣
O(1)

= ik× ẼWN(k, t)− ηTk2B̃=−[ik · P+ ηTk2]B̃, (4.10)
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which is substituted in (4.9) to obtain

B̃(k, t− s)= B̃(k, t)[1+ s(ik · P+ ηTk2)] +O(s2). (4.11)

Then, from the above analysis, we may write

Ũ(k, s)× B̃(k, t− s)= P(k)× B̃(k, t)

+ s[(ik · P+ ηTk2)P(k)× B̃(k, t)+Q(k)× B̃(k, t)] +O(s2). (4.12)

Noting that ẼWN(k, t)= P(k)× B̃(k, t) and using the definition of Q(k) as given
in (4.8), we get

{ } of (3.11) = ẼWN(k, t)

+ s{(ik · P) ẼWN − 2ηT(k ·VM) k× B̃(k, t)} +O(s2). (4.13)

Using (4.13) and the properties of D(t), given in (2.4) and (2.5), we solve the
integral over s in (3.11) to obtain the mean EMF:

Ẽ (k, t)= ẼWN(k, t)+ τα{(ik · P) ẼWN − 2ηT(k ·VM) k× B̃(k, t)} (4.14)

accurate to O(τα), which verifies the ansatz of (4.1) up to n= 1, as claimed. We
note that (4.14) for the mean EMF is valid only when the large-scale magnetic
field is slowly varying. To lowest order, this condition can be stated as |B̃| �
τα|∂B̃/∂t|. Using (4.10) for ∂B̃/∂t, we see that the sufficient condition for (4.14)
to be valid is that the following two dimensionless quantities be small:

|ηKk2τα| � 1, |kVMτα| � 1. (4.15)

Substituting (4.14) in (3.13) we obtain the following PDE governing the evolution
of the large-scale magnetic field:

∂B̃
∂t
= {[−ηKk2 − η2

αk4τα + (k ·VM)
2τα] + i(k ·VM)[2(ηα + ηT)k2τα − 1]} B̃.

(4.16)

4.2. The Kraichnan problem with non-zero τα
First we consider the Kraichnan problem and extend it to include finite τα in order
to understand the combined effect of the α fluctuations when VM = 0, but ηα > 0 and
τα > 0. SS14 defined a length scale whose corresponding wavenumber was

kα = (ηατα)−1/2 > 0. (4.17)

This is used to define high or low wavenumbers (k); |k| > kα are called high
wavenumbers, and |k| < kα are called low wavenumbers. When VM = 0, one of
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the two conditions in (4.15) are met trivially, and the other one implies that |k| must
be small enough such that |ηKk2τα| � 1. Using (4.17) and setting VM = 0 in (4.16),
we get

∂B̃
∂t
=−ηKk2

[
1+ ηα

ηK

(
k
kα

)2
]

B̃, with k · B̃= 0. (4.18)

The solutions are of the exponential form, B̃(k, t)= B̃0(k) exp(γ t), where k · B̃0(k)= 0.
Substituting this in (4.18), we get the growth rate as

γ =−(ηKk2
α)

(
k
kα

)2
[

1+ ηα
ηK

(
k
kα

)2
]
, when |ηKk2τα| � 1. (4.19)

Following SS14 we normalize the growth rates by the characteristic frequency (σ ),
which is defined as

σ = |ηK|k2
α =

( |ηT − ηα|
ηα

)
1
τα

> 0. (4.20)

Below we consider the behaviour of the growth rate as a function of the wavenumber,
for weak and strong α fluctuations, and show this in figure 1 where we also show
the corresponding results of SS14 to illustrate some qualitative differences. (We note,
however, that the expressions for the growth rates in SS14 were simpler and did not
explicitly depend on the factor ηα/|ηK|.)

Weak α fluctuations: This case has 0 < ηα < ηT , so that ηK is positive. The
normalized growth rate (γ /σ ) may be expressed as

γ

σ
=−

(
k
kα

)2
[

1+ ηα

|ηK|
(

k
kα

)2
]
, when |k| � kα√

στα
. (4.21)

The growth rate is negative definite for finite k and it is a monotonically decreasing
function of the wavenumber (solid curve in figure 1). This is even qualitatively
different from SS14 where the high wavenumbers always grow for weak α fluctuations
(dash-dotted curve). This also highlights the fact that the inclusion of the resistive
term in the fluctuating field equation is a non-trivial extension of the SS14 model.

Strong α fluctuations: This case has 0 < ηT < ηα, so that ηK is negative. The
normalized growth rate (γ /σ ) may be expressed as

γ

σ
=+

(
k
kα

)2
[

1− ηα

|ηK|
(

k
kα

)2
]
, when |k| � kα√

στα
. (4.22)

In this case the growth rate can be positive for a range of wavenumbers, before
becoming negative at larger wavenumbers (dashed curve in figure 1). This is
qualitatively similar to the results of SS14 (triple-dot-dashed curve) in this regime
and the differences at large wavenumbers arise due to reasons mentioned above.

Thus the necessary condition for dynamo action is that the α fluctuations must
be strong, i.e. ηK < 0. Recall that this is, in a sense, similar to the white-noise
or the original Kraichnan model, but we note the following important difference:
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SS14;

FIGURE 1. Growth rate γ /σ as a function of |k/kα|, when VM = 0. Weak (ηK > 0) and
strong (ηK < 0) α fluctuations correspond to solid and dashed curves, respectively. Results
of SS14 are also shown; dash-dotted and triple-dot-dashed curves correspond to weak and
strong α fluctuations, respectively.

in the white-noise case, the growth rate increases monotonically with wavenumber
(k) for strong α fluctuations, with largest allowed wavenumbers (smallest allowed
length scales) growing the fastest; whereas, here, we find that the growth rate is a
non-monotonic function of k, and, as a result, there exists a wavenumber cutoff at
some large k beyond which the growth rate turns negative. This makes it a special
dynamo as the magnetic power at smallest length scales would be suppressed due to
the existence of the wavenumber cutoff (see dashed curve in figure 1), thus enabling
a bona fide large-scale dynamo, unlike the white-noise case, where much of the
magnetic power lies at the smallest allowed length scales.

It would indeed be interesting if even weak α fluctuations could lead to large-scale
dynamo action. In the next section we explore the combined effect of VM 6= 0 and
τα 6= 0, and ask the following question: When both τα and VM are non-zero, could
large-scale magnetic fields grow even when α fluctuations are weak, i.e. when ηK > 0?

5. Growth rates of modes when τα is non-zero

We consider one-dimensional propagating modes for the general case when all the
parameters (ηα,VM, τα) can be non-zero. Below, we derive the dispersion relation and
study the growth rate function. When the wavevector k = (0, 0, k) points along the
‘vertical’ (±e3) directions, B̃3 must be uniform and is of no interest for dynamo action.
Hence we set B̃3= 0, and take B̃(k, t)= B̃1(k, t)e1+ B̃2(k, t)e2. The equation governing
the time evolution of this large-scale magnetic field is obtained by setting k1,2 = 0,
k3 = k and B̃3 = 0 in equation (4.16):

∂B̃
∂t
= {[−ηKk2 − η2

αk4τα + (kVM3)
2τα] + ikVM3[2(ηα + ηT)k2τα − 1]}B̃. (5.1)
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We note that each component of the mean magnetic field evolves independently of
the other components. The nature of this dynamo is therefore different from standard
α2 or αω dynamos, where the evolutions of the various components are coupled with
each other, thus facilitating a cross-coupling dynamo. We seek modal solutions of the
form

B̃(k, t)=
[
B̃01(k)e1 + B̃02(k)e2

]
exp(λt), (5.2)

and substitute it in (5.1) to obtain the following dispersion relation:

λ= [−ηKk2 − η2
αk4τα + (kVM3)

2τα] + ikVM3[2(ηα + ηT)k2τα − 1]. (5.3)

Of particular interest is the growth rate γ =Re{λ}, because dynamo action corresponds
to the case when γ > 0. From the dispersion relation (5.3) we have

γ =− ηKk2 − η2
αk4τα + (kVM3)

2τα. (5.4)

We refer the reader to appendix B for some properties of the growth rate function
in terms of useful dimensionless parameters and to appendix C for their physical
meanings.

6. Dynamo action due to Kraichnan diffusivity and Moffatt drift

Now we turn to the most general case when both Kraichnan diffusivity and Moffatt
drift are non-zero, and α fluctuations have finite correlation times. SS14 defined a new
time scale involving ηK and VM3 as

τ∗ = (|ηK|/V2
M3) > 0. (6.1)

We provide below the expressions for dimensional growth rate γ as a function of
the wavenumber k, for weak and strong α fluctuations. It turns out that the nature
of dynamo action depends on whether τα is smaller or larger than τ∗.

Weak α fluctuations: This case has 0< ηα < ηT , so that ηK is positive. From (5.4),
the dimensional growth rate may be expressed as

γ = σ
{[

τα

τ∗
− 1
] (

k
kα

)2

− ηα

|ηK|
(

k
kα

)4
}
, (6.2)

where the characteristic frequency σ is defined earlier in (4.20). We consider the
following two cases.

(i) Case τα < τ∗: In this case the growth rate γ is negative at all wavenumbers, as
may be seen from the solid curve in figure 2(a).

(ii) Case τα > τ∗: Here the growth rate is positive for a range of wavenumbers and
it is a non-monotonic function of k. Starting from zero, it first increases with k,
attains a maximum positive value,

γmax = σ |ηK|
4ηα

[
τα

τ∗
− 1
]2

, at |k| = kmax = kα

[ |ηK|
2ηα

(
τα

τ∗
− 1
)]1/2

, (6.3)
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FIGURE 2. Growth rate γ /σ plotted as a function of |k/kα| for weak α fluctuations;
shown by solid curves. Panels (a) and (b) correspond to the case when τα/τ∗ = 0.1 and
10.0, respectively. Dashed curves correspond to the results of SS14.

and then it decreases monotonically for larger k, turning negative at sufficiently
high wavenumber (solid curve in figure 2b). We note that the growth rate
becomes negative at high enough wavenumbers, thus exhibiting a high-
wavenumber cutoff, which would enable a bona fide large-scale dynamo with
suppression of magnetic power at smaller scales.

Strong α fluctuations: This case has 0<ηT <ηα, so that ηK is negative. From (5.4),
the dimensional growth rate may be expressed as

γ = σ
{[

τα

τ∗
+ 1
] (

k
kα

)2

− ηα

|ηK|
(

k
kα

)4
}
. (6.4)

As shown by the solid curve in figure 3, the growth rate γ starts from zero at |k| = 0,
increases with k to reach a maximum positive value,

γmax = σ |ηK|
4ηα

[
τα

τ∗
+ 1
]2

, at |k| = kmax = kα

[ |ηK|
2ηα

(
τα

τ∗
+ 1
)]1/2

, (6.5)

beyond which it begins to decrease monotonically, and becomes negative for
sufficiently large wavenumbers.

In both figures 2 and 3 we also show the corresponding results of Sridhar &
Singh (2014) to illustrate some qualitative differences. (We note, however, that the
expressions for the growth rates in SS14 were simpler and did not explicitly depend
on the factor ηα/|ηK|.) We notice good agreement at low wavenumbers whereas at
large wavenumbers the theory of Sridhar & Singh (2014) overpredicts the growth
rates. They had already pointed out that such overestimation of growth rates at
large wavenumbers would be expected, as they dropped the diffusion term from the
evolution equation for the fluctuating magnetic field. In the present analysis, where
we retain this term, we find that it affects the growth rate γ in such a way that it
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FIGURE 3. Growth rate γ /σ plotted as a function of |k/kα| for strong α fluctuations;
shown by solid curve. Dashed curve correspond to the results of SS14.

now always exhibits a large-wavenumber cutoff beyond which γ becomes negative.
At large wavenumbers, the new predictions for the growth rates are even qualitatively
different from the results of the SS14 model and have only been possible due to a
non-trivial extension of the previous work. Particularly interesting is the possibility of
dynamo action in the case of weak α fluctuations due to finite Moffatt drift, where a
window of small to intermediate wavenumbers allows dynamo growth (see figure 2b).

7. Conclusions
We have developed a theory of large-scale dynamo action where the mean magnetic

field grows solely due to an α parameter that is varying stochastically in space and
time with zero mean. Using the first-order smoothing approximation or the quasi-linear
approach, we derived a closed integro-differential equation governing the evolution
of the large-scale magnetic field, which is non-perturbative in the α-correlation
time (τα). This is the main result of this paper, where we have generalized the
Kraichnan–Moffatt model (Kraichnan 1976; Moffatt 1978), to include effects of
non-zero α-correlation time, in a spirit similar to that of Sridhar & Singh (2014).
We, however, note that Sridhar & Singh (2014) included shear in their analysis while
ignoring the diffusion term from the fluctuating field equation, whereas here we ignore
shear but include the diffusion term, which is necessary for making comparisons with
results from future numerical experiments. We show that statistically anisotropic α
fluctuations give rise to a drift velocity, called Moffatt drift, which contributes a new
term in the mean EMF. We first applied our model to the exactly solvable case of
white-noise (τα = 0) α fluctuations, in which case the mean EMF is identical to the
Kraichnan–Moffatt model and the evolution of the mean magnetic field depends on
two constants, namely, the Kraichnan diffusivity (ηK) and the Moffatt drift (VM). We
confirm earlier findings (Kraichnan 1976; Moffatt 1978; Sridhar & Singh 2014) that
when τα = 0, (i) the necessary condition for dynamo action is that the fluctuations
must be strong, and (ii) the Moffatt drift contributes only to the phase and does not
determine the growth or decay of the large-scale magnetic field.

In order to explore memory effects of fluctuating α on dynamo action, we
considered non-zero τα. Assuming that the τα is small and the large-scale magnetic
field is slowly varying, we reduce the general integro-differential equation to a
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PDE and state sufficient conditions for its validity. Here each component of the
mean magnetic field evolves independently of the other components. We provided
an explicit expression for the growth rate of the mean magnetic field and studied
its behaviour as a function of wavenumber (k), for different choices of parameters
involved. Some salient results may be stated as follows.

(i) In the absence of the Moffatt drift, the necessary condition for dynamo action is
that the α fluctuations must be strong. This is, in a sense, qualitatively similar to
the white-noise or the original Kraichnan model, except that, here, we find the
growth rate to be a non-monotonic function of k, thus exhibiting a wavenumber
cutoff beyond which it becomes progressively negative.

(ii) For non-zero τα, the Moffatt drift contributes positively to the dynamo growth
and it can always facilitate large-scale dynamo action if sufficiently large, even
in the case of weak α fluctuations.

(iii) In the most general case when both the Kraichnan diffusivity and the Moffatt
drift are non-zero, and τα is finite, we find the possibility of dynamo growth in
both regimes (weak and strong) of α fluctuations. We also determine the growth
rate and corresponding wavenumber of the fastest-growing mode.

(iv) We find that there always exists a wavenumber cutoff at some large k beyond
which the growth rate turns negative, irrespective of weak or strong α fluctuations.
This makes it a special dynamo as the magnetic power at smallest length scales
would be suppressed, thus enabling a bona fide large-scale dynamo.

Thus a minimal extension of the Kraichnan–Moffatt model to include effects of
finite memory results in a large-scale dynamo, driven by the Moffatt drift, which
arises in the presence of statistically anisotropic α fluctuations. Such a possibility
was first discussed in Sridhar & Singh (2014). It is particularly intriguing to find
that even weak α fluctuations could lead to the growth of the mean magnetic field
due to finite Moffatt drift, where the maximum growth occurs at intermediate length
scales (approximately a few kα). Owing to the k2 contribution to the growth rate, the
Moffatt-drift-driven dynamo appears to be of negatively diffusive type, with coefficient
of (negative) turbulent diffusion being V2

M3τα. However, it is different from the usual
picture of negative diffusion where the maximum growth occurs at smallest length
scales. Therefore, while the usual negative diffusion cannot continue indefinitely in
the mean-field framework for reasons stated earlier, the Moffatt-drift-driven dynamo
does not have such limitations, resulting in a bona fide large-scale dynamo action. This
analysis leading to new contributions to the mean EMF is expected to find applications
in the context of astrophysical dynamos, such as disk dynamos, the solar dynamo, etc.
Numerical as well as analytical explorations of this new class of large-scale dynamos,
by also considering fluctuations in all components of tensorial transport coefficients
αij and ηij, will be the focus of a future investigation.
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Appendix A. Derivation of equations (4.6) and (4.7)

To simplify the integral in (4.5), let us first expand (k− k′)2(k− k′) in the integrand
and write Q(k) as

Q(k) = −iηT

k2k
∫

d3k′

(2π)3
Ã (k′)︸ ︷︷ ︸

I

−k2
∫

d3k′

(2π)3
k′Ã (k′)︸ ︷︷ ︸

II

−2k
∫

d3k′

(2π)3
(k · k′)Ã (k′)︸ ︷︷ ︸

III

+ k
∫

d3k′

(2π)3
k′2Ã (k′)︸ ︷︷ ︸

IV

+2
∫

d3k′

(2π)3
(k · k′)k′Ã (k′)︸ ︷︷ ︸

V

−
∫

d3k′

(2π)3
k′2k′Ã (k′)︸ ︷︷ ︸
VI

 .

(A 1)

Writing the spatial correlation function as

A (ξ)=
∫

d3k′

(2π)3
exp(ik′ · ξ) Ã (k′), (A 2)

we can express the integrals I–VI in (A 1) as follows:

I=A (0), II=−i[∇A (ξ)]ξ=0, III=−ik · [∇A (ξ)]ξ=0,

IV=−[∇2A (ξ)]ξ=0, V=−[(k · ∇)∇A (ξ)]ξ=0, VI= i[∇2{∇A (ξ)}]ξ=0.

}
(A 3)

Using (A 3) in (A 1), we obtain (4.6), with definitions of C1 (scalar),
←→
C2 (dyad) and

C3 (vector) as given in (4.7). Also, recall that A (0) = ηα and −[∇A (ξ)]ξ=0 = VM.
Whereas our model does not specify the form of A (ξ), which is by construction
a large-scale quantity, but otherwise an arbitrary function, we restrict our present
analysis to the limit `A > `B, where `A and `B are typical scales of variation
associated with A and large-scale magnetic field, respectively. In this case the terms
IV–VI involving C in the above expressions can be safely ignored in comparison to
the rest of the terms in (A 1).

Appendix B. Dimensionless growth rate function
The expression for the growth rate as given in (5.4) may be written in a

dimensionless form using the parameters first defined in SS14:

Γ = γ τα, β = ηαk2τα, εK = ηKk2τα, εM = kVM3τα. (B 1a−d)

There is just one constraint involving β and εK , coming from β + εK = ηTk2τα > 0.
Thus the parameter ranges are given by

0 6 β <∞, β + εK > 0, |εK| � 1, |εM| � 1, (B 2a−d)

where the latter two conditions come from (4.15). Multiplying (5.4) by τα > 0, we
obtain the dimensionless growth rates

Γ =−(εK + β2)+ ε2
M (B 3)
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FIGURE 4. Growth rate function Γ plotted as a function of (a) εM for β = 0.1, and
(b) β for |εM| = 0.3; in both the cases, εK = 0.05.

as a function of the three dimensionless parameters (β, εK, εM). Of these, the two
parameters (εK, εM) can be taken to be independently specified, taking positive and
negative values, so long as their magnitudes are small. But β > 0 is subject to the
constraint β + εK > 0. Therefore we can rewrite the conditions of (B 2) as

|εK| � 1, |εM| � 1,
for εK 6 0, have |εK|<β <∞; for εK > 0, have 0 6 β <∞.

}
(B 4)

The dynamo condition is determined by a surface in three-dimensional parameter
space (spanned by β, εK, εM) at which Γ = 0, separating the dynamo region (with
Γ > 0) from the non-dynamo region (with Γ < 0). In figure 4 we plot the growth
rate function Γ as a function of single parameter, keeping the other two parameters
fixed. Figure 4(a,b) show Γ as functions of εM and β, respectively, with positive
εK (=0.05), which corresponds to weak α fluctuations. At fixed εK and β, Γ increases
quadratically with εM, whereas it decreases quadratically with β at fixed εK and εM.
We note that the Moffatt drift, together with finite correlation time of α fluctuations
(parametrized by εM), contributes positively to the dynamo growth and can always
facilitate large-scale dynamo action if sufficiently strong, even in the case of weak α
fluctuations.

Appendix C. Possible physical meanings of the parameters
If the spatial correlation function A (r) varies over scales of order `A , then the

Moffatt drift speed VM ∼ ηα/`A , giving from (6.1) τ∗ ∼ | f − 1|` 2
A /ηα, with factor

f ≡ ηT/ηα. Note that τ∗ is a parameter that can be uniquely determined once the form
of A (r) is specified, whereas τα is defined independently by temporal correlation
function D(t) using (2.5). Two interesting limits can be sought: (i) when ηT � ηα,
τ∗ ∼ ` 2

A /ηα, and (ii) when ηT � ηα, τ∗ ∼ f ` 2
A /ηα, i.e. for weak α fluctuations,

it is larger by factor f (with f � 1). The wavenumber kα as defined in (4.17)
signifies the inverse diffusion length due to α diffusivity ηα. Similarly the modified
turbulent diffusion, or Kraichnan diffusivity ηK has an associated resistive scale with
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corresponding wavenumber, say, kK = 1/
√
ηKτα. The dimensionless parameters β

and εK as defined in (B 1) characterize the wavenumbers of the modal mean-field
solutions in units of kα and kK , respectively, whereas εM normalizes it by the distance
traversed by Moffatt drift speed in time τα.
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