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Abstract

Defeasible logics provide several linguistic features to support the expression of defeasible

knowledge. There is also a wide variety of such logics, expressing different intuitions about

defeasible reasoning. However, the logics can only combine in trivial ways. This limits their

usefulness in contexts where different intuitions are at play in different aspects of a problem.

In particular, in some legal settings, different actors have different burdens of proof, which

might be expressed as reasoning in different defeasible logics. In this paper, we introduce

annotated defeasible logic as a flexible formalism permitting multiple forms of defeasibility,

and establish some properties of the formalism.
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1 Introduction

In some application domains, for example, legal reasoning, knowing that something

holds (or it is presumed to hold) is not enough to draw further conclusions from it.

One has to determine to what degree one can assert that it holds. In other words,

statements in rules (here we use the term “rule” to indicate a mechanism/principle

to assert conclusions from already established assertions) have an associated proof

standard. Accordingly, a party wanting to assert a particular assertion has the

burden to prove that assertion with the appropriate standard (or a stronger one).

Consider the following rule:

IllegalBehaviour ,¬Justification ⇒ Liability

Suppose there is factual evidence about the illegal behaviour. The information in the

rule is not enough, since it does not prescribe the burden needed to assess whether

the behaviour was justified or not. According to Prakken and Sartor (2007) and

Governatori and Sartor (2010), in a civil case, the lack of justification is subject to

the so-called burden of production, i.e., there is a credible argument for it, while in

a criminal case, the burden of persuasion applies (i.e., more sceptical reasoning must

be used).
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Let us consider a concrete scenario. Party A caused some injuries to B. Party A

was much stronger than Party B, and thus the action causing injury is not justified.

On the other hand, Party A claims that they acted in self-defence since they were

under threat from Party B. The scenario can now be modelled by the following

rules:

Injury ,¬Justification ⇒ Liability

Threat ⇒ Justification

Stronger ⇒ ¬Justification

Here, in case we are not able to assess whether the threat was real, we have a

credible argument for ¬Justification (because Party A is stronger), but we do not

have a sceptical argument for it (because it might be that the threat was real, and

then the outcome from the two conflicting rules is undetermined). Thus, we can

establish liability in a civil case, but Party A is not criminally liable. Accordingly,

we can reformulate the initial rule in the following two principles:

Tort ,BurdenProduction(¬Justification) ⇒ CivilCaseLiability

Crime,BurdenPersuasion(¬Justification) ⇒ CriminalCaseLiability

where BurdenProduction and BurdenPersuasion are annotations describing the mode

in which we have to prove the lack of justification for the illegal behaviour.

Legal reasoning has developed so-called proof standards (e.g., scintilla of evi-

dence, substantial evidence, preponderance of evidence, beyond reasonable doubt)

according to which assertions have to be justified. Gordon and Walton (2009)

proposed to encode proof standards using rule-based argumentation with salience,

and Governatori (2011) shows how to represent the proof standards of Gordon and

Walton (2009), where, essentially, each proof standard corresponds to a different

degree of provability in some defeasible logic variant. In particular, Governatori

(2011) argues that the proof standard of beyond reasonable doubt corresponds to

provability in the ambiguity propagating variant of defeasible logic. However, as the

following example illustrates, there are examples where more than one such proof

standards must be used. This means that incompatible variants of defeasible logic

have to work side-by-side.

Suppose that a piece of evidence A suggests that the defendant in a legal case is not

responsible while a second piece of evidence B indicates that he/she is responsible;

moreover, the sources are equally reliable. According to the underlying legal system,

a defendant is presumed innocent (i.e., not guilty) unless responsibility has been

proved (beyond reasonable doubt).

The above scenario is encoded by the following rules:

r1 : EvidenceA ⇒ ¬Responsible

r2 : EvidenceB ⇒ Responsible r3 : Responsible ⇒ Guilty

r4 : ⇒ ¬Guilty

where r3 is stronger than r4. Given both EvidenceA and EvidenceB , the literal

Responsible is ambiguous. There are applicable rules (r1 and r2) for and against

the literal, with no way to adjudicate between them. As a consequence, r3 is not

applicable, and so there is no applicable rule arguing against the presumption of
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innocence (rule r4). In an ambiguity blocking setting, we obtain a ¬Guilty verdict;

the ambiguity about responsibility is blocked from applying to Guilty . In contrast, in

an ambiguity propagating setting, the ambiguity of Responsible propagates to Guilty ,

and thus the literals Guilty and ¬Guilty are ambiguous too; hence, an undisputed

conclusion cannot be drawn. When we look at the example above, is it appropriate

to say that we have reached a not guilty verdict without any reasonable doubt? The

evidence supporting that the defendant was responsible has not been refuted. This

example supports the contention of Governatori (2011) that ambiguity propagating

inference is a more appropriate representation of proof beyond a reasonable doubt.

Let us extend the scenario. Suppose that the legal system allows for compensation

for wrongly accused people. A person (defendant) has been wrongly accused if the

defendant is found innocent, where innocent is defined as ¬Guilty . In addition, by

default, people are not entitled to compensation. The additional elements of this

scenario are modelled by the following rules:

r5 : ¬Guilty ⇒ Compensation

r6 : ⇒ ¬Compensation

where r5 is stronger than r6.

In the full scenario, the defendant is not found innocent, and so is not entitled to

compensation.

If we take a purely ambiguity blocking stance, then, since we are not able

to determine whether there was responsibility, the defendant is not guilty, and

then the defendant is entitled to compensation. On the other hand, in a purely

ambiguity propagating setting, Guilty and ¬Guilty are ambiguous, and this makes

Compensation and ¬Compensation ambiguous; we are in a position where we cannot

decide whether the defendant is entitled or not to compensation. Thus, both choices

are unsatisfactory: either the defendant receives compensation despite not being

found innocent or no decision is made about compensation.

What we want is a regime where we can reason about guilt in an ambiguity

propagating way, but then reason about compensation in an ambiguity blocking

way. This can be achieved by replacing rule r5 with

r′
5 : BeyondReasonableDoubt (¬Guitly) ⇒ Compensation

where similarly to what we have done in the previous example, BeyondReasonable

Doubt is an annotation to the literal ¬Guilty that holds in case the literal is provable

under ambiguity propagation, and the proof standard for Compensation can be

chosen to be ambiguity blocking.

The purpose of this paper is to provide a formalism – annotated defeasible logic

– in which such distinctions can be expressed, define its semantics, and investigate

properties of the formalism.

This paper is organised as follows. In the next section, we provide brief background

on defeasible logics. We then introduce annotated defeasible logic, and define its be-

haviour with a meta-program. In the following section, we establish some properties

of annotated defeasible logic, including its relationship to existing defeasible logics

and the relative inference strength of the additional inference rules we introduce.

https://doi.org/10.1017/S1471068417000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000266


822 G. Governatori and M. J. Maher

Finally, we show that annotated defeasible logic has the flexibility to deal with

different notions of failure, corresponding to different semantics of negation-as-

failure in logic programs. Due to space limitations, parts of the paper – including

proof sketches – are presented in the supplementary material accompanying the

paper at the TPLP archive.

2 Defeasible logics

In this section, we can only present an outline of defeasible logics. Further details can

be obtained from the paper by Billington et al. (2010) and the references therein.

We address propositional defeasible logics, but many results should extend to a

first-order language.

A defeasible theory is built from a language Σ of literals (which we assume is

closed under negation) and a language Λ of labels. A defeasible theory D = (F, R,>)

consists of a set of facts F , a finite set of rules R, each rule with a distinct label

from Λ, and an acyclic relation > on Λ called the superiority relation. This syntax

is uniform for all the logics considered here. Facts are individual literals expressing

indisputable truths. Rules relate a set of literals (the body), via an arrow, to a literal

(the head), and are one of three types: a strict rule, with arrow →; a defeasible rule,

with arrow ⇒; or a defeater, with arrow �. Strict rules represent inferences that

are unequivocally sound if based on definite knowledge; defeasible rules represent

inferences that are generally sound. Inferences suggested by a defeasible rule may

fail, due to the presence in the theory of other rules. Defeaters do not support

inferences, but may impede inferences suggested by other rules. The superiority

relation provides a local priority on rules with conflicting heads. Strict or defeasible

rules whose bodies are established defeasibly represent claims for the head of the rule

to be concluded. When both a literal and its negation are claimed, the superiority

relation contributes to the adjudication of these conflicting claims by an inference

rule, leading (possibly) to a conclusion.

Defeasible logics derive conclusions that are outside the syntax of the theories.

Conclusions may have the form +dq, which denotes that under the inference rule

d, the literal q can be concluded, or −dq, which denotes that the logic can establish

that under the inference rule d the literal q cannot be concluded. The syntactic

element d is called a proof tag. In general, neither conclusion may be derivable:

q cannot be concluded under d, but the logic is unable to establish that. Tags +Δ and

−Δ represent monotonic provability (and unprovability) where inference is based

on facts, strict rules, and modus ponens. We assume these tags and their inference

rules are present in every defeasible logic. What distinguishes a logic is the inference

rules for defeasible reasoning. The four logics discussed by Billington et al. (2010)

correspond to four different pairs of inference rules, tagged ∂, δ, ∂∗, and δ∗; they

produce conclusions of the form (respectively) +∂q, −∂q, +δq, −δq, etc., where q

is a literal. These logics all abide by the Principle of Strong Negation (Antoniou

et al. 2000), which asserts that the condition for applying a −d inference rule should

be the strong negation of the condition for applying +d. The inference rules δ and
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δ∗ require auxiliary tags and inference rules, denoted by σδ and σδ∗ , respectively1,

expressing that there is at least (weak) support for the conclusion. These inference

rules are available in the supplementary material. For each of the four principal

defeasible tags d, the corresponding logic is denoted by DL(d). We write D � +dq

(respectively, D � −dq) if +dq (−dq) can be proved by DL(d).

The four principal tags and corresponding inference rules represent different

intuitions about defeasible reasoning, that is, define different forms of defeasibility:

in ∂ and ∂∗, ambiguity is blocked, while in δ and δ∗, ambiguity is propagated; in

∂ and δ, rules for a literal act as a team to overcome competing rules, while in

∂∗ and δ∗, an individual rule must overcome all competing rules. The scenario in

the introduction with rules r1 − r4 exemplifies the treatments of ambiguity. For an

example of team defeat, consider rules s1 and s2 for q and rules s3 and s4 for ¬q,

with s1 > s3 and s2 > s4; then no individual rule for q can overcome the rules for

¬q, but s1 and s2 – as a team – can, because every rule for ¬q is overridden by

some rule in the team. A more detailed discussion of ambiguity and team defeat in

the DL framework is given by Billington et al. (2010) and Maher (2012).

In the papers by Maher and Governatori (1999) and Antoniou et al. (2000),

the inference rules in DL(d) were reformulated as a meta-program Md: a logic

program that takes a representation of a defeasible theory D as input and specifies

what conclusions can be drawn from the theory according to the d inference rules.

(The combined meta-program and theory is denoted by Md(D).) We will take this

meta-programming formulation as our starting point, rather than the inference

rules as presented by Billington et al. (2010), for example. This meta-program

formulation is given in the supplementary material. We assume, initially, that the

logic programming semantics in use is Kunen’s semantics (Kunen 1987), which

expresses the three-valued logical consequences of the Clark completion of a logic

program. Equivalently, Kunen’s semantics is the set of all consequences of Φ ↑ n

for any finite n, where Φ is Fitting’s semantic function for logic programs (Fitting

1985). (Fitting’s semantics, which is the least fixedpoint of Φ, expresses the logical

consequences of three-valued Herbrand models of the Clark completion of a logic

program.)

Although defeasible logics are usually founded on proofs, there are alternative

semantics for these logics: a model-theoretic semantics was defined by Maher

(2002), a denotational semantics for DL(∂) was presented by Maher (2000), and

an argumentation semantics for DL(∂) was given by Governatori et al. (2004).

Each of these approaches provides an alternative characterization of the conclusions

derivable by proofs in the logic. However, in this paper, we only use the meta-

programming formulation of the proof systems.

In the following, annotated defeasible logic will be defined as an integration of

the four defeasible logics discussed above. However, it should be clear that the same

1 Note that in previous works, these have been denoted by σ and σ∗ or
∫

and
∫ ∗

. This change of
notation is made to accommodate new forms of support introduced in this paper.
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approach can be applied to any set of defeasible logics employing the same logic

programming semantics.

3 Annotated defeasible logic

Annotated defeasible logic is the formalism we propose, motivated by the discussion

in the introduction. We begin by addressing its syntax, which is an extension of the

syntax of defeasible logics.

A tag is any one of the proof tags, or the additional tag free. An annotated

literal has the form t q, where t is a tag and q is a literal. An annotated defeasible

rule has the form

r : L1, . . . , Ln ⇒ q

where r is a label, q is a literal, and each Li is either an annotated literal or a fail-

expression, where a fail-expression has the form fail L, where L is an annotated

literal. An annotated defeater is defined similarly; strict rules are not annotated.

Roughly, the meaning of a rule

r : t1 q1, . . . , tn qn, fail tn+1 qn+1, . . . , fail tm qm ⇒ q

is that if qi can be proved using inference rule ti, for 1 � i � n, and proof of qi can

be demonstrated to fail using inference rule ti, for n + 1 � i � m, then we have a

prima facie reason to infer q. As with all defeasible logics, such an inference can be

overridden by another rule.

A proof tag only indicates which inference rule should be applied to resolve

conflict concerning that literal. Thus, an annotated literal t q is asking, roughly, for

+tq to be proved. A fail-expression fail tq is asking, roughly, for −tq to be proved.

The free tag has a different meaning than the proof tags. A free literal free qi must

be proved by the same inference rule that is intended to prove q. This provides a

mechanism by which defeasible rules can be agnostic as to inference rule, which can

be determined later, just as defeasible rules in current defeasible logics are.

An annotated defeasible theory is a defeasible theory where the defeasible rules

are annotated and fail-expressions are allowed. Alternatively, we can think of an

annotated defeasible theory as consisting of an unannotated defeasible theory (the

underlying theory) D that allows fail-expressions, and an annotation function α that

maps each body literal occurrence to its annotation. In this case, we denote the

annotated defeasible theory by α(D). We can consider α a total function, or consider

it a partial function mapping literal occurrences to proof tags. The unmapped literals

are free.

We now turn to expressing the meaning of annotated defeasible theories using the

meta-programming approach. The semantics of a theory is parameterized by a logic

programming semantics, which is applied to a meta-program.

Given an annotated defeasible theory D = (F, R,>), the theory is represented by

facts as follows:

1. fact(p). if p ∈ F

2. strict(ri, p, [L1, . . . , Ln]). if ri : L1, . . . , Ln → p ∈ R
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3. defeasible(ri, p, [L1, . . . , Ln]). if ri : L1, . . . , Ln ⇒ p ∈ R

4. defeater(ri, p, [L1, . . . , Ln]). if ri : L1, . . . , Ln � p ∈ R

5. sup(ri, rj). for each pair of rules such that ri > rj

where the Li are annotated literals or fail-expressions.

The meta-program to which these facts are input is denoted by M, while the

combination of M and the representation of D is denoted by M(D). In what follows,

we permit ourselves some syntactic flexibility in presenting the meta-program. (For

example, we enumerate a list instead of explicitly iterating over it, and express

the complementation operation ∼ as a function2. Furthermore, tags and fail are

unary functors.) However, there is no technical difficulty in using conventional logic

programming syntax to represent this program.

Before we get to the predicates that define the meaning of theories, we define

some auxiliary predicates.

As discussed in the introduction to defeasible logics, the different proof tags

represent different forms of defeasibility. In particular, some forms block ambiguity,

while others propagate ambiguity; some use team defeat, while others require an

individual rule to overcome all conflicting rules. The following facts are used to

specify, for each proof tag: that it is a proof tag, whether it expresses team defeat

or individual defeat, and whether the inference rule blocks or propagates ambiguity.

Strictly speaking, we should distinguish the proof tags appearing syntactically in

M from the tags appearing in conclusions (which are not part of the syntax of

defeasible logics, but part of its meta-theory). However, because there is a clear

correspondence between the two, we find it clearer to use the same symbol for both.

team(∂).

team(δ).

indiv(∂∗).

indiv(δ∗).

ambiguity blocking(∂∗).

ambiguity blocking(∂).

ambiguity propagating(δ∗).

ambiguity propagating(δ).

proof tag(∂∗).

proof tag(∂).

proof tag(δ∗).

proof tag(δ).

The following clauses define the class of all rules and the class of supportive rules.

Defeaters are not supportive rules because they can only be used to prevent other

conclusions; they cannot support any conclusion.

supportive rule(Label, Head, Body):-

strict(Label, Head, Body).

supportive rule(Label, Head, Body):-

defeasible(Label, Head, Body).

rule(Label, Head, Body):-

supportive rule(Label, Head, Body).

rule(Label, Head, Body):-

defeater(Label, Head, Body).

2 The complement of p is ¬p and the complement of ¬p is p. ∼ is unrelated to fail, since it is the
complement of classical negation.
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The next clauses express monotonic provability.

c1 definitely(X) :-

fact(X).

c2 definitely(X) :-

strict(R,X, [Y1, . . . , Yn]),

definitely(Y1),. . . ,definitely(Yn).

In the predicate expressing defeasible inference, defeasibly, one argument is

written as a subscript Z in the following clauses. That argument takes as its value

one of the four proof tags and represents the inference rule that should be applied

to resolve conflict for the literal in the other argument, unless the literal has a

proof annotation. All clauses for predicates with a subscript Z implicitly contain

proof tag(Z) in their body. In clause c3, we see that free-annotated literals are to

be proved according to Z.

In clause c4, fail-expressions are defined: failure is implemented by negation. This

is valid because the logics involved satisfy the Principle of Strong Negation. For

such logics, the conditions for −d inference rules are a negation of the conditions

for +d inference rules. In both defeasible logics and logic programming, failure-to-

prove is a primitive notion, available in defeasible logics through negative tags and

in logic programming through negation. Hence, it is not surprising that failure is

implemented by negation in the meta-program.

The remaining two clauses are reflective of the basic structure of defeasible

reasoning. Clause c5 expresses that any literally that is definitely true (proved

monotonically from facts and strict rules) is also defeasibly true. Clause c6 handles

an annotated literal by using the tag Y as the subscript argument in subsidiary

computations. This clause says that a literal X, annotated by Y , is proved if the

negation of X is not proved monotonically and there is a supportive rule R that is

not overruled, each of whose body literals are proved defeasibly according to Y .

c3 defeasiblyZ(free X) :-

proof tag(Z),

defeasiblyZ(Z X).

c4 defeasiblyZ(fail X) :-

not defeasiblyZ(X).

c5 defeasiblyZ(X) :-

definitely(X).

c6 defeasiblyZ(Y X) :-

proof tag(Y ),

not definitely(∼X),

supportive rule(R,X, [W1, . . . ,Wn]),

defeasiblyY(W1),. . . ,defeasiblyY(Wn),

not overruledY(R,X).

The basic structure of overruling a rule is similar for all defeasible logics: the body

of the overruling rule must be proved and the rule not “defeated”. However, it varies

depending on whether the logic blocks or propagates ambiguity. In an ambiguity
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blocking logic, the body of the overruling rule must be established defeasibly,

whereas in an ambiguity propagating logic, the body of the overruling rule need

only be supported.

c7 overruledZ(R,X) :-

ambiguity blocking(Z),

rule(S,∼X, [U1, . . . , Un]),

defeasiblyZ(U1),. . . ,defeasiblyZ(Un),

not defeatedZ(R, S,∼X).

c8 overruledZ(R,X) :-

ambiguity propagating(Z),

rule(S,∼X, [U1, . . . , Un]),

supportedZ(U1),. . . ,supportedZ(Un),

not defeatedZ(R, S,∼X).

The notion of defeat varies, depending on whether a logic involves team defeat or

individual defeat. In individual defeat, the overruling rule S is defeated if the rule R

it tries to overrule is superior to S . In team defeat, S is defeated if there is a rule T

(possibly the same as R) that is superior to S and whose body can be proved.

c9 defeatedZ(R, S,∼X) :-

team(Z),

sup(T , S ),

supportive rule(T ,X, [V1, . . . , Vn]),

defeasiblyZ(V1),. . . ,defeasiblyZ(Vn).

c10 defeatedZ(R, S,∼X) :-

indiv(Z),

sup(R, S ).

The structure of this meta-program makes one point clear that was less readily

apparent in papers by Antoniou et al. (2000) and Billington et al. (2010): treatment

of ambiguity concerns how the body of an overruling rule is proved, while the choice

of team/individual defeat concerns how an overruling rule can be defeated.

For the ambiguity propagating logics, we must define the notion of “supported”.

The intuition is that a literal is supported if there is a chain of supportive rules

that form a proof tree for the literal, and each supportive rule is not beaten (i.e.,

overruled) by a rule that is proved defeasbily. In ordinary defeasible logics, support

is only needed for the ambiguity propagating logics but, for annotated defeasible

theories, we also need to have support for ambiguity blocking logics. This is because

we might wish to use, as part of the support, a rule that contains an annotated literal

such as ∂q. Hence, the supported predicate is defined uniformly, with a parameter Z

specifying the form of defeasibility underlying the support. Thus, we are introducing

new forms of support: σ∂ and σ∂∗ .

As with defeasibly, the clauses for supported address-free literals, fail-expressions,

literals that are proved definitely, and proof-annotated literals. Note how the

parameter Z to supported is used by beaten to select the form of defeasibility

for which the body of an overruling rule must be proved.

c11 supportedZ(free X) :-

supportedZ(Z X).
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c12 supportedZ(fail X) :-

not supportedZ(X).

c13 supportedZ(X) :-

definitely(X).

c14 supportedZ(Y X) :-

proof tag(Y ),

supportive rule(R,X, [W1, . . . ,Wn]),

supportedY(W1),. . . ,supportedY(Wn),

not beatenY(R,X).

c15 beatenZ(R,X) :-

rule(S,∼X, [W1, . . . ,Wn]),

defeasiblyZ(W1),. . . ,defeasiblyZ(Wn),

sup(S, R).

Let us now examine how to put annotated defeasible logic to work by revisiting the

compensation example presented in the introduction. As we have already discussed,

Guilty must be proven with the “beyond reasonable doubt” proof standard to derive

that the defendant is entitled to receive a compensation.

As we have alluded to in the introduction, Gordon and Walton (2009) proposed

to model proof standards such as scintilla of evidence, preponderance of evidence,

clear and convincing case, beyond reasonable doubts, and dialectical validity using

rule-based argumentation. For example, they define that the proof standard of

preponderance of evident for a literal p is satisfied if and only if the maximum weight

of applicable arguments for p exceeds some threshold α, and the difference between

the maximum weight of the applicable arguments for p and the maximum weight

of the applicable arguments against p exceeds some threshold β. Governatori (2011)

shows how the weights and thresholds can be modelled by a preference relation

(superiority) over arguments (rules), and it establishes the following relationships

between the proof standards and proof tags:

Proof standard(s) Proof tag

scintilla of evidence σ

preponderance of evidence, clear and convincing case ∂∗

beyond reasonable doubt, dialectic validity δ∗

where the distinction between preponderance of evidence and clear and convincing

case, and beyond reasonable doubt and dialectic validity depends on how the

weights associated to the arguments and thresholds are translated in instances of

the superiority relation in the resulting theories. Furthermore, Governatori (2011)

provides examples where the definitions of proof standards given by Gordon and

Walton (2009) exhibit some counter-intuitive conclusions. To obviate such limita-

tions, he proposes an alternative correspondence between proof tags in defeasible

logic variants and proof standards, including the following:
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Proof standard(s) Proof tag

substantial evidence σ

preponderance of evidence ∂

beyond reasonable doubt δ

dialectic validity δ (when the superiority relation is ignored)

Thus, the proof standard of beyond reasonable doubt corresponds to defeasible

provability using ambiguity propagation. Accordingly, we can replace

BeyondReasonableDoubt in rule r′
5 with +δ. All the other literals appearing in the

body of the rules do not require special proof standards, and thus we can annotate

them with free. Consequently, the formalization of this scenario in annotated

defeasible logic is

r1 : free EvidenceA ⇒ ¬Responsible

r2 : free EvidenceB ⇒ Responsible

r3 : free Responsible ⇒ Guilty

r4 : ⇒ ¬Guilty

r5 : +δ¬ Guilty ⇒ Compensation

r6 : ⇒ ¬Compensation

It is easy to verify that we now derive +∂¬Compensation , that the defendant is not

entitled to compensation, as the scenario requires.

4 Properties of annotated defeasible theories

We now investigate properties of annotated defeasible logic, exploiting its logic

programming underpinnings.

The first theorem relates the meta-program for annotated defeasible logic to the

meta-programs for existing defeasible logics DL(d). Those logics do not contain fail-

expressions. We write |=K for logical consequence under Kunen’s semantics (Kunen

1987). Recall that Md(D) is the meta-programming representation for D in DL(d),

while M(α(D)) is the meta-programming representation for D annotated by α.

Theorem 1

Let D = (F, R,>) be a defeasible theory, and α be an annotation function for that

theory. Let d ∈ {δ∗, δ, ∂∗, ∂}.
Suppose α(R) contains only annotations free and d, and there is no fail-expression

in R. Then, for every literal q

• M(α(D)) |=K defeasiblyd(d q) iff Md(D) |=K defeasibly(q)

• M(α(D)) |=K ¬defeasiblyd(d q) iff Md(D) |=K ¬defeasibly(q)

Furthermore, if d ∈ {δ∗, δ},

• M(α(D)) |=K supportedd(d q) iff Md(D) |=K supported(q)

• M(α(D)) |=K ¬supportedd(d q) iff Md(D) |=K ¬supported(q)
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The proof is based on separately unfolding M(α(D)) and Md(D) until they have

essentially the same form.

As an immediate corollary to this theorem, we see that annotated defeasible

theories are a conservative extension of defeasible theories. Let the free annotation

function be the annotation function that maps every body literal occurrence in D

to free. For any defeasible theory D, the unannotated theory behaves exactly the

same as the theory annotated by the free annotation function.

Corollary 2

Suppose that αF is the free annotation function for D. Let d ∈ {δ∗, δ, ∂∗, ∂}. Then,

for every literal q:

• M(αF (D)) |=K defeasiblyd(q) iff D � +dq

• M(αF (D)) |=K ¬defeasiblyd(q) iff D � −dq

Furthermore, if d ∈ {δ∗, δ},

• M(αF (D)) |=K supportedd(q) iff D � +σdq

• M(αF (D)) |=K ¬supportedd(q) iff D � −σdq

For any tag d and an annotated defeasible theory D, we define +d(D) =

{q | D � +dq} = {q | M(D) |=K defeasiblyd(q)} and −d(D) = {q | D � −dq} =

{q | M(D) |=K ¬defeasiblyd(q)}. Similarly, we define +σd(D) as {q | M(D) |=K

supportedd(q)} and −σd(D) as {q | M(D) |=K ¬supportedd(q)}.
We can now extend the inclusion theorem of Billington et al. (2010) to the new tags

and annotated defeasible logic. This theorem shows the relative inference strength

of the different forms of defeasibility.

Theorem 3 (Inclusion theorem)

Let D be an annotated defeasible theory.

(a) +Δ(D) ⊆ +δ∗(D) ⊆ +δ(D) ⊆ +∂(D) ⊆ +σδ(D) ⊆ +σδ∗ (D)

(b) −σδ∗(D) ⊆ −σδ(D) ⊆ −∂(D) ⊆ −δ(D) ⊆ −δ∗(D) ⊆ −Δ(D)

(c) +∂(D) ⊆ +σ∂(D) ⊆ +σδ(D)

(d) −σδ(D) ⊆ −σ∂(D) ⊆ −∂(D)

(e) +δ∗(D) ⊆ +∂∗(D) ⊆ +σ∂∗(D) ⊆ +σδ∗ (D)

(f) −σδ∗(D) ⊆ −σ∂∗(D) ⊆ −∂∗(D) ⊆ −δ∗(D)

The proof is by induction on the iteration stages of Fitting’s ΦM(D) function.

The inclusions in this theorem are presented graphically in Figure 1. The relation

t1 ⊂ t2 expresses that, for all defeasible theories D, +t1(D) ⊆ +t2(D) and −t1(D) ⊇
−t2(D), and, for some defeasible theory D, +t1(D) ⊂ +t2(D). The containments

come from the theorem, while their strictness is demonstrated by simple examples.

Examples also show that there are no containments that can be added to the figure.

This ordering on tags can be extended to annotation functions. Let α1 and α2

be annotation functions for a defeasible theory D. We define α1 � α2 iff for every

body occurrence o of every literal in D, α1(o) ⊂ α2(o). If such an ordering had

implications for the conclusions of the annotated theories, it would provide a useful

basis from which to reason about annotated defeasible theories. Unfortunately, the
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Δ ⊂ δ∗ ⊂ δ ⊂ ∂ ⊂ σ∂ ⊂ σδ ⊂ σδ∗

⊂ ⊂

∂∗ ⊂ σ∂∗

Fig. 1. Ordering of inference rules by relative inference strength.

most obvious possibility – a kind of monotonicity – does not hold, as the following

example shows.

Example 4

Let D consist of the rules

r1 : ⇒ p r5 : q ⇒ s

r2 : ⇒ ¬p r6 : ⇒ ¬s

r3 : ⇒ q

r4 : ¬p ⇒ ¬q

with r5 > r6.

Let α1 map q in r5 to δ, and α2 map q in r5 to ∂ (with all other occurrences

mapped to free). Then α1 � α2. Rules r1–r4 are a standard example distinguishing

ambiguity blocking and propagating behaviours. +∂q and −δq can be concluded.

Consequently, in α1(D), we conclude +∂¬s and −∂s, while in α2(D), we conclude

−∂¬s and +∂s.

Thus, we see that a strengthening of the annotation function (in the � ordering)

does not necessarily lead to a strengthening of the conclusions of the annotated

defeasible theory.

For the defeasible logics we address, the consequences of a defeasible theory

can be computed in linear time, with respect to the size of the theory (Maher

2001; Billington et al. 2010), but these logics only support one form of defeasibility.

Annotated defeasible logic allows the interaction between the different inference

rules but, nevertheless, we expect its consequences can also be computed in linear

time, although with a larger constant factor. (Certainly, it is straightforward to show

we can compute consequences in quadratic time. See the supplementary material.)

Let

C(D) = {+dq | M(D) |=K defeasiblyd(q), d ∈ T } ∪
{−dq | M(D) |=K ¬defeasiblyd(q), d ∈ T } ∪
{+σdq | M(D) |=K supportedd(q), d ∈ T } ∪
{−σdq | M(D) |=K ¬supportedd(q), d ∈ T }

where D is an annotated defeasible theory, T = {∂, ∂∗, δ, δ∗} refers to the four main

forms of defeasibility, and q ranges over annotated literals.

Conjecture 5

Let D be an annotated defeasible theory, and |D| be the number of symbols in D.

Then the set of consequences C(D) can be computed in time O(|D|).

https://doi.org/10.1017/S1471068417000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000266


832 G. Governatori and M. J. Maher

5 Different forms of failure

One advantage of the framework of Maher and Governatori (1999) and Antoniou

et al. (2000) is that different notions of failure can be obtained by different semantics

for logic programs. In this section, we demonstrate that annotated defeasible logic

is a conservative extension of those logics for many such semantics.

Many of the logic programming semantics we will focus on can be seen to be

derived from the three-valued stable models (Przymusinski 1990) (also known as

partial stable models, but distinct from partial stable models by Saccà and Zaniolo

(1990)). In addition to the semantics based on all partial stable models, there is

the well-founded model (Gelder et al. 1991), which is the least partial stable model

under the information ordering (Przymusinski 1990) (called F-least by Przymusinski

(1990)); the (two-valued) stable models (Gelfond and Lifschitz 1988); the regular

models (You and Yuan 1994), which are the maximal partial stable models under set

inclusion on the positive literals; and the L-stable models (Eiter et al. 1997), which

are the maximal partial stable models under set inclusion on positive and negative

literals or, equivalently, the minimal partial stable models under set inclusion on

the undefined literals. The interest in these semantics derives from the use of their

counterparts in abstract argumentation (Caminada et al. 2015).

Let S denotes the collection of semantics mentioned above, with the exception

of the stable semantics. That is, S = {partial stable,well -founded , regular ,L-stable,

Kunen ,Fitting}. These semantics (and the stable semantics) are preserved by unfold-

ing (see Aravindan and Dung (1995) and Maher (2017)). Consequently, Theorem 1

extends to the semantics in S:

Theorem 6

Let D = (F, R,>) be a defeasible theory, and α be an annotation for that theory.

Let d ∈ {δ∗, δ, ∂∗, ∂}. Suppose α(R) contains only annotations free and d, and there

is no fail-expression in R. Let S ∈ S. Then

• M(α(D)) |=S defeasiblyd(q) iff Md(D) |=S defeasibly(q)

• M(α(D)) |=S ¬defeasiblyd(q) iff Md(D) |=S ¬defeasibly(q)

and, if d ∈ {δ∗, δ},

• M(α(D)) |=S supportedd(q) iff Md(D) |=S supported(q)

• M(α(D)) |=S ¬supportedd(q) iff Md(D) |=S ¬supported(q)

More generally, the S-models of M(α(D)) restricted to defeasiblyd are identical

(up to predicate renaming) to the S-models of Md(D) restricted to defeasibly.

In particular, annotated defeasible logic under the well-founded semantics extends

the well-founded defeasible logics (Maher and Governatori 1999; Maher et al. 2011).

This theorem does not apply to the stable model semantics, because of the

possibility that Md(D) has stable models but M(D) does not. This, in turn, occurs

because M(D) represents all the inference rules, while Md(D) does not. Technically,

the proof fails because the deletion of irrelevant clauses is not sound under the

stable model semantics. To see what can go wrong, consider the following example.
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Example 7

Let D consist of the rules

r1 : ⇒ p r3 : ⇒ q

r2 : p, q ⇒ ¬p r4 : ⇒ q

r5 : ⇒ ¬q

r6 : ⇒ ¬q

with r3 > r5 and r4 > r6.

After unfoldings and simplifications, M(D) contains

c16 defeasibly∂(∂ p) :-

not overruled∂(r1, p).

c17 overruled∂(r1, p) :-

defeasibly∂(∂ p),

defeasibly∂(∂ q).

and similar clauses for ∂∗ (as well as other clauses).

It is clear that if defeasibly∂(∂ q) holds, then the structure of these two

clauses prevents the existence of a stable model, while if ¬defeasibly∂(∂ q),

then defeasibly∂(∂ p) holds in every stable model, assuming there is nothing

else preventing the formation of stable models. The same applies for ∂∗.

Now, defeasibly∂(∂ q) holds, but defeasibly∂∗ (∂∗ q) does not. It follows, from

the proof of Theorem 1, that M∂∗(D) has stable models but M(D) does not.

Thus, Theorem 6 holds for stable models only when all forms of defeasibility and

supportedness have stable models.

6 Related work

Among the features of annotated defeasible theories are (1) the language supports

multiple forms of defeasibility within a single defeasible theory, indeed within a single

rule; (2) the language provides explicit fail-expressions; (3) the framework has the

ability to incorporate different notions of failure-to-prove, corresponding to different

semantics of negation-as-failure. No other formalism for defeasible reasoning has

all these features.

Courteous logic programs (Grosof 1997) (and later developments (Wan et al. 2009;

Wan et al. 2015)) permit negation-as-failure expressions in defeasible rules, which are

essentially the same as fail-expressions. Antoniou et al. (2000) discussed a specific

transformation for eliminating these expressions from courteous logic programs;

that transformation is not sound for ambiguity propagating logics. Our meta-

programming approach to fail-expressions was discussed by Maher and Governatori

(1999), for a language with a single form of defeasibility, and our Theorem 1 extends

to languages with such fail-expressions.

Within proof-theoretic treatments of defeasible logics (see, for example, Maier

and Nute (2010) and Billington et al. (2010)), the logics can incorporate multiple

forms of defeasibility, but they do not interact. For example, the proof of +∂q

cannot depend on the proof of +δp: it can only depend on proofs of ∂ conclusions.
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Within the meta-programming framework of Maher and Governatori (1999) and

Antoniou et al. (1999), a logic has only a single form of defeasibility, although this

can be easily remedied by the use of multiple variants of the defeasibly predicate.

Still, the multiple forms do not interact. Structured argumentation approaches, such

as ASPIC+ (Prakken 2010), use unannotated rules without an inference rule (in

the sense above) and hence define a single form of defeasibility. A meta-program

component of the languages LPDA and ASPDA by Wan et al. (2009; 2015), called

an argumentation theory, is capable of specifying a different inference rule for each

literal, but not for each occurrence of each literal. Thus, although they provide

more interaction than the defeasible logics, they do not provide the ability to apply

different inference rules to the same atom.

It should be noted that the logics of Billington et al. (2010) are able to simulate

each other as proved by Maher (2012; 2013) (and ASPIC+ appears expressive

enough to simulate these logics), but such an approach to incorporating multiple

forms of defeasibility leads to an unnatural representation and has computational

penalties. It also fails to represent free-expressions, since the top level form of

defeasibility must be fixed before simulations can be coded.

Annotated logic programs (Kifer and Subrahmanian 1992) are an extension of

logic programs to multi-valued logics, where the truth values are assumed to form

an upper semi-lattice. Atoms in the body are annotated by truth values and the head

is annotated by a function of those truth values. Thus, there are some similarities

to annotated defeasible logic, in the use of annotations, including a similarity of

variable annotations and free-expressions. However, annotated defeasible logic uses

proof tags – not truth values – as annotations, and does not assume any ordering on

the annotations. Further, the semantics of annotated logic programs is essentially a

disjunction of the conclusions of rules, so this formalism is unable to represent the

overriding of a rule by a competing rule.

Most defeasible logics support a single semantics of failure: Kunen’s (Billington

et al. 2010), well-founded (Grosof 1997; Maher and Governatori 1999; Wan et al.

2009; Maier and Nute 2010; Maher et al. 2011), or stable (Verheij 2003; Maier 2013;

Wan et al. 2015). Apart from the framework of Antoniou et al. (2000), the only

defeasible formalisms supporting multiple semantics are structured argumentation

languages like ASPIC+ (Prakken 2010). But such languages do not support multiple

forms of defeasibility.

The annotation mechanism we presented is closely related to the introduction of

modal literals in modal defeasible logic (Governatori et al. 2016), where each rule is

labelled with the mode (�) its conclusion can be proved and the literals �q and �q

correspond to +∂�q and −∂�¬q. While each modality has its own inference rule,

each supports a single form of defeasibility. This raised the question whether different

forms of defeasibility could be combined: the present paper offers a positive answer.

Conclusion

We have argued that we need a formalism that supports different kinds of defeasible

reasoning, and introduced annotated defeasible logic to fulfil that requirement. The
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semantics of the annotated logic is defined through a logic program, and we are

able to exploit that medium to prove properties of the logic.

Supplementary materials

For supplementary material for this article, please visit https://doi.org/10.1017/

S1471068417000266
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