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We consider an OLG model with emissions arising from production and potentially
irreversible pollution. Pollution control consists of the assignment of permits to firms;
private agents also can abate pollution. In this setting, we prove that multiple equilibria
exist. Due to the possible irreversibility of pollution, the economy can be dragged into
both environmental and poverty traps. First, we show that choosing an emission quota at
the lowest level beyond a critical threshold is a means to avoid these two types of traps.
We also prove that when the agents do not engage in maintenance, a reduction of the quota
leads to a reduction in pollution but also to slower capital accumulation. In contrast, when
agents do engage in maintenance, a reduction of the quota provides a double dividend.
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1. INTRODUCTION

This paper raises the question of the performance of environmental policy in
situations where economic activities may translate into irreversible degradation
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of the environment. Irreversibility means that ecosystems’ natural regeneration
capacity is limited and may fail once a critical level of pollution is exceeded.
The notion of irreversibility is linked to the multiplicity of ecosystems’ equilibria.
It implies that when submitted to strong perturbations, typically pollution, an
ecosystem may fail to recover its initial safe equilibrium. Rather, it may be caught
in a new, highly polluted, equilibrium.1 Therefore, in this paper, the performance
of environmental policy will mainly be understood as its ability to protect the
environment against irreversible degradation. Nevertheless, the impact of public
policy on economic growth will also be examined.

Two different approaches to assessing the impact of environmental policy on
growth have emerged in the literature. Works studying growth models with in-
finitely lived agents have concentrated on environmental taxation [see Bovenberg
and Smulders (1995, 1996) or Bovenberg and de Mooij (1997)]. A feature com-
mon to all of these papers is the introduction of an environmental externality
in production, which conveys the idea that environmental quality enhances the
productivity of private inputs. Within this framework, the main conclusion is that
a more stringent environmental policy may provide a double dividend consisting of
a simultaneous increase in environmental quality and economic growth, provided
the environment has a strong positive impact on technology. Ono (2003) addresses
the same issue but considers overlapping generations (OLG) in place of infinitely
lived agents. He extends John and Pecchenino’s model (1994) with a process of
innovation and distinguishes two phases of growth: the “no-innovation growth
regime” and the “innovation-led growth regime.” He shows that a critical level of
environmental tax exists that determines whether, by raising the tax, the economy
obtains a higher or lower growth rate and better or worse environmental quality.

In sum, most contributions addressing the impact of environmental policy on
growth focus on environmental taxation. A notable exception is Ono (2002), who
examines the issue using an OLG model where emission permits are the policy
instrument. His aim is to measure the macroeconomic consequences that follow
a tightening of environmental policy when emissions are modeled as an input.
The most striking result is that, contrary to what is expected, a reduction of the
allocation of permits to firms (the quota) may lower both economic growth and
environmental quality.

The present paper contributes to this literature by examining the design of en-
vironmental policy under the potential irreversibility of pollution. As mentioned
above, we are interested in the irreversibility at play in the pollution accumulation
process. Accounting for irreversibility consists of recognizing that, on one hand, an
ecosystem’s natural capacity to assimilate pollution depends on the concentration
of the pollutant and that, on the other, a critical threshold exists above which the
assimilation capacity becomes permanently exhausted. In a partial equilibrium
model, Tahvonen and Withagen (1996) have assessed the implications of irre-
versibility on the optimal control of pollution. In the same vein, Prieur (2009)
introduces this kind of irreversibility into a general equilibrium model of growth
and gives new insights into the relationship between growth and the environment.
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He shows notably that a nonregulated growth process may lead a polluting econ-
omy into an economic and ecological poverty trap even when pollution abatement
operates. The existence of such a long-term state justifies the intervention of public
authorities in the management of pollution problems. This knowledge has led us to
study the means and consequences of such intervention more closely. To do so, we
further develop his model, making the assumption that emissions are a production
by-product and can be controlled by an emission permits market. In that sense, our
analysis also extends Ono (2002)’s study by considering irreversible pollution.

Within this framework, our aim is to address the issue of the impact of environ-
mental policy on growth prospects. This issue may be broken into two different
but related questions: Are emission permits a means for avoiding a drift toward
poverty traps? Is environmental regulation necessarily unfavorable to economic
growth?

Starting with the equilibrium analysis, we emphasize the existence of multiple
long-run equilibria of different natures. Among possible equilibria, the stable
steady state with the lowest level of capital and irreversible pollution corresponds
to an environmental and poverty trap. In opposition to poverty traps, steady states
exhibiting reversible pollution and higher wealth are called “desirable” equilibria.
This feature of multiple equilibria with environmental and poverty traps has al-
ready been shown by Prieur (2009). It is used as a starting point for policy analysis.
Our contribution is twofold.

First, we prove that the environmental and poverty trap may be avoided by
setting the emission quota above a critical level. In other words, the preliminary
recommendation is to allow firms to pollute sufficiently. Nevertheless, this does
not mean that firms can pollute as much as they want. In fact, excluding the
environmental and poverty trap gives rise to a new development trajectory that
is worse than the one leading to the trap. This equilibrium trajectory has the
features of an asymptotic environmental and poverty trap, in the sense that it is
accompanied by a perpetual erosion in economic and/or environmental resources.
Based on dynamic analysis in terms of attraction basins, further investigations
reveal that the quota must be fixed at the lowest level above this critical value
to avoid the asymptotic trap. Environmental regulation can thereby efficiently
protect an economy from converging toward poverty traps caused by irreversible
pollution.

Second, we emphasize the impact of environmental regulation on desirable
equilibria. It appears that the impact of a change in the quota at equilibrium
depends on whether agents engage in pollution abatement, which we also refer
to in this paper as environmental maintenance. When agents do not maintain
(zero maintenance equilibrium, ZME), there exists a trade-off between pollution
control and economic growth. Although lowering the quota is a means of reducing
pollution, it also generates a negative effect on capital accumulation. When agents
do invest in environmental maintenance (positive maintenance equilibrium, PME),
the key element is the evolution of the balance between financial and environmental
constraints imposed on the agents. Under plausible conditions, in the locally stable
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equilibrium the economy enjoys a double dividend: a reduction of the quota allows
the economy to reach a long-term state that is both richer and less polluted.
Therefore, reducing the quota improves the welfare of living generations over the
long term. Ono’s analysis (2002) then is taken further by not only considering
the impact of a change in the quota on ZME but also stressing the opportunity to
obtain a double dividend in the PME. In contrast with the literature on tax reform
reviewed above, the derivation of this result does not rely on the controversial
assumption of a positive environmental externality on production.

The paper is organized as follows. Section 2 presents the model. Section 3
provides a detailed analysis of the equilibrium. Section 4 analyzes the impact of a
political reform on equilibrium properties. Section 5 performs certain numerical
simulations to outline the implications of a change in policy on global dynamics
and, notably, on the possibility of reaching a safe and wealthy steady state. Section
6 concludes.

2. THE MODEL

In a perfectly competitive world, firms produce a single homogeneous good used
for both consumption and investment. The production process generates harmful
polluting emissions. The environmental policy consists of defining an emission
quota, Ēt , for each period and of creating an exchange market for emission permits.
The quota is imposed upon the economy in an exogenous manner. For example, the
level of emissions to be respected may be decided during international negotiations
(like the Kyoto protocol of 1997), each participating country being endowed with a
quota for polluting emissions. In order to execute the agreement, a government sells
a volume of permits corresponding to Ēt to polluting firms. It also is responsible
for the distribution of income obtained from the sale of permits (the environmental
allowance) to households. In addition, in accordance with Ono (2002), we assume
that households also can engage in environmental maintenance.

In this section, private agents’ tradeoffs and pollution dynamics are set out. The
result is a discrete-time dynamical system, which will be analyzed in Section 3.

2.1. Production

Under perfect competition, firms produce the final good Yt with a constant–returns
to scale technology using labor Lt , capital Kt , and emissions Et :

Yt = AKα
t L

β
t E

1−α−β
t . (1)

Jouvet et al. (2005) show that an auction system is more efficient than the
allocation of permits to firms free of cost because the latter is a source of economic
distortions. On the basis of their results, we assume that the total number of
permits are auctioned. Firms thus are obliged to purchase at the market price qt

the number of emission permits Et needed to produce. Note that in contrast, Ono
(2002) assumes that part of the quota is allocated free of charge to firms, which
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may then participate in market transactions. Nonetheless, his approach is in fine
rigorously identical to ours because in his model’s equilibrium it is still an income
qtEt , the revenue from the sale of permits, that is taxed entirely and paid back to
young households.

Capital depreciates fully in one period. Firms maximize profits, taking the prices
of inputs as given. This yields the expressions for input prices, expressed in terms
of per capita variables with kt = Kt/Lt and et = Et/Lt :

wt = βAkα
t e

1−α−β
t , (2)

rt = αAkα−1
t e

1−α−β
t − 1, (3)

qt = (1 − α − β)Akα
t e

−α−β
t , (4)

where wt represents the wage rate, rt is the interest rate, and qt the price of permits.

2.2. Pollution Dynamics

Pollution accumulation for nonnegative levels of the stock Pt is described by the
equation

Pt+1 = Pt − �(Pt) + Ẽt , (5)

where Ẽt represents emissions, net of abatement, and �(Pt ) corresponds to the
natural decay function that defines the amount of pollution nature can assimilate
each period. Nature’s ability to absorb pollution depends on the concentration level
of the pollutant. Our aim is to express the idea that excessive levels of pollution
irreversibly alter the environment’s recovery process. Therefore, like Tahvonen and
Withagen (1996) and Prieur (2009), we assume that the decay function is inverted
U-shaped. Its properties, summarized in the assumption below, give an account of
the potential irreversibility of environmental damage caused by pollution:2

Assumption 1. �(P ) : R+ → R+ is continuous and satisfies �(0) = 0;
∃!P > 0 such that �(P ) = 0 ∀P ≥ P , and �(P ) > 0, �′′(P ) ≤ 0 ∀P ∈ [0, P ).

Note that above the critical threshold P , the recovery process of nature is
completely and permanently overwhelmed.

2.3. The Households

We consider an infinite horizon economy composed of finite-lived agents. A new
generation is born in each period t = 1, 2, . . . , and lives for two periods: youth and
old age. There is no population growth and the size of a generation is normalized
to one. The young agent born at period t is endowed with one unit of labor that
he or she inelastically supplies to firms for a real wage wt . Her first-period income
also includes of the revenue from the sale of a quantity Et of permits, at the price
qt . This revenue corresponds to an environmental allowance distributed by the
government. She divides this total income between savings st and environmental
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maintenance mt . When retired, the agent supplies her savings to firms and earns
the return from savings Rt+1st , with Rt+1 = 1 + rt+1, the interest factor. Her
income is entirely devoted to consumption ct+1.3 The two budget constraints are

wt + qtEt = st + mt, (6)

ct+1 = Rt+1st . (7)

The economy thus may rely on two distinct instruments for fighting pollu-
tion: environmental policy in the form of emission permits and environmental
maintenance in the form of household pollution abatement.

The preferences of an agent born at date t are defined over old age consumption
and environmental quality. They are described by the following utility function
U(ct+1, Pt+1):4

Assumption 2. U(c, P ) : R+ × R+ → R is C2 with U1 ≥ 0, U2 ≤ 0,
U11, U22 ≤ 0. The cross derivative is negative, U12 ≤ 0.5 We further assume that
limc→0 U1(c, P ) = +∞.

Emissions contribute to the accumulation of the pollutant stock. It also is pos-
sible to control the periodic flow of emissions by investing in environmental
maintenance mt . Pollution dynamics (5) can be rewritten as6

Pt+1 = Pt − �(Pt ) + Et − γmt , (8)

where γ > 0 is the efficiency of environmental maintenance.
The agent born at date t divides her first-period income between savings (which

determine the consumption of the final good) and maintenance (which influences
the “consumption” of the environmental public good) in order to maximize her
lifetime utility. Taking as given prices and pollution at the beginning of period t ,
the representative agent’s problem is written as7

max
st ,mt ,ct+1

U(ct+1, Pt+1),

subject to constraints (6), (7), (8), and mt ≥ 0.
Direct calculations yield the first-order condition

Rt+1U1(ct+1, Pt+1) + γU2(ct+1, Pt+1) ≥ 0,mt (Rt+1U1(ct+1, Pt+1)

+ γU2(ct+1, Pt+1)) = 0,mt ≥ 0. (9)

To conclude this section, the distinction between the decision makers involved
in this economy is discussed. In the same vein as the related literature on the impact
of the environmental policy on growth prospects [John and Pecchenino (1994),
John et al. (1995), and Ono (2002, 2003)], the decision maker who undertakes the
abatement decision can be seen as a short-lived government that seeks to maximize
the utility of generation t individuals taking the prices (wt and Rt+1), the pollution,
and the amount of emissions (Pt and Et ), at the beginning of period t as given.
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So it is possible to reinterpret mt as a tax levied by the short-lived government
in order to finance abatement, for the benefit of (young) agents living during its
period of office. In addition, there exists another policy maker, say the long-lived
government, in charge of the assignment of emission permits to firms. It is also
responsible for the distribution of the income generated by the sale of permits
to households. The existence of a short-lived is not at variance with the other,
long-lived policy maker. In fact, consider the climate change issue. The short-
lived government is a local or national government that can set an instrument,
say for instance a carbon tax as in Finland, in Sweden, and in the Netherlands,
to implement its own environmental policy. But, in addition to the local policy,
there also exists an international policy, aimed at controlling world emissions of
greenhouse gases. Since the Kyoto protocol (1997), countries have been engaged
in emission reduction and the central instrument designed for reaching emission
targets is the cap and trade system. In other words, (international) emission permits
coexist with (local) environmental taxes.

Regarding the long-lived government’s objective, if this government is seen
as the outcome of international negotiations then there is evidence that it fails
to assign efficient amounts of emissions (both in environmental and economic
terms) to states. In other words, assuming that the long-lived government pursues
the objective of maximizing social welfare is not realistic. However, in the spirit of
discussions in Copenhagen (2009), the minimum requirement for this government
is to succeed in protecting the economy against undesirable long-run outcomes.
These outcomes are those where the future will be left with irreversible pollution.
This concern is the central point that justifies our analysis.

3. THE COMPETITIVE EQUILIBRIUM

The intertemporal competitive equilibrium is the dynamical system resulting from
the combination of (8) with solutions of the private agents’ optimization problem.
The nonnegativity constraint on mt requires one to distinguish the case where
abatement is active, i.e., mt ≥ 0, from the case where agents do not maintain the
environment, i.e., mt = 0. We therefore have a dynamical system where the dy-
namics are defined “piecewise” on two domains. The usual analysis of dynamical
systems (determination of steady states, local stability, basins of attraction) is com-
plicated by the issue of admissibility. Indeed, it may be that the dynamics defined
in one domain admit some stable point but that this equilibrium does not belong to
the domain. Under such circumstances, the point is not, when the overall system
is considered as a whole, a stable point of the system. We shall call admissible
the equilibria that are consistent with their domain of definition. A related issue
is the possibility that during the convergence toward some admissible steady state
the equilibrium path changes domains. In that case, the system becomes governed
by the different dynamics of this new region and no longer has a reason to converge
to the equilibrium to which it originally aimed. Basins of attraction therefore also
are more complex to determine.
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We shall analyze the dynamics of the two domains separately and then discuss
admissibility.

3.1. Definitions

Before starting the analysis, we shall define three important concepts.

The intertemporal equilibrium. Let us call a trajectory of the economy a
sequence of per capita variables {ct ,mt , st }, aggregate variables {Lt,Kt , Et , Pt },
and prices {Rt,wt , qt }. The intertemporal equilibrium with perfect foresight then
is defined as follows:

DEFINITION 1 (Intertemporal Equilibrium). Given the environmental policy
{Ēt }, a competitive equilibrium is a trajectory of the economy such that

(i) households and firms are at their optimum: the condition (9) and the three conditions
(2), (3), and (4), for profit maximization, are satisfied;

(ii) all markets clear: Lt = 1, Kt+1 = st (= kt+1), and Et = Ēt (= et ) on the permits
market;

(iii) budget constraints (6) and (7) are satisfied;
(iv) the dynamics of pollution is given by (8).

The frontier case. In our general setting, two distinct frontiers exist.

DEFINITION 2 (Frontiers). In the k–P space, the first frontier, delimiting ir-
reversible pollution levels from reversible ones, corresponds to the irreversibility
threshold: Pt = P . The second frontier, hereafter called the indifference frontier,
represents the set of points (kt , Pt ) where the agents are indifferent to whether
they abate pollution. When the system is located in the region above the frontier
(resp. below), maintenance is nonnegative: mt > 0 (resp. there is no maintenance,
mt ≡ 0).

The indifference frontier is implicitly given by the first-order condition (9), in
which we set mt = 0 and replace ≥ by =. It defines the pollution as a monotonically
decreasing function of both the capital stock and the quota: Pt = f (kt , Ēt ).8

Because of this frontier, the dynamics is defined piecewise. Indeed, it separates
the positive maintenance (PM) domain (mt > 0) from the zero maintenance (ZM)
space (mt ≡ 0). The other frontier separates the irreversible pollution space from
the reversible zone.

In the remaining sections, equilibrium dynamics will be derived from Definition
1 in both the ZM and the PM region. Among possible equilibria, some may have
the features of environmental and/or poverty traps.

Environmental and poverty traps. Four kinds of equilibrium outcomes will be
considered. In all of these definitions, the environmental policy {Ēt } is taken as
given.
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DEFINITION 3 [Environmental Trap (ET)]. An environmental trap is a trajec-
tory of the economy such that

lim
t→∞ Pt = P∞,

with P < P∞ < +∞.

In other words, an environmental trap is a steady state that exhibits an irreversible
level of pollution.

DEFINITION 4 [Poverty Trap (PT)]. Suppose multiple equilibria exist. A tra-
jectory that leads to the steady state with the lowest level of capital is called a
poverty trap.

The nature of the problem leads us to make a distinction between this kind of
equilibria and what we shall call asymptotic traps. The asymptotic traps correspond
to equilibrium trajectories accompanied by a perpetual erosion in environmental
and/or economic resources:

DEFINITION 5 [Asymptotic Environmental Trap (AET)]. An asymptotic en-
vironmental trap is a trajectory of the economy such that

lim
t→∞ Pt = +∞.

DEFINITION 6 [Asymptotic Poverty Trap (APT)]. An asymptotic poverty
trap is a trajectory of the economy such that

lim
t→∞ Kt = 0.

In the analysis that follows, we shall exclude the case where the variable Kt

takes the value 0, because this case is not economically relevant.

3.2. Zero Maintenance Equilibrium (ZME)

The first region is the one where the constraint mt ≡ 0 holds. It corresponds to the
situation where the weight of environmental and financial constraints is such that
households do not have enough incentive to abate pollution. They thus devote all
of their income to savings:

wt + qt Ēt = st . (10)

Equilibrium dynamics directly follows from the combination of (2), (4), (8),
(10), and market clearing conditions,

kt+1 = (1 − α)Akα
t Ē

1−α−β
t , (11)

Pt+1 = Pt − �(Pt) + Ēt ,
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and we shall note that stock variables dynamics are independent from each other.
In addition, pollution accumulation is solely determined by the exogenous quota.
Denote the pollution level at which the assimilation capacity is maximum by P̃ .

Existence conditions are summarized in the following proposition:9

PROPOSITION 1. For the dynamics (11), assume that there exists a limit Ē =
limt→∞ Ēt . Then

(i) There is no environmental trap, but an asymptotic environmental trap always exists.
(ii) There exists a steady state with a reversible level of pollution if and only if

max
P∈[0,P ]

{�(P )} = �max ≥ Ē. (12)

If �max > Ē, then there exist two distinct steady states, (k∗
zr , P

∗−
zr ) and (k∗

zr , P
∗+
zr ),

that are ordered as
P ∗−

zr ≤ P̃ ≤ P ∗+
zr < P .

The steady state (k∗
zr , P

∗−
zr ) is locally stable; the other state is unstable.

Proof. See Appendixes A and D.1.

Condition (12) was already used in Tahvonen and Withagen (1996) and Prieur
(2009) and conveys the idea that the maximum potential assimilation by nature
is higher than the stationary emissions level. The latter precisely corresponds, in
the zero maintenance space, to the total number of emission permits allocated to
the economy. It is worth noting that the necessary and sufficient condition (12)
imposes an upper boundary on the domain of values of Ē.

In the ZM region, the economy has only one instrument to control pollution—
emission permits. When the quota is set below the upper bound �max, two scenarios
may occur depending on the initial location in the space k − P . A relatively
little polluted economy will reach the desirable zero maintenance steady state
(k∗

zr , P
∗−
zr ). Even if production generates emissions, due to increasing assimilation,

the pollution stock remains below the threshold P̄ until the ZM steady state is hit.
Conversely, the economy would likely suffer from irreversible pollution if its point
of departure were a highly polluted state. Indeed, the higher the initial pollution,
the sooner the assimilation capacity is exhausted. After the threshold is exceeded,
the logic of the asymptotic environmental trap (AET) applies because pollution
accumulates indefinitely. When permits are the only instruments at the economy’s
disposal, the situation may be even worse if the quota is fixed above the boundary
�max. In this case, there are no wealthy steady states with reversible pollution and
the economy is doomed to follow the trajectory of the AET.

This observation highlights the importance of introducing a second instrument,
namely environmental maintenance. With maintenance, the AET no longer mat-
ters, because this trajectory will necessarily cross the indifference frontier and
then reach the positive maintenance subspace. In other words, once maintenance
is taken into account, the AET appears to be an inadmissible equilibrium trajectory.

The purpose of the next section is to study the dynamics of the positive main-
tenance region.
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3.3. Positive Maintenance Equilibrium (PME)

The region with mt > 0 refers to situations where the economy is relatively
wealthy and/or suffers from harmful pollution. Consequently, agents are willing
to engage in maintenance. In this case, the maintenance decision is given by

Rt+1U1(ct+1, Pt+1) + γU2(ct+1, Pt+1) = 0. (13)

The equilibrium analysis consists of considering the system of equations (2)–
(4), (8), (13), and the market clearing conditions. Combining these equations
yields the expression of consumption and maintenance decisions as a function of
the capital stock and the quota

ct = c(kt , Ēt ) = αAkα
t Ē

1−α−β
t , (14)

mt = m(kt , Ēt , kt+1) = (1 − α)Akα
t Ē

1−α−β
t − kt+1. (15)

Substituting expressions (3) and (14) into (13) yields

R(kt+1, Ēt+1)U1[c(kt+1, Ēt+1), Pt+1] + γU2[c(kt+1, Ēt+1), Pt+1] = 0, (16)

which implicitly defines an equilibrium relation, valid for any t ≥ 1, between Pt ,
kt , and Ēt ,

Pt = �(kt , Ēt ), (17)

which governs the dynamics in the whole positive maintenance space.
Let us first examine the properties of this relationship. Under Assumption 2,

�1 < 0.10 A rise in kt tends to reduce the cost of maintenance because it lowers the
interest factor and increases consumption (R1 < 0, c1 > 0, U11 < 0). In addition,
due to the distaste effect exerted by pollution and the rise in consumption, it also
means that the benefits from maintenance rise (c1 > 0, U12 ≤ 0). Therefore,
the higher the capital, the higher is the incentive to maintain the environment
and reduce pollution. According to this relation, in each period, capital stock
is inversely linked to the pollutant concentration. The sign of �2 is a priori
indeterminate. If a rise in Ēt increases the benefits of maintainance (through the
increase in c), it is associated with two opposite effects on the cost of maintenance.
In fact, a rise in Ēt raises both the interest factor and consumption. Now, if we
assume that the intertemporal elasticity of substitution σ = −U1/(cU11) is less
than one, which means that savings is decreasing in the interest factor, the overall
effect on the cost is negative and �2 < 0.11

We shall now proceed with the dynamics, which is described by the system of
equations

Pt+1 = �(kt+1, Ēt+1), (18)

Pt+1 = Pt − �(Pt ) + �(kt , Ēt , kt+1),

where �(kt , Ēt , kt+1) represents real emissions:

�(kt , Ēt , kt+1) = Ēt − γ
[
(1 − α)Akα

t Ē
1−α−β
t − kt+1

]
.
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Studying the existence of positive maintenance steady states (PMSS) requires
one to consider a specific interval [0, k̄(Ē)], where k̄(Ē) is defined in Appendix
B.1, on which steady state maintenance is necessarily nonnegative. This analysis
being done for a given Ē, for simplification we rewrite �(k, Ē) = ϕ(k).

PROPOSITION 2. For the dynamics (18), assume that there exists a limit Ē =
limt→∞ Ēt . Then

(i) A necessary condition for an environmental and poverty trap to exist is that the quota
be below the limit value ĒL, with

ĒL = [γA(1 − α)2]
1−α
β [α(1 − α)A]

α
β . (19)

The dynamics (18) admits at most two steady states (but only one locally stable) with
irreversible pollution.

(ii) Ē being given, assume that the sequence {Et }∞
t=0 is decreasing, and that

lim
k→0

ϕ(k) = +∞.

Then there exists an asymptotic poverty and environmental trap for the dynamics
(18).

(iii) If (12) holds, that is,
max

P∈[0,P ]
{�(P )} = �max ≥ Ē,

and if
k̄(Ē) ≥ ϕ−1(P ∗−

zr ), (20)

then there exists a locally stable steady state (k∗+
pr (Ē), P ∗−

pr (Ē)) with reversible pol-
lution.

Proof. See the analyses in Appendixes B.3, B.4 (existence), and D.2
(stability).

This statement is, on purpose, relatively imprecise with respect to the exact
number of equilibria. Studying the existence of PME turns out to be a tedious
exercise. Therefore, in Proposition 2 we chose to focus on the most relevant
equilibria from the point of view of our analysis. They include, on one hand,
asymptotic and stationary traps (our first aim being to identify conditions that
enable such undesirable states to be avoided) and, on the other, the stable steady
state with reversible pollution (because we shall subsequently focus on the impact
of a change in policy on desirable equilibria properties).12

An economy may reach a steady state with irreversible pollution even when
there is an environmental policy. The environmental trap also corresponds to a
poverty trap because, according to (17), it exhibits a level of capital lower than
the one reached at any PM steady state with reversible pollution. The important
point is that environmental poverty generates economic poverty. The mechanism
behind the emergence of this long-term state is discussed in detail in Prieur (2009)
and can be summarized as follows. The economy is located in a region with
a pollution level above the threshold P . At the same time, when Ē ≤ ĒL the
policy is so stringent that the level of wealth is also very low. In such a context,
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the following logic applies. Environmental pressure forces agents to devote a
sizable share of resources to maintenance. However, this effort is undertaken at
the expense of productive savings and causes a break in capital accumulation.
Coupled with the low level of wealth, this in turn implies that the opportunity
cost of maintenance becomes increasingly severe. Finally, the economy fails to
artificially bring pollution back to a reversible level. In fact, the reaction of agents
to environmental damage only allows the economy to stabilize pollution at a
constant—but higher than P —level. However, this steady state is reached at the
expense of wealth.

In contrast with the scenario discussed in Prieur (2009), there exists in our
framework a means to prevent the occurrence of such a long-term state.

COROLLARY 1. A sufficient condition to exclude the existence of environmen-
tal and poverty traps is to fix the quota on emissions to a sufficiently high level:
Ē > ĒL.

Environmental policy should authorize firms to emit a sufficient amount of
pollution to avoid having the economy stabilize in a trap. Indeed, in the positive
maintenance space the economy has two instruments that affect the level of pollut-
ing emissions. The existence of a steady state requires real emissions to be nil. In
other words, the amount of pollution emitted by firms must be exactly compensated
for by households’ abatement. This situation occurs when the exogenous quota
is set below the critical value ĒL. By fixing Ē > ĒL, one mechanically ensures
the avoidance of environmental and poverty traps, E&PT . However, the scope of
this result must be put into context.

Two possible outcomes remain: depending on its initial location in the positive
maintenance space, the economy may follow two opposite development trajecto-
ries. The first one leads to the desirable PM steady state, defined in Proposition 2
(iii), that exhibits the lowest level of pollution. Because pollution and capital are
inversely linked at equilibrium, it also is associated with the highest wealth.13

Again, existence involves (12), which is now a sufficient condition. The additional
sufficient condition (20) ensures some correspondence between the domains of
variation of the stock variables k and P . This equilibrium outcome is clearly
better than the E&PT, whereas the second is not. Indeed, the second trajectory
has the features of both an asymptotic environmental and an asymptotic poverty
trap, AE&PT. Such an undesirable outcome exists under a very general condition
involving preferences.14 It is worth noting that the problem posed by the AE&PT
only arises when a stable E&PT does not exist. In case where a stable E&PT
exists (Ē ≤ ĒL), the region with irreversible pollution basically coincides with
its attraction basin. The AE&PT thus does not really matter: if the economy were
located in this region, it would reach the E&PT. Conversely, when the quota is
fixed above ĒL, the irreversible pollution region may no longer be an attraction
basin for a steady state, and this may open the path to perpetual increase in
pollution associated with continuous erosion of the level of wealth that entails the
AE&PT.
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This raises the following question: from the point of view of a policy maker,
what is the best option? Should one exclude stationary traps by imposing Ē > ĒL

even though the economy then is more likely to be trapped into the AE&PT? Or
should one keep the E&PT, which appears to be a lesser evil than the AE&PT,
because when located in this region the economy would have a greater opportunity
to reach E&PT than to diverge?

Answering this question15 requires two additional but related questions to be
addressed: Can an economy that initially does not belong to the irreversible region
reach such a region and diverge? To what extent does the possible divergence
depend on the choice of the quota? Assuming Ē > ĒL, the answer involves
assessing the impact of a change in the quota Ē on the frontier delimiting the
basin of attraction of the PM steady state (k∗+

pr (Ē), P ∗−
pr (Ē)) from the set of

points where the economy follows the AE&PT. If a rule does exist concerning
the choice of Ē that could prevent an economy with initial reversible pollution
from diverging, then the recommendation would be to set Ē > ĒL. This im-
portant point will be discussed in Section 5, which is devoted to the dynamic
analysis.

3.4. Admissibility

This section provides insight into the issue of admissibility of equilibria. Admis-
sibility analysis consists of checking whether the steady states found for each of
the two dynamical systems are indeed located within the relevant subspace. We
shall establish a convention that a potential equilibrium is admissible if and only
if it lies in the interior of the domain. It proves difficult to state simple conditions
for admissibility or nonadmissibility in the general case. There is, however, an
important property that can be proved under quite general assumptions.

PROPOSITION 3 (Admissibility). Assume that there is one stable ZME, (k∗
zr ,

P ∗
zr ). Then

(i) There exists a stable PME that satisfies the sufficient condition (20) of Proposition 2
(iii) if and only if the ZME is not admissible.

(ii) If there exists a stable PME that satisfies the sufficient condition (20) of Proposition 2
(iii), then this equilibrium is admissible.

Proof. See Appendix C.

Note that some cases are left open by Proposition 3. Actually, the proposition
does not preclude the existence of stable and admissible PME, which would coexist
with the stable and admissible ZME. Naturally, those PME would not satisfy the
sufficient condition (20).

The next section deals with the second issue raised by the paper. It exam-
ines the implications of a change in the policy on desirable steady state pro-
perties.
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4. STEADY STATE RESPONSE TO A CHANGE IN THE POLICY

This analysis is restricted to (locally) stable equilibria: the ones with the lowest
level of pollution, according to Proposition 1, (ii) and to Proposition 2, (iii).

First, consider the repercussions of a tightening of policy on the stable ZME.

PROPOSITION 4. A decrease in the quota Ē implies a fall in the levels of both
pollution and capital at the stable ZMSS.

Proof. It is straightforward to see that k∗′
zr (Ē) > 0. Now, if we refer to the

inverted-U shape of the assimilation function �(P ), then it is clear that the fall
in the quota Ē causes a fall in the level of stationary pollution at the low stable
steady state: P ∗′

zr (Ē) > 0.

When the emission quota is the only available instrument, we detect a trade-
off between economic growth and pollution control: a stricter policy means a
lower level of stationary pollution, but this is achieved at the expense of capital
accumulation and long-term wealth. A reduction of Ē causes a drop in both
emissions and the pollution accumulated during each period. However, it also
generates a negative income effect (see the budget constraint (6)). A lower quota
causes a reduction in wages and the environmental allowance, which implies
that an agent has relatively less resources to devote to savings and maintenance
(tightening of the financial constraint). This income effect translates into slower
capital accumulation and a lower stock of capital at the ZMSS.

The same analysis then is conducted for the PM steady state. It yields the
following result:

PROPOSITION 5. At the stable PM steady state (k∗+
pr (Ē), P ∗−

pr (Ē)),

(i) if
Ē ≥ [γ (1 − α − β)](1−α)/β [A(1 − α)]1/β , (21)

then k∗+′
pr (Ē) < 0;

(ii) if, in addition,16

�k(k
∗+
pr (Ē), Ē, k∗+

pr (Ē))

�2(k∗+
pr (Ē), Ē, k∗+

pr (Ē))
<

c1(k
∗+
pr (Ē), Ē)

c2(k∗+
pr (Ē), Ē)

, (22)

then P ∗−′
pr (Ē) > 0.

Proof. The proof is provided in Appendix E.

Increasing Ē has two opposite effects on real emissions. First, it entails a rise in
polluting emissions by firms. However, through the positive income effect, it also
stimulates maintenance, which in turn tends to reduce emissions. Under condition
(21), the net effect now is positive; namely, real emissions are increasing in Ē at
equilibrium.

This condition is sufficient to show that a reduction of the quota causes a rise
in the stock of capital at the stable steady state. Let us break down the effect of
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a fall in the quota on stationary variables. This decrease still is associated with
the negative income effect described above. However, there now is an additional
substitution effect. This effect is mainly due to the fall in emissions and the
pollution accumulated at each period (see the dynamics given by (8)). Ceteris
paribus, with the reduction of the quota, the affected generation can allocate a
smaller amount of resources to maintain environmental quality, which will be
enjoyed in their second period of life (slackening of environmental constraint). It
also allows households to save a larger share of their income, which favors capital
accumulation.

Why does the latter effect dominate at the stable PM steady state? In this
equilibrium, the economy is endowed with an important capital stock before
the policy reform. Moreover, the pollution level is less than the value P̃ and
consequently natural assimilation is increasing in the stock of pollutant. The fall
in the quota causes a decrease in income, which is a priori unfavorable to both
savings and maintenance expenditures. However, this tightening of the financial
constraint remains quite moderate, because the economy owns a sizable level
of wealth. The reduction in the number of permits sold to firms also implies a
slackening of the environmental constraint, which already was not very stringent.
Therefore, agents have some latitude to absorb the repercussions of the income
decrease for capital accumulation. The substitution effect is entirely applicable
here: maintenance serves as an adjustment variable in such a way that the fall in
income does not penalize savings. Finally, the level of capital rises.

The second condition (22) concerns the direct and indirect effects of a change
in Ē on both real emissions and consumption. A decrease in Ē lowers consump-
tion through its (direct) negative effect on the interest factor. At the same time,
however, capital increases (because k∗′

pr(Ē) < 0), which tends, in contrast, to raise
consumption (indirect positive effect). The same logic applies for real emissions.
If a lower quota means lower emissions, it also is associated with higher capital
and, consequently, higher emissions. This condition finally states that the ratio of
the effects on consumption exceeds the corresponding ratio for emissions. This
inequality holds if, for instance, the global impact of a fall Ē on consumption
is positive, whereas it is negative for emissions (see Appendix E) and we have
P ∗′

pr(Ē) > 0.17

In sum, a reduction of the quota procures a double dividend, because this reform
allows the economy to enjoy higher long-run welfare. In this situation, reducing
the quota first implies a decrease in emissions, which tends to reduce the level of
pollution in the stable steady state. Second, it results in an increase in equilibrium
consumption, which also requires pollution to decrease because of the distaste
effect exerted by pollution. Last, according to Assumption 2, utility increases.

Our results share some similarities with the conclusions found in the litera-
ture on tax reform [see, among others, Bovenberg and Smulders (1995, 1996)
or Bovenberg and de Mooij (1997)]. However, in contrast with these studies,
obtaining a double dividend does not rely on the controversial assumption of the
existence of a positive environmental externality in production. In addition, by
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using more general functional forms for assimilation and utility than Ono (2002),
we could fill out his analysis by showing the existence of a ZME and examining its
sensitivity to a change in Ē. Furthermore, whereas Ono mainly seeks to provide
a sufficient condition for obtaining his striking result in the PME,18 here we
show that the opposite outcome may emerge under plausible conditions. A policy
reform consisting of the assignment of a lower quota efficiently reduces pollution
and promotes economic growth.

The next section expands the dynamic analysis. In particular, it deals with
the issue of convergence toward the AE&PT and displays numerical simulations
that facilitate understanding of how global dynamics evolve when the quota is
modified.

5. DYNAMICS UNDER ENVIRONMENTAL REGULATION

In our model, the dynamics is defined piecewise. There exist two specific regions
that are separated by the indifference frontier. We shall first study how this frontier
moves with respect to a change in capital or in the quota.

5.1. The Indifference Frontier

To analyze the frontiers’ sensitivity to a change in the quota, it is sufficient to
assume a constant environmental policy, i.e., Ēt = Ē ∀t .

Assuming that mt = 0 and replacing ≥ by =, (9) can be rewritten as

R(
, Ē)U1[R(
, Ē)
, Pt − �(Pt ) + Ē] + γU2[R(
, Ē)
,

Pt − �(Pt ) + Ē] = 0, (23)

with 
 ≡ 
(kt , Ē) = (1 − α)Akα
t Ē1−α−β . This implicitly defines the indiffer-

ence frontier f (kt , Ē). Under our assumptions on preferences, the derivatives are
negative: Pt = f (kt−

, Ē−).19The richer the economy, the lower the level of pollution
from which the decision to abate pollution is taken. Moreover, in the space of state
variables, the frontier shifts downward when the quota increases. Starting from
an initial state in the ZM domain, the economy will engage in maintenance even
faster because the global quota is high. This feature has significant implications for
agents’ behavior. In fact, using a large number of permits will hasten the moment
when agents will be willing to devote resources to environmental maintenance.
This property is due to the tightening of the environmental constraint: when more
permits are allocated to firms, there are more harmful emissions during each
period. The explanation is also based on the role played by the redistributive facet
of environmental policy: a rise in Ē tends to increase agents’ incomes and implies
that the weight of the financial constraint diminishes in their tradeoffs. They thus
have a greater incentive to reduce pollution. In contrast, fixing the quota to a lower
level provokes a shifting of the frontier toward the top of the k–P space and delays
the moment when maintenance becomes operative.
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Thereafter, we illustrate our analysis in the particular case where the assimilation
and utility functions are

�(Pt ) =
{
θPt (P − Pt) ∀Pt < P

0 Pt ≥ P

and

U(c, P ) = log c − φ
P 2

2
.

The assimilation function defined above satisfies Assumption 1 if θ < 1, with

P̃ = P/2 and �max = θP
2
/4. The utility function satisfies Assumption 2.

5.2. Dynamics and Basins of Attraction

The dynamics of the model for the specifications above are computed in Ap-
pendix F.1.

In the region of positive maintenance, the dynamics given by the system of
equations (18) has the effect that every initial state is mapped onto some curve of
equation P = ϕ(k), and the state then remains on this curve. Under appropriate
conditions, there are two fixed-point states that are located on this curve. The set
of initial positions (k0, P0), which are mapped by the dynamics to these two equi-
libria, form two curves that delimit three zones that are illustrated schematically
in Figure 1. The equations for these curves are described in Appendix F.2.

The fixed point with smaller capital and larger pollution is unstable. The other
fixed point is a stable equilibrium. However, this point may or may not be located
inside the PM region—or, in other words, it may or may not be admissible. These
two situations are represented respectively on the left and on the right of Figure 1.

The zone at the top is the divergence zone in both cases.20 A trajectory that
originates there goes to an asymptotic trap, as illustrated in Figure 2, in which
specific numerical values are used. When the equilibrium (k∗+

pr (Ē), P ∗−
pr (Ē)) is

admissible, a trajectory originating in the central zone approaches this equilibrium
from above: the sequence kt is increasing and the sequence Pt is decreasing,
except possibly for the first step. In the bottom zone, trajectories approach the
stable equilibrium from below. When the (k∗+

pr (Ē), P ∗−
pr (Ē)) is not admissible,

trajectories may follow the curve P = ϕ(k), and then leave it to converge to the
ZME, which is admissible in that case.

5.3. Effect of Choosing the Quota

Corollary 1 states that it is possible to exclude environmental and poverty traps
provided the exogenous quota is higher than the critical level ĒL (see Section 3.3).
However, nothing guarantees that the growth path of an economy located in the
region with irreversible pollution is not an asymptotic environmental and poverty
trap, AE&PT. Indeed, Figure 2 provides an illustration of this kind of trajectory.

https://doi.org/10.1017/S1365100511000113 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100511000113


EMISSION PERMITS AND ENVIRONMENTAL AND POVERTY TRAPS 279

FIGURE 1. Convergence patterns. Left: without admissible zero-maintenance equilibrium.
Right: without admissible positive-maintenance equilibrium.

The rationale behind the existence of an AE&PT is the following. In this region,
the concentration of pollution is such that, on one hand, nature does not assimi-
late pollution any more and, on the other, households suffer from environmental
damage. In order to remedy this damage, households have no other option but to
devote a sizable share of their resources to maintenance. This decision is made
at the expense of savings and consumption, therefore causing a break in capital
accumulation. Moreover, over the long term this effort is not enough to compensate
for emissions by firms or to stop the rise in pollution. Even if pollution decreases
between the first and second periods, the trajectory finally meets the equilibrium

 5
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 10

 0  0.1  0.2  0.3  0.4  0.5
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FIGURE 2. A divergence trajectory. The dashed curve is the limit of the divergence region.
Parameters are listed in the text, and Ē = 0.6.
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FIGURE 3. Basin of attraction and divergence region when Ē = 0.6 (left) and Ē = 1.2
(right).

relation, P = �(k, Ē). We then observe a decrease in capital stock accompanied
by an increase in pollution. This impoverishment process inexorably reoccurs
from period to period.

Starting the analysis by assuming that the quota equals a level Ē > ĒL, we
wonder what impact the choice of Ē may have on the economy’s possibility of
reaching the irreversibility space, given that it does not originally belong to it.
Indeed, belonging to this space is the key factor explaining the divergence.

More precisely, we focus on the dynamics in the PM region and compare
the evolution of the stable reversible solution’s basin of attraction21 with that of
the divergence region. We chose for our model the following set of parameters:
(A, α, β, θ, γ, φ, P ) = (1.9, 0.3, 0.6, 0.15, 1, 1, 6). In this case, the irreversibility
threshold equals ĒL = 0.58. Graphic representations of the basins of attraction,
for values Ē1 = 0.6 and Ē2 = 1.2, are displayed in Figure 3.

The comparison between these two graphics clearly reveals that the “frontier”
delimiting the basin of attraction from the divergence region shifts down, in the
k–P space, when the quota is raised. Diverging requires the economy to be situated
initially in the irreversible pollution region when the quota is low (except for very
low capital levels). However, once the quota is relatively important, we see that
the set of initial conditions from which the economy experiences (asymptotic)
divergence exhibits pollution levels less than the irreversibility threshold P . In
other words, for an economy that does not initially suffer from irreversible envi-
ronmental damage, choosing the strictest quota minimizes, and indeed rules out,
the risk that the economy will follow a development trajectory characterized by
impoverishment in environmental and physical capital. This property seems quite
natural because a high quota tends to strengthen the environmental constraint.
The rhythm of pollution accumulation is more sustained and consequently the
recovery process of nature is saturated faster. In turn, agents react by giving
priority to maintenance expenditures at the expense of wealth accumulation. The
impoverishment mechanism described above finally will arise for lower pollution
levels (and less than the irreversibility threshold).
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As far as PM solutions are concerned, this numerical example thus confirms the
results obtained during the stationary analysis, because the observations tend to
recommend assigning the lowest quota, provided that it is greater than the critical
threshold ĒL.

Before ending this discussion, note that when pollution is reversible in the
initial period, assigning a quota Ē = ĒL + ε, with ε > 0 infinitesimal, protects
the economy not only from convergence toward an environmental and poverty trap
but also from a process of divergence.22 However, the hypothetical case where
initial pollution already is irreversible remains. If we considered this extreme
situation, we would logically be induced to appreciably review our conclusions.
In such a situation, one can expect that public authorities would have to set the
quota to a very low level, and less than ĒL, in order to allow the economy to
stabilize at a stationary trap. The convergence toward these states may finally
constitute a lesser evil with regard to the perpetual impoverishment that goes with
the asymptotic trap.

6. CONCLUSION

Using an OLG model with irreversible pollution, this paper first addresses the
question of how to determine whether environmental regulation consisting of the
assignment of an emission quota is a means to prevent the economy from reaching
an environmental and/or poverty trap. In our framework, the economy potentially
can face two kinds of traps. The first trap is a steady state, with an irreversible
level of pollution and a low level of wealth, in which the economy can stabilize in
the long run. The second is an asymptotic trap, in the sense that it corresponds to a
growth path associated with perpetual erosion of both economic and environmental
resources. The analysis reveals the existence of a critical threshold for polluting
emissions. Choosing an emission quota above this level is a means of avoiding
the “stationary” trap. Moreover, fixing the quota at the lowest level beyond this
threshold is also sufficient to protect an economy that is not initially endowed with
an irreversible level of pollution from falling into the asymptotic trap.

In the context of the absence of traps, we next analyze the impact of a reduction
of the quota on desirable equilibrium properties. The repercussions are widely de-
pendent on the type of equilibrium considered. In fact, equilibria with reversible
pollution are only distinguished by the fact that private agents may or may not
engage in maintenance. In the zero maintenance equilibrium, reducing the quota
effectively causes a decrease in the level of pollution. However, it also implies a
break in capital accumulation. There thus is a dilemma between pollution control
and economic growth. In the positive maintenance equilibrium, on the other hand,
we show that a tightening of environmental policy is accompanied by both a
fall in pollution and a rise in capital at a steady state. Thus, a reform of per-
mits that has ambitious environmental objectives brings a double dividend to the
economy.
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NOTES

1. Irreversibility is involved in local pollutant problems such as the eutrophication of lakes, the
salinification of soils, or the loss of biodiversity because of land use [Dasgupta and Mäler (2003)].
There is also now more and more evidence that global environmental threats, such as global warming,
are associated with irreversible pollution. Indeed, experts of the second working group of the Intergov-
ernmental Panel on Climate Change (2007) have identified positive climate feedbacks due to emissions
of greenhouse gases (GHG). Consequences of increasing emission levels and concentrations of GHG
for the regeneration capacity of natural ecosystems can be summarized as follows. Oceans, which form
the most important carbon sink, display a buffering capacity that begins saturating. At the same time,
the assimilation capacity of terrestrial ecosystems (lands, forests, the other important carbon sink) will
likely peak by midcentury and then decline to become a net source of carbon by the end of the present
century.

2. See the discussion in Prieur (2009) on the relevance of this kind of shape.
3. We do not consider any first period consumption. This simplification allows us to focus on

the crucial trade-off between final good and environmental good consumption. Adding first period
consumption would not change our qualitative results.

4. The notation Ui stands for the derivative of function U with respect to its ith variable.
5. Pollution exerts a “distaste” effect on consumption [Michel and Rotillon (1995)].
6. Irreversibility should be understood as ecological irreversibility (due to the existence of a

threshold in the decay function). It has nothing to do with irreversibility in the decision making process,
á la Arrow and Fisher (1974), which would imforce real emissions Et − γmt to be nonnegative. In our
setting, if in a period the threshold were to be exceeded, it would be possible—but not systematic—to
bring pollution back to a level where natural assimilation becomes operative again by devoting a
sufficient amount of resources to maintenance.

7. In this framework, households typically face an intergenerational externality. When a young
agent chooses the amount of resources to devote to maintenance, she only cares about the environment
she will enjoy in old age and ignores the benefits of her investment for future generations.

8. See Section 5.1 for a complete examination of its properties.
9. The subscript “z” (resp. “p”) stands for the zero maintenance (resp. positive maintenance)

solution. In the remainder of the paper, the second index “r” (resp. “i”) will refer to a reversible (resp.
irreversible) level of pollution.

10. Total differentiation of (16) with respect to k yields

dPt

dkt

= −R1U1 + Rc1U11 + γ c1U12

RU12 + γU22
.

This derivative is negative under the assumptions on preferences and the Cobb–Douglas production
function.

11. The expression of �2 is given by

dPt

dĒt

= −R2U1 + Rc2U11 + γ c2U12

RU12 + γU22
.

The sign of the numerator in �2 is unknown. But we can rewrite

R2U1 + Rc2U11 = R2U1

(
1 − 1

σ

)
.

Now, imposing σ < 1 implies �2 < 0.
12. It is possible to provide a more general characterization of PMSS by referring to a simple

graphical analysis (see Appendix B.4).
13. That is why we use the superscript “−” to reflect the level of pollution and “+” for the level of

capital.
14. Which is fulfilled, for example, by the following utility function: U(c, P ) = log c − φ

2 P 2.
15. That is influenced by our aim of providing sufficient conditions to avoid traps.
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16. With a slight abuse of notation, we have denoted

�k = d

dk
�(k, Ē, k).

17. Note that if, following Ono (2002), we consider the specific class of separable utility functions
that are logarithmic in consumption, then pollution is positively related to capital but independent of
the quota. Thus, P ∗′

pr (Ē) > 0 under condition (21) alone.
18. That is, a decrease in the quota causes pollution to increase and capital to decrease in steady

state.
19. They are given by

dPt

dkt

= −
1
R1U1 + (RU11 + γU12)(R1
 + R)

(1 − �′)(RU12 + γU22)
,

dPt

dĒ
= − (R1
2 + R2)U1 + (RU11 + γU12)((R1
2 + R2)
 + R
2)

(1 − �′)(RU12 + γU22)
.

20. In the rest of the paper, we will speak of “convergence toward an asymptotic trap” and “diver-
gence” interchangeably, because the sequence of pollution stocks diverges along this type of trajectory.

21. The stable reversible solution is unique here and corresponds to the PM steady state defined in
Proposition 2.

22. This is the case of study that a priori makes the most sense. In fact, the role of environmental
policy is to intervene before facing an irreparable situation.

23. Because we restrict the analysis to quotas that are greater than the threshold ĒL, imposing
ĒL ≥ Ēc is sufficient to conclude. More precisely, ĒL ≥ Ēc holds when and only when β ≥
(1 − α)(1 − αα/(1−α)). This bound is not very restrictive. If we suppose that the share of labor in
production 1 − ν belongs the range (0.6, 0.7) (which is the common range for the estimations of this
parameter), then this inequality is satisfied, for instance, for ζ = 1.

24. Note that this function satisfies the assumption (ii) in Proposition 2.
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APPENDIX A: EXISTENCE CONDITIONS
FOR ZME (PROPOSITION 1)

In the ZM region, a steady state solves

k = (1 − α)AkαĒ1−α−β, (A.1)

�(P ) = Ē,

where Ē = limt→∞ Ēt is assumed to exist.
The first equation has a unique solution different from 0:

k∗
zr (Ē) = [

(1 − α)AĒ1−α−β
] 1

1−α .

When pollution is irreversible, the second equation in (A.1) imposes Ē = 0. But, under
Assumption 2, this limit case is excluded. As for the existence of an AET, it is enough
to see that if, for some t0, Pt0 > P , then the dynamics of pollution (11) takes the form
Pt+1 = Pt +Ēt , for all t ≥ t0, and therefore if Ēt → Ē, the sequence Pt diverges to infinity.

If pollution is reversible, then steady state pollution must solve, for a given quota Ē,
�(P ) = Ē. According to the inverted U shape of �(P ), it is clear that �(P ) = Ē admits
a solution P ∗

zr (Ē) iff �max ≥ Ē, where �max is the maximal absorption level reached for a
given P̃ . Moreover, if condition (12) holds with strict inequality, then there are two positive
steady state values for pollution, and P̃ lies in between. The proof of local stability is
provided in Appendix D.1.

APPENDIX B: EXISTENCE CONDITIONS
FOR PME (PROPOSITION 2)

B.1. PROPERTIES OF m(k, Ē )

Equilibrium maintenance is defined as

m(k, Ē) = (1 − α)AĒ1−α−βkα − k

with, for k > 0 and Ē > 0,

m1(k, Ē) = α(1 − α)Akα−1Ē1−α−β − 1

and m11(k, Ē) < 0, m2(k, Ē) > 0, m22(k, Ē) < 0, m12(k, Ē) > 0.
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For a given Ē > 0, ∃!k ∈ [0,+∞) such that m(k, Ē) = 0. Let k̄(Ē) be this value:

k̄(Ē) = [
(1 − α)AĒ1−α−β

] 1
1−α . (B.1)

Then m(k, Ē) ≥ 0 for k ∈ [0, k̄(Ē)], k̄′(Ē) > 0. Note that k̄(Ē) is equal to k∗
z (Ē), the level

of capital in the zero maintenance steady state.
In addition, ∃!k ∈ [0, k̄(Ē)] such that m1(k, Ē) = 0. Let k̃(Ē) be this value:

k̃(Ē) = [
α(1 − α)AĒ1−α−β

] 1
1−α . (B.2)

Then m1(k, Ē) ≥ 0 for k ∈ [0, k̃(Ē)], the value reached in k̃(Ē), is

m(̃k(Ē), Ē) = A(1 − α)2 [α(1 − α)A]
α

1−α Ē
1−α−β

1−α ,

and m(̃k(Ē), Ē) > 0 for all Ē > 0. Note that k̃′(Ē) > 0, for all Ē > 0.

B.2. EQUILIBRIUM DYNAMICS

The analysis focuses on the existence of both asymptotic traps and positive steady states.
As for steady states, we restrict the study to the interval [0, k̄(Ē)], with k̄(Ē) defined in

(B.1), on which maintenance is necessarily nonnegative (see Appendix B.1). The system
to solve is

P = �(k, Ē),

�(P ) = �(k, Ē, k),

where �(P ) may be zero if P happens to be larger than P . Note that the study of PM steady
state will be performed taking Ē as given. This allows us to rewrite functions �(k, Ē) and
�(k, Ē, k) as follows:

�(k, Ē) = ϕ(k) (B.3)

with ϕ′(k) < 0 and
�(k, Ē, k) = θ(k).

Therefore, the problem of finding equilibria is reduced to the analysis of the equation

�[ϕ(k)] = θ(k). (B.4)

B.3. EXISTENCE OF AN ASYMPTOTIC TRAP (PROPOSITION 2 (II))

First, observe that as ϕ(k) is decreasing, so is ϕ−1(P ). Assume Ē is fixed, and pick a value
η ∈ (0, Ē).

Using a recurrence, we prove that if (kt , Pt ) is such that

Pt ≥ P̃ , Pt = ϕ(kt ), and �(Pt ) + γ (1 − α)AĒ
1−α−β
t kα

t ≤ Ē − η, (B.5)

for t = t0, then for all t ≥ t0, Property (B.5) holds, and Pt+1 ≥ Pt + η. This will imply that
Pt → ∞; hence the asymptotic environmental trap. Because limk→0 ϕ(k) = +∞, we have
limP→∞ ϕ−1(P ) = 0. This will imply that kt → 0, hence the asymptotic poverty trap.
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ϕ−1(P̃ ) k̄(Ē)

Ē

Γmax

ϕ−1(P ) ϕ−1(P+
zr) ϕ−1(P−

zr)

Λ(k)

Θ(k)

k∗h
pr k∗l

pr

FIGURE B.1. Behavior of θ(k) and �(k).

Assume therefore that (B.5) holds. The dynamics (18) for Pt implies that

Pt+1 = Pt − �(Pt ) + Ēt − γ (1 − α)AĒ
1−α−β
t kα

t + γ kt+1

≥ Pt + Ēt −
[
�(Pt ) + γ (1 − α)AĒ

1−α−β
t kα

t

]
≥ Pt + Ēt − Ē + η ≥ Pt + η.

In the last inequality, we have used the fact that Ēt decreases to Ē. But because ϕ−1(P )

is decreasing and Pt+1 > Pt , we have kt+1 = ϕ−1(Pt+1) ≤ ϕ−1(Pt ) = kt . Using the facts
that �(P ) is also decreasing for �(P ) for P ≥ P̃ , and that Ēt+1 ≤ Ēt by assumption, we
finally have

�(Pt+1) + γ (1 − α)AĒ
1−α−β

t+1 kα
t+1 ≤ �(Pt ) + γ (1 − α)AĒ

1−α−β
t kα

t ,

and property (B.5) holds at t + 1.
To conclude with the existence of an asymptotic poverty and environmental trap, observe

that there indeed exist values (kt , Pt ) such that (B.5) holds. It is sufficient to pick kt small
enough so that γ (1 − α)AĒ1−α−βkα

t ≤ Ē − η, and Pt = max(ϕ(kt ), P ).

B.4. EXISTENCE OF POSITIVE MAINTENANCE STEADY STATES

This section provides existence conditions for both reversible and irreversible steady states
(Propositions 2 (i) and (iii)).

According to (B.4), studying existence boils down to comparing the behavior of two
functions of k, Ē being given. The general form of these two functions is displayed in
Figure B.1.

The first function, θ(k) := �(k, Ē, k) = Ē − γm(k, Ē), is such that θ ′(k) =
−γm1(k, Ē), θ(0) = θ ′s[k̄(Ē)] = Ē. It is first decreasing until k̃(Ē), then increasing
until k̄(Ē). It is convex: θ ′′(k) > 0. Thus, θ(k) has a U shape.
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The second function, �(k) = �[ϕ(k)], has a first derivative, �′(k) = ϕ′(k)�′[ϕ(k)],
whose sign follows from the properties of �() because ϕ′(k) < 0: it is negative when ϕ(k) ∈
[0, P̃ ] ↔ k ∈ [ϕ−1(P̃ ), ϕ−1(0)], whereas it is positive for any k ∈ [ϕ−1(P ), ϕ−1(P̃ )]. Thus,
�(k) is also inverted U-shaped. In addition, �[ϕ−1(P )] = 0 and �[ϕ−1(P̃ )] = �(P̃ ) =
�max.

The main difficulty we encounter when comparing θ(k) and �(k) is that the ranking
between values of k determining the properties of θ(k) (k̃(Ē), k̄(Ē), etc.) and those related
to the behavior of �(k) (ϕ−1(P ), ϕ−1(P̃ ), etc.) is a priori unknown. Thus, there is no other
option but to impose technical conditions in order to ensure some correspondence between
the domains of definition of these two functions.

Assume k̄(Ē) > ϕ−1(P̃ ); then two kinds of equilibria may exist. Their corresponding
levels of capital belong to three different subintervals of [0, k̄(Ē)].

Environmental traps: A SS in [0, ϕ−1(P )] is an ET. Referring to Figure B.1, such a SS
exists if and only if the curves �(k) and θ(k) intersect for some k < ϕ−1(P ), that is to say,
θ(k) crosses the horizontal axis. A necessary condition for this is that the minimal value
of θ(k) be negative. This minimal value is Ē − γm(̃k(Ē), Ē), where the value of k̃ has
been established in (B.2). A direct computation reveals that the relation γm(̃k(Ē), Ē) ≥ Ē

holds if and only if Ē ≤ ĒL with

ĒL = [
γA(1 − α)2

] 1−α
β [α(1 − α)A]

α
β .

Hence the necessary condition. This condition is not sufficient, however, because it
remains possible that the two curves cross each other for some k > ϕ−1(P ). If the curve
θ(k) crosses the horizontal axis, it can do it at most twice, because it is convex.

According to the sufficient conditions for local stability/instability (see Appendix D.2),
the SS with the lowest capital is unstable (because it verifies θ ′(k) < 0 and �′(k) = 0)
whereas the second (with θ ′(k) > 0) is locally stable. Thus, the latter is the poverty trap.

Steady states with reversible pollution: Consider first the interval [ϕ−1(P ), ϕ−1(P̃ )]:

— Assume first that k̃(Ē) > ϕ−1(P ). If Ē > ĒL and (12) holds that is, if �max ≥ Ē,
then there exists a unique SS when the curves cross each other, θ(k) being decreasing
and �(k) being increasing.
A steady state may also exist at the intersection between the two curves when both
are increasing.
These SS alternatively satisfy θ ′(k) < �′(k) and the reverse, these inequalities
respectively being the sufficient condition for instability and for local stability.

— Consider now the case k̃(Ē) < ϕ−1(P ): only the second type of equilibrium exists if
Ē > ĒL and (12) holds. Under these conditions, the curves cross each other at least
once. Because �[ϕ−1(P )] < θ [ϕ−1(P )] and �[ϕ−1(P̃ )] ≥ Ē > θ(ϕ−1(P̃ )), one
intersection lies in the interval [ϕ−1(P ), ϕ−1(P̃ )]. Note that it cannot be deduced,
without further assumptions, that this intersection is unique, because �(k) is not
convex.

Next, on the interval [ϕ−1(P̃ ), k̄(Ē)], there is a unique steady state if k̄(Ē) > ϕ−1(P −
zr )

and (12) holds. The technical condition enables to rank the two functions at the upper
bound k̄(Ē) because θ [k̄(Ē)] = Ē > �[k̄(Ē)]. In addition, with (12), it is sufficient to
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ensure the existence of an intersection on the interval. Because it is more restrictive than
k̄(Ē) > ϕ−1(P̃ ), it is the one that appears in Proposition 2.

This steady state (k∗+
pr , P ∗−

pr ), with θ ′(k) > 0 and �′(k) < 0, is locally stable (see
Appendix D.2). Among the PM steady state with reversible pollution, it is the one associated
with the highest wealth and, according to the equilibrium relation (17), the lowest pollutant
concentration.

APPENDIX C: ADMISSIBILITY ANALYSIS
(PROOF OF PROPOSITION 3)

First observe that according to Proposition 1 and the discussion on stability in Appendix D.1,
inequality (12) in the strict sense is a necessary condition for a stable ZMSS to exist. From
the analysis of Appendix D.1, this ZMSS (k∗

zr , P ∗
zr ) is a solution of the fixed-point system:

k = 
(k), P = g(P ) := P − �(P ) + Ē

with 
(k, Ē) = (1 − α)AkαĒ1−α−β . According to (15) and (18), the indifference frontier
is the set of points (kt , Pt ) that satisfy mt = 0; that is,

Pt+1 = ϕ(kt+1) Pt+1 = g(Pt ) kt+1 = 
(kt ).

In other words, this is the set of points that obey the two dynamics simultaneously. The
equation of the frontier is therefore

g(P ) = ϕ[
(k)].

More precisely, the ZM region is the set of points where ϕ[
(k)] ≥ g(P ). The interior of
this region is characterized by the inequality ϕ[
(k)] > g(P ), and the positive maintenance
region is where mt > 0, which is equivalent to ϕ[
(k)] < g(P ). We have already seen
that under Assumption 2, the function ϕ(k) is decreasing.

Assume now that the ZMSS (k∗
zr , P ∗

zr ) is admissible, that is, in the ZM region. Necessarily,

ϕ[
(k∗
zr )] > g(P ∗

zr ).

But k∗
zr = 
(k∗

zr ) and P ∗
zr = g(P ∗

zr ), so the condition is simply

ϕ(k∗
zr ) > P ∗

zr . (C.1)

Condition (20) of Proposition 2 (iii) for the existence of a locally stable PM steady state is

ϕ−1(P ∗
zr ) ≤ k∗

zr ,

which is equivalent to
P ∗

zr ≥ ϕ(k∗
zr ).

This is in contradiction to condition (C.1). This PM steady state does not exist. Conversely,
if the inequality (20) holds, the PM steady state exists, but the ZMSS is not admissible.
This proves statement (i).
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Assume now that (20) holds, and that the stable PM steady state exists. The analysis of
Appendix B.4 explains that the capital level k∗+

pr solves the equation

�[ϕ(kpr)] = Ē − γm(kpr). (C.2)

On one hand, because the equilibrium maintenance is positive, we must have m(kpr) =

(kpr) − kpr > 0. Because ϕ is decreasing, this implies that

ϕ[
(kpr)] < ϕ(kpr). (C.3)

On the other hand, introducing the functions g(·) and 
(·) into (C.2), we find

ϕ(kpr ) = g[ϕ(kpr)] − γm(kpr ) < g[ϕ(kpr)]. (C.4)

Joining (C.3) to (C.4) and using the fact that Ppr = ϕ(kpr ), we find

ϕ[
(kpr)] < g(Ppr),

which means precisely that the PM steady state is admissible.

APPENDIX D: LOCAL DYNAMICS AND STABILITY
D.1. THE ZMSS

In the dynamics system (11), the two variables are independent. The dynamics for {kt }
takes the form

kt+1 = 
(kt ) = m(kt , Ē) + kt .

It is possible to deduce from the analysis of the function m (see Appendix B.1) that at the
fixed point k̄(Ē), 0 < 
′(k̄(Ē)) < 1. This implies local stability for k∗

zr (Ē).
Next, consider the dynamics for P . In the case �max = Ē, there is a unique fixed point

P ∗
zr (Ē) = P̃ . In that case, the sequence {Pt } is increasing if P0 ≤ P̃ , and it converges to P̃ .

However, if P0 > P̃ , the sequence diverges to +∞.
In the case �max > Ē, there are two fixed points located on each side of P̃ : P ∗−

zr (Ē) <

P̃ < P ∗+
zr (Ē). Moreover, from Assumption 1, �′[P ∗+

zr (Ē)] < 0 < �′[P ∗−
zr (Ē)] < 1. On

the other hand, by linearizing the system (11), we get

dPt+1 = {1 − �′[P ∗
zr (Ē)]}dPt .

It follows that the SS P ∗−
zr (Ē) is stable, but the SS P ∗+

zr (Ē) is unstable.

D.2. THE PMSS

For a reversible SS (k∗
pr (Ē), P ∗

pr (Ē)), the linearization of (18) gives the Jacobian matrix

J = 1

ϕ′[k∗
pr (Ē)] − γ

(−γ
1(k
∗
pr (Ē), Ē) 1 − �′[P ∗

pr (Ē)]
−γ
1(k

∗
pr (Ē), Ē)ϕ′(k∗

pr (Ē)) {1 − �′[P ∗
pr (Ē)]}ϕ′(k∗

pr (Ē))

)
.
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Now, it is clear that det(J ) = 0. In fact, due to the equilibrium relation (17), the system
reduces to a one-dimensional dynamics. Thus, the two eigenvalues are 0 and

tra(J ) = −γ
1(k
∗
pr (Ē), Ē) + {1 − �′[P ∗

pr (Ē)]}ϕ′[k∗
pr (Ē)]

ϕ′[k∗
pr (Ē)] − γ

.

According to Assumption 1, �′(P ) < 1 ∀P . Following the same reasoning as in Ap-
pendix D.1, we have 
1() > 0. Because ϕ′() < 0, the denominator is negative, and
the expression above is positive. Therefore, there will be local stability if tr(J ) < 1 and
instability if tra(J ) > 1.

The following condition is sufficient for local stability:

γ (1 − 
1(k
∗
pr (Ē), Ē)) > �′[P ∗

pr (Ē)]ϕ′[k∗
pr (Ē)]. (D.1)

It is equivalent to �′[k∗
pr (Ē)] > �′[k∗

pr (Ē)], in the notation of Appendix B.4.
Under condition (20) in Proposition 2, the equilibrium k∗+

pr satisfies

k̃(Ē) < k∗+
pr < k̄(Ē)

and
P ∗−

pr (Ē) < P ∗−
zr (Ē) < P̃ ,

thus it is such that 
1(k
∗+
pr (Ē), Ē) < 1 and �′[P ∗−

pr (Ē)] > 0, and the inequality (D.1)
holds. The equilibrium is therefore stable.

Finally, the following condition is sufficient for local instability:

γ (1 − 
1(k
∗
pr (Ē), Ē)) < �′[P ∗

pr (Ē)]ϕ′[k∗
pr (Ē)]. (D.2)

In the notation of Appendix B.4, this reads as �′[k∗
pr (Ē)] < �′[k∗

pr (Ē)].
Any PME with k∗

pr (if it exists), satisfying 
1(k
∗
pr (Ē), Ē) > 1 and �′[P ∗

pr (Ē)] < 0, is
therefore unstable.

APPENDIX E: PROOF OF PROPOSITION 5
We consider the impact of a change in Ē on the equilibrium outcome (k∗

pr (Ē), P ∗
pr (Ē)).

The steady state solves the system

P ∗
pr = �(k∗

pr , Ē),

�(P ∗
pr ) = �(k∗

pr , Ē, k∗
pr ),

where �( ) and �( ) are deduced from equations (17) and (18). By substituting the equi-
librium relation into the second equation, we get

�(�(k∗
pr , Ē)) = �(k∗

pr , Ē, k∗
pr ).

This equation implicitly defines k∗
pr as a function of Ē: k∗

pr = k∗
pr (Ē) with

dk∗
pr

dĒ
= �2 − �2�

′

�1�′ − �k

.
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With a slight abuse of notation, we have denoted

�k = d

dk
�(k, Ē, k).

Our analysis only makes sense for the stable SS; hence we refer to the two sufficient
conditions for local stability: 
1(k

∗
pr (Ē), Ē) < 1 and �′[P ∗

pr (Ē)] > 0. The sign of the
partial derivatives �1 and �2 being known, it remains to determine the sign of �2. The
emissions function takes the form �(k, Ē, k) = Ē − γm(k, Ē). For any k, its derivative
with respect to Ē is �2(k, Ē, k) = 1−γ
2(k, Ē). Because 
12(k, Ē) > 0, 
2 is increasing
in k. Computing its value at the upper bound k̄(Ē) yields


2(k̄(Ē), Ē) = (1 − α − β)[A(1 − α)]1/(1−α)Ē−β/(1−α).

Now, it appears that 
2(k̄(Ē), Ē) ≤ 1/γ is equivalent to

Ē ≥ Ēc := [γ (1 − α − β)](1−α)/β [A(1 − α)]1/β .

For any Ē ≥ Ēc, we have �k(k, Ē, k) ≥ 0 ∀k ∈ (ϕ−1(P ), k̄(Ē)].23 Therefore, if this
inequality holds (condition (21) in Proposition 5), then it appears that k∗′

pr (Ē) < 0.
Next, we replace k∗

pr with k∗
pr (Ē) in the equilibrium relation to compute the derivative

of P ∗
pr (Ē). We get

P ∗′
pr (Ē) = �1�2 − �2�k

�1�′ − �k

,

and this expression is equivalent to

P ∗′
pr (Ē) = U1(�kR2 − �2R1) + (RU11 + γU12)(�kc2 − �2c1)

(�1�′ − �k)(RU12 + γU22)
.

The denominator and the first term in the numerator are positive. Because RU11+γU12 < 0,
imposing �kc2 − �2c1 < 0 (second condition in Proposition 5) ensures that P ∗′

pr (Ē) > 0.
This condition can be rewritten

�k(k
∗
pr (Ē), Ē, k∗

pr (Ē))

�2(k∗
pr (Ē), Ē, k∗

pr (Ē))
<

c1(k
∗
pr (Ē), Ē)

c2(k∗
pr (Ē), Ē)

.

Now, note that SS consumption and emissions can be expressed as

c(k∗
pr (Ē), Ē) = R(k∗

pr (Ē), Ē) = c∗
pr (Ē),

�(k∗
pr (Ē), Ē, k∗

pr (Ē)) = Ē − γm(k∗
pr (Ē), Ē) =: �∗

pr (Ē),

and their derivatives with respect to Ē read respectively

c∗′
pr (Ē) = c1k

∗′
pr (Ē) + c2,

�∗′
pr (Ē) = �kk

∗′
pr (Ē) + �2.
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Thus, imposing c∗′
pr (Ē) < 0 and �∗′

pr (Ē) > 0 implies

−�k(k
∗
pr (Ē), Ē, k∗

pr (Ē))k∗′
pr (Ē)

�2(k∗
pr (Ē), Ē, k∗

pr (Ē))
< 1 < − c1(k

∗
pr (Ē), Ē)k∗′

pr (Ē)

c2(k∗
pr (Ē), Ē)

and the condition (22) follows from this ranking.

APPENDIX F: DYNAMIC ANALYSIS: AN EXAMPLE

F.1. GLOBAL DYNAMICS

In the ZM region, dynamics is given by

kt+1 = (1 − α)Akα
t Ē1−α−β,

Pt+1 = Pt [1 − θ(P − Pt)] + Ē

if pollution is reversible. Otherwise, the dynamics for pollution is

Pt+1 = Pt + Ē.

For the specific functional forms considered in Section 5, the equilibrium relation �( )

defined by (17) simplifies to24

�(k, Ē) = 1

γφk
.

Thus, the dynamics, when maintenance is positive, becomes

kt+1 = 1

γφPt+1
,

Pt+1 = x(kt , Pt ) + √
x(kt , Pt )2 + 4/φ

2
≥ 0,

with

x(kt , Pt ) =
{
Pt + Ē − γ (1 − α)Akα

t Ē1−α−β if Pt ≥ P̄

Pt [1 − θ(P − Pt)] + Ē − γ (1 − α)Akα
t Ē1−α−β else.

F.2. BASINS OF ATTRACTIONS

According to the dynamics of the positive maintenance region, every initial state of the
system (k0, P0) is mapped to the curve of the equation P = ϕ(k) = 1/(γ φk). The set
of initial positions that are mapped to a particular point (k1, P1) = (k, P ) of this curve is
obtained by solving the second equation of (3.3) (written with t = 0) for (k0, P0). This
gives

P = P0 − �(P0) + �(k0, Ē, k);
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that is,

k0 =
[

P0 − �(P0) − P + Ē + γ k

γ (1 − α)AĒ1−α−β

] 1
α

.

Restricted to the curve P = ϕ(k), the dynamics (3.3) has steady states and corresponding
basins of attraction. The relationship above extends these basins of attraction to the rest
of the positive maintenance region. In the standard case depicted in Figure 1, the curve
P = ϕ(k) is split into three basins: the part above the unstable steady state, this steady
state itself, and the part below it. The attraction basin of the stable equilibrium can be
further refined into regions where the convergence is “from the top” and “from the bottom,”
separated by a line where convergence occurs in one step.
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