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Abstract
In this paper, we study the optimal proportional reinsurance problem in a risk model with two
dependent classes of insurance business, where the two claim number processes are correlated
through a common shock component, and the criterion is to minimise the probability of drawdown,
namely, the probability that the value of the surplus process reaches some fixed proportion of its
maximum value to date. By the method of maximising the ratio of drift of a diffusion divided to its
volatility squared, and the technique of stochastic control theory and the corresponding Hamilton–
Jacobi–Bellman equation, we investigate the optimisation problem in two different cases. Further-
more, we constrain the reinsurance proportion in the interval [0,1] for each case, and derive the
explicit expressions of the optimal proportional reinsurance strategy and the minimum probability of
drawdown. Finally, some numerical examples are presented to show the impact of model parameters
on the optimal results.
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1. Introduction

In the past few decades, optimal reinsurance problems for various risk models have attracted the
attention of a large number of scholars in actuarial sciences area, and the technique of stochastic
control theory and the corresponding Hamilton–Jacobi–Bellman (HJB) equation are widely used to
cope with these problems. See, for example, Browne (1995), Schmidli (2001, 2002), Promislow &
Young (2005), Bai et al. (2013), Liang & Bayraktar (2014), Liang & Yuen (2016) and Bi et al.
(2016). The main popular criteria include maximising the expected utility of the terminal wealth,
minimising the probability of ruin of the insurer and so on.
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Our paper falls naturally within the area of optimally controlling wealth to reach a goal, which is an
important research topic. It began with the seminal work of Dubins & Savage (1976 [1965]), and
continued with the work of Pestien & Sudderth (1985), Sudderth et al. (1989), Browne (1997, 1999a,
1999b), Young (2004),Moore et al. (2006),Wang&Young (2012a, 2012b) and Yener (2015). A typical
problem considered in this research area is to control a process to minimise the probability of ruin. See, for
example, Promislow & Young (2005) found the optimal investment and quota-share reinsurance stra-
tegies to minimise the probability of ruin of an insurer who faces a claim process that follows Brownian
motion with drift. Bayraktar & Young (2008) considered the minimum probability of ruin when an
agent’s rate of consumption is ratcheted; i.e., it forms a non-decreasing process. Azcue & Muler (2013)
also studied the minimum probability of ruin, assuming that the decision-maker can invest dynamically
part of the reserve in an asset that has a positive fixed return. Bäuerle & Bayraktar (2014) obtained that
the optimal investment strategy to minimise the probability of ruin is the one that maximises the ratio of
drift of a diffusion divided to its volatility squared, which was also shown in Pestien & Sudderth (1985).

Drawdown, measuring the decline of portfolio value from its historic high-water mark, is a fre-
quently quoted risk metric to evaluate the performance of portfolio managers in the fund man-
agement industry. A significant drawdown not only leads to large portfolio losses but may also
trigger a long-term recession. It is also considered as a key determinant of sustainable investments
since investors tend to overestimate their tolerance to risk. Besides, investors prefer to assess their
investment success by comparing their current portfolio value to the historical maximum value.
Therefore, portfolio managers have strong incentives to adopt strategies with low drawdown risks.
Recently, Angoshtari et al. (2016a) investigated the minimum drawdown probability problem over
an infinite-time horizon and showed that the optimal strategy which minimises the probability of
ruin also minimises the probability of drawdown if drawdown does not happen. Besides, Chen et al.
(2015) and Angoshtari et al. (2016b) both studied a lifetime investment problem aiming at mini-
mising the risk of drawdown occurrence. They found that the optimal strategy for a random (or
finite) maturity setting such as lifetime drawdown is very different from that of the corresponding
ruin problem. We can see other works involving drawdown such as Grossman & Zhou (1993),
Cvitanić & Karatzas (1995) and Elie & Touzi (2008) for early references.

Even though lots of literature on optimal reinsurance problems in controlling wealth to reach a
goal has been worked out, there are still many aspects being worthily further explored. For
example, most of the literature about reinsurance optimisation is based on independent aggregate
claims. However, in practice, insurance businesses are usually dependent in some way. A typical
example is that an earthquake, hurricane or tsunami often leads to various kinds of insurance
claims such as death claims, medical claims and household claims. That is to say, a single event
generates claims from different lines of insurance. To depict such a dependence structure among
several classes of insurance business, the so-called common shock risk model may be of some
practical relevance. Research on risk models with dependent risk is increasing rapidly in recent
years. See, for example, Wang (1998), and Yuen et al. (2002, 2006). Meanwhile, some researchers
are devoted to solving the problem of optimal reinsurance. Bai et al. (2013) sought the optimal
excess of loss reinsurance to minimise the ruin probability for the diffusion approximation risk
model. Liang & Yuen (2016) adopted the variance premium principle to study the optimal pro-
portional reinsurance problem for both the compound Poisson risk model and the diffusion
approximation risk model. Yuen et al. (2015) extended the work of Liang & Yuen (2016) to the
case with the reinsurance premium calculated by the expected value principle and to the model
with two or more classes of dependent risks. Liang et al. (2016) also studied the optimal rein-
surance–investment problems in a financial market with jump-diffusion risky asset, where the
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insurance risk model is modulated by a compound Poisson process, and the two jump number
processes are correlated by a common shock. However, among these papers with common shock
dependence, few of them are related to the problem of minimising the probability of drawdown.

As we know, with drawdown, the decision-maker wants to choose the optimal strategy which
minimises the probability that the value of the surplus process reaches some fixed proportion, say
α∈ [0,1), of its maximum value to date. Naturally, it seems more reasonable for insurers to bear
drawdown than ruin, where the wealth drops below a fix level, such as 0. It is obvious that, when
α=0, minimising the probability of drawdown is equal to minimising the probability of ruin.
Therefore, in our paper, we consider the optimal proportional reinsurance problem in a risk model
with two dependent classes of insurance business in two different cases, where the criterion is
minimising the probability of drawdown. In the first case, the level we set is a fixed one. Based on the
method of maximising the ratio of drift of the surplus process divided to its volatility squared in
Bäuerle & Bayraktar (2014), we obtain the optimal results. In the second case, the level is not
necessarily a fixed one, then the method mentioned above does not apply. Thus, following the
analysis of Chen et al. (2015) and Angoshtari et al. (2016a, 2016b), we use the technique of stochastic
control theory and the corresponding HJB equation to tackle the optimisation problem. In particular,
since we constrain the reinsurance proportion in the interval [0,1] for each case, the optimisation
problems are discussed in three different situations, which makes the problem more challenging. By
some interesting analytic technique, we obtain the explicit solutions for the optimal proportional
reinsurance strategy and the minimum probability of drawdown, which strongly depend on the value
of the surplus wealth. In addition, we come to the conclusion that the optimal proportional rein-
surance strategy for the drawdown problem coincides with the one for the ruin problem if drawdown
does not happen. Moreover, we can see that, for the optimisation problem with common shock
dependent risk model, the way of solving the HJB equation to gain the optimal results is relatively
easier than the way of maximising the ratio of the drift of the surplus process to its volatility squared,
but the latter makes the analysis of the constrained control variables more convenient.

The remainder of this paper is organised as follows. In section 2, the model and the optimisation
problem are presented. With constraint on the reinsurance strategy, explicit expressions of
the optimal strategy and the corresponding minimum probability of drawdown are obtained in
sections 3 and 4. In section 5, we present some numerical examples which show the impact of some
model parameters on the optimal results. Finally, we conclude the paper in section 6.

2. Model and Problem Formulation

Suppose that an insurance company has two dependent classes of insurance business such as motor
and life insurance. Let {Xi, i≥ 1} be the claim size random variables for the first class following a
common distribution FX(x) with FX(x)= 0 for x≤0, and 0<FX(x)≤1 for x> 0; and {Yi, i≥ 1} be the
claim size random variables for the second class following a common distribution FY(y) with
FY(y)= 0 for y≤0, 0< FY(y)≤1 for y>0. Then, the aggregate claims process generated from these
two classes of business is given by

St=S1ðtÞ + S2ðtÞ=
XN1ðtÞ +NðtÞ

i=1

Xi +
XN2ðtÞ +NðtÞ

i=1

Yi

where Ni(t) +N(t) (i= 1, 2) is the claim number process for class i (i=1, 2), and N1(t), N2(t) and N(t)
are three independent Poisson processes with parameters λ1, λ2 and λ, respectively. Assume that Xi
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and Yi are independent claim size random variables, and that they are independent of N1(t), N2(t)
and N(t). It is obvious that the dependence of the two classes of business is due to a common shock
governed by the counting process N(t).

We allow the insurance company to continuously reinsure a fraction of its claim with the retention
levels q1(⋅)∈ [0,1] and q2(⋅)∈ [0,1] for Xi and Yi, respectively, and the reinsurance premium rate at
time t is δ(q1(⋅), q2(⋅)). Let {Ut, t≥0} denote the associated surplus process, i.e., Ut is the surplus of the
insurer at time t under the strategy (q1(Ut), q2(Ut)). This controlled surplus process can be given by

dUt= c�δðq1 Utð Þ; q2 Utð Þð Þdt�q1 Utð ÞdS1 tð Þ�q2 Utð ÞdS2 tð Þ (2.1)

where the constant c is the premium rate. Moreover, from Grandell (1991), we know that the
Brownian motion risk model given by

Ŝ1 tð Þ=a1t�b1B1t

with a1= (λ1 + λ)E(X) and b21= λ1 + λð ÞE X2
� �

can be seen as a diffusion approximation to the com-
pound Poisson process S1(t). Similarly,

Ŝ2ðtÞ=a2t�b2B2t

with a2= (λ2 + λ)E(Y) and b22= λ2 + λð ÞE Y2
� �

can be treated as a diffusion approximation to the
compound Poisson process S2(t). Here, B1t and B2t are standard Brownian motions with the cor-
relation coefficient

ρ=
λE Xð ÞE Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ1 + λð ÞE X2ð Þ λ2 + λð ÞE Y2ð Þ
p

Thus, E[B1tB2t]= ρt. With expected value principle:

c= 1 + θ1ð Þa1 + 1 + θ2ð Þa2
and the reinsurance premium rate at time t is

δ q1 Utð Þ; q2 Utð Þð Þ= 1 + η1ð Þ 1�q1 Utð Þð Þa1 + 1 + η2ð Þ 1�q2 Utð Þð Þa2
where θi(i=1, 2) and ηi(i=1, 2) are the insurer’s and reinsurer’s safety loading of the two classes of
the insurance business, respectively. Without loss of generality, we assume that ηi≥ θi, and ηi> θi
holds at least for one i (i=1,2), otherwise the problem becomes trivial.

Replace Si(t)(i= 1, 2) by ŜiðtÞði=1; 2Þ in (2.1). Furthermore, we assume that the insurer is allowed to
invest all its surplus in a risk-free asset (bond or bank account) with interest rate r. Then the process
evolves as

dÛt= rÛt + a1 θ1�η1 + η1q1 Ût

� �� �h
+ a2 θ2�η2 + η2q2 Ût

� �� �i
dt

+ b1q1 Ût

� �
dB1t + b2q2 Ût

� �
dB2t

or equivalently:

dÛt= rÛt + a1 θ1�η1 + η1q1 Ût

� �� �
+ a2 θ2�η2 + η2q2 Ût

� �� �h i
dt

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21q

2
1 Ût

� �
+ b22q

2
2 Ût

� �
+ 2b1b2q1 Ût

� �
q2 Ût

� �
ρ

r
dBt ð2:2Þ

with Û0=u and Bt is a standard Brownian motion. The similar model has also been studied in the
literature; see, for example, Yuen et al. (2015), Liang & Yuen (2016), Bi et al. (2016) and the
references therein.
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Define the maximum surplus value Mt at time t by

Mt=max sup
0≤ s≤ t

Ûs;M0

� �

where M0=m>0. Note that we allow the surplus process to have a financial past, and that m is no
less than the initial surplus u by definition. We mean that when the value of the surplus process
reaches α∈ [0,1) times its maximum value, then drawdown occurs. Define the corresponding hitting
time by

τα : =inf t≥0 : Ût ≤ αMt

n o
We can see that, if α= 0, then we are in the case of minimising the probability of ruin for the fixed
ruin level 0. Besides, if the value of the investment fund is big enough, say, at least

a1 η1�θ1ð Þ + a2 η2�θ2ð Þ
r

then the insurer can transfer all the risk, and the surplus value will never decrease, i.e., drawdown
cannot occur in this case. We generalise from this case in the following Remark 2.1.

Remark 2.1. Throughout this paper, we know there exists a unique

us=
a1 η1�θ1ð Þ + a2 η2�θ2ð Þ

r

such that

a1 θ1�η1ð Þ + a2 θ2�η2ð Þ + ru> 0; for all u> us

and

a1 θ1�η1ð Þ + a2 θ2�η2ð Þ + ru< 0; for all u< us

If Û0=u≥us, then we can set q�1ðÛtÞ=0, q�2ðÛtÞ=0 for all t≥ 0, which implies

dÛt= rÛt + a1ðθ1�η1Þ + a2ðθ2�η2Þ
h i

dt≥0

Under this reinsurance strategy, the value of the surplus process is non-decreasing, so drawdown will
never occur. For this reason, we call us safe level as defined in Angoshtari et al. (2016a).

In the following definition, we give the admissible set of q1 Ût

� �
; q2 Ût

� �� �
.

Definition 2.1. Let ðΩ;F ;PÞ be a probability space equipped with a complete filtration F t which is
generated by Ûs 0≤ s≤ tð Þ. A strategy q1 Ût

� �
; q2 Ût

� �� �
is said to be admissible if the following

conditions are satisfied:

(a) q1 Ût

� �
; q2 Ût

� �� �
is F t-progressively measurable;

(b) qi Ût

� �
2 ½0; 1� for i= 1, 2;

(c) Equation (2.2) for Ût has a unique strong solution.

The set of all admissible strategies is denoted by D.
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Now assume that the insurer is interested in minimising the probability of drawdown, we denote the
minimum probability of drawdown by ϕ(u,m), which depends on the initial surplus u and the maximum
(past) valuem. Specifically, ϕ is the minimum probability of τα<∞, thus, we derive the objective function

Jq1 ;q2 u;mð Þ=Pu;m τα <1ð Þ=Eu;m 1 τα <1f g
� �

Here, Pu,m and Eu,m denote the probability and expectation, respectively, conditional on Û0=u and
M0=m. Then, the corresponding value function is given by

ϕðu;mÞ= inf
q1 ;q22D

Jq1;q2 ðu;mÞ

3. Minimising the Probability of Drawdown When m≥us

We first consider the case for which m≥us. Note that if αm> us, then the probability of drawdown
ϕ(u,m)=1 for all u≤ αm, and when u≤ αm, we have u>us, then according to Remark 2.1, the value
of the surplus will consistently increase, and thus the probability of drawdown ϕ(u,m)=0 for all
u > αm. In the following context, we shall investigate the case of αm≤us in detail. When Û0=u≥us,
the drawdown is impossible; and when Û0=u≤ αm, then the drawdown has occurred and the game
is over. Therefore, we assume that Û0=u 2 ½αm; us�. Û0=u≤ us implies that either Ût < us almost
surely, for all t≥0, or Ût=us for some t>0. Since m≥us, Mt=m holds almost surely for all t≥0.
Therefore, avoiding drawdown is equivalent to avoiding ruin with a (fixed) ruin level of αm.

From Bäuerle & Bayraktar (2014), we can see that the optimal proportional reinsurance strategy
with no constraint is the one that maximises the ratio of the drift of the surplus process to its
volatility squared in (2.2). Thus, when the arguments u and m indicate the initial surplus and the
maximum (past) value, respectively, the Proposition 3.1 can be derived.

Proposition 3.1. If m≥us, the optimal proportional reinsurance strategy with no constraint is

q̂1ðuÞ= 2 Δ1 + ru½ � a2η2ρb1b2�a1η1b
2
2ð Þ

Δ2

q̂2ðuÞ= 2 Δ1 + ru½ � a1η1ρb1b2�a2η2b
2
1ð Þ

Δ2

8><
>: (3.1)

in which Δ1 and Δ2 are defined by

Δ1=a1 θ1�η1ð Þ + a2 θ2�η2ð Þ< 0

Δ2=b21a
2
2η

2
2 + b

2
2a

2
1η

2
1�2b1b2a1a2η1η2ρ>0

(
(3.2)

Proof. From (2.2), we denote the ratio of the drift to its volatility squared by ξ(u), thus we have

ξðuÞ= μ u; q1; q2ð Þ
σ2 u; q1; q2ð Þ=

a1 θ1�η1 + η1q1 uð Þð Þ + a2 θ2�η2 + η2q2 uð Þð Þ + ru
b21q

2
1 uð Þ + b22q22 uð Þ + 2b1b2q1 uð Þq2 uð Þρ (3.3)

Differentiating ξ(u) with respect to q1(u) and q2(u), respectively, we have

a1η1 b21q̂
2
1 uð Þ + b22q̂22 uð Þ +2b1b2q̂1 uð Þq̂2 uð Þρ� �

� a1 θ1�η1 + η1q̂1 uð Þð Þ + a2 θ2�η2 + η2q̂2 uð Þð Þ + ru½ � 2q̂1 uð Þb21 +2q̂2 uð Þb1b2ρ
� �

=0

a2η2 b21q̂
2
1 uð Þ + b22q̂22 uð Þ +2b1b2q̂1 uð Þq̂2 uð Þρ� �

� a1 θ1�η1 + η1q̂1 uð Þð Þ + a2 θ2�η2 + η2q̂2 uð Þð Þ + ru½ � 2q̂2 uð Þb22 +2q̂1 uð Þb1b2ρ
� �

=0

8>>>>><
>>>>>:

Solving these equations yields the solution (3.1).
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On the other hand, by the technique of stochastic control theory and the corresponding HJB
equation, we can also get the candidate optimiser (see e.g., (4.3)) along the same lines in section 4,
which is exactly the same as the one in (3.1). Therefore, we can directly come to the conclusion that
the solution given by (3.1) is indeed the optimal proportional reinsurance strategy for the case with
no constraint. □

From Bäuerle & Bayraktar (2014, theorem 4.1) and Karatzas & Shreve(1991: 339), we have the
following lemma.

Lemma 3.1. Let ξ(⋅) be given in (3.3), in which the reinsurance strategy is the optimal one. Then, the
minimum probability of ruin is given by

ϕðu;mÞ=1� gðu;mÞ
gðus;mÞ

where g is defined by

gðu;mÞ=
ðu
αm

exp �2
ðy
αm

ξ wð Þdw
� �

dy: (3.4)

Note that g in (3.4) is the scale function associated with the diffusion process in (2.2).

Next, we shall focus on discussing the optimal reinsurance strategy which minimises the probability
of drawdown when m≥us.

Because of the constraints of q�1 uð Þ; q�2 uð Þ� �
and the result of a2b1

a1ρb2
η2

.
a2ρb1
a1b2

η2=
1
ρ2 >1, to get the

optimal strategy and the minimum probability of drawdown, we need to discuss the following three
cases:

Case 1 : a2ρb1
a1b2

η2 < η1 <
a2b1
a1ρb2

η2 i:e:;q̂1 uð Þ> 0; q̂2 uð Þ> 0ð Þ
Case 2 : η1 ≤

a2ρb1
a1b2

η2 i:e:;q̂1 uð Þ≤ 0; q̂2 uð Þ> 0ð Þ
Case 3 : η1 ≥

a2b1
a1ρb2

η2 i:e:;q̂1 uð Þ> 0; q̂2 uð Þ≤ 0ð Þ

8>>><
>>>:

Since the proof of Case 3 is similar to Case 2, in the following context, we just need to present the
proof of Case 1 and Case 2 in detail.

Case 1: a2ρb1
a1b2

η2 < η1 <
a2b1
a1ρb2

η2.

In this case, q̂1ðuÞ>0 and q̂2ðuÞ>0. Let

u1= 1
r

Δ2

2 a2η2ρb1b2�a1η1b
2
2ð Þ�Δ1

	 


u2= 1
r

Δ2

2 a1η1ρb1b2�a2η2b
2
1ð Þ�Δ1

	 

8>>><
>>>:

It’s easy to see that q̂1ðu1Þ=1, q̂2ðu2Þ=1.

For convenience, we assume that u1< u2 as similar results can be obtained for u1>u2. From (3.1), we
can see that q̂1ðuÞ, q̂2ðuÞ are decreasing functions w.r.t. u. Thus, when u2≤u≤us, we have
0≤ q̂1ðuÞ< 1, 0≤ q̂2ðuÞ≤ 1, and hence q�1ðuÞ=q̂1ðuÞ, q�2ðuÞ=q̂2ðuÞ. One can show that, under this
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optimal reinsurance strategy given in (3.1), we have

ξ11ðuÞ=
μ u; q�1; q

�
2

� �
σ2 u; q�1; q

�
2

� �= Δ2

4 �Δ1�ruð Þb21 b22 1�ρ2ð Þ (3.5)

On the other hand, when u≤u2, we obtain q̂2ðuÞ≥1. Then we have to choose q�2ðuÞ=1. Inserting
q�2ðuÞ=1 into (3.3) and maximising the ratio of the drift of the surplus process to its volatility
squared, we can get

~q1ðuÞ=
� Δ1 + a2η2 + ruð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B + ruð Þ2�4AC

q
a1η1

(3.6)

in which A, B, C are defined by

A=� a21η
2
1

2b21

B=a1 θ1�η1� ρb2η1
b1

� �
+ a2θ2

C= 1
2b

2
2 1�ρ2
� �

8>>>><
>>>>:

(3.7)

From (3.6), we know that ~q1ðuÞ is also a decreasing function w.r.t. u and when

~u1=
1
r

a1η1 b22�b21
� �

2 b21 + b1b2ρ
� �� Δ1 + a2η2ð Þ

" #

we have ~q1ð~u1Þ=1. Before we continue our analysis on the optimal results with constraint, we present
the following Lemma first.

Lemma 3.2. Under the assumption of u1 < u2, we have ~u1 < u2.

Proof. Note that

u2�~u1=
1
r

Δ2

2 a1η1ρb1b2�a2η2b
2
1

� ��Δ1

" #
� 1

r
a1η1 b22�b21

� �
2 b21 + b1b2ρ
� �� Δ1 + a2η2ð Þ

" #

=
b41a

2
2η

2
2 + b

3
1b2ρa

2
2η

2
2 + a1a2η1η2b

4
1�b21b

2
2a

2
1η

2
1�a21η

2
1b

3
1b2ρ�a1a2η1η2b

2
1b

2
2

2r b21 + b1b2ρ
� �

a2η2b
2
1�a1η1ρb1b2

� �
Because of the assumption of u1< u2, we have

a2η2b
2
1�a1η1ρb1b2 > a1η1b

2
2�a2η2ρb1b2

then,
b41a

2
2η

2
2 + b

3
1b2ρa

2
2η

2
2 + a1a2η1η2b

4
1�b21b

2
2a

2
1η

2
1�a21η

2
1b

3
1b2ρ�a1a2η1η2b

2
1b

2
2

> b21 a1η1b
2
2 + a1η1ρb1b2

� �
+ a1a2η1η2b

4
1�b21b

2
2a

2
1η

2
1�a21η

2
1b

3
1b2ρ�a1a2η1η2b

2
1b

2
2

=a1a2η1η2b
4
1�b21b

2
2a

2
1η

2
1 + a1η1a2η2b

3
1b2ρ�a21η

2
1b

3
1b2ρ

> a1η1b
2
1 a1η1ρb1b2�a2η2ρb1b2ð Þ�a1η1b

2
1 a1η1ρb1b2�a2η2ρb1b2ð Þ=0

In Case 1, it’s clear that

2r b21 + b1b2ρ
� �

a2η2b
2
1�a1η1ρb1b2

� �
>0

then we have ~u1 <u2: □

Optimal proportional reinsurance with common shock dependence

275

https://doi.org/10.1017/S1748499518000210 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000210


Therefore, when ~u1 ≤u≤u2, we have 0< ~q1ðuÞ≤1, thus q�1ðuÞ=~q1ðuÞ. Under the optimal reinsurance
strategy of ðq�1ðuÞ; q�2ðuÞÞ=ð~q1ðuÞ; 1Þ, it follows that

ξ12ðuÞ=
μ u; q�1; q

�
2

� �
σ2 u; q�1; q

�
2

� �= �2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B+ ruð Þ2�4AC

q
�ðB+ ruÞ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B + ruð Þ2�4AC

q	 
2
�4AC

(3.8)

Finally, when αm≤u≤ ~u1, we have to choose q�1ðuÞ=1 and q�2ðuÞ=1. Inserting q�1ðuÞ; q�2ðuÞ
� �

= 1; 1ð Þ
into (3.3), and we obtain

ξ13ðuÞ=
μ u; q�1; q

�
2

� �
σ2 u; q�1; q

�
2

� �= a1θ1 + a2θ2 + ru
b21 + b

2
2 + 2ρb1b2

(3.9)

To summarise, we give the optimal reinsurance strategy and the corresponding minimum probability
of drawdown for the case of m≥us with a2ρb1

a1b2
η2 < η1 <

a2b1
a1ρb2

η2 in Theorem 3.1.

Theorem 3.1. Suppose that a2ρb1
a1b2

η2 < η1 <
a2b1
a1ρb2

η2. Let Δ1, Δ2 be given in (3.2), A,B,C be given in
(3.7), and ξ11(u),ξ12(u),ξ13(u) be given in (3.5), (3.8), (3.9), respectively. Then, for any u∈ [αm,us],
the minimum probability of drawdown for the surplus process (2.2) is

ϕðu;mÞ=

1� g11ðu;mÞ
g13ðus;mÞ ; αm≤ u<maxðαm; ~u1Þ

1� g12ðu;mÞ
g13ðus;mÞ ; maxðαm; ~u1Þ≤u<maxðαm; u2Þ

1� g13ðu;mÞ
g13ðus;mÞ ; maxðαm; u2Þ≤u≤us

8>>>><
>>>>:

and the optimal reinsurance strategy is

q�1; q
�
2

� �
=

1; 1ð Þ; αm≤ u<maxðαm; ~u1Þ
ð~q1ðuÞ; 1Þ; maxðαm; ~u1Þ≤u<maxðαm; u2Þ
ðq̂1ðuÞ; q̂2ðuÞÞ; maxðαm; u2Þ≤u≤us

8>><
>>:

in which g1i(u,m) (i= 1,2,3) are defined by

g11ðu;mÞ=Ð uαmexp �2
Ð y
αmξ13ðwÞdw� �

dy;

g12ðu;mÞ=Ð αm_~u1
αm exp �2

Ð y
αmξ13ðwÞdw� �

dy

+
Ð u
αm_~u1 exp �2

Ð αm_~u1
αm ξ13ðwÞ + Ð yαm_~u1ξ12ðwÞ

� �
dw

n o
dy

g13ðu;mÞ=Ð αm_~u1
αm exp �2

Ð y
αmξ13ðwÞdw� �

dy

+
Ð αm_u2
αm_~u1 exp �2

Ð αm_~u1
αm ξ13ðwÞ + Ð yαm_~u1ξ12ðwÞ

� �
dw

n o
dy

+
Ð u
αm_u2 exp �2

Ð αm_u1
αm ξ13ðwÞ + Ð αm_u2

αm_~u1ξ12ðwÞ + Ð yαm_u2ξ11ðwÞ
� �

dw
n o

dy ð3:10Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

Remark 3.1. We can see that ϕ(⋅,m) is a non-increasing and continuous function, which satisfies the
following boundary conditions: ϕ(αm,m)=1, ϕ(us,m)=0. Furthermore, note that us is a constant
and g13(us,m) is finite. Indeed, the integrand in the expression for g13 is bounded by 1, then we can
get g13(us,m)≤us − αm<∞. In addition, we know g(u,m) defined in (3.4) is non-decreasing, thus, g11
and g12 are also finite
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Remark 3.2. Note that the relationship between αm and ~u1ðu2Þ is uncertain. Since we are only
interested in u∈ [αm,us], the notations of maxðαm; ~u1Þ and maxðαm; u2Þ are used in the expressions
for the optimal results. In this sense, the optimal reinsurance strategy depends on the values of α and
m. This remark is also applicable for the following theorems.

By the same way, we can get the optimal results for the other two cases as follows:

Case 2: η1 ≤
a2ρb1
a1b2

η2.

In this case, q̂1ðuÞ≤0, q̂2ðuÞ> 0. Then we have to choose q�1ðuÞ=0, and thus we derive the minimiser

q2ðuÞ=
�2 Δ1 + ruð Þ

a2η2
(3.11)

Let

u
0
2=

1
2r

�a2η2�2Δ1ð Þ (3.12)

it is easy to see that q2ðu
0
2Þ=1.

In particular, when u
0
2 ≤ u≤ us, we have 0≤q2ðuÞ≤1, then it follows that q�2ðuÞ=q2ðuÞ. Under the

optimal reinsurance strategy q�1ðuÞ; q�2ðuÞ
� �

= 0; q2ðuÞð Þ, we have

ξ21ðuÞ=
μ u; q�1; q

�
2

� �
σ2 u; q�1; q

�
2

� �=� a22η
2
2

4b22 Δ1 + ruð Þ (3.13)

However, when αm≤u≤ u
0
2, we have q2ðuÞ≥ 1, thus we have to choose q�2ðuÞ=1, and then

we obtain

ξ22ðuÞ=
μ u; q�1; q

�
2

� �
σ2 u; q�1; q

�
2

� �=�Δ1 + a2η2 + ru
b22

(3.14)

Therefore, we have the following theorem:

Theorem 3.2. Suppose that η1 <
a2ρb1
a1b2

η2. Let Δ1 and Δ2 be given in (3.2), and ξ21(u),ξ22(u) be given
in (3.13), (3.14), respectively. Then, for any u∈ [αm,us], the minimum probability of drawdown for
the surplus process (2.2) is

ϕðu;mÞ=
1� g21ðu;mÞ

g22ðus ;mÞ ; αm≤u<max αm; u
0
2

� �
1� g22ðu;mÞ

g22ðus ;mÞ ; max αm; u
0
2

� �
≤ u≤ us

8<
:

and the optimal reinsurance strategy is

q�1; q
�
2

� �
=

0; 1ð Þ; αm≤ u<maxðαm; u
0
2Þ

ð0; q2ðuÞÞ; maxðαm; u
0
2Þ≤u≤us

(
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in which g2i(u,m)(i=1,2) are defined by

g21ðu;mÞ=Ð uαmexp �2
Ð y
αmξ22ðwÞdw� �

dy;

g22ðu;mÞ=Ð αm_u02
αm exp �2

Ð y
αmξ22ðwÞdw� �

dy

+
Ð u
αm_u02 exp �2

Ð αm_u02
αm ξ22ðwÞ + Ð y

αm_u02
ξ21ðwÞ

� �
dw

n o
dy

8>>>><
>>>>:

(3.15)

We can see that ϕ(u,m) in this case also satisfies the properties in Remark 3.1.

Case 3: η1 ≥
a2b1
a1ρb2

η2.

In this case, q̂1ðuÞ>0, q̂2ðuÞ≤0. Along the same lines in Case 2, we can get the following result:

Theorem 3.3. Suppose that η1 >
a2b1
a1ρb2

η2. Let Δ1 and Δ2 be given in (3.2). Then, for any u∈ [αm,us],
the minimum probability of drawdown for the surplus process (2.2) is

hðu;mÞ=
1� g31ðu;mÞ

g32ðus ;mÞ ; αm≤u<max αm; u
0
1

� �
1� g32ðu;mÞ

g32ðus ;mÞ ; max αm; u
0
1

� �
≤u≤us

8<
:

and the optimal reinsurance strategy is

q�1; q
�
2

� �
=

1; 0ð Þ; αm≤ u<max αm; u
0
1

� �
q1ðuÞ; 0ð Þ; max αm; u

0
1

� �
≤ u≤ us

(

in which g3i(u,m)(i= 1,2) are defined by

g31ðu;mÞ=Ð uαmexp �2
Ð y
αmξ32ðwÞdw� �

dy;

g32ðu;mÞ=Ð αm_u01
αm exp �2

Ð y
αmξ32ðwÞdw� �

dy

+
Ð u
αm_u01

exp �2
Ð αm_u01
αm ξ32ðwÞ + Ð y

αm_u01
ξ31ðwÞ

� �
dw

n o
dy

8>>>><
>>>>:

(3.16)

and ξ3i (i=1,2), u
0
1 and q1ðuÞ are given by

ξ31ðuÞ=� a21η
2
1

4b21 Δ1 + ruð Þ

ξ32ðuÞ=� Δ1 + a1η1 + ru
b21

u
0
1=

1
2r �a1η1�2Δ1ð Þ

q1ðuÞ= �2ðΔ1 + ruÞ
a2η2

8>>>>>>>><
>>>>>>>>:

(3.17)

Remark 3.3. We can see clearly that the optimal proportional reinsurance strategies given by
Theorems 3.1–3.3 are strongly depend on the value of surplus u. Besides, if α=0 in Theorems
3.1–3.3, then we are in the case of minimising the probability of ruin for the fix level 0, and the
corresponding optimal results can be derived directly. Moreover, as the wealth increases towards us,
the optimal reinsurance proportion approaches 0. It makes sense because when the value of the
surplus increases, the insurer can transfer all the risk to reinsurer, and thus the wealth will never
decrease, then drawdown cannot happen.
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4. Minimising the Probability of Drawdown When m<us

In the previous section, we show the minimum probability of drawdown and the corresponding
optimal strategy for the case of m≥ us. In this section, we will consider the same problem for the case
of m<us. Since Mt can be larger than m, i.e., the level that we set is not necessarily a fixed one, the
special method in Bäuerle & Bayraktar (2014) does not apply anymore. Therefore, following the
analysis of Chen et al. (2015) and Angoshtari et al. (2016a, 2016b), we use the technique of
stochastic control theory and the corresponding HJB equation to tackle the optimal problem.

Again, we only need to consider function f on the domain O : =fðu;mÞ 2 ðR + Þ2 : αm≤u≤m;m< usg.
Let C2,1 denote the space of f(u,m) such that f and its partial derivatives fu, fuu, fm are continuous
onO. It follows from the standard arguments that if the value function ϕ(u,m)∈C2,1, then ϕ satisfies the
following HJB equation:

inf
q1;q22D

Aq1 ;q2ϕðu;mÞ=0

where

Aq1q2ϕðu;mÞ= ru+ a1ðθ1�η1 + η1q1ðuÞÞ + a2ðθ2�η2 + η2q2ðuÞÞ½ �ϕu

+
1
2

q21ðuÞb21 + q22ðuÞb22 + 2ρb1b2q1ðuÞq2ðuÞ
� �

ϕuu ð4:1Þ

Applying the method of Angoshtari et al. (2016a), we can get the following Verification Theorem.

Theorem 4.1. (Verification Theorem): Suppose that h : O ! R is a bounded, continuous function,
which satisfies the following condition:

(i) h(⋅,m)∈C2(αm,m) is a non-increasing convex function,

(ii) h(u,⋅) is continuously differentiable, except possibly at us,

(iii) hm(m,m)≥0 if m< us,

(iv) h(αm,m)=1,

(v) h(us,m)=0 if m≥ us,

(vi) Aq1 ;q2h≥0 for all q1; q2 2 D.

Then, h(u,m)≤ϕ(u,m) on O. Furthermore, suppose that the function h satisfies the conditions
mentioned above in such a way that conditions (iii) and (vi) hold with equality for some admissible
strategy ðq�1ðuÞ, q�2ðuÞÞ, which is defined in feedback form ðq�1ðÛtÞ; q�2ðÛtÞÞ. Then, we have h(u,m)=ϕ

(u,m) on O, and ðq�1ðuÞ, q�2ðuÞÞ is the optimal reinsurance strategy.

For convenience, we denote

f̂ q1ðuÞ; q2ðuÞð Þ= a1η1q1ðuÞ + a2η2q2ðuÞð Þhu + 1
2

q21ðuÞb21 + q22ðuÞb22 + 2ρb1b2q1ðuÞq2ðuÞ
� �

huu
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Differentiating f̂ ðq1ðuÞ; q2ðuÞÞ w.r.t qi(u) (i= 1,2) yields

∂2 f̂
∂q21ðuÞ

=b21huu;
∂2 f̂

∂q22ðuÞ
=b22huu

∂2 f̂
∂q1ðuÞ∂q2ðuÞ=ρb1b2huu

8><
>:

It is not difficult to see that the Hessian matrix of f̂ is positive definite, and thus f̂ ðq1ðuÞ; q2ðuÞÞ is
a convex function with respect to qi(u) (i= 1,2). Therefore, the minimiser of f̂ ðq1ðuÞ; q2ðuÞÞ is
obtained at

q̂1ðuÞ= ρb1b2a2η2�b22a1η1
b21b

2
2 1�ρ2ð Þ

hu
huu

q̂2ðuÞ= ρb1b2a1η1�b21a2η2
b21b

2
2 1�ρ2ð Þ

hu
huu

8><
>: (4.2)

If Theorem 4.1 (1) holds, we must have hu
huu

≤0. Because of the constraints of ðq�1; q�2Þ and the result
of a2b1

a1ρb2
η2 =

a2ρb1
a1b2

η2=
1
ρ2 > 1, we also need to discuss the three cases mentioned in the previous

section.

Case 1: a2ρb1
a1b2

η2 < η1 <
a2b1
a1ρb2

η2.

In this case, q̂1ðuÞ>0, q̂2ðuÞ>0. If 0≤ q̂1ðuÞ≤1 and 0≤ q̂2ðuÞ≤1 hold, then q�1ðuÞ=q̂1ðuÞ,
q�2ðuÞ=q̂2ðuÞ. Inserting q�1ðuÞ; q�2ðuÞ

� �
= q̂1ðuÞ; q̂2ðuÞð Þ into (4.1) and putting Aq1;q2hðu;mÞ=0, we

obtain

hu
huu

=� 1
2ξ11ðuÞ

in which ξ11(u) is defined by (3.5). Substituting hu
huu

back into (4.2), then we have

q̂1ðuÞ= 2 Δ1 + ru½ � a2η2ρb1b2�a1η1b
2
2ð Þ

Δ2

q̂2ðuÞ= 2 Δ1 + ru½ � a1η1ρb1b2�a2η2b
2
1ð Þ

Δ2

8><
>: (4.3)

which is identical to (3.1) and satisfies q̂1ðu1Þ=1 and q̂2ðu2Þ=1.

Here, we also suppose that u1<u2. Along the same lines, we can get the results for u1>u2. Thus,
when 0≤ q̂1ðuÞ≤1, 0≤ q̂2ðuÞ≤ 1, we have u2≤ u≤ us. On the other hand, if 0≤ q̂1ðuÞ≤1 and
q̂2ðuÞ> 1, then we have to choose q�2ðuÞ=1, and derive the minimiser

~q1ðuÞ=� ρb2
b1

� a1η1
b21

hu
huu

Therefore, when 0≤ ~q1ðuÞ≤ 1, we have q�1ðuÞ=~q1ðuÞ, q�2ðuÞ=1. Substituting them into (4.1) and
letting Ahðu;mÞ=0, we get

hu
huu

=� 1
2ξ12ðuÞ

in which ξ12(u) is defined by (3.8). Then it is easy to show that

~q1ðuÞ=
� Δ1 + a2η2 + ruð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB + ruÞ2�4AC

q
a1η1
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Under the assumption of u1<u2, we come to the conclusion that ~u1 ≤u< u2 when 0≤ ~q1ðuÞ≤1
holds. Finally, if ~q1ðuÞ> 1, then we have to choose q�1ðuÞ=1. Inserting ðq�1ðuÞ; q�2ðuÞÞ=ð1; 1Þ into (4.1)
yields

hu
huu

=� 1
2ξ13ðuÞ

in which ξ13(u) is defined by (3.9). In this case, we can get αm≤ u< ~u1. It is clear that the optimal
reinsurance strategy in this case equals to the one when m≥ us.

Now considering the following boundary-value problem, we wish to find a solution at which a
certain function is minimised according to Theorem 4.1. When αm≤u≤m≤us, we have

hu
huu

=� 1
2ξðuÞ

hðus; usÞ=0; hmðm;mÞ=0
hðαm;mÞ=1

8>><
>>: (4.4)

We first present the solution of (4.4) for m∈ [max(αm,u2),us) in the next proposition, the solutions
for the other two cases of m 2 ½maxðαm; ~u1Þ;maxðαm; u2ÞÞ and m 2 ½αm;maxðαm; ~u1ÞÞ can be
derived by the same way.

Proposition 4.1. When a2ρb1
a1b2

η2 < η1 <
a2b1
a1ρb2

η2, the solution of (4.4) on {(u,m)∈ (R+)2: αm≤u≤m,
max(αm,u2)≤m<us} is given by

hðu;mÞ=

1�exp
Ð us
m�f13ðyÞdy

� � � g11ðu;mÞ
g13ðus;usÞ ; αm≤u<maxðαm; ~u1Þ

1�exp
Ð us
m�f13ðyÞdy

� � � g12ðu;mÞ
g13ðus;usÞ ; maxðαm; ~u1Þ≤ u<maxðαm; u2Þ

1�exp
Ð us
m�f13ðyÞdy

� � � g13ðu;mÞ
g13ðus;usÞ ; maxðαm; u2Þ≤ u≤m< us

8>>>><
>>>>:

in which g1i (i= 1,2,3) are given in (3.10), and f13 is defined by

f13ðyÞ=

α 1
g13ðy;yÞ �2ξ11ðαyÞ
h i

; if u2 < αm

α 1
g13ðy;yÞ �2ξ12ðαyÞ
h i

; if ~u1 ≤ αm≤ u2

α 1
g13ðy;yÞ �2ξ13ðαyÞ
h i

; if αm< ~u1

8>>>>><
>>>>>:

(4.5)

Proof. Because of h in (4.4) satisfying the differential equation as well as the boundary conditions,
taking the integral of hu over [αm,u], we get

hðu;mÞ=1 + c1ðmÞgðu;mÞ
where g(u,m) is given in (3.4) and c1(m) is a function of m to be determined.

Differentiating h w.r.t m, it follows that

hmðu;mÞ=c01ðmÞgðu;mÞ + c1ðmÞg0 ðu;mÞ

=c
0
1ðmÞgðu;mÞ + c1ðmÞð2αξðαmÞgðu;mÞ�αÞ

Next, we discuss the solution on cases. When max(αm,u2)≤u≤m≤us, we have

hðu;mÞ=1 + c1ðmÞg13ðu;mÞ
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with

c1ðusÞ=� 1
g13ðus; usÞ

Since hm(m,m)=0, one can show that

c1ðmÞ=� 1
g13ðus; usÞ exp

ðus
m
�f13ðyÞdy

� �

with f13 given by (4.5). It then follows that

hðu;mÞ=1�exp
ðus
m
�f13ðyÞdy

� �
� g13ðu;mÞ
g13ðus; usÞ

According to the continuity of h, the result for the other two cases, i.e.,
maxðαm; ~u1Þ≤u<maxðαm; u2Þ and αm≤u<maxðαm; ~u1Þ, can be obtained along the same lines.
We complete the proof. □

Combining the results of Theorem 4.1 and Proposition 4.1, we get the following theorem:

Theorem 4.2. Suppose that a2ρb1
a1b2

η2 < η1 <
a2b1
a1ρb2

η2. Let g1i (i=1,2,3) be given in (3.10) and f13 be
given in (4.5). Then,

(i) if maxðαm; ~u2Þ≤m< us, for any u∈ [αm,m], the minimum probability of drawdown for the
surplus process (2.2) is given by

ϕðu;mÞ=

1�k13ðmÞ � g11ðu;mÞ
g13ðus;usÞ ; αm≤u<maxðαm; ~u1Þ

1�k13ðmÞ � g12ðu;mÞ
g13ðus;usÞ ; maxðαm; ~u1Þ≤ u<maxðαm; u2Þ

1�k13ðmÞ � g13ðu;mÞ
g13ðus;usÞ ; maxðαm; u2Þ≤ u≤m< us

8>>>><
>>>>:

in which

k13ðmÞ=exp
ðus
m
�f13ðyÞdy

� �

(ii) if max ðαm; ~u1Þ � m<maxðαm; ~u2Þ, for any u∈ [αm,m], the minimum probability of draw-
down for the surplus process (2.2) is given by

ϕðu;mÞ=
1�k12ðmÞ � g11ðu;mÞ

g13ðus;usÞ ; αm≤u<maxðαm; ~u1Þ

1�k12ðmÞ � g12ðu;mÞ
g13ðus;usÞ ; maxðαm; ~u1Þ≤u≤m< u2

8<
:

in which

k12ðmÞ=exp
ðu2
m
�f12ðyÞ�

ðus
u2

f13ðyÞ
 �

dy
� �

(4.6)

with

f12ðyÞ=
α 1

g12ðy;yÞ �2ξ12ðαyÞ
h i

; if ~u1 ≤ αm

α 1
g12ðy;yÞ �2ξ13ðαyÞ
h i

; if αm< ~u1

8><
>:
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(iii) if αm≤m<max(αm; ~u1), for any u∈ [αm,m], the minimum probability of drawdown for the
surplus process (2.2) is given by

ϕðu;mÞ=1�k11ðmÞ � g11ðu;mÞ
g13ðus; usÞ

in which

k11ðmÞ=exp
ð~u1
m
�f11ðyÞ�

ðu2
~u1
f12ðyÞ�

ðus
u2
f13ðyÞ

 �
dy

� �
(4.7)

with

f11ðyÞ=α 1
g11ðy; yÞ�2ξ13ðαyÞ
	 


Also, the corresponding optimal reinsurance strategy has the form

q�1; q
�
2

� �
=

1; 1ð Þ; αm≤u≤m<maxðαm; ~u1Þ
ð~q1ðuÞ; 1Þ; maxðαm; ~u1Þ≤u≤m<maxðαm; u2Þ

ðq̂1ðuÞ; q̂2ðuÞÞ; maxðαm; u2Þ≤u≤m< us

8>><
>>: (4.8)

Proof. Given the results of Proposition 4.1, it is not difficult to see that h satisfies Conditions (iv), (v)
and (vi) of Theorem 4.1. Besides, in Appendix A, we prove that h(u,m) is a non-increasing convex
function in u but an increasing function in m. The only item remaining to show is that h as well as its
derivatives w.r.t. u andm is continuous at u=~u1, u=u2,m=~u1 andm=u2. We give the proof of these
properties in Appendix B. Then, h also satisfies Conditions (i), (ii) and (iii). Therefore, we have ϕ=h
with the optimal reinsurance strategy q�1; q

�
2

� �
given in (4.8). □

Case 2: η1 ≤
a2ρb1
a1b2

η2.

In this case, q̂1ðuÞ≤ 0, q̂2ðuÞ> 0. The analysis is similar to Case 1, thus we give the following theorem
directly:

Theorem 4.3. Suppose that η1 <
a2ρb1
a1b2

η2. Let g2i (i= 1,2) be given in (3.15), q2ðuÞ be given in (3.11),
u

0
2 be given in (3.12), and ξ3i (i=1,2) be given in (3.13) and (3.14), respectively. Then, (i) if

maxðαm; u
0
2Þ≤m< us, for any u∈ [αm,m], the minimum probability of drawdown for the surplus

process (2.2) is given by

ϕðu;mÞ=
1�k22ðmÞ � g21ðu;mÞ

g22ðus;usÞ ; αm≤ u<max αm; u
0
2

� �
1�k22ðmÞ � g22ðu;mÞ

g22ðus;usÞ ; max αm; u
0
2

� �
≤ u≤m< us

8<
:

in which

k22ðmÞ=exp
ðus
m
�f22ðyÞdy

� �

with

f22ðyÞ=
α 1

g22ðy;yÞ �2ξ21ðαyÞ
h i

; if u
0
2 ≤ αm

α 1
g22ðy;yÞ �2ξ22ðαyÞ
h i

; if αm< u
0
2

8><
>:
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(ii) if αm≤m<maxðαm; u
0
2Þ, for any u∈ [αm,m], the minimum probability of drawdown for the

surplus process (2.2) is given by

ϕðu;mÞ=1�k21ðmÞ � g21ðu;mÞ
g22ðus; usÞ

in which

k21ðmÞ=exp
ðu02
m
�f21ðyÞ�

ðus
u02

f22ðyÞ
 !

dy

( )

with

f21ðyÞ=α 1
g21ðy; yÞ�2ξ22ðαyÞ
	 


Also, the optimal reinsurance strategy is

q�1; q
�
2

� �
=

0; 1ð Þ; αm≤ u≤m<max αm; u
0
2

� �
ð0; q2ðuÞÞ; maxðαm; u

0
2Þ≤u≤m< us

(

Proof. The proof is similar to Theorem 4.2, thus, we omit the details here. □

Case 3: η1 ≥
a2b1
a1ρb2

η2.

In this case, q̂1ðuÞ>0, q̂2ðuÞ≤0. Then we can get the following result:

Theorem 4.4. Suppose that η1 >
a2b1
a1ρb2

η2. Let g3i (i=1,2) be given in (3.16), ξ3i (i= 1,2), u
0
1 and q1ðuÞ

be given in (3.17). Then,

(i) if maxðαm; u
0
1Þ≤m< us, for any u∈ [αm,m], the minimum probability of drawdown for the

surplus process (2.2) is

ϕðu;mÞ=
1�k32ðmÞ � g31ðu;mÞ

g32ðus;usÞ ; αm≤u<max αm; u
0
1

� �
1�k32ðmÞ � g32ðu;mÞ

g32ðus;usÞ ; max αm; u
0
1

� �
≤ u≤m< us

8<
:

in which

k32ðmÞ=exp
ðus
m
�f32ðyÞdy

� �

with

f32ðyÞ=
α 1

g32ðy;yÞ �2ξ31ðαyÞ
h i

; if u
0
1 ≤ αm

α 1
g32ðy;yÞ �2ξ32ðαyÞ
h i

; if αm≤u
0
1

8><
>:

(ii) if αm≤m<maxðαm; u
0
1Þ, for any u∈ [αm,m], the minimum probability of drawdown for the

surplus process (2.2) is

ϕðu;mÞ=1�k31ðmÞ � g31ðu;mÞ
g32ðus; usÞ
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in which

k31ðmÞ=exp
ðu01
m
�f31ðyÞ�

ðus
u01

f32ðyÞ
 !

dy

( )

with

f31ðyÞ=α 1
g31ðy; yÞ�2ξ32ðαyÞ
	 


Also, the optimal reinsurance strategy is

q�1; q
�
2

� �
=

1; 0ð Þ; αm≤u≤m< ðαm; u
0
1Þ

ðq1ðuÞ; 0Þ; maxðαm; u
0
1Þ≤u≤m< us

(

Remark 4.1. Comparing the expressions of the optimal reinsurance strategies in sections 3 and 4, it
is not difficult to find that the optimal drawdown policy follows the optimal ruin policy until
drawdown happens. In fact, we can see from Hipp & Taksar (2010: 246–247) that if the HJB
equation in our paper remains the same, the optimal strategy is only determined by the drift and the
volatility of the controlled process. Therefore, as was mentioned in remark 3.2 of Angoshtari et al.
(2016a), we can also conclude that the same reinsurance strategy minimises the expectation of any
function that is non-increasing in the minimum surplus value or non-decreasing in the maximum
surplus value. The changes only happen in the boundary conditions. Besides, we can see that, the
calculation with the method in section 4 to derive the optimal strategy is relatively easier than the one
in section 3 when our surplus comes down to the process with common shock dependence, but the
latter facilitates the discussion of the constrained control variables in section 4.

In the following proposition, we investigate the behaviour of the process Ut in a special case. We find
that the optimal reinsurance strategy will never achieve the safe level us with positive probability
before reaching the (moving) lower bound αm.

Proposition 4.2. Assume that the inequality ~u1 < u2 < αm holds in Case 1. Let U� be the optimal
controlled wealth starting at u, τ�s : =infft≥0 : Û�ðtÞ≥ usg and τ�α : =infft≥ 0 : Û�ðtÞ≤ αmg be the
corresponding hitting times. Then P τ�s < τ�α

� �
=0.

Proof. Since we are only interested in whether the safe level can be reached before drawdown, we
may extend the domain of ðq�1; q�2Þ to ℝ and set

q�1ðuÞ=
½Δ1 + ru� a2η2ρb1b2�a1η1b

2
2ð Þ

Δ2

q�2ðuÞ=
½Δ1 + ru� a1η1ρb1b2�a2η2b

2
1ð Þ

Δ2

8><
>:

for u< αm. Define

bðuÞ=ru + a1 θ1�η1 + η1q
�
1ðuÞ

� �
+ a2 θ2�η2 + η2q

�
2ðuÞ

� �
and

s2ðuÞ= q�1ðuÞ
� �2

b21 + q�2ðuÞ
� �2

b22 + 2ρb1b2q
�
1ðuÞq�2ðuÞ

Let

pðuÞ=
ðu
αm

exp �2
ðy
αm

bðzÞ
s2ðzÞdz

 �
dy
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be the scale function, and

vðu;mÞ=
ðu
αm

p
0 ðxÞ

ðx
αm

2dz
p0 ðzÞs2ðzÞdx=

ðu
αm

pðuÞ�pðxÞð Þ 2
p0 ðxÞs2ðxÞdx

Now we want to show that v(−∞,m)= v(us,m)=∞.

Note that b(u)= 0 for u< αm, then pð�1Þ=Ð�1
αm 1dy=�1. It follows from (5.74) of Karatzas &

Shreve (1991: 348) that v(−∞,m)=∞. Besides, when ~u1 < u2 < αm, it is not difficult to find that
q�1; q

�
2

� �
= q̂1; q̂2ð Þ for any u∈ [αm,us], thus

bðuÞ
s2ðuÞ=ξ11ðuÞ=

Δ2

4 �Δ1�ruð Þb21 b22ð1�ρ2Þ

Let

d=
Δ2

2rb21b
2
2ð1�ρ2Þ > 0

then we have

pðusÞ�pðxÞ=
ðus
x
exp

ðy
αm

d
z�us

dz
� �

dy

=
1

d + 1
ðus�xÞd +1
ðus�αmÞd

and

2
p0 ðxÞs2ðxÞ=

dðus�αmÞd
rðus�xÞd +2

Therefore, we can see that

vðus;mÞ=
ðus
αm

ðpðusÞ�pðxÞÞ 2
p0 ðxÞs2ðxÞdx

=
d

rðd + 1Þ
ðus
αm

1
ðus�xÞ dx=1

Then it follows from Feller’s test for explosions (Theorem 5.5.29 of Karatzas & Shreve, 1991: 348)
that Pðτ�s < τ�αÞ=0. □

Remark 4.2. Note that when the surplus gets closer to the safe level us, both the drift and volatility
of the optimally controlled surplus process approach to 0. Thus, it is reasonable to expect that the
safe level might not be reachable, which has been confirmed in Proposition 4.2.

Let τ=τ�α ^ τ�s denote the first hitting time of αm and us when the initial surplus u lies in (αm,us). From
proposition 5.5.32 of Karatzas & Shreve (1991: 350) and the result of v(us,m)=∞, we can derive
that 0<P(τ<∞)<1. Furthermore, in combination with the Proposition 4.2, we can see that either
drawdown occurs with probability ϕ(u,m)=P(τ<∞) or the optimal controlled surplus value lies
strictly between αm and us, for all time, with probability of 1 −ϕ(u,m). The similar conclusion is also
derived in Angoshtari et al.(2016a).
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5. Numerical Examples

In this section, we assume that the insurer has two lines of business: one is heavy-tailed risk, and the
other is light-tailed risk. Let

FXðxÞ=1� 1

ðx + 1Þ3 ; x≥0� FYðyÞ=1�e�2y; y≥0

Then we have EðXÞ= 1
2, EðYÞ= 1

2, E(X
2)=1, EðY2Þ= 1

2. In the following examples, we perform five
examples to show the effect of different parameters on the optimal results. In these examples, we only
consider the case of a2ρb1

a1b2
η2 < η1 <

a2b1
a1ρb2

η2.

Example 5.1. In this example, we set r= 0.03, λ= 3, λ1= 4, λ2=5 and θ1= θ2= 0.12. The results are
shown in Figure 1.

From Figure 1, we can see that the optimal reinsurance strategy q�1; q
�
2

� �
decreases as u increases. It is

to be expected, since, according to (3.1) and (3.6), we can prove that q�1 and q�2 are decreasing and
continuous functions w.r.t. u. Furthermore, we can observe from Figure 1(a) that q�1 is always less
than q�2 when the two lines have the same safety loading for insurer as well as for reinsurer, say,
η1= η2= 0.22. It is also natural consequence since the insurer always tries to keep a smaller retention
level for the heavy-tailed risk business. However, when the reinsurer’s safety loading in the first line is
much larger than the one in the second, say, η1=0.4 and η2=0.15, it is reasonable for the insurer to
keep a smaller retention level for the cheaper one (see Figure 1(b)).

Example 5.2. In this example, we set α= 0.1, r=0.03, λ1= 4, λ2=5, θ1= θ2=0.12 and η1= η2=
0.22. The results are shown in Figure 2.

Figure 2 shows that the minimum probability of drawdown ϕ(u,m) satisfies the boundary conditions: ϕ
(am,m)=1 and ϕ(us,m)=0. Besides, we can see that ϕ(u,m) is a decreasing function w.r.t. u but an
increasing function w.r.t. m and λ. They are natural consequences, since, when the value of the surplus
increases toward us, the insurer can transfer all the risk to reinsurer, and thus the wealth will never
decrease, then drawdown cannot happen. However, the drawdown level increases as the maximum
(past) value m increases (See Figure 2(a)), and a greater value of λ means a greater value of expected
claim number as well as safe level, which both could make drawdown more likely (See Figure 2(b)).
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Figure 1. The influence of u on the optimal reinsurance strategy.
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Example 5.3. In this example, we set r=0.03, λ1=4, λ2=5, θ1= 0.1 and θ2=0.12. The results are
shown in Figure 3.

From Figure 3(a) with η1=0.25 and η2= 0.2, we can see that the optimal reinsurance strategy
increases when λ increases, which implies that even though the greater value of λ means a greater
value of expected claim number, the insurer still chooses to retain a larger share of each claim
because of the expensive reinsurance cost. However, when the reinsurance premium is small enough,
the insurer would rather retain a less share of the claim when the expected claim number becomes
larger. This kind of property is shown in Figure 3(b) with η1= 0.14 and η2=0.25, where a greater
value of λ(> λ0) yields a less value of the optimal reinsurance strategy q�1. Besides, it is not difficult to
see that the optimal reinsurance strategy q�2 in Figure 3(a) increases faster than the one in Figure 3(b)
when λ increases, which shows once more that the reinsurer’s safety loading has a direct impact on
the optimal reinsurance strategy.

Example 5.4. In this example, we set r= 0.03, λ= 2, λ2= 7 and θ1= θ2= 0.1. The results are shown
in Figure 4.
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Figure 2. The influence of m and λ on the minimum probability of drawdown.
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Figure 3. The influence of λ on the optimal reinsurance strategy.
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From Figure 4(a) with η1=0.21 and η2= 0.23, we can see that a greater value of λ1 yields greater
values of the optimal reinsurance strategy q�1 and q�2. It makes sense because the reinsurance premium
is much more expensive in this case, the insurer would rather retain a larger share of each claim even
though a greater value of λ1 implies a larger insurance risk. However, when the reinsurer’s safety
loading is small enough, say η1=0.1 and η2=0.12 as in Figure 4(b), to reduce the risk, the insurer
tends to purchase more reinsurance for class 2 because of the cheap reinsurance premium. Mean-
while, since q�1 is much more sensitive to λ1 than q�2, there is a trade-off in allowing q1 to increase or
decrease. When λ1 is not large enough, say λ1< λ0, the insurer prefers to retain a greater share of each
claim as λ1 increases, which could help increase the premium income. However, a greater value of λ1
also implies a larger insurance risk, when λ1 is large enough, say λ1> λ0, the insurer needs to reduce
the risk of its insurance portfolios by transferring more risk to the reinsurer.

Example 5.5. In this example, we set r= 0.03, λ=3, λ1= 4, λ2=5, θ1= 0.1 and θ2=0.12. The results
are shown in Figure 5.

Figure 5 further investigates the influence of the reinsurer’s safety loadings, i.e., η1 and η2 on optimal
reinsurance strategy. It is easy to see that a greater value of ηi(i=1,2) yields a greater value of
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Figure 4. The influence of λ1 on the optimal reinsurance strategy.
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Figure 5. The influence of η1 and η2 on the optimal reinsurance strategy.
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q�i ði=1; 2Þ, which illustrates the intuitive observation that if the reinsurance premium increases, the
insurer would rather retain a greater share of each claim by purchasing less reinsurance. We also see
that as the value of η1(η2) increases, the retention level of the other class first increases and then
decreases after reaching a certain level (say, η0). These observations are kind of reasonable. When the
company keep buying less and less reinsurance for one class, it eventually needs to reduce the risk of
its insurance portfolios by buying a bit more reinsurance for another class.

6. Conclusion

We first recap the main results of this paper. From an insurer’s point of view, we consider the optimal
proportional reinsurance problem to minimise the probability of drawdown in a diffusion
approximation risk model where the aggregate claim processes are correlated by a common shock.
Based on the method of maximising the ratio of drift of a diffusion divided to its volatility squared,
and the technique of stochastic control theory and the corresponding HJB equation, we investigate
the optimal results in the cases of m≥ us and m< us. Furthermore, in each case, we constrain the
reinsurance proportion in the interval [0,1], which makes the optimisation problems being discussed
in three different situations. The explicit expressions of the optimal proportional reinsurance strategy
and the minimum probability of drawdown are derived, which strongly depend on the value of the
surplus u, as well as the two important parameters of drawdown α and m.

For the further research, there are still several interesting problems that deserve investigation. First, one
may take the life time of individual τd into consideration so as to investigate the problem of optimal
insurance which minimises the probability of lifetime drawdown. Second, we can generalise the model
to the one that insurers can invest their wealth not only in risk-free bond but also in risky assets. Note
that if the process of risky assets is independent of the claim process, we can obtain the optimal results
by the same way as in our paper. However, if the assumption of independence is removed, the problem
will become more complex. Third, the problem of minimising the probability of drawdown in our risk
model can be extended to the more general objective function, such as minimising the expectation of
any function which is non-increasing with respect to the minimum surplus value or non-decreasing
with respect to the maximum surplus value. Fourth, under the criterion of minimising the probability
of drawdown, we can also consider the optimal proportional reinsurance strategy in a risk model with
multiple dependent classes of insurance business. All of these problems will be more challenging, but
also more meaningful and realistic to be discussed, and they are our future research work directions.
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Appendix A: Proof of Monotonicity and Convexity of h

Note that when u2≤ u≤m< us and the inequality αm< ~u1 < u2 holds, we have

hðu;mÞ=1�k13ðmÞ � g13ðu;mÞ
g13ðus; usÞ

in which

k13ðmÞ=exp
ðus
m
�f13ðyÞdy

� �

with

f13ðyÞ=α 1
g13ðy; yÞ + ξ13ðαyÞ
	 


It then follows that

hmðu;mÞ=� k13ðmÞ
g13ðus; usÞ � f13ðmÞg13ðu;mÞ�αξ13ðαmÞg13ðu;mÞ�α½ �

=
α � k13ðmÞ
g13ðus; usÞ � 1� g13ðu;mÞ

g13ðm;mÞ
	 


≥0

It is not difficult to see that hm(m,m)= 0 for u=m.
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Differentiating g13 with respect to u yields

∂g13ðu;mÞ
∂u

=exp
ð~u1
αm

ξ13ðwÞ +
ðu2
~u1

ξ12ðwÞ +
ðu
u2

ξ11ðwÞ
 �

dw
� �

> 0

and

∂2g13ðu;mÞ
∂u2

=
∂g13ðu;mÞ

∂u
ξ13ðuÞ<0

Thus, we have hu<0 and huu>0. Along the same lines, we can get the same results for other cases.
Therefore, we conclude that h(u,m) is a non-increasing convex function with respect to the surplus
wealth u but a non-decreasing function with respect to the maximum (past) value m.

Appendix B: Proof of Continuity of h, hu, huu and hm

The continuity of h is obviously satisfied, thus we only need to prove that its partial derivatives hu,
huu and hm are also continuous. To keep things simple, we assume that the equality αm< ~u1 <u2
holds. We only present the proof for the case of m∈ [u2,us). The proofs for m 2 ½~u1; u2Þ and m 2
½αm; ~u1Þ can be derived similarly.

When αm≤ u< ~u1, we have

huðu;mÞ=� k13ðmÞ
g13ðus; usÞ � exp �2

ðu
αm

ξ13ðwÞdw
� �

and

huuðu;mÞ=2ξ13ðuÞ �
k13ðmÞ

g13ðus; usÞ � exp �2
ðu
αm

ξ13ðwÞdw
� �

When ~u1 ≤u< u2 ≤m, it follows that

huðu;mÞ=� k13ðmÞ
g13ðus; usÞ � exp �2

ð~u1
αm

ξ13ðwÞdw
� �

exp �2
ðu
~u1
ξ12ðwÞdw

� �

and

huuðu;mÞ=2ξ12ðuÞ �
k13ðmÞ

g13ðus; usÞ � exp �2
ð~u1
αm

ξ13ðwÞdw
� �

exp �2
ðu
~u1
ξ12ðwÞdw

� �

We can see from (4.8) that q�1; q
�
2

� �
=ð1; 1Þ for u=~u1, and thus

ξ12ð~u1Þ=ξ13ð~u1Þ=
a1θ1 + a2θ2 + ru
b21 + b

2
2 + 2ρb1b2

Therefore, it is not difficult to find that the partial derivatives hu and huu are continuous at u=~u1. By
the same way, we can also prove that hu and huu are continuous at u=u2.

Next, we show the continuity of ϕm at m=~u1. Since

hmðu;mÞ=� 1
g13ðus; usÞ k

0
11ðmÞg11ðu;mÞ + k11ðmÞ � ∂g11ðu;mÞ

∂u
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for αm≤ u≤m≤ ~u1, and

hmðu;mÞ=� 1
g13ðus; usÞ k

0
12ðmÞg12ðu;mÞ + k12ðmÞ � ∂g12ðu;mÞ

∂u

	 


for ~u1 ≤ u≤m≤ u2, then according to (4.6) and (4.7), it is obvious that k11ð~u1Þ=k12ð~u1Þ and
k

0
11ð~u1Þ=k

0
12ð~u1Þ. Besides, because of

∂g12ðu;mÞ
∂u

=
∂g11ðu;mÞ

∂u
+ 2αξ13ðαmÞexp �2

ð~u1
αm

ξ13ðwÞdw
� �ðu

~u1
exp �2

ðy
~u1
ξ12ðwÞdw

� �
dy

then we have

∂g11ð~u1; ~u1Þ
∂u

=
∂g12ð~u1; ~u1Þ

∂u

Thus, it is clear that ϕm is continuous at m=~u1. Along the same lines, we can also prove the
continuity of hm at u=u2. Therefore, we conclude that h as well as its partial derivatives hu, huu and
hm is continuous.
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