MARKOV'S PRINCIPLE AND SUBSYSTEMS OF INTUITIONISTIC ANALYSIS

JOAN RAND MOSCHOVAKIS

Abstract. Using a technique developed by Coquand and Hofmann [3] we verify that adding the analytical form MP_1 : $\forall \alpha (\neg \neg \exists x \alpha(x) = 0 \rightarrow \exists x \alpha(x) = 0)$ of Markov's Principle does not increase the class of Π_2^0 formulas provable in Kleene and Vesley's formal system for intuitionistic analysis, or in subsystems obtained by omitting or restricting various axiom schemas in specified ways.

§1. Introduction. In [6] Kleene proved that Markov's Principle MP_1 is neither provable nor refutable in his formal system I for intuitionistic analysis. By the Friedman–Dragalin translation, Markov's Rule is admissible for I and many subsystems.

We show that adding MP_1 as an axiom to \mathbf{I} does not increase consistency strength, in the sense that no additional Π^0_2 formulas become provable. The method, adapted from Coquand and Hofmann's dynamic modification [3] of the Friedman–Dragalin translation, works also for subsystems of \mathbf{I} with a few interesting exceptions.

§2. Language, logic, and basic mathematical axioms.

2.1. The two-sorted formal language and intuitionistic predicate logic. Kleene and Vesley's language \mathcal{L}_1 for two-sorted intuitionistic number theory or "intuitionistic analysis" has variables a, b, c, ..., x, y, z, ..., intended to range over natural numbers; variables α , β , γ , ..., intended to range over one-place number-theoretic functions (choice sequences); finitely many constants $0,',+,\cdot,f_4,\ldots,f_p$, each representing a primitive recursive function or functional, where f_i has k_i places for number arguments and l_i places for type-1 function arguments; parentheses indicating function application; and Church's λ .

The *terms* (of type 0) and *functors* (of type 1) are defined inductively as follows. The number variables and 0 are terms. The function variables and each f_i with $k_i = 1, l_i = 0$ are functors. If t_1, \ldots, t_{k_i} are terms and u_1, \ldots, u_{l_i} are functors, then $f_i(t_1, \ldots, t_{k_i}, u_1, \ldots, u_{l_i})$ is a term. If x is a number variable and t is a term, then λx .t is a functor. And if u is a functor and t is a term, then (u)(t) is a term.

There is one relation symbol = for equality between terms; equality between functors u, v is defined extensionally by $u = v \equiv \forall x (u(x) = v(x))$ (where x is not free in

Received July 7, 2018.

2010 Mathematics Subject Classification. 03F50, 03F55.

Key words and phrases. Markov's principle, conservativity, intuitionistic analysis.

© 2019, Association for Symbolic Logic 0022-4812/19/8402-0020 DOI:10.1017/jsl.2019.7 u or v). The atomic formulas of \mathcal{L}_1 are the expressions s=t where s,t are terms. Composite formulas are defined inductively, using the connectives &, \vee , \rightarrow , \neg , quantifiers \forall , \exists of both sorts, and parentheses (often omitted under the usual conventions on scope). A \leftrightarrow B is defined by $(A \rightarrow B)$ & $(B \rightarrow A)$.

The logical axioms and rules are those of two-sorted intuitionistic predicate logic, as presented in [6] (building on [4]). If the intuitionistic axiom schema $\neg A \rightarrow (A \rightarrow B)$ were replaced by $\neg \neg A \rightarrow A$ (of which Markov's Principle MP₁ is a special case), two-sorted classical predicate logic would result.

- **2.2.** Two-sorted intuitionistic arithmetic IA_1 . This is a conservative extension, in the language \mathcal{L}_1 , of the first-order intuitionistic arithmetic IA_0 in [4] based on $=, 0,', +, \cdot$. The mathematical axioms of IA_1 are:
 - (a) The axiom-schema of mathematical induction (for all formulas of \mathcal{L}_1): $A(0) \& \forall x (A(x) \to A(x')) \to A(x)$.
 - (b) The axioms of IA_0 for =, 0, ', +, \cdot (axioms 14–21 on page 82 of [4]) and the axioms expressing the primitive recursive definitions of the additional function constants f_4, \ldots, f_{26} given in [6] and [5].
 - (c) The open equality axiom: $x = y \rightarrow \alpha(x) = \alpha(y)$.
 - (d) The axiom-schema of λ -conversion: $(\lambda x.t(x))(s) = t(s)$, where t(x) is a term and s is free for x in t(x).

For readers familiar with [6], IA_1 is the subsystem of the "basic system" **B** obtained by omitting the axiom schemas of countable choice and bar induction (*2.1 and *26.3, respectively).

In addition to the open equality axiom (c), the equality axioms

$$\alpha_1 = \beta_1 \& \cdots \& \alpha_{l_i} = \beta_{l_i} \to f_i(x_1, \dots, x_{k_i}, \alpha_1, \dots, \alpha_{l_i}) = f_i(x_1, \dots, x_{k_i}, \beta_1, \dots, \beta_{l_i}),$$

are provable for all function constants f_i . Thus \mathbf{IA}_1 satisfies the replacement property of equality for functors as well as for terms.

 IA_1 can only prove the existence of primitive recursive sequences, in the sense that each closed theorem of the form $\exists \alpha A(\alpha)$ has a primitive recursive witness. The finite list of primitive recursive function constants, with their corresponding

 $^{{}^1}f_0-f_3 \text{ are } 0,',+,\cdot \text{ respectively. } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ represent the primitive } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ represent the primitive } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ represent the primitive } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ represent the primitive } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ represent the primitive } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ represent the primitive } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ represent the primitive } f_4(a,b)=a^b \text{ (exponentiation), and } f_5,\dots,f_{20} \text{ (expon$ recursive function (al)s a!, a - b, pd(a), min(a, b), max(a, b), $\overline{sg}(a) = 1 - a$, sg(a) = 1 - (1 - a), |a - b|, rm(a,b), [a/b], $\Sigma_{y < b}\alpha(y)$, $\Pi_{y < b}\alpha(y)$, $min_{y < b}\alpha(y)$, $max_{y < b}\alpha(y)$, p_a (the a^{th} prime, with $p_0 = 2$), and $(a)_i$ (the exponent of p_i in the prime factorization of a) respectively. We write $(a)_i$ for $f_{20}(a,i)$, and similarly for the other function constants. $f_{21}(a) = lh(a) = \Sigma_{i < a} sg((a)_i)$ represents the number of positive exponents in the prime factorization of a. Bounded quantifiers are defined with the help of bounded sum and product. Seq(a) is a prime formula equivalent to $a > 0 \& \forall i < lh(a) (a)_i > 0$, expressing "a codes the finite sequence $((a)_0 - 1, \dots, (a)_{lh(a)-1} - 1)$ ". $f_{22}(a, b) = a * b$ produces a code for the concatenation of two finite sequences from their codes. $\langle \, \rangle = 1$ codes the empty sequence, and $f_{23}(x,\alpha) = \overline{\alpha}(x) = \prod_{i < x} p_i^{\alpha(i)+1}$ represents the standard code $\langle \alpha(0) + 1, \dots, \alpha(x-1) + 1 \rangle$ for the x^{th} initial segment of α . This coding is not onto \mathbb{N} , but it satisfies $\langle a_0+1,\ldots,a_k+1\rangle*\langle a_{k+1}+1\rangle$ $1, \ldots, a_m + 1 \rangle = \langle a_0 + 1, \ldots, a_m + 1 \rangle$. In contrast, $f_{24}(x, \alpha) = \tilde{\alpha}(x) = \prod_{i < x} p_i^{\alpha(i)}$ cannot code finite sequences directly as $\langle a_0,\ldots,a_k\rangle=\langle a_0,\ldots,a_k,0\rangle.$ $f_{25}(a,b)=a\circ b=\Pi_{i<\max(a,b)}p_i^{\max((a)_i,(b)_i)},$ and $f_{26}(y) = \exp(y)$ represents the course-of-values function for the characteristic function of the predicate "y is a computation tree number." These suffice for Kleene's formal treatment ([5] Part I) of recursive partial functionals, including the recursion theorem and a normal form theorem.

axioms, is intended to be expanded as needed. Here we use the λ notation to explicitly define termwise multiplication of sequences: $(\alpha \cdot \beta)$ will abbreviate $\lambda x(\alpha(x) \cdot \beta(x))$. We also define $sg(\alpha) = \lambda x.sg(\alpha(x))$, in effect adding binary sequence variables to \mathcal{L}_1 .

2.3. Intuitionistic recursive analysis IRA. The principle of countable choice for numbers is expressed in \mathcal{L}_1 by the schema (*2.2 in [6]):

$$AC_{00}: \forall x \exists y A(x, y) \rightarrow \exists \alpha \forall x A(x, \alpha(x)),$$

where α , x must be free for y in A(x, y). Intuitionistic recursive analysis **IRA** can be axiomatized, as a subsystem of Kleene and Vesley's **B**, by $IA_1 + qf$ - AC_{00} , where qf- AC_{00} is the restriction of AC_{00} to formulas A(x, y) without sequence quantifiers and with only bounded number quantifiers. **IRA** ensures that the range of the type-1 variables contains all general recursive sequences and is closed under general recursive processes. Troelstra's **EL** and Veldman's **BIM** are alternative axiomatizations of **IRA**, cf. [7], [8].

In the two-sorted language, $IRA + MP_1 + CT_1$ formalizes Russian recursive analysis (RUSS in [2]), where MP_1 is the functional form of Markov's Principle

$$MP_1: \forall \alpha [\neg \neg \exists x \alpha(x) = 0 \rightarrow \exists x \alpha(x) = 0]$$

and CT₁ expresses Church's Thesis:

$$CT_1$$
: $\forall \alpha \exists e \forall x \exists y [T_0(e, x, y) \& U(y) = \alpha(x)].$

The general recursive functions form a classical ω -model of **RUSS** and hence of **IRA**, but **RUSS** + AC₀₀ (unlike **IRA** + AC₀₀) is inconsistent with classical logic.

- §3. Definition of the translation, and properties proved in IA₁.
- **3.1. Definition.** Let $Z(\alpha)$ abbreviate $\exists x \, \alpha(x) = 0$. To each formula E of \mathcal{L}_1 and each sequence variable α not occurring in E, we associate another formula E^{α} with the same free variables plus α , by induction on the logical form of E as follows. For cases 4 and 5, β should be distinct from α , and $A^{\operatorname{sg}(\beta)}$ is the result of substituting $\operatorname{sg}(\beta)$ for γ in the definition of A^{γ} . Similarly for $B^{\alpha \cdot \beta}$ in Case 4.
 - 1. P^{α} is $P \vee Z(\alpha)$ if P is prime.
 - 2. $(A \& B)^{\alpha}$ is $A^{\alpha} \& B^{\alpha}$.
 - 3. $(A \vee B)^{\alpha}$ is $A^{\alpha} \vee B^{\alpha}$.
 - 4. $(A \to B)^{\alpha}$ is $\forall \beta (A^{sg(\beta)} \to B^{\alpha \cdot \beta})$.
 - 5. $(\neg A)^{\alpha}$ is $\forall \beta (A^{\operatorname{sg}(\beta)} \to Z(\alpha \cdot \beta))$.
 - 6. $(\forall x A(x))^{\alpha}$ is $\forall x A^{\alpha}(x)$.
 - 7. $(\exists x A(x))^{\alpha}$ is $\exists x A^{\alpha}(x)$.
 - 8. $(\forall \gamma \mathbf{A}(\gamma))^{\alpha}$ is $\forall \gamma \mathbf{A}^{\alpha}(\gamma)$.
 - 9. $(\exists \gamma \mathbf{A}(\gamma))^{\alpha}$ is $\exists \gamma \mathbf{A}^{\alpha}(\gamma)$.

From now on, let $\alpha \in 2^{\mathbb{N}}$ abbreviate $\alpha = \operatorname{sg}(\alpha)$.

3.2. Proposition.

- (a) $\mathbf{IA}_1 \vdash \forall \alpha \forall \beta (\mathbf{Z}(\alpha \cdot \beta) \leftrightarrow \mathbf{Z}(\alpha) \vee \mathbf{Z}(\beta)).$
- (b) $\mathbf{IA}_1 \vdash \forall \alpha (\mathbf{E}^{\alpha} \leftrightarrow \mathbf{E}^{(\operatorname{sg}(\alpha))})$ for all formulas E.
- (c) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}}(E(\alpha) \leftrightarrow E(sg(\alpha))).$

PROOF. (a) holds by intuitionistic logic, (b) is proved by formula induction, and the replacement property of equality for functors guarantees (c).

3.3. Lemma. IA₁
$$\vdash \forall \alpha \forall \beta \forall \gamma (E^{\alpha} \& \gamma = \alpha \cdot \beta \rightarrow E^{\gamma}).$$

PROOF. Only Cases 4 and 5 require attention. If E is $A \to B$ where A, B both satisfy the lemma, assume $(A \to B)^{\alpha}$ & $\gamma = \alpha \cdot \beta$. If $A^{sg(\delta)}$ then $B^{\alpha \cdot \delta}$ by definition of $(A \to B)^{\alpha}$, and $\delta \cdot \gamma = (\alpha \cdot \delta) \cdot \beta$ so $B^{\delta \cdot \gamma}$ by the induction hypothesis on B. So $(A \to B)^{\gamma}$.

If E is \neg A where A satisfies the lemma, assume $(\neg A)^{\alpha}$ & $\gamma = \alpha \cdot \beta$. If $A^{sg(\delta)}$, then $Z(\alpha \cdot \delta)$ by definition of $(\neg A)^{\alpha}$, so $Z(\gamma \cdot \delta)$ by Proposition 3.2(a). So $(\neg A)^{\gamma}$.

3.4. Lemma. IA₁ $\vdash \forall \alpha(Z(\alpha) \rightarrow E^{\alpha})$ for all formulas E.

3.5. Lemma.

- (a) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}}((A \to B)^{\alpha} \to (A^{\alpha} \to B^{\alpha})).$
- (b) $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}} (A \to B)^{\alpha} \leftrightarrow \forall \alpha \in 2^{\mathbb{N}} (A^{\alpha} \to B^{\alpha}).$

PROOF. (a) follows immediately from the definition and Proposition 3.2(b) with the fact that $\alpha \cdot \alpha = \alpha$ for all $\alpha \in 2^{\mathbb{N}}$.

For (b), the implication from left to right follows from (a) by logic. For the converse assume $\forall \alpha \in 2^{\mathbb{N}}(A^{\alpha} \to B^{\alpha})$ and $\alpha \in 2^{\mathbb{N}}$ and $A^{\operatorname{sg}(\beta)}$; then $B^{\operatorname{sg}(\beta)}$ by the assumption, so B^{β} by Proposition 3.2(b), so $B^{\alpha \cdot \beta}$ by Lemma 3.3. So $(A \to B)^{\alpha}$. \dashv

- **3.6.** Lemma. If E is $\exists x \alpha(x) = 0$ (i.e., $Z(\alpha)$), then IA₁ proves:
- (a) $\forall \beta \in 2^{\mathbb{N}}(E^{\beta} \leftrightarrow E \lor Z(\beta))$.
- (b) $\forall \beta \in 2^{\mathbb{N}}((\neg E)^{\beta} \leftrightarrow (E \to Z(\beta))).$
- (c) $\forall \beta \in 2^{\mathbb{N}} ((\neg \neg E)^{\beta} \leftrightarrow E \vee Z(\beta))$.
- (d) $\forall \beta \in 2^{\mathbb{N}} (\neg \neg E \leftrightarrow E)^{\beta}$.

PROOF. (a) is immediate by Definition 3.1 with intuitionistic logic. For (b), under the assumption $\beta \in 2^{\mathbb{N}}$ and using (a), Proposition 3.2, intuitionistic logic and the fact that $\beta \cdot \beta = \beta$, we have the following chain of equivalences:

$$\begin{split} (\neg E)^{\beta} &\leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (E^{\gamma} \to Z(\beta \cdot \gamma)) \\ &\leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (E \vee Z(\gamma) \to Z(\beta \cdot \gamma)) \\ &\leftrightarrow \forall \gamma \in 2^{\mathbb{N}} (E \to Z(\beta \cdot \gamma)) \leftrightarrow (E \to Z(\beta)). \end{split}$$

For (c), under the assumption $\beta \in 2^{\mathbb{N}}$, by (b) we have

$$(\neg\neg E)^{\beta} \leftrightarrow \forall \gamma \in 2^{\mathbb{N}}((\neg E)^{\gamma} \to Z(\beta \cdot \gamma)) \leftrightarrow \forall \gamma \in 2^{\mathbb{N}}((E \to Z(\gamma)) \to Z(\beta \cdot \gamma)).$$

If $\forall \gamma \in 2^{\mathbb{N}}((E \to Z(\gamma)) \to Z(\beta \cdot \gamma))$, let $\gamma = \operatorname{sg}(\alpha)$; then $Z(\gamma) \leftrightarrow Z(\alpha)$ and $\gamma \in 2^{\mathbb{N}}$. Then $(Z(\gamma) \to Z(\gamma)) \to Z(\beta \cdot \gamma)$ since E is $Z(\alpha)$, so $Z(\beta \cdot \gamma)$, so $Z(\beta) \vee Z(\gamma)$ by Proposition 3.2(a), so $Z(\beta) \vee E$, so $E \vee Z(\beta)$. For the converse use Proposition 3.2(a). Then (d) follows from (a) and (c) with Lemma 3.5(b).

3.7. Lemma.

- (a) If E has no \rightarrow or \neg then $\mathbf{IA}_1 \vdash (E^{\lambda z.1} \leftrightarrow E)$.
- (b) $\mathbf{IA}_1 \vdash (\neg A)^{\lambda z.1} \rightarrow \neg (A^{\lambda z.1})$ for all formulas A.
- (c) If E is constructed from prime formulas and their negations using only & and \vee , then $\mathbf{IA}_1 \vdash (E^{\lambda z.1} \rightarrow E)$.

- §4. Applications to subsystems of Kleene's formal system I for intuitionistic analysis.
- **4.1. Theorem.** If **T** is a theory extending \mathbf{IA}_1 by axioms and axiom schemas F_1, \ldots, F_n such that $\mathbf{T} \vdash \forall \beta \in 2^{\mathbb{N}} (F_i)^{\beta}$ for $i = 1, \ldots, n$, and if E is derivable in **T** from assumptions A_1, \ldots, A_m with all free variables held constant in the deduction, then E^{β} is derivable in **T** from the assumptions $\beta \in 2^{\mathbb{N}}, (A_1)^{\beta}, \ldots, (A_m)^{\beta}$ with all free variables held constant.

PROOF. $\mathbf{IA}_1 \vdash \forall \alpha \in 2^{\mathbb{N}} \to \mathbb{E}^{\alpha}$ when E is any axiom of \mathbf{IA}_1 , using the lemmas in the previous section with $\forall \alpha \in 2^{\mathbb{N}} (\alpha \cdot \alpha = \alpha)$ as appropriate (e.g., for the mathematical induction schema). If \mathbf{B}^{β} and $(\mathbf{B} \to \mathbf{C})^{\beta}$ are derivable in \mathbf{IA}_1 from $\beta = \mathrm{sg}(\beta)$, $(\mathbf{A}_1)^{\beta}, \ldots, (\mathbf{A}_m)^{\beta}$ with the free variables held constant, then by Lemma 3.5(a) so is $\mathbf{B}^{\beta} \to \mathbf{C}^{\beta}$, and therefore also \mathbf{C}^{β} . Similarly for the other rules of inference.

4.2. Lemma. IA₁ + AC₀₀ $\vdash \forall \beta \in 2^{\mathbb{N}} (AC_{00})^{\beta}$, and similarly for qf-AC₀₀ and for Kleene's stronger countable choice principle (axiom schema $^{x}2.1$ in [6]):

$$AC_{01}: \quad \forall x \exists \alpha A(x,\alpha) \rightarrow \exists \beta \forall x A(x,\lambda y.\beta(\langle x,y\rangle)).$$

 \dashv

PROOF. By the definition with Lemma 3.5(b).

4.3. Lemma. IA₁ + BI₁ $\vdash \forall \beta \in 2^{\mathbb{N}}(BI_1)^{\beta}$ where Kleene's version of Brouwer's bar induction principle ("the bar theorem," axiom schema ^x26.3b in [6]) is

$$\begin{split} BI_1: \quad \forall \alpha \exists x \rho(\overline{\alpha}(x)) = 0 \ \& \ \forall w (Seq(w) \ \& \ \rho(w) = 0 \rightarrow A(w)) \\ \& \ \forall w (Seq(w) \ \& \ \forall s A(w * \langle s+1 \rangle) \rightarrow A(w)) \rightarrow A(\langle \ \rangle). \end{split}$$

PROOF. Assume $\beta \in 2^{\mathbb{N}}$ and

- (i) $(\forall \alpha \exists x \rho(\overline{\alpha}(x)) = 0)^{\beta}$,
- (ii) $(\forall w(Seq(w) \& \rho(w) = 0 \rightarrow A(w)))^{\beta}$,
- (iii) $(\forall w(Seq(w) \& \forall sA(w * \langle s+1 \rangle) \to A(w)))^{\beta}$.

By Lemma 3.5 it will be enough to prove $A^{\beta}(\langle \ \rangle)$. By the definition and the lemmas in the previous section, over \mathbf{IA}_1 the numbered assumptions are equivalent respectively to

- (i') $\forall \alpha \exists x (\rho(\overline{\alpha}(x)) = 0 \lor Z(\beta)),$
- (ii') $\forall w \forall \gamma \in 2^{\mathbb{N}}((\operatorname{Seq}(w) \& \rho(w) = 0) \lor Z(\gamma) \to A^{\beta \cdot \gamma}(w))),$
- (iii') $\forall w \forall \gamma \in 2^{\mathbb{N}}((\text{Seq}(w) \vee Z(\gamma)) \& \forall s A^{\gamma}(w * \langle s+1 \rangle) \to A^{\beta \cdot \gamma}(w)).$

In \mathbf{IA}_1 we may define $\sigma \in 2^{\mathbb{N}}$ so that

$$\sigma(\mathbf{w}) = 0 \leftrightarrow \rho(\mathbf{w}) = 0 \vee \exists \mathbf{x} \leq \mathbf{w} \beta(\mathbf{x}) = 0.$$

From (i') it follows immediately that $\forall \alpha \exists x \sigma(\overline{\alpha}(x)) = 0$. From (ii') with $\gamma = \beta$ and the fact that $\beta = \beta \cdot \beta$ we have $\forall w(Seq(w) \& \sigma(w) = 0 \to A^{\beta}(w))$. From (iii') similarly, $\forall w(Seq(w) \& \forall s A^{\beta}(w * \langle s+1 \rangle) \to A^{\beta}(w))$, so $A^{\beta}(\langle \rangle)$ follows by BI_1 . \dashv

4.4. Lemma. IA₁ + CC₁₀
$$\vdash \forall \beta \in 2^{\mathbb{N}} (CC_{10})^{\beta}$$
 where CC_{10} is

$$\forall \alpha \exists x A(\alpha, x) \rightarrow \exists \sigma \forall \alpha (\exists y \sigma(\overline{\alpha}(y)) > 0 \ \& \ \forall y (\sigma(\overline{\alpha}(y)) > 0 \rightarrow A(\alpha, \sigma(\overline{\alpha}(y)) \dot{-}1))).$$

 \dashv

 CC_{10} is a minor variation of, and is equivalent over $IA_1 + qf$ - AC_{00} to, Kleene and Vesley's continuous choice schema *27.2 ("Brouwer's Principle for numbers").

PROOF. Assume $\beta \in 2^{\mathbb{N}}$ and $\forall \alpha \exists x A^{\beta}(\alpha, x)$. By Lemma 3.5(b) it will be enough to find a σ such that for all α :

- (i) $\exists y (\sigma(\overline{\alpha}(y)) > 0 \lor Z(\beta))$ and
- (ii) $\forall y \forall \gamma \in 2^{\mathbb{N}}(\sigma(\overline{\alpha}(y)) > 0 \lor Z(\gamma) \to A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y)) \dot{-} 1)).$

 CC_{10} provides a σ such that for all α :

- (i') $\exists y \, \sigma(\overline{\alpha}(y)) > 0$ and
- (ii') $\forall y(\sigma(\overline{\alpha}(y)) > 0 \rightarrow A^{\beta}(\alpha, \sigma(\overline{\alpha}(y)) \dot{-} 1)).$

Obviously (i') entails (i). To prove (ii), let $y \in \mathbb{N}$ and $\gamma \in 2^{\mathbb{N}}$. If $\sigma(\overline{\alpha}(y)) > 0$ then $A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y)) \dot{-} 1)$ by (ii') with Lemma 3.3, and if $Z(\gamma)$ then $A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y)) \dot{-} 1)$ by Lemmas 3.4 and 3.3, so $\sigma(\overline{\alpha}(y)) > 0 \lor Z(\gamma) \to A^{\beta \cdot \gamma}(\alpha, \sigma(\overline{\alpha}(y)) \dot{-} 1)$.

4.5. Lemma. IA₁ + qf-AC₀₀ + CC₁₁ $\vdash \forall \gamma \in 2^{\mathbb{N}} (CC_{11})^{\gamma}$ where CC₁₁ is

$$\forall \alpha \exists \beta A(\alpha, \beta) \rightarrow \exists \sigma \forall \alpha \exists \beta [\forall x \exists y (\sigma(\langle x+1 \rangle * \overline{\alpha}(y)) = \beta(x) + 1 \\ \& \forall z < y \, \sigma(\langle x+1 \rangle * \overline{\alpha}(z)) = 0) \& A(\alpha, \beta)],$$

which is equivalent over $IA_1 + qf$ - AC_{00} to Kleene's strongest continuous choice principle, "Brouwer's Principle for functions" (axiom schema *27.1 in [6]).

PROOF. Assume $\gamma \in 2^{\mathbb{N}}$ and $\forall \alpha \exists \beta A^{\gamma}(\alpha, \beta)$. By Lemma 3.5(b) it will be enough to find a σ such that

$$\forall \alpha \exists \beta [\forall x \exists y ((\sigma(\langle x+1 \rangle * \overline{\alpha}(y)) = \beta(x) + 1 \\ \& \forall z < y \, \sigma(\langle x+1 \rangle * \overline{\alpha}(z)) = 0) \lor Z(\gamma)) \& A^{\gamma}(\alpha, \beta)].$$

 CC_{11} provides a σ which suffices.

4.6. Corollary. If **T** is IA_1 , Kleene's neutral theory $B = IA_1 + AC_{01} + BI_1$, Kleene's intuitionistic analysis $I = B + CC_{11}$ or any subsystem of **I** obtained by adding to IA_1 any of the schemas qf- AC_{00} , AC_{00} , AC_{01} , BI_1 and/or CC_{10} , then $T + MP_1$ and **T** prove the same Π_2^0 statements.

PROOF. By Lemma 3.6(d), $T \vdash \forall \beta \in 2^{\mathbb{N}} (MP_1)^{\beta}$. Hence by Theorem 4.1 with Lemmas 4.2–4.5, if $T + MP_1 \vdash E$ then $T \vdash \forall \beta \in 2^{\mathbb{N}} E^{\beta}$.

If E is $\forall x \exists y A(x, y)$ where A(x, y) has only bounded numerical quantifiers, then A(x, y) is equivalent over \mathbf{IA}_1 to a formula of the type described in Lemma 3.7(c), so by Theorem 4.1: if $\mathbf{T} + \mathbf{MP}_1 \vdash \mathbf{E}$ then $\mathbf{T} \vdash \mathbf{E}^{\lambda z.1}$ so $\mathbf{T} \vdash \mathbf{E}$.

4.7. Remarks. Lemma 3.7(c) holds also for formulas E constructed from prime formulas and their negations using only &, \vee , \forall and \exists , in particular for all prenex formulas. It follows, for each subsystem T of Kleene's I described in the statement of Corollary 4.6, that any prenex formula provable in T + MP₁ is provable in T

Kleene's original versions of the continuous choice principles would also satisfy Lemmas 4.4 and 4.5 over $IA_1 + qf$ -AC₀₀. By Theorem 4.1 and Lemma 3.5, the equivalences between our versions and Kleene's persist under the translation, and the proofs for CC₁₀ and CC₁₁ are simpler.

The question whether or not the "minimal" system $\mathbf{M} = \mathbf{IA}_1 + AC_{00}!$ proves the same Π_2^0 formulas as $\mathbf{M} + MP_1$ is still open, as far as we know, because $(\forall x \exists ! y A(x, y))^{\alpha}$ does not entail $\forall x \exists ! y A^{\alpha}(x, y)$ unless $\alpha = \lambda x.1$. However, if

$$AC_{00}^{\vee}: \quad \forall x (A(x) \vee B(x)) \rightarrow \exists \alpha \forall x [(\alpha(x) = 0 \ \& \ A(x)) \vee (\alpha(x) \neq 0 \ \& \ B(x))]$$

is the axiom of countable choice for two alternatives, then $\mathbf{IRA} + AC_{00}^{\vee} + MP_1$ is Π_2^0 -conservative over $\mathbf{IRA} + AC_{00}^{\vee}$ by Theorem 4.1. Since $AC_{00}!$ is equivalent over \mathbf{IRA} to

$$\forall x (A(x) \lor \neg A(x)) \to \exists \alpha \forall x (\alpha(x) = 0 \leftrightarrow A(x))$$

by [8], any prenex formula provable in $\mathbf{M} + \mathbf{MP_1}$ is provable in $\mathbf{IRA} + \mathbf{AC_{00}^{\vee}}$.

Because the translation $E \mapsto E^{\beta}$ essentially involves binary sequence quantifiers, it does not appear to solve the corresponding problem for $\mathbf{IA}_1 + AC_{00}^{Ar}$ or for Solovay's system $\mathbf{S} = \mathbf{IA}_1 + AC_{00}^{Ar} + BI_1$, where AC_{00}^{Ar} is the restriction of AC_{00} to arithmetical formulas A(x,y) (with sequence parameters allowed). In the presence of bar induction, arithmetical countable choice interacts strongly with MP_1 ; e.g., Solovay showed that the classical version $\mathbf{S} + (\neg \neg \mathbf{A} \to \mathbf{A})$ of \mathbf{S} can be interpreted negatively in $\mathbf{IRA} + BI_1 + MP_1$.

Acknowledgments. I am grateful to the editor for timely handling of this submission, and to both anonymous referees for their useful comments, questions, and corrections. One referee suggested that the coding techniques in [1] might yield the Π_2^0 -conservativity of $\mathbf{S} + \mathbf{MP_1}$ over \mathbf{S} , but that is a project for younger minds. Any errors remaining are my own.

REFERENCES

- [1] J. Avigad, *Interpreting classical theories in constructive ones*, this Journal, vol. 65 (2000), pp. 1785–1812.
- [2] D. Bridges and F. Richman, *Varieties of Constructive Mathematics*, London Mathematical Society Lecture Note Series, vol. 97, Cambridge University Press, Cambridge, 1987.
- [3] T. COQUAND and M. HOFMANN, A new method for establishing conservativity of classical systems over their intuitionistic version. **Mathematical Structures in Computer Science**, vol. 9 (1999), pp. 323–333.
 - [4] S. C. KLEENE, Introduction to Metamathematics, van Nostrand, Princeton, NJ, 1952.
- [5] ——, Formalized Recursive Functionals and Formalized Realizability, Memoirs, vol. 89, American Mathematical Society, Providence, RI, 1969.
- [6] S. C. KLEENE and R. E. VESLEY, *The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions*, North Holland, Amsterdam, 1965.
- [7] G. VAFEIADOU, Formalizing constructive analysis: A comparison of minimal systems and a study of uniqueness principles, Ph.D. thesis, National and Kapodistrian University of Athens, 2012.
 - [8] ——, A comparison of minimal systems for constructive analysis, arXiv:1808.000383.

PROF. EMERITA OF MATHEMATICS, OCCIDENTAL COLLEGE

721 24TH STREET

SANTA MONICA, CA 90402, USA

E-mail: joan.rand@gmail.com

URL: www.math.ucla.edu/~joan/

 $^{^2}$ In fact, his proof justifies a stronger result: $S + (\neg \neg A \rightarrow A)$ can be interpreted negatively in IRA + BI $_1 +$ DNS $_1$, where DNS $_1$ is the schema $\forall \alpha \neg \neg \exists x A(\overline{\alpha}(x)) \rightarrow \neg \neg \forall \alpha \exists x A(\overline{\alpha}(x))$ for quantifier-free formulas A(w). Another note with this and related results is in progress.