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MARKOV’S PRINCIPLE AND SUBSYSTEMS OF INTUITIONISTIC
ANALYSIS

JOAN RANDMOSCHOVAKIS

Abstract. Using a technique developed by Coquand and Hofmann [3] we verify that adding the
analytical formMP1:∀α(¬¬∃xα(x) = 0→ ∃xα(x) = 0) ofMarkov’s Principle does not increase the class
of Π02 formulas provable in Kleene and Vesley’s formal system for intuitionistic analysis, or in subsystems
obtained by omitting or restricting various axiom schemas in specified ways.

§1. Introduction. In [6] Kleene proved that Markov’s Principle MP1 is nei-
ther provable nor refutable in his formal system I for intuitionistic analysis. By
the Friedman–Dragalin translation, Markov’s Rule is admissible for I and many
subsystems.
We show that addingMP1 as an axiom to I does not increase consistency strength,
in the sense that no additional Π02 formulas become provable. The method, adapted
fromCoquand andHofmann’s dynamicmodification [3] of the Friedman–Dragalin
translation, works also for subsystems of I with a few interesting exceptions.

§2. Language, logic, and basic mathematical axioms.
2.1. The two-sorted formal language and intuitionistic predicate logic. Kleene and
Vesley’s language L1 for two-sorted intuitionistic number theory or “intuitionistic
analysis” has variables a,b,c, . . . ,x,y,z, . . . , intended to range over natural numbers;
variables α, �, �, . . ., intended to range over one-place number-theoretic functions
(choice sequences); finitely many constants 0,′ ,+, ·, f4, . . . , fp, each representing a
primitive recursive function or functional, where fi has ki places for number argu-
ments and li places for type-1 function arguments; parentheses indicating function
application; and Church’s �.
The terms (of type 0) and functors (of type 1) are defined inductively as follows.
The number variables and 0 are terms. The function variables and each fi with
ki = 1, li = 0 are functors. If t1, . . . , tki are terms and u1, . . . , uli are functors, then
fi(t1, . . . , tki ,u1, . . . ,uli ) is a term. If x is a number variable and t is a term, then �x.t
is a functor. And if u is a functor and t is a term, then (u)(t) is a term.
There is one relation symbol= for equality between terms; equality between func-
tors u, v is defined extensionally by u = v ≡ ∀x(u(x) = v(x)) (where x is not free in
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u or v). The atomic formulas of L1 are the expressions s = t where s, t are terms.
Composite formulas are defined inductively, using the connectives &,∨,→,¬, quan-
tifiers ∀,∃ of both sorts, and parentheses (often omitted under the usual conventions
on scope). A↔ B is defined by (A→ B)& (B→ A).
The logical axioms and rules are those of two-sorted intuitionistic predicate
logic, as presented in [6] (building on [4]). If the intuitionistic axiom schema
¬A→ (A→ B) were replaced by ¬¬A→ A (of which Markov’s Principle MP1
is a special case), two-sorted classical predicate logic would result.

2.2. Two-sorted intuitionistic arithmetic IA1. This is a conservative extension,
in the language L1, of the first-order intuitionistic arithmetic IA0 in [4] based on
=, 0,′ ,+, ·. The mathematical axioms of IA1 are:
(a) The axiom-schema of mathematical induction (for all formulas of L1):
A(0) & ∀x(A(x)→ A(x′))→ A(x).

(b) The axioms of IA0 for =, 0,′ ,+, · (axioms 14–21 on page 82 of [4]) and
the axioms expressing the primitive recursive definitions of the additional
function constants f4, . . . , f26 given in [6] and [5].1

(c) The open equality axiom: x = y→ α(x) = α(y).
(d) The axiom-schema of �-conversion: (�x.t(x))(s) = t(s), where t(x) is a term
and s is free for x in t(x).

For readers familiar with [6], IA1 is the subsystem of the “basic system” B obtained
by omitting the axiom schemas of countable choice and bar induction (x2.1 and
x26.3, respectively).
In addition to the open equality axiom (c), the equality axioms

α1 = �1& · · ·&αli = �li → fi(x1, . . . , xki , α1, . . . , αli ) = fi(x1, . . . , xki , �1, . . . , � li ),
are provable for all function constants fi . Thus IA1 satisfies the replacement property
of equality for functors as well as for terms.
IA1 can only prove the existence of primitive recursive sequences, in the sense
that each closed theorem of the form ∃αA(α) has a primitive recursive witness.
The finite list of primitive recursive function constants, with their corresponding

1f0 − f3 are 0,′ ,+, · respectively. f4(a, b) = ab (exponentiation), and f5, . . . , f20 represent the primitive
recursive function(al)s a!, a−̇b, pd (a),min(a, b),max(a, b), sg(a) = 1−̇a, sg(a) = 1−̇(1−̇a), |a− b|,
rm(a, b), [a/b], Σy<bα(y), Πy<bα(y), miny≤bα(y), maxy≤bα(y), pa (the ath prime, with p0 = 2),
and (a)i (the exponent of pi in the prime factorization of a) respectively. We write (a)i for f20(a, i),
and similarly for the other function constants. f21(a) = lh(a) = Σi<asg((a)i) represents the number
of positive exponents in the prime factorization of a. Bounded quantifiers are defined with the help
of bounded sum and product. Seq(a) is a prime formula equivalent to a > 0 & ∀i < lh(a) (a)i > 0,
expressing “a codes the finite sequence ((a)0 − 1, . . . , (a)lh(a)−1 − 1)”. f22(a,b) = a ∗ b produces a
code for the concatenation of two finite sequences from their codes. 〈 〉 = 1 codes the empty sequence,
and f23(x, α) = α(x) = Πi<xp

α(i)+1
i represents the standard code 〈α(0) + 1, . . . , α(x − 1) + 1〉 for the

xth initial segment of α. This coding is not onto N, but it satisfies 〈a0 + 1, . . . , ak + 1〉 ∗ 〈ak+1 +
1, . . . , am + 1〉 = 〈a0 + 1, . . . , am + 1〉. In contrast, f24(x, α) = α̃(x) = Πi<xpα(i)i cannot code finite

sequences directly as 〈a0, . . . , ak〉 = 〈a0, . . . , ak, 0〉. f25(a, b) = a ◦ b = Πi<max(a,b)pmax((a)i,(b)i )i , and
f26(y) = ccp(y) represents the course-of-values function for the characteristic function of the predicate
“y is a computation tree number.” These suffice for Kleene’s formal treatment ([5] Part I) of recursive
partial functionals, including the recursion theorem and a normal form theorem.
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axioms, is intended to be expanded as needed.Hereweuse the �notation to explicitly
define termwise multiplication of sequences: (α · �) will abbreviate �x(α(x) · �(x)).
We also define sg(α) = �x.sg(α(x)), in effect adding binary sequence variables
to L1.
2.3. Intuitionistic recursive analysis IRA. The principle of countable choice for
numbers is expressed in L1 by the schema (∗2.2 in [6]):

AC00 : ∀x∃yA(x, y)→ ∃α∀xA(x, α(x)),
where α, x must be free for y in A(x, y). Intuitionistic recursive analysis IRA can
be axiomatized, as a subsystem of Kleene and Vesley’s B, by IA1 + qf-AC00, where
qf-AC00 is the restriction of AC00 to formulas A(x, y) without sequence quantifiers
andwith only bounded number quantifiers. IRA ensures that the range of the type-1
variables contains all general recursive sequences and is closed under general recur-
sive processes. Troelstra’s EL and Veldman’s BIM are alternative axiomatizations
of IRA, cf. [7], [8].
In the two-sorted language, IRA + MP1 + CT1 formalizes Russian recursive
analysis (RUSS in [2]), where MP1 is the functional form of Markov’s Principle

MP1 : ∀α[¬¬∃xα(x) = 0→ ∃xα(x) = 0]
and CT1 expresses Church’s Thesis:

CT1 : ∀α∃e∀x∃y[T0(e, x, y) & U(y) = α(x)].
The general recursive functions form a classical �-model of RUSS and hence of
IRA, but RUSS + AC00 (unlike IRA + AC00) is inconsistent with classical logic.

§3. Definition of the translation, and properties proved in IA1.
3.1. Definition. Let Z(α) abbreviate ∃xα(x) = 0. To each formula E of L1 and
each sequence variable α not occurring in E, we associate another formula Eα with
the same free variables plus α, by induction on the logical form of E as follows. For
cases 4 and 5, � should be distinct from α, and Asg(�) is the result of substituting
sg(�) for � in the definition of A� . Similarly for Bα·� in Case 4.
1. Pα is P ∨ Z(α) if P is prime.
2. (A & B)α is Aα & Bα .
3. (A ∨ B)α is Aα ∨ Bα .
4. (A→ B)α is ∀�(Asg(�) → Bα·� ).
5. (¬A)α is ∀�(Asg(�) → Z(α · �)).
6. (∀xA(x))α is ∀xAα(x).
7. (∃xA(x))α is ∃xAα(x).
8. (∀�A(�))α is ∀�Aα(�).
9. (∃�A(�))α is ∃�Aα(�).
From now on, let α ∈ 2N abbreviate α = sg(α).
3.2. Proposition.
(a) IA1 	 ∀α∀�(Z(α · �)↔ Z(α) ∨ Z(�)).
(b) IA1 	 ∀α(Eα ↔ E(sg(α))) for all formulas E.
(c) IA1 	 ∀α ∈ 2N(E(α)↔ E(sg(α))).

https://doi.org/10.1017/jsl.2019.7 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.7


MARKOV’S PRINCIPLE AND SUBSYSTEMS OF INTUITIONISTIC ANALYSIS 873

Proof. (a) holds by intuitionistic logic, (b) is proved by formula induction, and
the replacement property of equality for functors guarantees (c). 

3.3. Lemma. IA1 	 ∀α∀�∀�(Eα & � = α · � → E�).
Proof. Only Cases 4 and 5 require attention. If E is A→ B where A,B both
satisfy the lemma, assume (A→ B)α & � = α · � . If Asg(�) then Bα·� by definition
of (A→ B)α , and � · � = (α · �) · � so B�·� by the induction hypothesis on B. So
(A→ B)� .
If E is ¬A where A satisfies the lemma, assume (¬A)α & � = α · � . If Asg(�), then
Z(α · �) by definition of (¬A)α , so Z(� · �) by Proposition 3.2(a). So (¬A)� . 

3.4. Lemma. IA1 	 ∀α(Z(α)→ Eα) for all formulas E.
3.5. Lemma.
(a) IA1 	 ∀α ∈ 2N((A→ B)α → (Aα → Bα)).
(b) IA1 	 ∀α ∈ 2N(A→ B)α ↔ ∀α ∈ 2N(Aα → Bα).
Proof. (a) follows immediately from the definition and Proposition 3.2(b) with
the fact that α · α = α for all α ∈ 2N.
For (b), the implication from left to right follows from (a) by logic. For the
converse assume ∀α ∈ 2N(Aα → Bα) and α ∈ 2N and Asg(�); then Bsg(�) by the
assumption, so B� by Proposition 3.2(b), so Bα·� by Lemma 3.3. So (A→ B)α . 

3.6. Lemma. If E is ∃xα(x) = 0 (i.e., Z(α)), then IA1 proves:
(a) ∀� ∈ 2N(E� ↔ E ∨ Z(�)).
(b) ∀� ∈ 2N((¬E)� ↔ (E→ Z(�))).
(c) ∀� ∈ 2N((¬¬E)� ↔ E ∨ Z(�)).
(d) ∀� ∈ 2N(¬¬E↔ E)� .
Proof. (a) is immediate by Definition 3.1 with intuitionistic logic. For (b), under
the assumption � ∈ 2N and using (a), Proposition 3.2, intuitionistic logic and the
fact that � · � = � , we have the following chain of equivalences:
(¬E)� ↔ ∀� ∈ 2N(E� → Z(� · �))

↔ ∀� ∈ 2N(E ∨ Z(�)→ Z(� · �))
↔ ∀� ∈ 2N(E→ Z(� · �))↔ (E→ Z(�)).

For (c), under the assumption � ∈ 2N, by (b) we have
(¬¬E)� ↔ ∀� ∈ 2N((¬E)� → Z(� · �))↔ ∀� ∈ 2N((E→ Z(�))→ Z(� · �)).

If ∀� ∈ 2N((E→ Z(�))→ Z(� · �)), let � = sg(α); then Z(�)↔ Z(α) and � ∈ 2N.
Then (Z(�)→ Z(�))→ Z(� · �) since E is Z(α), so Z(� · �), so Z(�) ∨ Z(�) by
Proposition 3.2(a), so Z(�) ∨ E, so E ∨ Z(�). For the converse use Proposition
3.2(a). Then (d) follows from (a) and (c) with Lemma 3.5(b). 

3.7. Lemma.
(a) If E has no→ or ¬ then IA1 	 (E�z.1 ↔ E).
(b) IA1 	 (¬A)�z.1 → ¬(A�z.1) for all formulas A.
(c) If E is constructed from prime formulas and their negations using only & and

∨, then IA1 	 (E�z.1 → E).
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§4. Applications to subsystems of Kleene’s formal system I for intuitionistic
analysis.

4.1. Theorem. If T is a theory extending IA1 by axioms and axiom schemas
F1, . . . ,Fn such that T 	 ∀� ∈2N (Fi )� for i = 1, . . . , n, and if E is derivable in T
from assumptions A1, . . . ,Am with all free variables held constant in the deduction,
then E� is derivable in T from the assumptions � ∈ 2N, (A1)� , . . . ,(Am)� with all
free variables held constant.

Proof. IA1 	 ∀α ∈ 2N Eα when E is any axiom of IA1, using the lemmas in the
previous section with ∀α ∈ 2N(α · α = α) as appropriate (e.g., for the mathemat-
ical induction schema). If B� and (B→ C)� are derivable in IA1 from � = sg(�),
(A1)� , . . . ,(Am)� with the free variables held constant, then by Lemma 3.5(a) so is
B� → C� , and therefore also C� . Similarly for the other rules of inference. 

4.2. Lemma. IA1 + AC00 	 ∀� ∈ 2N(AC00)� , and similarly for qf-AC00 and for
Kleene’s stronger countable choice principle (axiom schema x2.1 in [6]):

AC01 : ∀x∃αA(x, α)→ ∃�∀xA(x, �y.�(〈x, y〉)).
Proof. By the definition with Lemma 3.5(b). 

4.3. Lemma. IA1 + BI1 	 ∀� ∈ 2N(BI1)� where Kleene’s version of Brouwer’s
bar induction principle (“the bar theorem,” axiom schema x26.3b in [6]) is

BI1 : ∀α∃x�(α(x)) = 0 & ∀w(Seq(w) & �(w) = 0→ A(w))
& ∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w))→ A(〈 〉).

Proof. Assume � ∈ 2N and
(i) (∀α∃x�(α(x)) = 0)� ,
(ii) (∀w(Seq(w) & �(w) = 0→ A(w)))� ,
(iii) (∀w(Seq(w) & ∀sA(w ∗ 〈s + 1〉)→ A(w)))� .
By Lemma 3.5 it will be enough to proveA�(〈 〉). By the definition and the lemmas in
the previous section, over IA1 the numbered assumptions are equivalent respectively
to

(i’) ∀α∃x(�(α(x)) = 0 ∨ Z(�)),
(ii’) ∀w∀� ∈ 2N((Seq(w) & �(w) = 0) ∨ Z(�)→ A�·�(w))),
(iii’) ∀w∀� ∈ 2N((Seq(w) ∨ Z(�)) & ∀sA�(w ∗ 〈s + 1〉)→ A�·�(w)).
In IA1 we may define 	 ∈ 2N so that

	(w) = 0↔ �(w) = 0 ∨ ∃x ≤ w�(x) = 0.
From (i’) it follows immediately that ∀α∃x	(α(x)) = 0. From (ii’) with � = �
and the fact that � = � · � we have ∀w(Seq(w) & 	(w) = 0→ A�(w)). From (iii’)
similarly, ∀w(Seq(w) & ∀sA�(w ∗ 〈s + 1〉)→ A� (w)), so A�(〈 〉) follows by BI1. 

4.4. Lemma. IA1 + CC10 	 ∀� ∈ 2N (CC10)� where CC10 is

∀α∃xA(α, x)→ ∃	∀α(∃y	(α(y)) > 0 & ∀y(	(α(y)) > 0→ A(α, 	(α(y))−̇1))).
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CC10 is a minor variation of, and is equivalent over IA1 + qf-AC00 to, Kleene and
Vesley’s continuous choice schema ∗27.2 (“Brouwer’s Principle for numbers”).

Proof. Assume � ∈ 2N and ∀α∃xA�(α, x). By Lemma 3.5(b) it will be enough
to find a 	 such that for all α:

(i) ∃y(	(α(y)) > 0 ∨ Z(�)) and
(ii) ∀y∀� ∈ 2N(	(α(y)) > 0 ∨ Z(�)→ A�·�(α, 	(α(y))−̇1)).
CC10 provides a 	 such that for all α:

(i’) ∃y 	(α(y)) > 0 and
(ii’) ∀y(	(α(y)) > 0→ A�(α, 	(α(y))−̇1)).
Obviously (i’) entails (i). To prove (ii), let y ∈ N and � ∈ 2N. If 	(α(y)) > 0 then
A�·�(α, 	(α(y))−̇1) by (ii’) with Lemma 3.3, and if Z(�) then A�·�(α, 	(α(y))−̇1)
by Lemmas 3.4 and 3.3, so 	(α(y)) > 0 ∨ Z(�)→ A�·�(α, 	(α(y))−̇1). 

4.5. Lemma. IA1 + qf-AC00 + CC11 	 ∀� ∈ 2N (CC11)� where CC11 is

∀α∃�A(α, �)→ ∃	∀α∃�[∀x∃y(	(〈x + 1〉 ∗ α(y)) = �(x) + 1
& ∀z < y 	(〈x + 1〉 ∗ α(z)) = 0) & A(α, �)],

which is equivalent over IA1 + qf-AC00 to Kleene’s strongest continuous choice
principle, “Brouwer’s Principle for functions” (axiom schema x27.1 in [6]).

Proof. Assume � ∈ 2N and ∀α∃�A�(α, �). By Lemma 3.5(b) it will be enough
to find a 	 such that

∀α∃�[∀x∃y((	(〈x + 1〉 ∗ α(y)) = �(x) + 1
& ∀z < y 	(〈x + 1〉 ∗ α(z)) = 0) ∨ Z(�)) & A�(α, �)].

CC11 provides a 	 which suffices. 

4.6. Corollary. If T is IA1, Kleene’s neutral theory B = IA1 + AC01 + BI1,
Kleene’s intuitionistic analysis I = B + CC11 or any subsystem of I obtained by
adding to IA1 any of the schemas qf-AC00, AC00, AC01, BI1 and/or CC10, then T
+MP1 and T prove the same Π02 statements.

Proof. By Lemma 3.6(d), T 	 ∀� ∈ 2N(MP1)� . Hence by Theorem 4.1 with
Lemmas 4.2–4.5, if T +MP1 	 E then T 	 ∀� ∈ 2N E� .
If E is ∀x∃yA(x, y) where A(x, y) has only bounded numerical quantifiers, then
A(x, y) is equivalent over IA1 to a formula of the type described in Lemma 3.7(c),
so by Theorem 4.1: if T +MP1 	 E then T 	 E�z.1 so T 	 E. 

4.7. Remarks. Lemma 3.7(c) holds also for formulas E constructed from prime
formulas and their negations using only &,∨,∀ and ∃, in particular for all prenex
formulas. It follows, for each subsystem T of Kleene’s I described in the state-
ment of Corollary 4.6, that any prenex formula provable in T + MP1 is provable
in T.
Kleene’s original versions of the continuous choice principles would also satisfy
Lemmas 4.4 and 4.5 over IA1 + qf-AC00. By Theorem 4.1 and Lemma 3.5, the
equivalences between our versions and Kleene’s persist under the translation, and
the proofs for CC10 and CC11 are simpler.
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The question whether or not the “minimal” system M = IA1 + AC00! proves
the same Π02 formulas as M + MP1 is still open, as far as we know, because
(∀x∃!yA(x, y))α does not entail ∀x∃!yAα(x, y) unless α = �x.1. However, if
AC∨

00 : ∀x(A(x) ∨ B(x))→ ∃α∀x[(α(x) = 0 & A(x)) ∨ (α(x) �= 0 & B(x))]
is the axiom of countable choice for two alternatives, then IRA + AC∨

00 + MP1 is
Π02-conservative over IRA + AC

∨
00 by Theorem 4.1. Since AC00! is equivalent over

IRA to
∀x(A(x) ∨ ¬A(x))→ ∃α∀x(α(x) = 0↔ A(x))

by [8], any prenex formula provable inM +MP1 is provable in IRA + AC∨
00.

Because the translation E �→ E� essentially involves binary sequence quantifiers,
it does not appear to solve the corresponding problem for IA1 + ACAr00 or for
Solovay’s system S = IA1 + ACAr00 + BI1, where AC

Ar
00 is the restriction of AC00 to

arithmetical formulas A(x, y) (with sequence parameters allowed). In the presence
of bar induction, arithmetical countable choice interacts strongly with MP1; e.g.,
Solovay showed that the classical version S + (¬¬A→ A) of S can be interpreted
negatively in IRA + BI1 + MP1.2

Acknowledgments. I am grateful to the editor for timely handling of this submis-
sion, and to both anonymous referees for their useful comments, questions, and
corrections. One referee suggested that the coding techniques in [1] might yield the
Π02-conservativity of S + MP1 over S, but that is a project for younger minds. Any
errors remaining are my own.
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2In fact, his proof justifies a stronger result: S + (¬¬A→ A) can be interpreted negatively in IRA
+ BI1 + DNS1, where DNS1 is the schema ∀α¬¬∃xA(α(x))→ ¬¬∀α∃xA(α(x)) for quantifier-free
formulas A(w). Another note with this and related results is in progress.
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