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1. Introduction
Let κ be a probability measure on a finite set K . We will mainly be concerned with the
simple case where K = {0, 1}, where we call κ(1) := κ({1}) ∈ (0, 1) the intensity of κ . Let
G be a group. A Bernoulli shift over G with base (K , κ) is the measure-preserving system
(G, K G , κG), where G acts on K G via (gx)( f )= x(g−1 f ) for x ∈ K G and g, f ∈ G. Let
ι be a probability measure of lower intensity. We say that a measurable map φ : K G

→ K G

is an equivariant thinning from κ to ι if φ(x)(g)≤ x(g) for all x ∈ K G and g ∈ G, the
push-forward of κG under φ is ιG , and φ is equivariant κG-almost-surely; that is, on a set
of full-measure, φ ◦ g = g ◦ φ for all g ∈ G.

THEOREM 1. Let κ and ι be probability measures on {0, 1} and ι be of lower intensity.
For Bernoulli shifts over the free group of rank at least two, there exists an equivariant
thinning from κ to ι.

Theorem 1 does not hold with such generality in the case of a Bernoulli shift over an
amenable group like the integers. Recall that the entropy of a probability measure κ on a
finite set K is given by

H(κ) := −
∑
i∈K

κ(i) log κ(i).

THEOREM 2. (Ball [3], Soo [16]) Let κ and ι be probability measures on {0, 1} and ι be of
lower intensity. For Bernoulli shifts over the integers, there exists an equivariant thinning
from κ to ι if and only if H(κ)≥ H(ι).

https://doi.org/10.1017/etds.2018.74 Published online by Cambridge University Press

https://orcid.org/0000-0001-5093-4475
https://doi.org/10.1017/etds.2018.74


1058 T. Soo and A. Wilkens

In Theorem 2, the necessity of H(κ)≥ H(ι) follows easily from the classical theory of
Kolmogorov–Sinai entropy [8, 19], which we now recall. Let G be a group and let κ and ι
be probability measures on a finite set K . An equivariant map φ is a factor from κ to ι if the
push-forward of κG under φ is ιG , and is an isomorphism if φ is a bijection and its inverse
also serves as a factor from ι to κ . In the case G = Z, Kolmogorov proved that entropy is
non-increasing under factor maps; this implies the necessity of H(κ)≥ H(ι) in Theorem 2.
Furthermore, Sinai [15] proved that there is a factor from κ to ι if H(κ)≥ H(ι), and
Ornstein [12] proved there is an isomorphism from κ to ι if and only if H(κ)= H(ι).
Thus entropy is a complete invariant for Bernoulli shifts over Z. Ornstein and Weiss [13]
generalized these results to the case where G is an amenable group. See also Keane and
Smorodinsky for concrete constructions of factor maps and isomorphisms [9, 10].

The sufficiency of H(κ) > H(ι) in Theorem 2 was first proved by Ball [3]. The
existence of an isomorphism that is also an equivariant thinning in the equal entropy case
was proved by Soo [16]. Let us remark that the factor maps given in standard proofs of the
Sinai and Ornstein theorems will not in general be monotone; that is, they may not satisfy
φ(x)(i)≤ x(i) for all x ∈ {0, 1}Z and i ∈ Z.

Towards the end of their 1987 paper, Ornstein and Weiss [13] give a simple but
remarkable example of an entropy-increasing factor in the case where G is the free group of
rank at least two, which is further elaborated upon by Ball [2]. It was an open question until
recently whether all Bernoulli shifts over a free group of rank at least two are isomorphic.
This question was answered negatively by Lewis Bowen [5] in 2010, who proved that
although entropy can increase under factor maps, in the context of a free group with rank
at least two, it is still a complete isomorphism invariant. Recently, there has been much
interest in studying factors in the non-amenable setting; see Russell Lyons [11] for more
information.

Our proof of Theorem 1 will make use of a variation of the Ornstein and Weiss example
in Ball [2] and a primitive version of a marker-filler type construction, in the sense of
Keane and Smorodinsky [9, 10]. Our construction uses randomness already present in
the process in a careful way to mimic a construction that one would make if additional
independent randomization were available. This approach was taken by Holroyd, Lyons,
and Soo [7], Angel, Holroyd, and Soo [1], and Ball [4] for defining equivariant thinning in
the context of Poisson point processes.

2. Tools

2.1. Coupling. Let (A, α) and (B, β) be probability spaces. A coupling of α and β is
a probability measure on the product space A × B which has α and β as its marginals. For
a random variable X , we will refer to the measure P(X ∈ ·) as the law or the distribution
of X . If two random variables X and Y have the same law, we write X d

= Y . Similarly,
a coupling of random variables X and Y is a pair of random variables (X ′, Y ′), where
X ′ and Y ′ are defined on the same probability space and have the same law as X and
Y , respectively. Thus a coupling of random variables gives a coupling of the laws of the
random variables. Often we will refer to the law of a pair of random variables as the joint
distribution of the random variables. In the case that A = B and A is a partially ordered by
the relation �, we say that a coupling γ is monotone if γ {(a, b)⊂ A × A : b � a)} = 1.
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We will always endow the space of binary sequences {0, 1}I indexed by a set I with the
partial order x � y if and only if xi ≤ yi for i ∈ I .

Example 3. (Independent thinning) Let κ and ι be probability measures on {0, 1}, where
κ(1) := p ≥ ι(1) := q. Let r := (p − q)/p. Then the measure ρ on {0, 1}2 given by

ρ(0, 0)= 1− p, ρ(0, 1)= 0, ρ(1, 0)= r p, and ρ(1, 1)= (1− r)p

is a monotone coupling of κ and ι. Thus, under ρ, a 1 is thinned to a 0 with probability r
and kept with probability 1− r . Clearly, the product measure ρn is a monotone coupling
of κn and ιn . We will refer to the coupling ρn as the independent thinning of κn to ιn . ♦

The following simple lemma is one of the main ingredients in the proof of Theorem 1.
In it we construct a coupling of κn and ιn for n sufficiently large which will allow us to
extract spare randomness from a related coupling of κG and ιG . We will write 0n1m to
indicate the binary sequence of length n + m of n zeros followed by m ones.

LEMMA 4. (Key coupling) Let κ and ι be probability measures on {0, 1}, where κ is of
greater intensity. For n sufficiently large, there exists a monotone coupling γ of κn and ιn

such that
γ (100n−2, 0n)= κn(100n−2)

and
γ (010n−2, 0n)= κn(010n−2).

Proof. Let p = κ(1), q = ι(1), and ρn be the independent thinning of κn to ιn as in
Example 3. We will perturb ρn to give the required coupling. We specify a probability
measure % on {0, 1}n × {0, 1}n by stating that it agrees with ρn except on the points
(100n−2, 0n), (010n−2, 0n), (100n−2, 100n−2), and (010n−2, 010n−2), where we specify
that

%(100n−2, 0n)= %(010n−2, 0n)= p(1− p)n−1

and
%(100n−2, 100n−2)= %(010n−2, 010n−2)= 0.

Thus % is almost a monotone coupling of κn and ιn , except that from our changes to ρn we
have ∑

x∈{0,1}n
%(x, 0n)=

∑
x∈{0,1}n

ρn(x, 0n)− ρn(100n−2, 0n)− ρn(010n−2, 0n)

+ %(100n−2, 0n)+ %(010n−2, 0n)

= (1− q)n + 2p(1− p)n−1(1− r),

and ∑
x∈{0,1}n

%(x, 100n−2)=
∑

x∈{0,1}n
ρn(x, 100n−2)− ρn(100n−2, 100n−2)

+ %(100n−2, 100n−2)

= q(1− q)n−1
− p(1− p)n−1(1− r)+ 0

=

∑
x∈{0,1}n

%(x, 010n−2),

where r = (p − q)/p.
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We perturb % to obtain the desired coupling γ . Consider the set B1 of all binary
sequences of length n, where x ∈ B1 if and only if x1 = 1, x2 = 0, and

∑n
i=3 xi = 1.

Similarly, let B2 be the set of all binary sequences of length n, where x ∈ B2 if and
only if x1 = 0, x2 = 1, and

∑n
i=3 xi = 1. The sets B1 and B2 are disjoint, and each have

cardinality n − 2.
For x ∈ B1 ∪ B2,

%(x, 0n)= ρn(x, 0n)= p2(1− p)n−2r2,

for x ∈ B1,
%(x, 100n−2)= ρn(x, 100n−2)= p2(1− p)n−2r(1− r),

and for x ∈ B2,

%(x, 010n−2)= ρn(x, 010n−2)= p2(1− p)n−2r(1− r).

Note that for n sufficiently large∑
x∈B1∪B2

%(x, 0n)= 2(n − 2)p2(1− p)n−2r2 > 2p(1− p)n−1(1− r).

Let γ be equal to % except on the set of points

{(x, 0n) : x ∈ B1 ∪ B2} ∪ {(x, 100n−2) : x ∈ B1} ∪ {(x, 010n−2) : x ∈ B2},

where we make the following adjustments. For x ∈ B1 ∪ B2, set

γ (x, 0n)= p2(1− p)n−2r2
−

p(1− p)n−1(1− r)
n − 2

> 0,

for x ∈ B1, set

γ (x, 100n−2)= p2(1− p)n−2(1− r)r +
p(1− p)n−1(1− r)

n − 2
,

and for x ∈ B2, set

γ (x, 010n−2)= p2(1− p)n−2(1− r)r +
p(1− p)n−1(1− r)

n − 2
.

That γ has the required properties follows from its construction. �

To illustrate the utility of Lemma 4, we will give a different proof of the following result
of Peled and Gurel-Gurevich [6]. Let N= {0, 1, 2, . . .}.

THEOREM 5. (Peled and Gurel-Gurevich [6]) Let κ and ι be probability measures on
{0, 1}, where κ is of greater intensity. There exists a measurable map φ : {0, 1}N→ {0, 1}N

such that the push-forward of κN under φ is ιN and φ(x)(i)≤ x(i) for all x ∈ {0, 1}N and
all i ∈ N.

We note that in [6, Theorem 1.3], they use the dual terminology of thickenings; their
equivalent theorem states that for probability measures ι and κ on {0, 1}, where ι is of lesser
intensity, there is a measurable map φ : {0, 1}N→ {0, 1}N such that the push-forward of
ιN under φ is κN and φ(x)(i)≥ x(i) for all x ∈ {0, 1}N and all i ∈ N.

In the proof of Theorem 5, we will make use of the following two lemmas. We say that
a random variable U is uniformly distributed in [0, 1] if the probability that U lies in a
Borel subset of the unit interval is given by the Lebesgue measure of the set.
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LEMMA 6. Let (X, Y ) be a pair of discrete random variables taking values on the finite set
A × B with joint distribution γ . There exists a measurable function 0 : A × [0, 1] → B
such that if U is uniformly distributed in [0, 1] and independent of X, then (X, 0(X,U ))
has joint distribution γ .

Proof. Assume that P(X = a) > 0, for all a ∈ A. Let B = {b1, . . . , bn}. For each a ∈ A,
let

qa( j) := P(Y ∈ {b1, . . . , b j }|X = a)=
P(Y ∈ {b1, . . . , b j }, X = a)

P(X = a)
for all 1≤ j ≤ n. Set qa(0)= 0 and note that qa(n)= 1, so that

P(qa( j − 1)≤U < qa( j))=
P(Y = b j , X = a)

P(X = a)
.

For each 1≤ j ≤ n, let

0(a, u) := b j if qa( j − 1)≤ u < qa( j). �

We call a {0, 1}-valued random variable a Bernoulli random variable. The following
lemma allows us to code sequences of independent coin-flips into sequences of uniformly
distributed random variables.

LEMMA 7. There exists a measurable function c : {0, 1}N→ [0, 1]N such that if B =
(Bi )i∈N is a sequence of independent and identically distributed (i.i.d.) Bernoulli random
variables with mean 1

2 , then (c(B)i )i∈N is a sequence of i.i.d. random variables that are
uniformly distributed in [0, 1].

Proof. The result follows from the Borel isomorphism theorem. See [17, Theorem 3.4.23]
for more details. �

Proof of Theorem 5. Let γ be the monotone coupling of κn and ιn given by Lemma 4, so
that γ is a measure on {0, 1}n × {0, 1}n ≡ ({0, 1} × {0, 1})n . Thus the product measure
γ 2 is a monotone coupling of κ2n and ι2n and γN gives a monotone coupling of κN and
ιN. We will modify the coupling γN to become the required map φ. In order to do this, it
will be easier to think in terms of random variables rather than measures.

Let X = (X i )i∈N be an i.i.d. sequence of Bernoulli random variables with mean κ(1).
For each j ≥ 0, let

X j
:= (X jn, . . . , X( j+1)n−1),

so that the random variables are partitioned into blocks of size n. Let U = (Ui )i∈N be an
i.i.d. sequence of random variables that are uniformly distributed in [0, 1]. Also assume
that U is independent of X , and let Y = (Yi )i∈N be an i.i.d. sequence of Bernoulli random
variables with mean ι(1).

By Lemmas 4 and 6, let 0 : {0, 1}n × [0, 1] → {0, 1}n be a measurable map such
that (X1, 0(X1,U1)) has joint law γ and 0(w, v)= 0n for all v ∈ [0, 1] if w ∈
{100n−2, 010n−2

}. We have that

(X, (0(X i ,Ui ))i∈N)

gives a monotone coupling of X and Y with law γN.
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For each j ∈ N, call X j special if X j
∈ {100n−2, 010n−2

} and let S ⊂ N be the random
set of j ∈ N for which X j are special. Note that almost surely, S is an infinite set. Let
X̄ = (X̄ i )i∈N be the sequence of binary digits such that X̄ j

= X j if j 6∈ S and X̄ j
= 0n if

j ∈ S. We have that
(0(X i ,Ui ))i∈N = (0(X̄ i ,Ui ))i∈N.

Let (si )i∈N be the enumeration of S, where s0 < s1 < s2 < s3 · · · . Consider the
sequence of random variables given by

b(X) := (1[X si = 100n−2
])i∈N = (Xsi n)i∈N.

Since 100n−2 and 010n−2 occur with equal probability, we have that b(X) is an i.i.d.
sequence of Bernoulli random variables with mean 1

2 . Furthermore, we have that b(X) is
independent of X̄ , since b(X) only depends on the values of X on the special blocks. Let

c be the function from Lemma 7, so that c(b(X)) d
=U . Since b(X) is independent of X̄ ,

[0(X i ,Ui )]i∈N = [0(X̄ i ,Ui )]i∈N
d
= [0(X̄ i , c(b(X))i )]i∈N
= [0(X i , c(b(X))i )]i∈N.

Thus (X, [0(X i , c(b(X))i )]i∈N) is another monotone coupling of X and Y . Hence, we
define

φ(x) :=
[
0(x i , c(b(x))i )

]
i∈N

for all x ∈ {0, 1}N when the set S is infinite, and set φ(x)= 0N when S is finite—an event
that occurs with probability zero. �

2.2. Joinings. Let T : {0, 1}Z→ {0, 1}Z be the left-shift given by (T x)i = xi+1 for all
x ∈ {0, 1}Z and all i ∈ Z. Let κ and ι be probability measures on {0, 1}. A joining of κZ

and ιZ is a coupling % of the two measures with the additional property that % ◦ (T × T )=
%. We will make use of the following joining in the proof of Theorem 1.

Example 8. Let κ and ι be probability measures on {0, 1}. Assume that the intensity of
κ is greater than the intensity of ι. Let x ∈ {0, 1}Z, and let n be sufficiently large as in
Lemma 4. Call the subset [ j, j + 2n + 1] ⊂ Z a marker if xi = 0 for all i ∈ [ j, j + 2n]
and x j+2n+1 = 1. Notice that two distinct markers have an empty intersection. Call an
interval a filler if it is non-empty and lies between two markers. Thus each x ∈ {0, 1}Z

partitions Z into intervals of markers and fillers. Call a filler fitted if it is of size n, and call
a filler special if it is both fitted and of the form 100n−2 or 010n−2.

Let X have law κZ and Y have law ιZ. In what follows we describe explicitly how to
obtain a monotone joining of X and Y , where the independent thinning is used everywhere,
except at the fitted fillers, where the coupling from Lemma 4 is used. Let U = (Ui )i∈Z
be an i.i.d. sequence of random variables that are uniformly distributed in [0, 1] and
independent of X . By Example 3 and Lemma 6, let R : {0, 1} × [0, 1] → {0, 1} be a
measurable function such that R(X1,U1)≤ X1 is a Bernoulli random variable with mean
ι(1). Let 0 and γ be as in the proof of Theorem 5, so that

((X1, . . . , Xn), 0(X1, . . . , Xn,U1))
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has law γ . Consider the function 8 : {0, 1}Z × [0, 1]Z→ {0, 1}Z defined by 8(x, u)i =
R(xi , ui ) if i is not in a fitted filler. For ( j, j + 1, . . . , j + n) in a fitted filler, we set

(8(x, u) j , . . . , 8(x, u) j+n)= 0(x j , . . . , x j+n, u j ).

The law of X restricted to a filler interval is the law of a finite sequence of i.i.d. Bernoulli
random variables with mean κ(1), conditioned not to contain a marker. Note that since a
fitted interval is of size n, and a marker is of size 2n + 1, the law of X restricted to a fitted
interval is just the law of a finite sequence of i.i.d. Bernoulli random variables with mean
κ(1). Furthermore, conditioned on the locations of the markers, the restrictions of X to
each filler interval are independent (see for example Keane and Smorodinsky [9, Lemma 4]

for a detailed proof). Hence, 8(X,U ) d
= Y . In addition, since all the couplings involved

are monotone, we easily have that 8(X,U )i ≤ X i for all i ∈ Z. ♦

Remark 9. To emphasize the strong form of independence in Example 8, we note that if
A = (Ai )i∈Z are independent Bernoulli random variables with mean 1

2 that are independent
of X , then (A jn) j∈S has the same law as (X jn) j∈S . Recall that if j ∈ S, then X j

=

(X jn, . . . , X( j+1)n−1) is special. In addition, if X ′ is such that X ′i = X i for every i not in
a special filler of X and on each special filler of X we set X ′jn = A jn , X ′jn+1 = 1− A jn ,
and

X ′jn+2 = X ′jn+3 = · · · = X ′( j+1)n−1 = 0,

then X ′ d
= X . Thus we can independently resample on the special fillers without affecting

the distribution of X . ♦

2.3. The example of Ornstein and Weiss. Let Fr be the free group of rank r ≥ 2. Let a
and b be two of its generators. The Ornstein and Weiss [13] entropy increasing factor map
is given by

φ(x)(g)= (x(g)⊕ x(ga), x(g)⊕ x(gb))

for all x ∈ {0, 1}Fr and all g ∈ F2, where

φ : {0, 1}Fr → ({0, 1} × {0, 1})Fr ≡ {00, 01, 10, 11}Fr

pushes the uniform product measure ( 1
2 ,

1
2 )

Fr forward to the uniform product measure
( 1

4 ,
1
4 ,

1
4 ,

1
4 )

Fr ; the required independence follows from the observation that if m ⊕ n :=
m + n mod 2, if X , X ′, and Y are independent Bernoulli random variables with mean 1

2 ,
and if Z := X ⊕ Y and Z ′ := X ′ ⊕ Y , then Z and Z ′ are independent, even though they
both depend on Y .

Ornstein and Weiss’s example can be iterated to produce an infinite number of bits
at each vertex in the following way. As in Ball [2, Proposition 2.1], we will define
φk : {0, 1}Fr → ({0, 1}k)Fr inductively for k ≥ 2. Let φ̃k : {0, 1}Fr → {0, 1}Fr be the last
coordinate of φk so that φ̃k(x)(g)= [φk(x)(g)]k for all x ∈ {0, 1}Fr and all g ∈ F2. Set
φ2 = φ . For k ≥ 3, let φk be given by

φk(x)(g)= ([φk−1(x)(g)]1, . . . , [φk−1(x)(g)]k−2, (φ ◦ φ̃k−1)(x)(g))

for all x ∈ {0, 1}Fr and all g ∈ F2. At each step we are saving one bit to generate two new
bits using the original map φ. The map φk pushes the uniform product measure ( 1

2 ,
1
2 )

Fr
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forward to the uniform product measure on ({0, 1}k)Fr . By taking the limit, we obtain the
mapping

φ∞ : {0, 1}Fr → ({0, 1}Z
+

)Fr

which yields a sequence of i.i.d. fair bits at each coordinate g ∈ F2, independently. Note
that φ∞(x)(g)k = φn(x)(g)k for all n > k. In our proof of Theorem 1 we will use this
iteration, which Ball attributes to Timár.

3. Proof of the main theorem
Proof of Theorem 1. Let r ≥ 2. We begin by extending the same monotone joining defined
in Example 8 to a monotone joining of κFr and ιFr . Let X have law κFr and Y have law ιFr ;
then X = (Xg)g∈Fr = (X (g))g∈Fr are i.i.d. Bernoulli random variables with mean κ(1). As
in the Ornstein and Weiss example, it will be sufficient to use only two generators a and b
in the expression of our equivariant thinning. We refer to the string of generators and their
inverses that make up the representation of an element in Fr as a word, and the individual
generators and inverses as letters. We call a word reduced if its string of letters has no
possible cancellations.

Consider Fr as being partitioned into infinitely many Z copies Z(w) in the following
way. Let F′r be the set of reduced words in Fr that do not end in either b or b−1. For
each w ∈ F′r , set Z(w) := {wbi

}i∈Z. Indeed, any element in Fr may be written as wbi for
unique reduced w ∈ F′r and i ∈ Z.

Let n be sufficiently large for the purposes of Lemma 4. We define markers, fillers,
fitted fillers, and special fillers on each of the Z copies in the obvious way. For example, if
x ∈ {0, 1}Fr and w ∈ F′r , then the set {wb j , . . . , wb j+2n+1

} is a marker if x(wbi )= 0 for
all i ∈ [ j, 2n] and x(wb2n+1)= 1.

Let U ′ = (U ′g)g∈Fr be i.i.d. uniform random variables independent of X . Let8 be as in
Example 8. Define 8̂ : {0, 1}Fr × [0, 1]Fr → {0, 1}Fr by

8̂(x, u′)wbi =8
(
x(Z(w)), u′(Z(w))

)
i

for all w ∈ F′r and all i ∈ Z, where x(Z(w)) := (x(wb j )) j∈Z and u′(Z(w)) :=
(u′(wb j )) j∈Z. Thus we have the monotone joining 8 on each Z copy Z(w) in Fr , so
that

8̂(X,U ′) d
= Y (1)

and 8̂(X,U ′)g ≤ Xg for all g ∈ Fr . Additionally, since 8 is a joining, the joint law of
(X, 8̂(X,U ′)) is invariant under Fr -actions.

Recall that a special filler has length exactly n, and the filler has two choices of values
010n−2 or 100n−2, which occur with equal probability. We define an initial vertex of a
special filler in Z(w) to be an element wbn0 ∈ Z(w) where the entire special filler takes
values sequentially at vertices on the minimal path from wbn0 to wbn0+n . For each x ∈
{0, 1}Fr , let V = V (x) be the set of initial vertices in Fr . Note that, as in Example 8,
the law of X restricted to a fitted interval is just the law of a finite sequence of i.i.d.
Bernoulli random variables with mean κ(1). Furthermore, conditioned on the locations
of the markers, the restrictions of X to each filler interval are independent. Thus for all
v ∈ V (X), X (v) is a Bernoulli random variable with mean 1

2 , and conditioned on V (X),
the random variables (X (v))v∈V are independent.
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We have the same strong form of independence here as emphasized in Remark 9
for Example 8, again by Keane and Smorodinsky [9, Lemma 4]. This is key in our
construction: we will use the Bernoulli random variables (X (v))v∈V to build deterministic
substitutes for U ′.

Now we adapt the iteration of the Ornstein and Weiss example to assign a sequence
of i.i.d. Bernoulli random variables to each v ∈ V . For each v ∈ V , let k be the smallest
positive integer such that vak

∈ V ; set α(v)= vak . Similarly, let k′ be the smallest positive
integer such that vbk′

∈ V and set β(v)= vbk′ . For each v ∈ V , define

ψ(x)(v)=
(
x(v)⊕ x(α(v)), x(v)⊕ x(β(v))

)
.

Conditioned on V , we have that (ψ(X))v∈V is a family of independent random variables
uniformly distributed on {00, 01, 10, 11}. We iterate the map ψ as we did with the
Ornstein and Weiss map φ. Set ψ2 = ψ . For k ≥ 3, let

ψk(x)(v)= ([ψk−1(x)(v)]1, . . . , [ψk−1(x)(v)]k−2, (ψ ◦ ψ̃k−1)(x)(v)),

where ψ̃k−1(x)(v)= [ψk−1(x)(v)]k−1 is the last coordinate of ψk . Let ψ∞ be the limit,
and let Bv = ψ∞(X)(v), so that conditioned on V , the random variables (Bv)v∈V are
independent, and each Bv is an i.i.d. sequence of Bernoulli random variables with mean 1

2 .
For all x ∈ {0, 1}Fr , let x̄(g)= x(g) for all g not in a special filler, and let x̄(g)= 0 if g

belongs to a special filler. It follows from Remark 9 that if B ′ = (B ′g)g∈Fr are independent
Bernoulli random variables with mean 1

2 independent of X , then (B ′v)v∈V (X) has the same
law as (Bv)v∈V (X). Moreover,

(X̄ , (Bv)v∈V (X))
d
= (X̄ , (B ′v)v∈V (X)). (2)

We assign, in an equivariant way, one uniform random variable to each element
in Fr using the randomness provided by (Bv)v∈V . Let c : {0, 1}N→ [0, 1]N be the
function from Lemma 7, and let g ∈ Fr . Then almost surely there exist v ∈ V and a
minimal j > 0 such that gb j

= v; set Ug = c(Bv) j . Define u : {0, 1}Fr → [0, 1]Fr by
setting u(X) := (Ug)g∈Fr . Recall that U ′ = (U ′g)g∈Fr are independent random variables
uniformly distributed in [0, 1] independent of X . From (2),(

X̄ , u(X)
) d
=
(
X̄ ,U ′

)
. (3)

Let R : {0, 1} × [0, 1] → {0, 1} and 0 : {0, 1}n × [0, 1] → {0, 1}n be the functions that
appear in the definition of 8 in Example 8. Recall that R facilitated independent
thinning and 0 the key monotone coupling of Lemma 4. Also recall 0(100n−2, t)= 0=
0(010n−2, t) for all t ∈ [0, 1].

Now define φ : {0, 1}Fr → {0, 1}Fr by

φ(x)(g)= R(x(g), u(x)(g))
for g not in a fitted filler; if {wbi , . . . , wbi+n−1

} is a fitted filler, then set

(φ(x)(wbi ), . . . , φ(x)(wbi+n−1))= 0(x(wbi ), . . . , x(wbi+n−1), u(x)(wbi )).

Note that φ is defined so that φ(x)= 8̂(x, u(x)). The map φ is equivariant and satisfies

φ(x)(g)≤ x(g) by construction. It remains to verify that φ(X) d
= Y .

By the definition of 0, we have φ(X)= φ(X̄); that is, all special fillers are sent to 0n .
A similar remark applies to the map 8̂. From (1) and (3),

φ(X)= 8̂(X, u(X))= 8̂(X̄ , u(X)) d
= 8̂(X̄ ,U ′)= 8̂(X,U ′) d

= Y. �
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4. Generalizations and questions
4.1. Stochastic domination. Let [N ] = {0, 1, . . . , N − 1} be endowed with the usual
total ordering. Let κ and ι be probability measures on [N ]. We say that κ stochastically
dominates ι if

∑ j
i=0 κi ≤

∑ j
i=0 ιi for all j ∈ [N ]. An elementary version of Strassen’s

theorem [18, Theorem 11] gives that κ stochastically dominates ι if and only if there
exists a monotone coupling of κ and ι. Notice that in the case N = 2, we have that κ
stochastically dominates ι if and only if ι is not of higher intensity than κ . Thus Theorem
1 gives a positive answer to a special case of the following question.

Question 1. Let κ and ι be probability measures on [N ], where κ stochastically dominates
ι, and κ gives positive measure to at least two elements of [N ]. Let G be the free group of
rank at least two. Does there exist a measurable equivariant map φ : [N ]G→ [N ]G such
that the push-forward of κG is ιG and φ(x)(g)≤ x(g) for all x ∈ [N ]G and g ∈ G?

In Question 1, we call the map φ a monotone factor from κ to ι. A necessary condition
for the existence of a monotone factor from κ to ι is that κ stochastically dominates ι. In
the case G = Z, Ball [3] proved that there exists a monotone factor from κ to ι provided
that κ stochastically dominates ι, H(κ) > H(ι), and ι is supported on two symbols; Quas
and Soo [14] removed the two symbol condition on ι.

In the non-amenable case, where G is a free group of rank at least two, one can hope
that Question 1 can be answered positively, without any entropy restriction. However,
the analogue of Lemma 4 that was key to the proof of Theorem 1 does not apply in the
simple case where κ = (0, 1

2 ,
1
2 ) and ι= ( 1

3 ,
1
3 ,

1
3 ). In particular, for all n ≥ 1, there is

no coupling ρ of κn and ιn for which there exists x ∈ {1, 2}n and y ∈ {0, 1, 2}n such that
ρ(x, y)= κn(x)= ( 1

2 )
n , since ρ(x, y)≤ ιn(y)= ( 1

3 )
n .

4.2. Automorphism-equivariant factors. The Cayley graph of Fn is the regular tree T2n

of degree 2n. We note that Fn is a strict subset of the group of graph automorphisms of
T2n . The map that we constructed in Theorem 1 is not equivariant with respect to the full
automorphism group of T2n . In particular, our definition of a marker is not equivariant
with respect to the automorphism which exchanges a-edges and b-edges in T2n . However,
Ball generalizes the Ornstein and Weiss example to the full automorphism group
in [2, Theorem 3.3] by proving that for any d ≥ 3, there exists a measurable mapping φ :
{0, 1}Td → [0, 1]Td which pushes the uniform product measure on two symbols forward
to the product measure of Lebesgue measure on the unit interval, equivariant with respect
to the group of automorphisms of Td . Moreover, she proved the analogous result for any
tree with bounded degree, no leaves, and at least three ends.

Question 2. Let T be a tree with bounded degree, no leaves, and at least three ends. Let
κ and ι be probability measures on {0, 1} and ι be of lower intensity. Does there exists a
thinning from κ to ι that is equivariant with respect to the full automorphism group of T ?
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