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1. Introduction

Let G ⊂ GLn(C) be a finite complex reflection group and denote by A(G) the union

of all the reflecting hyperplanes of G, i.e., the hyperplanes in Cn fixed by some g ∈ G,

g 6= Id, for more details see [11, 30]. Then the complement M(A(G)) = Cn
\A(G) of the

hyperplane arrangement A(G) has a very special and interesting topology, namely it is a

K (π, 1)-space, see [4] for the long story of the proof of this result. Since A(G) is a central

hyperplane arrangement, it has a defining equation f = 0, where f is a homogeneous

polynomial. One can associate to this setting the Milnor fiber of the arrangement F(G) :
f = 1, which is a smooth hypersurface in Cn endowed with a monodromy morphism

h : F(G)→ F(G), see next section for the precise definitions. The study of the induced

monodromy operators

h j (G) : H j (F(G),C)→ H j (F(G),C)

in the case when G is a real reflection group, i.e., a Coxeter or a Weyl group, was started

by Settepanella in [33, 34]. The easy case of reflection arrangements of rank at most

two, and thus corresponding to Milnor fibers of isolated singularities, is discussed in

[13, § 5]. The case of the reducible complex reflection groups can be reduced to the case

G irreducible via [10, Theorem 1.4(i)].
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1216 A. Dimca

When G is an irreducible complex reflection group, already to determine the

first possibly nontrivial monodromy operator h1(G) : H1(F(G),C)→ H1(F(G),C) is a

challenge. In a recent preprint [26], Măcinic, Papadima and Popescu have obtained a

nearly complete control on the eigenvalues of the monodromy operator h1(G) of order

ps , with p a prime number and s a positive integer. Some of their main results are stated

below, see Theorems 1.1–1.3, in order to better understand the contribution of our note.

The irreducible non-exceptional complex reflection arrangements of rank > 3 consist

of the monomial arrangements A(m,m, n) with (m > 2, n > 3) or (m = 1, n > 4) (which

are in fact the braid arrangements An−1), given as central hyperplane arrangements in

Cn with coordinates x0, . . . , xn−1 by

A(m,m, n) : f =
∏

06i< j6n−1

(xm
i − xm

j ) = 0

and the full monomial arrangements A(m, 1, n) with m > 2, n > 3 given by

A(m, 1, n) : f =
∏

k=0,n−1

xk
∏

06i< j6n−1

(xm
i − xm

j ) = 0.

Denote by F(m,m, n) the Milnor fiber of the monomial arrangement A(m,m, n), and

recall the following results proved in [26].

Theorem 1.1. For n = 3, the monodromy operator

h1
: H1(F(m,m, 3),C)→ H1(F(m,m, 3),C)

has eigenvalues of order ps if and only if p = 3. Moreover, for p = 3, if we denote the

multiplicity of such an eigenvalue by es
3(m), then es

3(m) 6 2 if m is divisible by 3, and

es
3(m) 6 1 otherwise. For s = 1, both inequalities become equalities.

Theorem 1.2. For n > 3, the monodromy operator

h1
: H1(F(m,m, n),C)→ H1(F(m,m, n),C)

has eigenvalues of order ps if and only if p = 3 and n = 4. When n = 4 and p = 3, then

es
3(m) 6 1. For s = 1, this inequality becomes an equality.

Denote by F(m, 1, n) the Milnor fiber of the full monomial arrangement A(m, 1, n),
and recall the following result proved in [26].

Theorem 1.3. The monodromy operator

h1
: H1(F(m, 1, n),C)→ H1(F(m, 1, n),C)

has eigenvalues of order ps if and only if p = 3, n = 3 and m ≡ 1 mod 3. Moreover, for

p = 3 , n = 3 and m ≡ 1 mod 3, then es
3(m) 6 1. For s = 1, this inequality is an equality.

Building on these results by Măcinic, Papadima and Popescu, and adding a completely

different approach, in this note we determine completely the eigenvalues of h1(G) for all

irreducible complex reflection groups G 6= G31.
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Theorem 1.4. For n = 3, the monodromy operator of the monomial arrangement

h1
: H1(F(m,m, 3),C)→ H1(F(m,m, 3),C)

has as eigenvalues only cubic roots of unity. Hence the Alexander polynomial

1(t) = det(t · Id− h1
|H1(F(m,m, 3),C))

is equal to (t − 1)3m−1(t2
+ t + 1)2 if m is divisible by 3 and 1(t) = (t − 1)3m−1(t2

+ t + 1)
otherwise.

Theorem 1.5. For n > 3, the monodromy operator of the monomial arrangement

h1
: H1(F(m,m, n),C)→ H1(F(m,m, n),C)

has as eigenvalues only cubic roots of unity. Hence

det(t · Id− h1
|H1(F(m,m, n),C)) = (t − 1)qm−1(t2

+ t + 1)

if n = 4 and h1
= Id for n > 4, where q =

(n
2

)
.

Theorem 1.6. The monodromy operator of the full monomial arrangement

h1
: H1(F(m, 1, n),C)→ H1(F(m, 1, n),C)

has as eigenvalues only cubic roots of unity. Hence

det(t · Id− h1
|H1(F(m, 1, n),C)) = (t − 1)qm+n−1(t2

+ t + 1)

if n = 3 and m ≡ 1 mod 3, and h1
= Id otherwise, where q =

(n
2

)
.

The exceptional complex reflection groups of rank > 3 are usually denoted by G j ,

with 23 6 j 6 37. More precisely, the group G j has rank 3 for 23 6 j 6 27, rank 4

for 28 6 j 6 32, rank(G33) = 5, rank(G34) = rank(G35 = E6) = 6, rank(G36 = E7) = 7 and

rank(G37 = E8) = 8. For a general reference on complex reflection groups, see [22].

Theorem 1.7. The monodromy operator

h1
: H1(F(G j ),C)→ H1(F(G j ),C)

for the exceptional complex reflection group G j of rank > 3 is trivial, unless j = 25.

Moreover, A(G25) corresponds to the Hessian arrangement, and one has

det(t · Id− h1
|H1(F(G25),C)) = (t − 1)9(t4

− 1)2.

Here we prove this result for j 6= 31, and explain why the case j = 31 is special. The

proof for this latter case, using a spectral sequence involving the Jacobian syzygies and

a substantial amount of computer aided computation, is presented in a separate paper,

see [16]. An alternative computation of the monodromy for the monomial arrangement

A(m,m, 3) and for the exceptional arrangement A(G31) is given in [1], using vanishing

results for perverse sheaves on affine varieties, as well as computer aided computations

in the case of A(G31).

https://doi.org/10.1017/S147474801700038X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801700038X


1218 A. Dimca

2. A brief presentation of our approach

To describe our new approach, we work in a rather different setting as follows. Let V :
f = 0 be a hypersurface of degree d > 3 in the complex projective space Pn , defined by a

homogeneous polynomial f ∈ S = C[x0, . . . , xn]. We assume in this paper that V has only

isolated singularities and n > 2. Consider the corresponding complement U = Pn
\ V , and

the global Milnor fiber F defined by f (x0, . . . , xn) = 1 in Cn+1 with monodromy action

h : F → F , h(x0, . . . , xn) = exp(2π i/d) · (x0, . . . , xn). It is known that H j (F,C) = 0 for

1 6 j < n− 1, see [9].

One can consider the characteristic polynomials of the monodromy, namely

1
j
V (t) = det(t · Id− h j

|H j (F,C)), (2.1)

for j = 0, n− 1 and n. It is clear that 10
V (t) = t − 1, and moreover

10
V (t)1

n−1
V (t)(−1)n−1

1n
V (t)

(−1)n
= (td

− 1)χ(U ), (2.2)

where χ(U ) denotes the Euler characteristic of the complement U , see for instance

[9, Proposition 4.1.21]. It follows that the polynomial 1V (t) = 1n−1
V (t), also called the

Alexander polynomial of V , see [23, 32], determines the remaining polynomial 1n
V (t). To

find the Alexander polynomial 1V (t), or equivalently, the eigenvalues of the monodromy

operator

hn−1
: Hn−1(F,C)→ Hn−1(F,C) (2.3)

starting from V or f is a rather difficult problem, going back to O. Zariski and attracting

an extensive literature, see for instance [2, 9, 11, 19, 21, 23, 24, 29, 37] for the case n = 2,

and some of them dealing only with real line arrangements. In this paper, we take a new

look at a method to determine the Alexander polynomial 1V (t) introduced in [8] and

developed in [9, Chapter 6]. It is based on the interplay between the Hodge filtration

and the pole order filtration on the cohomology groups H∗(U,C) obtained in [7], see § 2

below for a brief survey.

The new ingredient put forward in this paper is a careful localization at an isolated

weighted homogeneous singularity (V, pi ) of the hypersurface V , see § 3. We show that

even when the local equation g′i = 0 of (V, pi ), obtained say from the global equation

f = 0 of V by choosing an affine chart at pi , is not a weighted homogeneous polynomial,

we can control the localizations of rational differential forms as well as when g′i is replaced

by an equivalent weighted homogeneous polynomial gi (such a polynomial gi exists by

our hypothesis that (V, pi ) is weighted homogeneous), see Corollaries 4.3 and 4.6.

Using this localization and its compatibility with the Thom–Sebastiani suspension, we

state and prove the main result, which is Theorem 5.3. It gives an effective criterion that

a dth root of unity λ is not an eigenvalue for an extension of the monodromy action

on the Thom–Sebastiani suspension V ′ of the hypersurface V . When we start with a

plane curve V , i.e., for n = 2, Corollary 5.5 says that this criterion, applied to λ and to

its conjugate λ, is enough to conclude that λ is not a root of the Alexander polynomial

1V (t).
When a projective hypersurface V : f = 0 in Pn has a singular locus of dimension σ > 0,

then we can consider the hypersurface W = V ∩ E : fW = 0 in P(E) = Pn−σ , obtained
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by intersecting V with a generic codimension σ linear subspace E . Then W has only

isolated singularities, and the cohomology of the Milnor fibers of f and fW coincides up

to the degree j = n− σ − 1, including the monodromy action, see [9, Theorem 4.1.24].

Therefore, our results may yield interesting information when σ > 0 as well, as we see

below in the case of reflection groups of rank > 3.

3. Reformulation of the problem in terms of hypersurface complements

To fix our convention in a compatible way with [5, 12, 15], note that the action of the

monodromy on a cohomology class [ω] ∈ H j (F,C) is given by the formula

h j ([ω]) = [(h−1)∗(ω)]. (3.1)

Let θ = exp(2π i/d), and denote by H j (F,C)θk the eigenspace of h j corresponding to

the eigenvalue θk , for k = 0, 1, . . . , d − 1. Then it is known that we have a natural

isomorphism H j (F,C)1 = H j (U,C) for any j . To describe the eigenspaces H j (F,C)θk

for 0 < k < d, one proceeds as follows. Consider the new homogeneous polynomial

f ′(x0, . . . , xn, t) = f (x0, . . . , xn)+ td ,

called the Thom–Sebastiani dth suspension of f , and note that the hypersurface

V ′ : f ′ = 0 in Pn+1 is a singular compactification of F . More precisely, let H be the

hyperplane in Pn+1 given by t = 0. Then one has the natural identifications

V ′ ∩ H = V and V ′ \ (V ′ ∩ H) = F. (3.2)

The multiplicative group µd of dth roots of unity acts on Pn+1 via the formula

θ · (x0 : . . . : xn : t) = (θx0 : . . . : θxn : t) = (x0 : . . . : xn : θ
−1t). (3.3)

Then the induced action on F is just the monodromy action, and the action on

V ′ ∩ H = V is trivial. The associated exact sequence in the cohomology with compact

supports yields

· · · → Hn(V,C)→ Hn+1
c (F,C)→ Hn+1(V ′,C)→ Hn+1(V,C)→ · · · (3.4)

and hence, for any nontrivial character ξ of µd we have

Hn−1(F,C)ξ = Hn+1
c (F,C)−ξ = Hn+1(V ′,C)−ξ (3.5)

in view of the Poincaré duality between Hn−1(F,C) and Hn+1
c (F,C). Moreover

Hn+1(V ′,C)−ξ = Hn+1
0 (V ′,C)−ξ , where

Hm
0 (V

′,C) = coker{Hm(Pn+1,C)→ Hm(V ′,C)}

denotes the primitive cohomology of V ′, since the µd -action on the cohomology of Pn+1

is trivial. See also [12, Theorem 1.1].

Note also the convention Hn−1(F,C)ξ = Hn−1(F,C)θk if and only if ξ = ξk := k in the

character group Z/dZ = Hom(µd ,C∗). Set U ′ = Pn+1
\ V ′, let pi ∈ Pn for i = 1, . . . , r be

the singular points of V , and let p′i = (pi : 0) ∈ Pn+1 be the corresponding singular points
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1220 A. Dimca

of V ′. Note that all these points are fixed points under the µd -action on Pn+1. For each

i = 1, . . . , r choose a Milnor ball B ′i for the isolated hypersurface germ (V ′, p′i ) (i.e., a

small open ball B ′i centered at p′i such that V ′ ∩ B ′i is topologically a cone with vertex

p′i ), which in addition is µd -invariant. One has, for any integer s > 1, a µd -equivariant

exact sequence

F s Hn+1(U ′,C) ρ
−→

⊕
i=1,r

F s Hn+1(B ′i \ X ′i )→ F s−1 Hn+1
0 (V ′,C)→ 0 (3.6)

where F∗ denotes the Hodge filtration and X ′i = B ′i ∩ V ′, see [9, (6.3.15)]. Here the Hodge

filtration on Hn+1(B ′i \ X ′i ) comes from the identification

F s Hn+1(B ′i \ X ′i ) = F s−1 Hn+1
{p′i }

(V ′), (3.7)

see [18], [17], [28] or [9, pp. 200–201]. Moreover, the morphism ρ is induced by the

restriction of rational differential forms, and this gives an additional exact sequence

R(n−s+2)d−n−2
ρ′

−→

⊕
i=1,r

F s Hn+1(B ′i \ X ′i )→ F s−1 Hn+1
0 (V ′,C)→ 0 (3.8)

when all the singularities (V, pi ) are weighted homogeneous, see [9, (6.3.16)], but

note that filtration F s−1 on the first cohomology group there should be replaced by

F s . Here R = C[x0, . . . , xn, t] and the morphism ρ′ is given by the following formula

ρ′(h) = ρ(ω(h)), where

ω(h) =
h�

( f ′)n+2−s (3.9)

and � is the contraction by the Euler vector field of the top differential form

dx0 ∧ · · · ∧ dxn ∧ dt.

Remark 3.1. This method to study the topology of projective hypersurfaces was extended

to hypersurfaces with non-isolated singularities in [20], and this may open the door to

new applications, e.g., the computation of the monodromy h2 in the case of a plane

arrangement in P3.

4. On the local cohomology of an isolated weighted homogeneous singularity

4.1. The absolute case

Let O0 be the ring of complex analytic function germs at the origin of Cn and denote by m
its unique maximal ideal. Let g ∈ m and assume that Xg : g = 0 is an isolated singularity.

Fix B a Milnor ball for Xg such that, in particular, the germ g has a representative, also

denoted by g, defined on B. The set of such balls B forms clearly a projective system,

and hence we can define

Hn(Bg \ Xg,C) = lim
−→

Hn(B \ Xg,C), (4.1)

an injective limit where all the morphisms are isomorphisms. Note that in fact one has

a natural isomorphism Hn(Bg \ Xg,C) = Hn
{0}(Xg,C), the local cohomology of Xg with
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support at the origin, so there is already an intrinsic notation for this object. However,

in view of the shift in the Hodge filtration (3.7) and the next construction, we prefer our

ad hoc definition.

Let �n
0 denote the O0-module of germs of holomorphic n-forms at the origin of Cn .

Then there is a well-defined C-linear map

Lg : �
n
0 → Hn(Bg \ Xg,C), (4.2)

sending ω ∈ �n
0 to the cohomology class of the meromorphic form ω

g in some cohomology

group Hn(B \ Xg,C) such that the germs ω and g are defined on the Milnor ball B
(and then regard this cohomology class in the limit Hn(Bg \ Xg,C) in the obvious way).

This construction is natural in the obvious sense: if φ : (Cn, 0)→ (Cn, 0) is an analytic

isomorphism germ, and if we set g′ = φ∗(g) = g ◦φ, then

φ∗(Lg(ω)) = Lg′(φ
∗(ω)). (4.3)

Assume now that g is a weighted homogeneous polynomial of type (w1, . . . , wn; e), with

w j strictly positive integers, having an isolated singularity at the origin. Denote by

y1, . . . , yn the coordinates on Cn and let (yα)α∈A be the monomial basis of the space

of weighted homogeneous polynomials in C[y1, . . . , yn] of degree e−w1− · · ·−wn . In

this case, we have a canonical isomorphism

Hn(Bg \ Xg,C) = Hn(Ug,C), (4.4)

where Ug = Cn
\ g−1(0), induced by the inclusions B \ Xg → Ug. Using this isomorphism,

we define Fn Hn(Bg \ Xg,C) to be the subspace in Hn(Bg \ Xg,C) corresponding to the

Hodge filtration subspace Fn Hn(Ug,C) in Hn(Ug,C). It is known that the cohomology

group Hn(Ug,Q) has a pure Hodge structure of weight n+ 2, see [9, p. 203]. If we set

ωn = dy1 ∧ · · · ∧ dyn , then it is known that the cohomology classes

εα =
yαωn

g
(4.5)

for α ∈ A give a basis for Fn Hn(Ug,C), see [9, pp. 202–203]. We denote by ε′α the element

in Fn Hn(Bg \ Xg,C) corresponding to εα. Then we have the following result.

Theorem 4.2. With the above notation, the following hold.

(1) If ω ∈ �n
0 is given by ω =

∑
β∈Nn cβ yβωn, then

Lg(ω) =
∑
α∈A

cαε′α.

In particular, the image of Lg is exactly Fn Hm(Bg \ Xg,C).
(2) Let a(g) = min{s ∈ N : sw j > e−w1− · · ·−wn for all j}. Then one has ma(g)�n

0 ⊂

ker Lg, and hence there is an induced surjective linear map

Lg : �
n
0/m

a(g)�n
0 → Fn Hn(Bg \ Xg,C) = Fn−1 Hm

{0}(Xg,C).
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Proof. It is enough to show that if h(y) is a weighted homogeneous polynomial of degree

e′ 6= e0 = e−w1− · · ·−wn , then the cohomology class of h(y)ωn
g in Hn(Ug,C) is trivial.

Consider the morphism ht : Ug → Ug, given by

ht (y) = (tw1 y1, . . . , twn yn),

for t ∈ C∗. Since ht is clearly homotopic to the identity h1, it follows that the induced

morphism in cohomology is the identity. However we get

h∗t

([
h(y)ωm

g

])
= te′−e0

[
h(y)ωm

g

]
,

for any t ∈ C∗, and this implies that the cohomology class [ h(y)ωm
g ] should vanish.

For the next claim, use the functoriality described in (4.3), and the obvious fact that φ∗

preserves ma(g)�n
0 and the Hodge filtration on the local cohomology groups Hn

{0}(Xg,C),
see [17, 18, 28].

Corollary 4.3. Let g be a weighted homogeneous polynomial of type (w1, . . . , wn; e), having

an isolated singularity at the origin. Let φ : (Cn, 0)→ (Cn, 0) be an analytic isomorphism

germ, and set g′ = φ∗(g) = g ◦φ. Then there is an induced surjective linear map

Lg′ : �
n
0/m

a(g)�n
0 → Fn Hn(Bg′ \ Xg′ ,C) = Fn−1 Hn

{0}(Xg′ ,C),

where the integer a(g) is defined in Theorem 4.2(2).

4.4. The relative case and Thom–Sebastiani construction

Let g ∈ m and assume that Xg : g = 0 is an isolated singularity. Consider the suspension

G(y, t) = g(y)+ td

as a germ at the origin of Cn+1, with coordinates y1, . . . , yn, t . Then the corresponding

cohomology group Hn+1(BG \ XG ,C) has a natural µd -action, coming from the µd -action

on Cn+1 defined by

λ · (y, t) = (y, λ−1t),

for any λ ∈ µd . Note that a germ of a holomorphic (n+ 1)-form ω at the origin of Cn+1

can be written as

ω =
∑
m∈N

ω(m) ∧ tm dt,

where ω(m) ∈ �n
0 . Using this decomposition, the linear map LG defined in (4.2) can be

refined taking into account the isotypical components with respect to the µd -action, and

we get, for k = 1, 2, . . . , d

LG : �
n
0 ∧ tk−1C{td

} dt → Hn+1(BG \ XG ,C)ξk , (4.6)

where ξd = ξ0 is the trivial character. This construction is clearly functorial as in (4.3)

with respect to germs of isomorphisms 8 : (Cn+1, 0)→ (Cn+1, 0), where 8 is a product

φ× IdC, with φ : (Cn, 0)→ (Cn, 0) an isomorphism as in (4.3).
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Assume now that g is a weighted homogeneous polynomial of type (w1, . . . , wn; e),
with w j strictly positive integers, having an isolated singularity at the origin. Let γ (e, d)
be the greatest common divisor of e, d and µ(e, d) = ed/γ (e, d) be their least common

multiple.

Then the suspension G is weighted homogeneous of type (d1w1, . . . , d1wn, e1;µ(e, d)),
where d1 = d/γ (e, d) and e1 = e/γ (e, d). Let (yα)α∈Ak be the monomial basis of the

space of weighted homogeneous polynomials in C[y1, . . . , yn] of degree µ(e, d)− d1w1−

· · ·− d1wn − e1k with respect to the new weights wt (y j ) = d1w j , for k = 1, 2, . . . , d. Then

it is clear that the cohomology classes

εα =
yαtk−1ωn ∧ dt

G
(4.7)

for α ∈ Ak give a basis for Fn+1 Hn+1(UG ,C)ξk . The corresponding basis in the vector

space Fn+1 Hn+1(BG \ XG ,C)ξk is denoted by ε′α. We have the following result, with

exactly the same proof as for Theorem 4.2.

Theorem 4.5. With the above notation, the following hold.

(1) If ω ∈ �n
0 ∧ tk−1C{td

} dt is given by ω =
∑
β∈Nn ,m∈N cβ,m yβ tk−1+mωn ∧ dt, then

LG(ω) =
∑
α∈Ak

cαε′α.

In particular, the image of LG from (4.6) is exactly Fn+1 Hn+1(BG \ XG ,C)ξk .

(2) Let a(g, k) = min{s ∈ N : sd1w j > µ(e, d)− d1w1− · · ·− d1wn − e1k for all j}.
Then ma(g,k)�n

0 ∧ tk−1C{td
} dt ⊂ ker LG , and hence there is an induced surjective

linear map

LG : (�
n
0/m

a(g,k)�n
0)∧ tk−1 dt → Fn+1 Hn+1(BG \ XG ,C)ξk = Fn Hn+1

{0} (XG ,C)ξk .

We also have the following version of Corollary 4.3.

Corollary 4.6. Let g be a weighted homogeneous polynomial of type (w1, . . . , wn; e), having

an isolated singularity at the origin. Let φ : (Cn, 0)→ (Cn, 0) be an analytic isomorphism

germ, and set g′ = φ∗(g) = g ◦φ. Let G ′(y, t) = g′(y)+ td . Then there is an induced
surjective linear map

LG ′ : (�
n
0/m

a(g,k)�n
0)∧ tk−1 dt → Fn+1 Hn+1(BG ′ \ XG ,C)ξk = Fn Hn+1

{0} (XG ′ ,C)ξk ,

where the integer a(g, k) is defined in Theorem 4.5(2).

Example 4.7. (i) Consider the case n = 2 and g(y1, y2) = y3
1 + y3

2 . Then g is weighted

homogeneous of type (1, 1; 3). Consider the suspension G(y1, y2, t) = g(y1, y2)+ t3m for

some integer m > 1, which is weighted homogeneous of type (m,m, 1; 3m). Using the

absolute case discussed above, we see that a basis for F3 H3(BG \ XG ,C) is given by the

following forms. Fix an integer k ∈ {1, 2, . . . , 3m} and then fix a monomial basis (yα)α∈Ak
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of the space of weighted homogeneous polynomials in C[y1, y2] of degree d − d1w1− · · ·−

d1wn − k = 3m−m−m− k = m− k, where wt (yi ) = d1wi = m. It follows that only the

value k = m gives a nontrivial vector space, which 1-dimensional with the basis 1. It

follows that

F3 H3(BG \ XG ,C) = F3 H3(BG \ XG ,C)ξm ,

and a(g,m) = 1.
(ii) Consider now the case n = 2 and g(y1, y2) = ym

1 + ym
2 , for some integer m > 3.

Then g is weighted homogeneous of type (1, 1;m). Consider the suspension G(y1, y2, t) =
g(y1, y2)+ tqm , for some integer q > 0. Then G is weighted homogeneous of type

(q, q, 1; qm). Using the absolute case discussed above, we see that a basis for F3 H3(BG \

XG ,C) is given by the following forms. Fix an integer k ∈ {1, 2, . . . , qm} and then fix

a basis (yα)α∈Ak of the space of weighted homogeneous polynomials in C[y1, y2] of

degree d − d1w1− · · ·− d1wn − k = qm− 2q − k = q(m− 2)− k, where wt (yi ) = d1wi =

q. It follows as above that only the values k = qk1, for 1 6 k1 6 m− 2 give a nontrivial

vector space and that one has

F3 H3(BG \ XG ,C) =
⊕

16k16m−2

F3 H3(BG \ XG ,C)ξ3k1
,

and a(g, qk1) = m− k1− 1.
(iii) Consider again the case n = 2 and g(y1, y2) = ym

1 + ym
2 , for some integer m > 3.

Consider the suspension G(y1, y2, t) = g(y1, y2)+ td , which is weighted homogeneous

of type (d1, d1,m1;µ(m, d)), where d1 = d/γ (m, d) and m1 = m/γ (m, d). Using the

absolute case discussed above, we see that a basis for F3 H3(BG \ XG ,C) is given by

the following forms. Fix an integer k ∈ {1, 2, . . . , d} and then fix a basis (yα)α∈Ak of

the space of weighted homogeneous polynomials in C[y1, y2] of degree µ(m, d)− 2d1−

km1 = d1(m− 2)− km1. Since m1 and d1 are relatively prime, it follows that only the

values k = k1d1, for 1 6 k1 < γ (m, d) give a nontrivial vector space. Such a value for

k corresponds to the eigenvalue θk
= exp(2π ik/d) = exp(2π ik1/γ (m, d)). It follows that

a(g, k) = m− 1− k1m1.

Note that one may write

a(g, k) = m− 1− k1m1 =
mk′

d
− 1,

for k′ = d − k, a formula needed in our Remark 5.6 below.

5. How to prove the vanishing of some monodromy eigenspaces

5.1. The general approach

Consider a projective hypersurface V in Pn having only isolated, weighted homogeneous

singularities, and recall the exact sequence (3.8) for s = n+ 1. Then, in terms of

µd -isotypic components we have the following exact sequence

Sd−n−1−k
ρk
−→

⊕
i=1,r

Fn+1 Hn+1(B ′i \ X ′i ,C)ξk → Fn Hn+1
0 (V ′,C)ξk → 0 (5.1)
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for any k = 1, . . . , d − 1. Here we can clearly replace Fn+1 Hn+1(B ′i \ X ′i )ξk by the more

intrinsic object Fn+1 Hn+1(BG ′i
\ XG ′i

,C)ξk , where g′i = 0 is a (local) equation for the

isolated singularity (V, pi ) and G ′i is the dth suspension of g′i as above. Moreover, the

morphism ρk sends a homogeneous polynomial h(x) in (x0, . . . , xn) of degree d − n− 1− k
to the set of r cohomology classes defined by the restrictions of the rational differential

form
h(x)tk−1�

f ′
(5.2)

to the complements BG ′i
\ XG ′i

for i = 1, . . . , r . If we choose the hyperplane H0 : x0 = 0
such that all the singularities pi are in Cn

= Pn
\ H0, and chose yi = xi/x0 as coordinates

on Cn , then the above restrictions have the form

ηi =
hi (y)tk−1ωn ∧ dt

g′i
,

for hi analytic germs at the points bi in Cn corresponding to the singularities pi ’s. We

denote by Obi the ring of such analytic function germs at bi , and by mbi ⊂ Obi the

corresponding maximal ideals.

To show that Fn Hn+1
0 (V ′,C)ξk = 0 for some k, we have to show that the morphism ρk

is surjective. In view of Corollary 4.6, this morphism can be factor as follows

Sd−n−1−k
u
−→

⊕
i=1,r

Obi /m
a(gi ,k)
bi

v
−→

⊕
i=1,r

Fn+1 Hn+1(BG ′i
\ XG ′i

,C)ξk , (5.3)

where gi is a weighted homogeneous polynomial right equivalent to g′i . Notice that

we do not need the actual polynomial gi , just its homogeneity type in order to

compute the invariant a(gi , k). The first morphism u is an evaluation map. It takes a

homogeneous polynomial h to the classes of the germs hi (y) at the points bi of the

polynomial h(1, y1, . . . , yn), while the morphism v sends the r -tuple of germ classes

(h1(y), . . . , hr (y)) to the r -tuple of cohomology classes ([η1], . . . ., [ηr ]) defined above.

Moreover, the morphism v is surjective by Corollary 4.6.

On the other hand, recall the following result, see for instance [3, Corollary 2.1].

Lemma 5.2. The evaluation morphism u = evalN : SN →
⊕

i=1,r Obi /m
a(gi ,k)
bi

is surjective

for any N >
∑

i=1,r a(gi , k)− 1.

More precisely, for a given k, let Ik ⊂ [1, d − 1] be the subset consisting of all the

indices i such that Fn+1 Hn+1(BG ′i
\ XG ′i

,C)ξk 6= 0. Then the above discussion implies the

following result.

Theorem 5.3. If N = d − n− 1− k >
∑

i∈Ik
a(gi , k)− 1, then Fn Hn+1

0 (V ′,C)ξk = 0.

5.4. The case n = 2

We assume in this subsection that V is a plane curve having only weighted homogeneous

singularities. Then each of the singularities (V ′, p′i ) is a weighted homogeneous singularity
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and hence the corresponding complement H3(BG ′i
\ XG ′i

,C) has a pure Hodge structure

of weight 5, see for instance [9, p. 245 and pp. 66–67]. It follows that one has

H3(BG ′i
\ XG ′i

,C) = H3,2(BG ′i
\ XG ′i

,C)⊕ H2,3(BG ′i
\ XG ′i

,C), (5.4)

where H3,2(BG ′i
\ XG ′i

,C) = F3 H3(BG ′i
\ XG ′i

,C) and H2,3(BG ′i
\ XG ′i

,C) is its complex

conjugate. It follows, via the exact sequence (3.6), that H3(V ′,Q) is a pure Hodge

structure of weight 3 such that

H3(V ′,C) = H2,1(V ′,C)⊕ H1,2(V ′,C), (5.5)

where H2,1(V ′,C) = F2 H3(V ′,C) and H1,2(V ′,C) is its complex conjugate. Next, for

any nontrivial character ξk of µd , we have similar relations

H3(V ′,C)ξk = H2,1(V ′,C)ξk ⊕ H1,2(V ′,C)ξk , (5.6)

and dim H2,1(V ′,C)ξk = dim H1,2(V ′,C)ξd−k . These relations combined with the formula

(3.5) yield the following.

Corollary 5.5. Let V be a plane curve of degree d having only weighted homogeneous

singularities. Then for any nontrivial character ξk of µd one has H1(F,C)ξk = 0 if and

only if F2 H3(V ′,C)ξk = F2 H3(V ′,C)ξd−k = 0.

This corollary says that for such plane curves the vanishing of an eigenspace of the

Milnor monodromy on H1(F,C) can be tested using only rational forms with poles of

order 1. In other cases, poles of higher orders are necessary, see for instance the case of

nodal hypersurfaces of dimension > 2 in [9, Theorem 6.4.5]. Our new approach outlined

here will be extended to such more general situations in a subsequent paper.

Remark 5.6. Let V be a line arrangement in P2. Then our Theorem 5.3 looks very similar

to [5, Theorem 2]. In fact, by the formula at the end of Example 4.7, (iii), we see that

the ideal J (>k′)
y from [5, Theorem 2] coincides with the ideal ma(gi ,k)

bi
, where y ∈ V is

the singular point corresponding to bi . However, note that the target space for the two

evaluation morphisms is distinct, because the corresponding sums involve different sets

of singular points, and this makes the new result easier to apply. It is not clear at this

stage whether one of these two results implies the other.

6. The irreducible complex reflection arrangements of rank > 3

For a line arrangement A in P2, it is a major open question whether the monodromy

operator h1
: H1(F,C)→ H1(F,C) is combinatorially determined, i.e., determined by

the intersection lattice L(A), see [11, 30]. Several interesting examples have been

computed by Cohen, Suciu, Măcinic, Papadima, Yoshinaga, see [6, 25, 35–37]. When the

line arrangement A has only double and triple points, then a complete positive answer is

given by Papadima and Suciu in [31]. However, the determination of the eigenvalues

of h1 in general remains a very difficult question. Following [26], we discuss below

the case of (generic 3-dimensional sections) of the irreducible non-exceptional reflection

arrangements of rank > 3.
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First we give the proof of Theorem 1.4. The curve V , obtained as the union of all the

lines in A(m,m, 3), has two types of singularities, the triple points, with local equation

y3
1 + y3

2 = 0 and the three m-fold intersection points, p1 = [1 : 0 : 0], p2 = [0 : 1 : 0] and

p3 = [0 : 0 : 1], with local equation ym
1 + ym

2 = 0.

In this case the degree of the curve V is d = 3m. Using Theorem 1.1, it remains to

show that H1(F,C)ξk = 0 for any integer k with 0 < k < 3m and k 6= m, k 6= 2m, where

F = F(m,m, 3) is the corresponding Milnor fiber. By Corollary 5.5, it is enough to show

for such k’s, the vanishing F2 H3(V ′,C)ξk = 0. To do this we use Theorem 5.3. First note

that, in view of Example 4.7(i), the triple points give no contribution (i.e., their indices are

not in the set Ik). There are at most 3 singular points left, namely p1, p2, p3 when m 6= 3.

Note that the character ξk corresponds to the eigenvalue θk
= exp(2π ik/3m). If such an

eigenvalue occurs, it must be a root of at least one of the local Alexander polynomials of

the singularities of V , see [9, Corollary 6.3.29] or [23]. The local Alexander polynomial

of a triple point has only cubic roots of unity, while the local Alexander polynomials of

(V, pi ) for i = 1, 2, 3 have only mth roots of unity. It follows that θk , supposed not a

cubic root of unity, can be an eigenvalue only if k is divisible by 3, say k = 3k1. Then,

by Example 4.7(ii), we know that one has a(gi , k) = m− k1− 1 for i = 1, 2, 3. It follows

that

N = 3m− 3− k > 3(m− k1− 1)− 1,

and hence our claim is proved by Theorem 5.3.

Remark 6.1. (i) Note that our approach is complementary to that used in [26]. Indeed,

it seems not easy to obtain the multiplicities of the cubic roots of unity for the monomial

line arrangement by the method described above.

(ii) Theorem 1.4 was checked for 2 6 m 6 25 using a completely different,

computational point of view in [15].

We give now the proof of Theorem 1.5. The curve V is in this case obtained by taking

first the trace of the monomial arrangement A(m,m, n) on a 3-dimensional generic linear

subspace E in Cn with 0 ∈ E , and then working in the corresponding projective plane

P2
= P(E). It is easy to see that this curve V has degree d = qm. Assume in the sequel

that m > 4 (otherwise the claim of Theorem 1.5 is obvious, using the local Alexander

polynomials).

Then V has nm = q ordinary m-points, n3 =
(n

3

)
m2 triple points and

n2 =
1
2

(
n
2

)(
n− 2

2

)
m2

double points. It follows exactly as above, by looking at the local Alexander polynomials,

that we have only to discard eigenvalues θk
= exp(2π ik/qm) of order > 3 and a divisor

of m. It follows that one should have k = qk1 for some integer k1. Then, exactly as

above we get a(gi , k) = m− k1− 1 for all the q singular points gi = 0 of multiplicity m
by Example 4.7(ii). Then

N = qm− 3− k > q(m− k1− 1)− 1,
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and hence our claim is proved by Theorem 5.3, since as above the double and triple points

can be ignored in this computation.

Next we consider the case of the full monomial arrangement A(m, 1, n). For n > 3,

proceed as above and take first a generic 3-dimensional section. Then the corresponding

new curve V f is obtained from the previous curve V , coming from a monomial

arrangement, by adding n new lines L i corresponding to xi = 0 for i = 0, . . . , n− 1.

Each line, say L0 to fix the ideas, passes through (n− 1) points of multiplicity m
of the curve V , e.g., L0 passes through the points corresponding to x0 = x1 = 0,

x0 = x2 = 0, . . . , x0 = xn−1 = 0. In conclusion, q points of multiplicity m on V become

now q points of multiplicity m′ = m+ 2 on V f , the triple points in V stay triple points on

V f and there are some additional nodes on V f . Note that the degree of V f is d = qm+ n.

To prove Theorem 1.6, we have to show that there are no eigenvalues θk
= exp(2π ik/d)

of order > 3 and a divisor of m′. Let γ (m′, d) be the greatest common divisor of m′ and

d and set m′ = γ (m′, d)m′1 and d = γ (m′, d)d1. If the order of θk is a divisor of m′, it

follows that km′ = kγ (m′, d)m′1 is divisible by d = γ (m′, d)d1, and hence k is divisible by

d1, say k = d1k1.

Since 1 6 k < d, it follows that 1 6 k1 < γ (m′, d). Using Example 4.7(iii), we infer that

a(g, k) = m′− 1− k1m′1. Moreover, one has

d1 =
d

γ (m′, d)
=

qm′− 2q + n
γ (m′, d)

= qm′1−
2

γ (m′, d)
q + n > q(m′1− 1),

since γ (m′, d) > 3, being a multiple of the order of θk . It follows that

(d − n− 1− k)−
(∑

i∈Ik

a(gi , k)− 1
)
= d1(γ (m′, d)− k1)− 3− q(m′− 1− k1m′1)+ 1

> q(m′− 1)(γ (m′, d)− k1− 1)+ qk1m′1− 2 > 0,

since in the last sum the first term is clearly > 0, while the second satisfies

qk1m′1− 2 > n− 2 > 1.

Again the double and triple points can be ignored in this computation, and hence the

proof of Theorem 1.6 is complete.

Finally, we prove Theorem 1.7 for j 6= 31. In fact, the results in [26, 30] completely

determine the monodromy operator

h1
: H1(F(G j ),C)→ H1(F(G j ),C)

for j 6= 31. More precisely, by [26, Theorem 1.2], one has h1
= Id for j 6= 25, 31 and for

j = 25, which corresponds to the Hessian arrangement, one has

det(t · Id− h1
|H1(F(G25),C)) = (t − 1)9(t4

− 1)2,

see for instance [5, Remark 3.3(iii)]. Indeed, consider as an example the case of the

exceptional group H3 = G23. Then [30, Table C.4] shows that the associated curve

V (G23) in P2 has degree d = 15, 15 nodes, 10 triple points and 6 points of multiplicity 5,

corresponding to the isotropy group I2(5). Looking at the local Alexander polynomials

shows that the monodromy eigenvalues should have an order which divides 2, 3 or 5. But

eigenvalues of these orders are excluded by [26, Theorem 1.2].
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Remark 6.2. In the case of the remaining exceptional group G31, Table C.12 in [30] shows

that the corresponding curve V (G31) in P2 has degree d = 60, 360 double points, 320 triple

points and 30 points of multiplicity 6, corresponding to the isotropy group G(4, 2, 2). If

we try to apply our method to this curve, in order to exclude the roots of unity of order

6, we have to take in the above notation γ (6, d) = 6, d1 = 10, k = 10 or k = 50. When

k = 10, for any point pi of multiplicity 6 we get a(gi , 10) = 4. Therefore, the inequality

in Theorem 5.3 becomes in this case 60− 3− 10 > 30 · 4− 1, which is clearly false. Hence

our method does not work in this case.

One may even try to replace Lemma 5.2 by a more precise result coming from

[27, Theorem 25.3]. We apply this result to the plane curve D = V (G31) and for k = 0.

The computations in [14], § 1.3 show that the Hodge ideal I0(D)p for any point p ∈ D of

multiplicity 6 coincides with m4
p, where mp ⊂ OP2,p denotes the maximal ideal. Similarly,

one has I0(D)q = mq for any point q ∈ D of multiplicity 3. Hence the vanishing in

[27, Theorem 25.3] implies that we have an epimorphism

u = evalN : SN →

(⊕
i=1,r

Opi /m
4
pi

)
⊕

(⊕
j=1,s

Oq j /mq j

)
,

for any N > d − 3 = 57, where the first direct sum involves all the points pi of multiplicity

6 in D, and the second direct sum involves all the points q j of multiplicity 3 in D. However,

we are not able to show that this epimorphism, say for N = 57, implies the epimorphism

of the composition morphism in (5.3), which involves the polynomials in S47, but only

the points of multiplicity 6.

For the computation of the Milnor monodromy of the arrangement A(G31) using two

completely different approaches, see [1, 16].

Acknowledgment. The author would like to thank G. Lehrer, A. Măcinic and

S. Papadima for useful discussions.
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