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Abstract

Change mode and effects analysis (CMEA) is a powerful technique for measuring product flexibility toward future changes
and diminishing the cost of redesign as well as shortening time to market. As a systematic methodology, it provides an in-
depth view for the investigation of potential changes, causes, and effects in designs, products, and processes. Traditional
CMEA determines the risk priorities of change modes by using change potential number, which requires the risk factors of
design flexibility, occurrence, and readiness to be precisely evaluated. However, this is not always possible in real applica-
tions due to the uncertainty and subjectivity involved in the early design stages. It has been criticized much for its deficien-
cies in criteria weighting of the risk factors, change potential number calculation, and risk priorities determination of the
change modes. This paper presents a systematic evaluation approach for determining a more rational rank of change modes
by combining with the entropy weight method, rough number, and grey relational analysis. In this study, the entropy weight
method is adopted to calculate the relative importance of risk factors. Rough number is presented to aggregate individual
weights and preferences, and to manipulate the vagueness in the evaluation process. Then a rough number enhanced grey
relational analysis is proposed to evaluate the risk ranking of change modes. Finally, a practical example is put forward to
validate the performance of the proposed method. The result shows that the proposed change mode evaluation method can
effectively overcome the shortcomings of traditional CMEA and strengthen the objectivity of product flexibility measure-
ment.

Keywords: Change Mode and Effects Analysis; Grey Relational Analysis; Product Flexibility Measurement; Rough
Number; Uncertainty and Subjectivity

1. INTRODUCTION

Product flexibility has been considered as a crucial charac-
teristic and has gained increased attention due to its vital
role in responding faster to future changes, enabling rapid up-
dates in the products, and achieving higher levels of perfor-
mance in a short time (Rajan et al., 2005). The fast-changing
customer requirements, rapid spreading new technologies,
and increasing market competition force the companies to fre-
quently develop new products or upgrade old products with
shorter time, lower cost, and higher quality (Jarratt et al.,
2011; Rao, 2012). However, new product development activ-
ities involve uncertainties and changes, which are difficult to
predict due to the lack of knowledge in the early design
phases. To develop a product with higher flexibility to adapt
to future changes is an everlasting pursuit of the designers

(Keese et al., 2006). Various techniques have been presented
in flexible product development, such as product family de-
sign, flexible product platform, mass customization, and
transformation design (Suh et al., 2007; Weaver et al.,
2010; Li et al., 2013; Tseng & Hu, 2014). In different ap-
proaches, product flexibility measurement is a critical proce-
dure in the whole development process.

However, measuring product flexibility is challenging, and
few methods exist for addressing such a difficult task (Bi-
schof, 2010). Inspired by failure mode and effects analysis
(FMEA; Ben-Daya, 2009), Rajan et al. (2003, 2005) pro-
posed a comprehensive approach known as change mode
and effects analysis (CMEA) to handle the product flexibility
measurement toward future changes. Generally, change mode
and effects analysis takes change potential number (CPN) as
an index for flexibility measures, which is determined by the
calculation of design flexibility (F ), occurrence (O), and
readiness (R). Although CMEA provides an in-depth view to-
ward flexibility measurement, it suffers from serious issues.
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First of all, the relative importance of risk factors including F,
O, and R is not taken into consideration. The criteria weights
are assumed as the same, which are not true in practical appli-
cations. Second, the precise evaluation of the risk factors is
unanticipated due to the uncertainty and subjectivity involved
in the evaluation process. Most of the evaluation information
comes from subjective judgments. Third, the calculation of
CPN is sensitive to variations in risk factors evaluation. Dif-
ferent groups of F, O, and R values may produce the same
CPN, but the indication may be totally different. How to ef-
fectively and objectively evaluate the product change mode
becomes a critical issue to resolve (Keese et al., 2009).

Change mode evaluation is actually a multicriteria deci-
sion-making (MCDM) problem. The F, O, and R are taken
as evaluation criteria, while change modes are considered
as evaluation alternatives. Therefore, the CMEA can be trans-
formed into the problem of risk ranking of various change
modes considering the three risk factors. Based on such an as-
sumption, this paper proposes a novel CMEA model by com-
bining with the entropy weight method, rough number theory,
and grey relational analysis approach. The entropy weight
method is put forward to calculate the relative importance
of evaluation criteria. Rough number is introduced to aggre-
gate individual weights and judgments, and to resolve the
subjectivity and vagueness in the evaluation process. A rough
number enhanced grey relational analysis algorithm is pre-
sented to evaluate potential change modes. To our knowl-
edge, there is no literature to discuss such decision-making
models in CMEA.

The rest of this paper is organized as follows. Section 2
outlines the brief review and background. The enhanced
grey relational analysis algorithm is discussed in Section 3.
A case study is put forward to evaluate the proposed approach
in Section 4. Section 5 presents the conclusion.

2. BRIEF REVIEW AND BACKGROUND

2.1. CMEA

Product flexibility has been defined as the ability to adapt to
changes quickly and economically (Rajan et al., 2003; Keese
et al., 2009; Bischof, 2010). However, product flexibility
measurement is a difficult task and has put forward an obsta-
cle for flexible product development. The precise form of po-
tential changes is difficult to predict, especially at the early
stage of new product development. To resolve this dilemma,
CMEA has been proposed by Rajan et al. (2003, 2005) for the
purpose of measuring product flexibility toward potential
changes and evaluating the cost of changes and their propaga-
tion. Analogous to FMEA, a generic table is established in
CMEA that contains potential change modes, potential ef-
fects of change, design flexibility, potential causes of change,
occurrence, readiness, and change potential number.

In CMEA, each of the product potential change modes is
evaluated considering three factors: F, O, and R. Change po-
tential number is taken as a metric index to denote the overall

flexibility, which is calculated by these three ratings:

CPN ¼ 1
N

XN
i¼1

[(Ri þ Fi)� Oi þ 8]
27

, (1)

where Fi, Oi, and Ri correspond to design flexibility, occur-
rence, and readiness for the ith change mode, respectively;
N is the maximum of the number of potential change modes,
potential effects of change, or potential causes of change (Ra-
jan et al., 2003, 2005). The values of F, O, and R are identified
according to their corresponding generic metrics.

The CMEA provides designers not only the CPN value but
also the overall flexibility of the product, which includes the
readiness of the enterprise, the designers’ preparedness for
changes and redesigning the product, and the design flexibil-
ity for a specific potential change. The most important is an
in-depth analysis on particular changes and its effects on
the entire product as well as a measure of flexibility of the en-
tire product.

To make traditional CMEA less subjective and more con-
sistent, Keese et al. (2006, 2009) presented an enhanced
CMEA to make it more intuitive and repeatable, and applied
the enhanced version to consumer products to enable flexibil-
ity. In the new model, they suggested a revised scale of design
flexibility by converting from “change-to-function ratio” and
provided a rubric to calculate change-to-function ratio, which
indexes it more intuitively. Because the R value depends on
the internal corporate information, which is not readily avail-
able, they preferred to omit R from practical case studies and
to calculate the CPN by multiplying F and O ratings.

Tilstra et al. (2008) further enhanced the evaluation of design
flexibility by introducing the concept of percentage readily reu-
sability. The F rating is identified by transforming from the per-
centage readily reusability. Furthermore, they revised the readi-
ness metric by inverting the original one presented by Rajan
et al. (2005). In their proposal, the final CPN is calculated by
multiplying the F, O, and R ratings for each change mode. For-
mally, it is more similar to FMEA. The bigger the value of
CPN, the less flexibility of the change mode.

Qureshi et al. (2006) put forward an adapted CMEA by
using only the “design flexibility” column of the CMEA ta-
ble. A brainstorm method was introduced to evaluate possible
changes that might be made and the effects of these changes
to the entire product. A set of formal principles is proposed
for flexible product development.

However, traditional CMEA models ignore the relative im-
portance of F, O, and R. They were considered as equally
important in the CPN calculation. In contrast, with either
the sum or the product, the final CPN calculation relies too
much on the precisely evaluated values of F, O, and R. Differ-
ent groups of F, O, and R values may lead to the same value of
final CPN. Nevertheless, the risk of potential changes and ef-
fects are not equal in real applications. It fails to reflect the
true implication of the change mode and effects.

In general, the evaluation of change mode is a process of
MCDM in the in-depth view. In both academic and industrial
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areas, various decision-making methods were introduced in
FMEA to conduct failure modes ranking, such as AHP,
MULTIMOORA, TOPSIS, VIKOR, or their combination
algorithms (Kutlu & Ekmekçioğlu, 2012; Liu et al., 2012;
Song, Ming, Wu, et al., 2013; Liu et al., 2014). Based on
this proposal, the MCDM models were introduced in the
risk evaluation of CMEA, both the process of weight determi-
nation and the final ranking of the risk priorities.

2.2. Rough number

Due to its powerful ability in dealing with vague and uncer-
tain information, rough set theory has attracted wide attention
and has been applied in many areas such as decision support,
attribute reduction, rule induction, and feature selection (Paw-
lak, 1997; Chai & Liu, 2014; Zheng et al., 2014; Zhu, Hu, Qi,
Ma, et al., 2015). As a variant of rough set theory, rough num-
ber is first proposed by Zhai et al. (2008) and has been used in
quality function deployment, customer requirement evalu-
ation, design concept evaluation, and FMEA to manipulate
the subjective information among experts’ judgments (Zhai
et al., 2009; Song, Ming, Han, et al., 2013, 2014; Zhu, Hu,
Qi, Gu, et al., 2015). Generally, a rough number consists of
its lower limit, upper limit, and the rough boundary interval.

Let U be the universe, Y is an arbitrary object of U, R is a set
of N classes (C1, C2, . . . , CN) that cover all the objects in U,
R ¼ fC1, C2, . . . , CNg, and C1 , C2 , . . . , CN .

Given 8Y [ U, Ci [ R, the lower approximation
(Apr(Ci)), upper approximation (Apr(Ci)), and boundary re-
gion (Bnd(Ci)) of Ci are defined as

Apr(Ci) ¼ < {Y [ U=R(Y) � Ci}, (2)

Apr(Ci) ¼ < {Y [ U=R(Y) � Ci}, (3)

BndðCiÞ ¼ < {Y [ U=R(Y) = Ci},

¼ {Y [ U=R(Y) . Ci} < {Y [ U=R(Y) , Ci}: (4)

Furthermore, the lower limit (Lim(Ci)), upper limit
(Lim(Ci)) as well as the rough number (RN(Ci)) of Ci are
defined as (Lee et al., 2012):

Lim(Ci) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYNL

i¼1
Y [ Apr(Ci)

NL

q
, (5)

Lim(Ci) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYNU

i¼1
Y [ Apr(Ci)

NU

q
, (6)

RN(Ci) ¼ dLim(Ci), Lim(Ci)c, (7)

where NL and NU correspond to the number of objects in-
cluded in Apr(Ci) and Apr(Ci), respectively.

Then the rough boundary interval (IRBnd(Ci)) is deter-
mined as the difference between the upper limit and lower
limit, where

IRBnd(Ci) ¼ Lim(Ci)� Lim(Ci): (8)

The rough boundary interval represents the vagueness of
Ci, where a smaller one denotes more precision while a larger
one means more vagueness. Then the subjective information
can be represented by rough numbers.

Suppose RN(a1) ¼ dLim(a1), Lim(a1)c and RN(a2) ¼
dLim(a2), Lim(a2)c are two rough numbers,m is a nonzero con-
stant, the arithmetic rules of rough number are defined as (Zhai
et al., 2009)

RN(a1)þ RN(a2) ¼ dLim(a1), Lim(a1)c þ dLim(a2), Lim(a2)c,
¼ dLim(a1)þ Lim(a2), Lim(a1)þ Lim(a2)c;

(9)

RN(a1)� RN(a2) ¼ dLim(a1), Lim(a1)c � dLim(a2), Lim(a2)c,
¼ dLim(a1)� Lim(a2), Lim(a1)� Lim(a2)c;

(10)

RN(a1)� m ¼ dLim(a1), Lim(a1)c � m

¼ dm� Lim(a1), m� Lim(a1)c: (11)

As an objective technique, rough number only depends on
the original data set, without any complementary information.
In view of its outstanding ability in dealing with subjective in-
formation, rough number can be used to combine with evalu-
ation models to enhance the objectivity in decision making.

2.3. Grey relational analysis

Grey relational analysis is an effective evaluation technique
that is widely used in MCDM especially under uncertain
environments (Deng, 1989; Rao, 2012). It performs evalu-
ation by measuring the correlation of each alternative to an
ideal solution (Lee & Lin, 2011). Normally, grey relational
analysis contains the following five steps:

STEP 1. Collect initial evaluation values and generate a
decision matrix. Suppose there are m data sequences and n
criteria, which correspond to m evaluation alternatives and
n evaluation criteria. A decision matrix is formulated as

D ¼

x11 x12 � � � x1n

x21 x22 � � � x2n

..

. ..
. . .

. ..
.

xm1 xm2 � � � xmn

2
6664

3
7775, (12)

where xij(1� i�m, 1� j� n) denotes the evaluation value of
the ith data sequence with respect to criterion j.
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STEP 2. Criteria normalization and reference sequence def-
inition.

For the benefit criterion, which belongs to the “larger-the-
better”:

rij ¼
xij �mini{xij}

maxi{xij}�mini{xij}
: (13)

For the cost criterion, which belongs to the “smaller-the-
better”:

rij ¼
maxi{xij}� xij

maxi{xij}�mini{xij}
: (14)

After a normalization operation, all the criteria have been
converted to the category of the “larger-the-better.” Then
the normalized matrix is developed as

R ¼

r11 r12 � � � r1n

r21 r22 � � � r2n

..

. ..
. . .

. ..
.

rm1 rm2 � � � rmn

2
6664

3
7775: (15)

Furthermore, the reference sequence is defined as

V0 ¼ {r01, r02, � � � , r0n}, (16)

where r0j is the reference value for criterion j, and r0j is iden-
tified as its largest normalized value: r0j ¼ max

i
(rij).

STEP 3. Determine the difference value and develop the
difference matrix. The difference value between a normalized
value and its reference value is determined as

Dij ¼ jr0j � rijj: (17)

Then the difference matrix is constructed as

D ¼

D11 D12 � � � D1n

D21 D22 � � � D2n

..

. ..
. . .

. ..
.

Dm1 Dm2 � � � Dmn

2
6664

3
7775: (18)

STEP 4. Calculate the grey relational coefficient:

gij ¼
miniminj{Dij}þ j�maximaxj{Dij}

Dij þ j�maximaxj{Dij}
, (19)

where j (0� j� 1) is the distinguishing coefficient that is
used to control the range of the grey relational coefficient;
usually j¼ 0.5 (Chang & Lin, 1999). Smaller j corresponds
to higher distinguishability.

STEP 5. Calculate the grey relational degree and rank the
alternatives.

Gi ¼
Xn

j¼1
[wj � gij],

Xn

j¼1
wj ¼ 1, (20)

where wj is the weight of the jth criterion.

The grey relational degree represents the grade of correlation
between the compared sequence and the reference sequence.
Therefore, the priority ranking of candidate evaluation alterna-
tives can be obtained based on the grey relational degree. The
one with the highest grade of relation is identified as the best
solution.

With respect to the outstanding ability of rough number in
dealing with subjective information, the excellent perfor-
mance of the entropy weight method in objective criteria
weighting as well as the remarkable competence of grey rela-
tional analysis in alternative evaluation, this paper integrates
the rough number, entropy weigh method, and grey relational
analysis to tackle the issues of CMEA.

3. ROUGH NUMBER ENHANCED GREY
RELATIONAL ANALYSIS FOR CMEA

Generally, the rough number enhanced CMEA contains three
parts: the identification of potential change modes; the determi-
nation of relative importance of criteria F, O, and R; and the risk
ranking of potential change modes. Potential changes are iden-
tified according to the surveys of: customer needs, performance
goals for the company, trends of technical evolution, and mar-
ket pressure to improve the variety. After determination of the
potential change modes and the evaluation values of F, O,
and R, a CMEA table is created. Then the evaluation of change
modes can be conducted based on the proposed decision-mak-
ing model, which combines with the entropy weight method,
rough number theory, and grey relational analysis. The entropy
weight method is adopted to calculate the relative importance of
the evaluation criteria F, O, and R. Rough number is introduced
to aggregate individual criteriaweights and to handle the vague-
ness among subjective judgments. A rough number enhanced
grey relational analysis algorithm is utilized to rank the final
priorities for potential change modes. By combining with the
rough number based entropy weight method and rough number
based grey relational analysis, both the criteria weighting of
evaluation criteria and the final alternative ranking of potential
change modes are properly addressed. Thus, the proposed
CMEA technique based on enhanced grey relational analysis
can effectively resolve the deficiencies of traditional CMEA
models. The framework of the proposed rough number en-
hanced CMEA is shown in Figure 1.

Furthermore, the generic metrics for F, O, and R calcula-
tion are listed in Table 1, Table 2, and Table 3, respectively.
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The generic metric in Table 1 is inverted by the one presented
by Rajan et al. (2005) so that a smaller number is more desir-
able. Formally, the revised generic metrics are more similar to
FMEA.

3.1. Rough number based entropy weight method
for criteria weighting

Typically, entropy is a metric of uncertainty in the informa-
tion using probability theory (Shannon & Weaver, 2015). It
is established on the original data set, without any supplemen-
tary information. Therefore, it is an objective evaluation
method that can avoid the subjectivity to the most extent.
Due to its objective characteristic, the entropy weight method
has been widely applied in various decision-making areas to
decide criteria weights (Ye, 2010; Liu & Zhang, 2011; Singh
& Benyoucef, 2011; Xia & Xu, 2012). It is especially helpful
in such a situation where the weighting information is com-
pletely unknown. However, the initial evaluation values are
given by individual experts under group decision-making
environments. To eliminate the subjectivity and vagueness
in criteria weighting under such situations, rough number is
introduced to aggregate individual criteria weights. The pro-
cedure of the rough number based entropy weight method is
described as follows:

STEP 1. Collect individual evaluation values and construct
a set of decision matrices. The decision matrix of the eth ex-

pert is formed as

De ¼

xe
1F xe

1O xe
1R

xe
2F xe

2O xe
2R

..

. ..
. ..

.

xe
mF xe

mO xe
mR

2
6664

3
7775, (21)

where xe
ij(1 � i � m; j ¼ F, O, R; 1 � e � ne) is the evalu-

ation value of criterion j for the ith change mode given by ex-
pert e, m is the number of change modes, and ne is the number
of experts involved.

STEP 2. Normalization. Conduct data normalization for all
the decision matrices independently. Take De, for example,
for the benefit criterion:

f e
ij ¼

xe
ij �mini

�
xe

ij

�
maxi

�
xe

ij

�
�mini

�
xe

ij

� : (22)

For the cost criterion:

f e
ij ¼

maxi

�
xe

ij

�
� xe

ij

maxi

�
xe

ij

�
�mini

�
xe

ij

� : (23)

After normalization, a normalized decision matrix
Fe ¼ [ f e

ij ]m�3 is obtained.

Fig. 1. Framework of the proposed change mode and effects analysis based on rough number enhanced grey relational analysis.
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STEP 3. Calculate the entropy of Fe:

Ee
j ¼ �k

Xm
i¼1

pe
ijln( pe

ij), (24)

where pe
ij ¼ f e

ij=
Pm

i¼1 f e
ij , k ¼ 1/ln3, supposing pe

ij ¼ 0,
pe

ijln( pe
ij) ¼ 0.

The weight for the jth criterion is determined as

we
j ¼

1� Ee
jP3

j¼1 (1� Ee
j )
: (25)

STEP 4. Integrate individual criteria weights and translate
them into rough numbers. According to the criteria weights
calculated by individual decision matrices, the integrated
weight sequence is generated as

~wj ¼
n

w1
j , w2

j , . . . , wne
j

o
, j ¼ F, O, R: (26)

Translate the element we
j in ~wj into a rough number RN(we

j )
using Eqs. (2)–(7):

RN (we
j ) ¼ dweL

j , weU
j c, (27)

where weL
j , weU

j correspond to the lower, and upper limit of
RN(we

j ), respectively.
Then the rough sequence RN(~wj) is denoted as

RN(~wj) ¼
nl

w1L
j , w1U

j

k
,
l

w2L
j , w2U

j

k
, : : : ,

l
wneL

j , wneU
j

ko
: (28)

The rough number RN(wj) is further generated based on
rough arithmetic Eqs. (9)–(11):

RN(wj) ¼ dwL
j , wU

j c, (29)

wL
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiYne

i¼1

weL
j

ne

s
, (30)

wU
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiYne

i¼1

weU
j

ne

s
, (31)

where wL
j and wU

j are the lower and upper limit of RN(wj), re-
spectively.

Consequently, the rough weight w is calculated as

w ¼
nl

wL
F , wU

F

k
,
l

wL
O, wU

O

k
,
l

wL
R, wU

R

ko
, (32)

w 0 ¼ w=max
�

wU
j

�
, (33)

where w 0 is the normalization form.
Finally, the criteria weights in rough number forms are ob-

tained.

Table 2. A generic metric for occurrence
determination

Probability of Occurrence Rating

Very high and almost inevitable 9–10
High: repeated occurrence 7–8
Moderate: occasional occurrence 5–6
Low: relatively few occurrence 3–4
Remote: unlikely to occur 1–2

Note: The data are according to Rajan et al.
(2005).

Table 1. A generic metric for design flexibility
determination

Flexibility of Design for Change Rating

New product: a total redesign of the product 10
Total redesign with some reuse of parts: a complete

redesign of all expensive modules 9
Very high level of redesign: a redesign of more than one

expensive module 8
High level of redesign: a redesign of one expensive

module 7
Moderate redesign: a redesign of a considerable cost

module 6
Low change: both parametric and minor adaptive redesign

involving considerable cost 5
Very low change: only a major parametric change in the

parts 4
Minor change: a trivial parametric change in the parts 3
Very minor change involving almost no cost 2
No effect 1

Note: The data are according to Rajan et al. (2005).

Table 3. A generic metric for
readiness determination

Readiness Rating

Completely unprepared 9–10
Very low preparedness 7–8
Moderate 5–6
High 3–4
Completely prepared 1–2

Note: The data are according to Tilstra
et al. (2008).
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3.2. Rough number enhanced grey relational analysis
for change mode ranking

After determination of the relative importance of evaluation
criteria by rough number based entropy weight method, the
rough number enhanced grey relational analysis is carried
out as follows:

STEP 1. Integrate the decision matrices and change them
into a rough decision matrix. The rough decision matrix is
formed as

D̂ ¼

dxL
1F , xU

1Fc dxL
1O, xU

1Oc dxL
1R, xU

1Rc
dxL

2F , xU
2Fc dxL

2O, xU
2Oc dxL

2R, xU
2Rc

..

. ..
. ..

.

dxL
mF , xU

mFc dxL
mO, xU

mOc dxL
mR, xU

mRc

2
66664

3
77775, (34)

where dxL
ij , xU

ij c represents a rough number, and xL
ij and xU

ij are
the lower and upper limits, respectively.

STEP 2. Normalization and reference sequence determina-
tion.

For the benefit criterion,

rL
ij ¼

xL
ij �mini

�
xL

ij

�
maxi

�
xU

ij

�
�mini

�
xL

ij

� , (35)

rU
ij ¼

xU
ij �mini

�
xL

ij

�
maxi

�
xU

ij

�
�mini

�
xL

ij

� : (36)

For the cost criterion,

rL
ij ¼

maxi

�
xU

ij

�
� xU

ij

maxi

�
xU

ij

�
�mini

�
xL

ij

� , (37)

rU
ij ¼

maxi

�
xU

ij

�
� xL

ij

maxi

�
xU

ij

�
�mini

�
xL

ij

� : (38)

Then a normalized decision matrix R¼ [rij]m�3 is gener-
ated. Furthermore, the reference sequence is determined as

V0 ¼
�

r01, r02, r03
�

, (39)

where r0j ¼ maxi (rU
ij ).

STEP 3. Calculate the difference coefficient and construct a
difference coefficient matrix. As all the criteria have been
transformed into the category of the “larger-the-better” after
normalization, the difference coefficient value is determined
as the distance between the rough number and its reference

value, which is shown as

DL
ij ¼ r0j � rU

ij ¼ maxi

�
rU

ij

�
� rU

ij , (40)

DU
ij ¼ r0j � rL

ij ¼ maxi

�
rU

ij

�
� rL

ij : (41)

Then the difference coefficient matrix is built as

D ¼

dDL
11, DU

11c dDL
12, DU

12c dDL
13, DU

13c
dDL

21, DU
21c dDL

22, DU
22c dDL

23, DU
23c

..

. ..
. ..

.

dDL
m1, DU

m1c dD
L
m2, DU

m2c dD
L
m3, DU

m3c

2
66664

3
77775: (42)

STEP 4. Calculate the grey relational coefficient dgL
ij , g

U
ij c:

gL
ij ¼

miniminj

�
DL

ij

�
þ j�maximaxj

�
DU

ij

�
DU

ij þ j�maxi maxj

�
DU

ij

� , (43)

gU
ij ¼

miniminj

�
DL

ij

�
þ j�maximaxj

�
DU

ij

�
DL

ij þ j�maximaxj

�
DU

ij

� : (44)

STEP 5. Calculate the grey relational degree dGL
i ,GU

i c:

GL
i ¼

X3

j¼1
[wL

i � gL
ij ], (45)

GU
i ¼

X3

j¼1
[wU

i � gU
ij ], (46)

where dwL
j , wU

j c is the weight of the jth criterion calculated by
rough entropy weight method in Section 3.1.

STEP 6. Rank the candidate change modes based on the
grey relational degreedGL

i ,GU
i c. A change mode with a

smaller grey relational degree is thought to be closer to the
ideal solution. Given two rough numbers RN(a1) and
RN(a2), suppose M(a1) and M(a2) are the middle values of
RN (a1) and RN(a2), the ranking rules of the rough number
are defined as (Zhai et al., 2008)

a. If Lim(a1) . Lim(a2) and Lim(a1) � Lim(a2), or
Lim(a1) � Lim(a2) and Lim(a1) . Lim(a2), then
RN(a1) . RN(a2);

b. If Lim(a1) ¼ Lim(a2) and Lim(a1) ¼ Lim(a2), then
RN(a1) ¼ RN(a2);

c. If Lim(a2) . Lim(a1) and Lim(a2) , Lim(a1), or
Lim(a1) . Lim(a2) and Lim(a1) , Lim(a2): if
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M(a1)�M(a2), then RN(a1) , RN(a2); if M(a1) .

M(a2), then RN(a1) . RN(a2);

Based on the rough number enhanced grey relational anal-
ysis, the risk ranking of candidate change modes is accom-
plished.

4. CASE STUDY

In this section, the proposed rough number enhanced grey re-
lational analysis approach is used in an automatic digital mi-
croscope development to identify and evaluate potential
changes for future product evolutions. Generally, an auto-
matic digital microscope is a critical piece of equipment
that has been widely applied in many areas, such as patholog-
ical diagnosis, drug development, biological research, and
environmental monitoring (Daims & Wagner, 2007; Jara-La-
zaro et al., 2010; Zimic et al., 2010; Dykstra & Reuss, 2011).
Meanwhile, the automatic digital microscope has fast
changes due to various customer requirements and universal
applications. To achieve the customer demands of high per-
formance of throughput, resolution, and accuracy for micro-
scopic imaging, the automatic digital microscope should
have the ability of automatic loading and slice scanning, au-
tofocus, and other highly automated functions. Therefore, the
evaluation of change modes is a crucial issue in the automatic
digital microscope development as its instructive significa-
tion for future changes and technical evolutions.

Because of the important role of change mode evaluation
in the automatic digital microscope development, several ma-
jor potential change modes (CM) are identified by experts
surveys as: change charge-coupled device (CM1), change
eyepiece (CM2), change objective lens (CM3), mount a Z-
axis stage (CM4), add a slice warehouse (CM5), provide an
automatic loading mechanism (CM6), and add a dynamic au-
tofocus mechanism (CM7). The CMEA table for the auto-
matic digital microscope is listed in Table 4, which contains
the potential change modes, potential effects of change, af-
fected components, and potential causes of change.

After the identification of potential change modes, the
evaluation process can be divided into two steps: criteria
weighting determined by the rough number based entropy

weight method and change mode ranking calculated by rough
number enhanced grey relational analysis. Five experts were
invited to give their judgments in the evaluation of potential
change modes. According to the rating rules, all three criteria
are cost ones. Therefore, the change mode evaluation is to
identify the worst change mode from the seven candidates
for potential adaptions considering the evaluation criteria as
F, O, and R.

4.1. Criteria weighting by rough number based
entropy weight method

For change mode evaluation of the automatic digital micro-
scope, the determination of relative importance of criteria
F, O, and R is described as

STEP 1. Collect individual preferences of each expert and
generate individual decision matrices. The risk ratings for
potential change modes given by each expert are shown in
Table 5. According to the evaluation values in Table 5, the
individual decision matrices of the five experts are formed as

D1 ¼

3 3 3

2 9 2

2 9 2

5 5 8

4 4 8

3 5 9

4 6 8

2
666666666664

3
777777777775

, D2 ¼

3 3 2

3 10 1

3 10 1

6 5 8

2 4 9

3 4 8

5 4 10

2
666666666664

3
777777777775

, D3 ¼

3 2 4

2 10 2

2 10 2

6 4 9

4 4 8

2 5 8

3 6 10

2
666666666664

3
777777777775

,

D4 ¼

2 3 3

2 9 2

3 9 2

6 5 9

2 4 9

3 5 8

4 5 10

2
666666666664

3
777777777775

, D5 ¼

3 3 3

2 10 2

2 10 2

6 4 8

4 3 8

2 6 9

5 5 8

2
666666666664

3
777777777775
:

STEP 2. Normalization. As all the criteria belong to the cost
category, the individual normalized decision matrices are

Table 4. CMEA for the automatic digital microscope

No. Potential Change Mode Potential Effects of Change Potential Causes of Change
Affected

Components

CM1 Change CCD Interface mismatch Output a digital image Frame
CM2 Change eyepiece Interface mismatch Change magnification Frame
CM3 Change objective lense Interface mismatch Change magnification Frame
CM4 Mount a Z-axis stage Short working stroke Enable XYZ scanning Vertical column
CM5 Add a slice warehouse Small install space High-throughput detection None
CM6 Install an automatic loading mechanism Slice warehouse mismatch Slice automatic loading Slice warehouse
CM7 Add a dynamic autofocus mechanism Defocus Dynamic autofocus Scanning stage
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generated according to Eq. (23):

F1 ¼

0:667 1 0:857

1 0 1

1 0 1

0 0:667 0:143

0:333 0:833 0:143

0:667 0:667 0

0:333 0:5 0:143

2
666666666664

3
777777777775

, : : : ,

F5 ¼

0:75 0 0:857

1 0 1

1 0 1

0 0:857 0:143

0:5 1 0:143

1 0:571 0

0:25 0:714 0:143

2
666666666664

3
777777777775
:

STEP 3. On the basis of the individual normalized decision
matrices, the individual weights of the criteria are determined
as listed in Table 6.

STEP 4. Integrate individual criteria weights and transform
them into rough numbers. Based on the individual criteria
weights, the integrated weight sequence is formed as

~w ¼ f0:411,0:403,0:413,0:424,0:410;0:328,0:322,0:300,0:316,
0:330;0:261,0:276,0:287,0:260,0:260g:

Convert the elements in ~w into rough numbers and finally
the integrated weight sequence is translated into a rough num-
ber according to Eqs. (27)–(33):

w ¼
�

w1, w2, w3
�

¼
�
d0:408, 0:417c, d0:311, 0:326c, d0:263, 0:276c

�
:

Then its normalization form w0 is obtained:

w0 ¼
�
d0:978, 1c, d0:746; 0:782c, d0:631, 0:662c

�
:

4.2. Change mode ranking by rough number
enhanced grey relational analysis

When the criteria weights are determined, the rough number
enhanced grey relational analysis is presented to carry out the
final change modes priority ranking.

STEP 1. Integrate individual decision matrices and trans-
form them into an integrated decision matrix. According to
the individual decision matrices in Section 4.1, the integrated
decision matrix is constructed as follows:

~D ¼

3,3,3,2,3 3,3,2,3,3 3,2,4,3,3
2,3,2,2,2 9,10,10,9,10 2,1,2,2,2
2,3,2,3,2 9,10,10,9,10 2,1,2,2,2
5,6,6,6,6 5,5,4,5,4 8,8,9,9,8
4,2,4,2,4 4,4,4,4,3 8,9,8,9,8
3,3,2,3,2 5,4,5,5,6 9,8,8,8,9
4,5,3,4,5 6,4,6,5,5 8,10,10,10,8

2
666666664

3
777777775
:

Table 5. Risk ratings for potential change modes

Evaluation Criteria

Change Mode Experts F O R

CM1 1 3 3 3
2 3 3 2
3 3 2 4
4 2 3 3
5 3 3 3

CM2 1 2 9 2
2 3 10 1
3 2 10 2
4 2 9 2
5 2 10 2

CM3 1 2 9 2
2 3 10 1
3 2 10 2
4 3 9 2
5 2 10 2

CM4 1 5 5 8
2 6 5 8
3 6 4 9
4 6 5 9
5 6 4 8

CM5 1 4 4 8
2 2 4 9
3 4 4 8
4 2 4 9
5 4 3 8

CM6 1 3 5 9
2 3 4 8
3 2 5 8
4 3 5 8
5 2 6 9

CM7 1 4 6 8
2 5 4 10
3 3 6 10
4 4 5 10
5 5 5 8

Table 6. The individual weights, we
j , of F, O,

and R

Experts we
F we

O we
R

1 0.411 0.328 0.261
2 0.403 0.322 0.276
3 0.413 0.300 0.287
4 0.424 0.316 0.260
5 0.410 0.330 0.260
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Based on the rough number arithmetic operation, the rough
decision matrix is established corresponding to the integrated
decision matrix.

D̂ ¼

d2:59, 2:95c d2:59, 2:95c d2:59, 3:30c
d2:03, 2:31c d9:35, 9:83c d1:56, 1:95c
d2:13, 2:59c d9:35, 9:83c d1:56, 1:95c
d5:62, 5:96c d4:33, 4:82c d8:15, 8:63c
d2:57, 3:58c d3:61, 3:95c d8:15, 8:63c
d2:31, 2:81c d4:62, 5:32c d8:15, 8:63c
d3:68, 4:60c d4:69, 5:61c d8:67, 9:65c

2
666666664

3
777777775
:

STEP 2. Normalization of the rough decision matrix and
identification of the reference sequence. As all the evaluation
criteria are cost ones, the normalized rough decision matrix is
generated according to Eqs. (37)–(38):

~D ¼

d0:766, 0:858c d0:950, 1c d0:785, 0:873c
d0:929, 1c d0, 0:066c d0:952, 1c
d0:858, 0:975c d0, 0:066c d 0:952, 1c
d0, 0:087c d0:692, 0:760c d0:126, 0:185c
d0:606, 0:863c d0:812, 0:859c d0:126, 0:185c
d0:802, 0:929c d0:623, 0:720c d0:126, 0:185c
d0:346, 0:580c d0:583, 0:710c d0, 0:121c

2
666666664

3
777777775
:

Then the reference sequence is determined as

V0 ¼ 1, 1, 1f g:

STEP 3. Calculate difference coefficients, which are shown
in Table 7.

STEP 4. Calculate the grey relational coefficient dgL
ij ,gU

ij c,
which are listed in Table 8.

STEP 5. Calculate the grey relational degree dGL
i ,GU

i c,
which are shown in Table 9.

STEP 6. Rank the candidate change modes based on the
grey relational degree.

According to the interval values of the grey relational de-
gree and the arithmetic rules of the rough number, the final

ranking is arranged as CM4 . CM7 . CM6 . CM5 .

CM3 . CM2 . CM1. The change mode with the smallest
grey relational degree is the best one, while the one with
the biggest value is the worst one. Obviously, CM1 is the
best, while CM4 is the worst, among all the change modes.
In other words, CM4 has the worst flexibility toward potential
changes, while CM1 has the best flexibility. The worse the
flexibility of the change mode indicates that more attention
should be paid to strengthen the flexibility, and the potential
changes may have worse influence on the adaption and rede-
sign of the product.

4.3. Comparison and discussion

To investigate the influence of the distinguishing coefficient
on candidate change modes ranking, sensitivity analysis is
conducted, which is shown in Table 10.

From Table 10, it can be concluded that all the change
modes share the same ranking at any values of j except j¼
0.1 and j¼ 0.2. CM4, CM5, CM6, and CM7 rank the
same order at any situations, while CM1, CM2, and CM3
vary at j¼ 0.1 and j¼ 0.2. That means CM4, CM5, CM6,
and CM7 are independent of the selection of distinguishing
coefficient. CM4 outperforms other change modes in grey re-
lational degree at any situations, which corresponds to the
worst flexibility.

To evaluate the effectiveness of the proposed grey rela-
tional analysis based CMEA methodology, traditional CPN
based CMEA approaches are carried out for comparison.
CPN is taken as an index for product flexibility. The initial

Table 8. The grey relational coefficient dgL
ij , g

U
ij c

⌈gL
iF , gU

iF⌋ ⌈gL
iO, gU

iO⌋ ⌈gL
iR, gU

iR⌋

CM1 ⌈0.681, 0.779⌋ ⌈0.909, 1⌋ ⌈0.699, 0.797⌋
CM2 ⌈0.876, 1⌋ ⌈0.333, 0.349⌋ ⌈0.912, 1⌋
CM3 ⌈0.779, 0.952⌋ ⌈0.333, 0.349⌋ ⌈0.912, 1⌋
CM4 ⌈0.333, 0.354⌋ ⌈0.619, 0.676⌋ ⌈0.364, 0.380⌋
CM5 ⌈0.559, 0.785⌋ ⌈0.727, 0.780⌋ ⌈0.364, 0.380⌋
CM6 ⌈0.716, 0.876⌋ ⌈0.570, 0.641⌋ ⌈0.364, 0.380⌋
CM7 ⌈0.433, 0.543⌋ ⌈0.545, 0.633⌋ ⌈0.333, 0.363⌋

Table 7. The difference coefficient dDL
ij ,D

U
ij c

⌈DL
iF ,DU

iF⌋ ⌈DL
iO,DU

iO⌋ ⌈DL
iR,DU

iR⌋

CM1 ⌈0.142, 0.234⌋ ⌈0, 0.050⌋ ⌈0.127, 0.215⌋
CM2 ⌈0, 0.071⌋ ⌈0.934, 1⌋ ⌈0, 0.048⌋
CM3 ⌈0.025, 0.142⌋ ⌈0.934, 1⌋ ⌈0, 0.048⌋
CM4 ⌈0.913, 1⌋ ⌈0.240, 0.308⌋ ⌈0.815, 0.874⌋
CM5 ⌈0.137, 0.394⌋ ⌈0.141, 0.188⌋ ⌈0.815, 0.874⌋
CM6 ⌈0.071, 0.198⌋ ⌈0.280, 0.377⌋ ⌈0.815, 0.874⌋
CM7 ⌈0.420, 0.654⌋ ⌈0.290, 0.417⌋ ⌈0.879, 1⌋

Table 9. The grey relational degree dGL
i ,GU

i c

⌈GL
i ⌋ ⌈GU

i ⌋ ⌈GL
i ,GU

i ⌋

CM1 1.785 2.089 ⌈1.785, 2.089⌋
CM2 1.681 1.935 ⌈1.681, 1.935⌋
CM3 1.586 1.887 ⌈1.586, 1.887⌋
CM4 1.017 1.134 ⌈1.017, 1.134⌋
CM5 1.319 1.647 ⌈1.319, 1.647⌋
CM6 1.355 1.629 ⌈1.355, 1.629⌋
CM7 1.040 1.278 ⌈1.040, 1.278⌋
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evaluation data are based on the risk ratings in Table 5. The
final crisp, fuzzy, and rough CPN are shown in Figure 2.

From Figure 2, the final alternative ranking of change
modes is arranged as CM4 . CM7 . CM6 . CM5 .

CM3 . CM2 . CM1. The ranking order is identical as the
grey relational analysis based approach. However, the crisp
CPN, fuzzy CPN, and rough CPN based CMEA ignore the
weights of the evaluation criteria. It is established on the as-
sumption that all the criteria share the same importance.

To evaluate the performance of the proposed decision-
making method, traditional crisp and fuzzy decision-making
methods are taken for comparison. Correspondingly, the
evaluation procedure is divided into two phases: comparison
of criteria weighting method and comparison of alternative
ranking technique.

In criteria weighting, the traditional crisp entropy weight
method (crisp entropy), the fuzzy entropy weight method
(fuzzy entropy), and the proposed rough entropy method
(rough entropy) are conducted for comparison. All the weights

take the original form rather than the normalized one. The rel-
ative importance of the evaluation criteria is shown in Figure 3.

From Figure 3, it can be concluded that the fuzzy entropy
weight method and the rough entropy weight method illus-
trate the relative importance in interval numbers while the tra-
ditional crisp entropy weight method describes the weights in
a crisp number. The interval boundary of the fuzzy number is
larger than the rough number. The difference interval bound-
ary reflects different manipulation mechanisms provided by
fuzzy numbers and rough numbers. The fuzzy number intro-
duces a membership function, and the interval of a fuzzy
number is fixed after the determination of the membership
function. Nevertheless, the selection of membership function
also involves subjectivity. The rough number uses a flexible
interval boundary, which is completely determined by the
original data set, without any subjectivity involved. The inter-
val type of value denotes the uncertainty of the numbers,
where a larger one means more vagueness and a smaller
one denotes more precision. The crisp weight fails to reveal

Table 10. Sensitivity analysis of the distinguishing coefficient on change mode ranking

j¼ 0.1 Rank j¼ 0.2 Rank j¼ 0.3 Rank

CM1 ⌈0.990, 1.487⌋ 5 ⌈1.352, 1.772⌋ 6 ⌈1.557, 1.926⌋ 7
CM2 ⌈1.067, 1.738⌋ 7 ⌈1.355, 1.800⌋ 7 ⌈1.508, 1.852⌋ 6
CM3 ⌈0.898, 1.538⌋ 6 ⌈1.205, 1.689⌋ 5 ⌈1.380, 1.775⌋ 5
CM4 ⌈0.337, 0.401⌋ 1 ⌈0.575, 0.666⌋ 1 ⌈0.755, 0.860⌋ 1
CM5 ⌈0.521, 0.819⌋ 3 ⌈0.831, 1.182⌋ 3 ⌈1.043, 1.396⌋ 3
CM6 ⌈0.550, 0.863⌋ 4 ⌈0.868, 1.195⌋ 4 ⌈1.081, 1.391⌋ 4
CM7 ⌈0.332, 0.460⌋ 2 ⌈0.576, 0.765⌋ 2 ⌈0.765, 0.982⌋ 2

j¼ 0.4 j¼ 0.5 j¼ 0.6

CM1 ⌈1.691, 2.023⌋ 7 ⌈1.785, 2.089⌋ 7 ⌈1.856, 2.137⌋ 7
CM2 ⌈1.607, 1.897⌋ 6 ⌈1.681, 1.935⌋ 6 ⌈1.738, 1.968⌋ 6
CM3 ⌈1.499, 1.838⌋ 5 ⌈1.586, 1.887⌋ 5 ⌈1.655, 1.928⌋ 5
CM4 ⌈0.899, 1.012⌋ 1 ⌈1.017, 1.134⌋ 1 ⌈1.117, 1.236⌋ 1
CM5 ⌈1.198, 1.541⌋ 3 ⌈1.319, 1.647⌋ 3 ⌈1.415, 1.728⌋ 3
CM6 ⌈1.237, 1.527⌋ 4 ⌈1.355, 1.629⌋ 4 ⌈1.450, 1.708⌋ 4
CM7 ⌈0.918, 1.149⌋ 2 ⌈1.040, 1.278⌋ 2 ⌈1.144, 1.384⌋ 2

j¼ 0.7 j¼ 0.8 j¼ 0.9

CM1 ⌈1.911, 2.173⌋ 7 ⌈1.956, 2.202⌋ 7 ⌈1.992, 2.226⌋ 7
CM2 ⌈1.786, 1.997⌋ 6 ⌈1.824, 2.023⌋ 6 ⌈1.859, 2.046⌋ 6
CM3 ⌈1.711, 1.963⌋ 5 ⌈1.757, 1.993⌋ 5 ⌈1.797, 2.019⌋ 5
CM4 ⌈1.202, 1.322⌋ 1 ⌈1.275, 1.396⌋ 1 ⌈1.339, 1.461⌋ 1
CM5 ⌈1.495, 1.793⌋ 3 ⌈1.561, 1.846⌋ 3 ⌈1.618, 1.892⌋ 3
CM6 ⌈1.529, 1.772⌋ 4 ⌈1.593, 1.825⌋ 4 ⌈1.648, 1.871⌋ 4
CM7 ⌈1.233, 1.471⌋ 2 ⌈1.308, 1.545⌋ 2 ⌈1.375, 1.608⌋ 2

j¼ 1

CM1 ⌈2.022, 2.245⌋ 7
CM2 ⌈1.888, 2.066⌋ 6
CM3 ⌈1.832, 2.042⌋ 5
CM4 ⌈1.397, 1.518⌋ 1
CM5 ⌈1.666, 1.930⌋ 3
CM6 ⌈1.695, 1.910⌋ 4
CM7 ⌈1.434, 1.662⌋ 2
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the internal vagueness of the data set. The interval values of
criteria weights represent the subjectivity among individual
values given by each expert. All the crisp weights are within
the category of the corresponding rough interval and the
fuzzy number.

In alternative ranking, traditional crisp grey relational anal-
ysis (GRA) combining with crisp weights (crisp GRA), fuzzy
grey relational analysis integrating with fuzzy weights (fuzzy
GRA), and the proposed rough grey relational analysis comb-
ing with rough weights (rough GRA) are carried out for com-
parison. All the criteria weights in crisp, fuzzy, and rough
forms are based on the data in Figure 3. The final grey rela-

tional degrees calculated at j¼ 0.5 are illustrated in Figure 4
and the final risk rankings are shown in Figure 5.

From Figure 4, all the crisp numbers fall into the category of
the rough numbers and fuzzy numbers. The interval boundary
of the fuzzy number is bigger than the rough number. It indi-
cates more vagueness due to the subjectivity in the member-
ship function selection. According to Figure 5, the final change
mode ranking order is CM4 . CM7 . CM5 . CM6 . CM3
. CM2 . CM1 in the crisp and rough number based grey re-
lational analysis, while CM4 . CM7 . CM6 . CM5 . CM3
. CM2 . CM in the fuzzy grey relational analysis. Actually,
the priority difference between CM5 and CM6 is subtle.

Fig. 3. Criteria weights in the crisp, fuzzy, and rough entropy weight method.

Fig. 2. Change potential number in the crisp, fuzzy, and rough method.
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Furthermore, the rough number enhanced entropy weight
method and the grey relational analysis algorithm can not
only deal with the problem of criteria weighting but also
tackle the issue of risk ranking. It only depends on the original
evaluation values, without any auxiliary information. Rough
number is an effective tool to aggregate crisp evaluation val-
ues and to convert them into interval values. Moreover, it uses
a flexible interval boundary instead of a fixed predefined one. A
smaller interval boundary indicates a more precision while a
larger one represents more vagueness. Comparing with crisp
and fuzzy techniques, the rough number enhanced decision-
making method calculates the relative importance only based
on the original evaluation values. It not only affords a novel

way to aggregate individual weights and judgments but also
provides the ability of reflecting the vagueness without any pre-
determination information (i.e., the membership function selec-
tion in fuzzy methods) in group decision-making environments.
Therefore, the rough number enhanced grey relational analysis
can effectively reflect the subjectivity in change mode evalu-
ation and strengthen the objectivity of CMEA.

5. CONCLUSION

To enhance the process of CMEA in product flexibility mea-
surement, this paper proposes a rough number based grey re-
lational analysis method to handle the final risk ranking of

Fig. 5. Change mode ranks in crisp, fuzzy, and rough grey relational analysis.

Fig. 4. Grey relational degree in crisp, fuzzy, and rough grey relational analysis.
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potential change modes. By combining with the rough num-
ber based entropy weight method and the rough number
based grey relational analysis approach, the issue of CMEA
is transformed into a MCDM problem. Rough number is in-
troduced to aggregate individual weights and priorities, and
to manipulate the subjectivity and vagueness in the deci-
sion-making process. Entropy weight method and rough
number are integrated to calculate the relative importance of
evaluation criteria F, O, and R. A rough number enhanced
grey relational analysis algorithm is presented to conduct fi-
nal change mode ranking. By combining with the rough en-
tropy weight method and rough grey relational analysis, the
whole processes of criteria weighting and final alternative
ranking are properly manipulated. With the help of the rough
number, the subjectivity in CMEA is well addressed.

The proposed grey relational analysis based CMEA ap-
proach can be generalized into many different models, such
as TOPSIS and VIKOR. In the future, we will pay more atten-
tion to product flexibility measurement under complex uncer-
tain environments. Design techniques for flexible product de-
velopment are also the focus of our future research. The
product flexibility measurement approaches should be com-
bined with flexibility guidelines to assist flexible product de-
velopment and future product evolutions. The industrial ap-
plications of flexible product development is also an
important area that deserves more attention.
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