

Design of a neural internal model control system for a robot
D.T. Pham and �Sahin Yildirim
Intelligent Systems Research Laboratory, Systems Engineering Division, School of Engineering, University of Wales
Cardiff, Newport Road, P.O. Box 688, Cardiff CF24 3TE (UK)

(Received in Final Form: September 7, 1999)

SUMMARY
This paper describes the design of an Internal Model
Control (IMC) system for a planar two-degree-of-freedom
robot. IMC was investigated as an alternative to the basic
inverse control scheme which is difficult to implement. The
proposed IMC system consisted of a forward internal neural
model of the robot, a neural controller and a conventional
feedback controller, all of which were realised easily. Both
the neural model and the neural controller were based on
recurrent networks which were trained using the back-
propagation (BP) algorithm. The paper presents the results
obtained with two types of recurrent networks as well as a
conventional PID system.

KEYWORDS: Internal model control; Recurrent neural network;
Diagonal recurrent network; Backpropagation; Robot control.

1. INTRODUCTION
Robots are systems with highly coupled non-linear dynam-
ics and parametric uncertainties. If a robot’s characteristics
are known, computed torque and non-linear decoupling
controllers can be used to deal with non-linearities and
uncertainties and achieve satisfactory trajectory tracking
performance.1,2 However, the chief drawback of those
controllers arises from the fact that they require exact
cancellation of non-linear terms in order to obtain a linear
input-output behaviour.

To improve the performance of robots in non-linear and
uncertain environments, considerable research has been
focused on developing advanced controllers in recent years.
A modem control strategy, which incorporates a direct
model of the plant, is provided by the Internal Model
Control (IMC) method.3,4 Recently, it was shown that IMC
was a simple and effective technique for designing the
underlying control law in a new approach to adaptive robust
control of a stable plant.5 The applicability of IMC to the
control of non-linear systems was demonstrated by Econo-
mou et al.6 The inverse model of the plant was shown to play
a crucial role in the implementation of the non-linear IMC
method. Economou et al. studied analytical and numerical
methods for the construction of the required non-linear
inverse model.

The idea of employing NNs for non-linear IMC was
considered by Bhat and McAvoy.7 A technique, using NNs
directly, was proposed for the adaptive control of non-linear
systems by Hunt and Sbarbaro.8. The control structure
adopted was also IMC. This structure was used to

incorporate neural network modelling of the plant and its
inverse directly within the control strategy.

The realisation of IMC using NNs is simple: the system
forward dynamics model and the controller are imple-
mented by means of NN models.9 In the work reported in
this paper, the NNs were recurrent networks. Such networks
possess feedback connections enabling them to have an
inherent memory for dynamics.

The paper first describes the two types of recurrent
networks experimented with and then discusses their
incorporation in an IMC system and application to the
modelling and control of a simulated planar two-jointed
robot arm. The paper presents simulation results for IMC
schemes employing these two types of networks as well as
a conventional scheme using only a standard PID con-
troller.

2. FIRST TYPE OF RECURRENT NETWORKS
Figures l(a) and l(b) show the detailed configuration of two
type-1 neural networks used as forward internal model and
controller. The forward internal model computes the joint
rotation �m corresponding to a joint torque �m. The controller
produces torque �N aimed at generating the desired angular
rotation �d. Each network can be represented in a general
diagrammatic form as illustrated in Figures 2(a) and 2(b).

These figures depict the hybrid hidden layer of the
network as comprising a linear part and a non-linear part
and show that, in addition to the usual feedforward
connections, the networks also have feedback connections
from the output layer to the hidden layer and self-feedback
connections in the hidden layer.

At a given discrete time t, let u(t) be the input to the
network, y(t), the output of the network, x1(t) the output of
the linear part of the hidden layer and x2(t) the output of the
non-linear part of the hidden layer.

The operation of the network is summarised by the
following equations (see also Figure 2(b)):

x1(t+1)=WI1u(t+ l)+�x1(t)+�Jly(t) (1)

x2(t+ l)=F{WI2u(t+ l)+�x2(t)+�J2y(t)} (2)

y(t+ l)=WH1xl(t+ l)+WH2x2(t+ l) (3)

where WI1 is the vector of weights of the connections
between the input layer and the linear hidden layer, WI2 is
the vector of weights of the connections between the input
layer and the non-linear hidden layer, WH1 is the vector of
weights of the connections between the linear hidden layer
and the output layer, WH2 is the vector of weights of the

Robotica (2000) volume 18, pp. 505–512. Printed in the United Kingdom © 2000 Cambridge University Press

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

connections between the non-linear hidden layer and the
output layer, F{} is the activation function of neurons in the
non-linear hidden layer and � and � are the weights of the
self-feedback and output feedback connections. J1 and J2

are respectively nH1� no and nH2� no matrices with all
elements equal to 1, where nH1 and nH2 are the numbers of
linear and non-linear hidden neurons, and no, the number of
output neurons.

If only linear activation is adopted for the hidden neurons,
the above equations simplify to:

y(t+ l)=WHIx(t+ l) (4)

x(t+ l)=WI1u(t+ l)+�x(t)+�J1y(t) (5)

Replacing y(t+ l) by WH1x(t+ l) in equation (5) gives

x(t+ l)=(�I+�J1W
H1)x(t)+WI1u(t+1) (6)

where I is a nH1� nH1 identity matrix
Equation (6) is of the form

x(t+ l)=Ax(t)+Bu(t+1) (7)

where A=�I+�JWH1 and B=WI1. Equation (7) represents
the state equation of a linear system of which x is the state
vector. The elements of A and B can be adjusted through
training so that any arbitrary linear system of order nH1 can
be modelled by the given network. When non-linear neurons
are adopted, this gives the network the ability to perform

non-linear dynamics mapping and thus model non-linear
dynamic systems. The existence in the network of a hidden
layer with both linear and non-linear neurons facilitates the
modelling of practical non-linear systems comprising linear
and non-linear parts.

In this work, the values of the weights of the recurrent
connections, � and �, were fixed. This means only the
weights of the feedforward connections, WI and WH, needed
to be adjusted and this allowed the use of the standard
backpropagation algorithm to train the neural internal model
and controller.

3. SECOND TYPE OF RECURRENT NETWORKS
Figure 3(a) shows a schematic block diagram representation
of a type-2 recurrent network. This type of network was
used for control purposes in the work of Ku et al.10 It differs
from the type-1 network presented above in three respects:
there are no linear neurons in the hidden layer and no
feedback connections from the output layer to the hidden
layer and the self-feedback connections in the hidden layer
are all trainable. The operation of the network can be
described by the following equations (see also Figure
3(a)):

x(t+ l)=F(S(t+ l)) (8)

S(t+ l)=WHx(t)+WIu(t+ l) (9)

Fig. 1(a). Configuration of forward internal neural model (Type-1 network)

Neural model506

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

y(t+ l)=Wox(t+ l) (10)

where the hidden layer output x(t+ l)��nH, hidden layer
feedback weights WH��nH� nH, input layer weights
WI��nH� nI, and output layer weights Wo��nH� nO. nI, nH,
and no are the numbers of neurons in the input, hidden and
output layers respectively. u(t+ l) represents the input vector
and F(.) is a hyperbolic tangent activation function with
limits equal to �1.0 and 1.0. The schematic configuration
of a type-2 network employed as a robot controller is shown
in Figure 3(b).

4. IMC OF A ROBOT USING NEURAL NETWORKS
The first step in using a neural network within an IMC
system for controlling a robot involves training a network to
represent its forward dynamics (Figure 4). This network is
used as a model of the robot in the IMC structure (Figure 5).
A minor-loop controller (not shown in the structure of
Figure 5) is also employed to stabilise the robot and
simplify the design of the overall controller.11 Specialised
learning12 for the neural controller of the robot is shown in
Figure 6. In that figure, the error signal e is used to adjust
the weights of the neural controller with sensitivity
information obtained for this purpose from the neural model
of the robot. Let �di(t) and �i(t) be the desired and actual
responses of joint i of the robot. The weights of the
proposed neural controller are adjusted using the BP
algorithm as follows:

�Wkh(t)=�	

E(t)

Wkh(t)
=�	�

i

E(t)

�i(t)

�i(t)

�k(t)

�k(t)

Wkh(t)
(11)

where Wkh(t) is the weight of the connection between
neurons h and k in the controller and

E(t)=�
i

1

2
(�di(t)��i(t))

2. Normally, to obtain

�i(t)

�k(t)
the

robot would have to be perturbed. However, the approxima-

tion

�i(t)

�k(t)
≈

�mi(t)

�k(t)
where �mi is the output of the neural

model, can be employed once the neural model of the robot
is well trained. Therefore, the error signal can be back-
propagated to the controller via the neural model.

Consider the connection kh between neuron h in the
hidden layer and neuron k in the output layer of the neural
controller. Let �k(t) be defined for neuron k as:

�k(t)=��
i

E(t)

�i(t)

�i(t)

�k(t)
���

i

E(t)

�i(t)

�mi(t)

�k(t)
(12)

�k(t)=��
i

E(t)

�i(t)
�

j

�mi(t)

xj(t)

xj(t)

zj(t)

zj(t)

�k(t)
(13)

In Equation 13, xj(t) is the output of neuron j in the hidden
layer of the neural model, zj(t) the net input to neuron j and

Fig. 1(b). Configuration of neural controller (Type-1 network)

Neural model 507

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

Fig. 2(a). Type-1 recurrent network

Fig. 2(b). Block diagram of Type-1 recurrent network

Neural model508

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

�k(t) the input to neuron k in the input layer of the neural
model. Equation (13) can be rewritten as:

�k(t)=�
j

xj(t)�
i

ei(t)Wij(t)Wjk(t) (14)

�k(t)=�
j

�j(t)Wjk(t) (15)

where

�j(t)=x
,

j(t)�
i

ei(t)Wij(t), x
,

j(t)=

xi(t)

zj(t)

and

ei(t)=�di(t)��i(t)

Replacing Equation (15) in (11) yields the controller’s

output layer weight adjustment

�Wkh(t)=	 �k(t) xh(t) (16)

where xh(t) is the output of the hidden layer neuron h.
The above are the standard BP equations for weight

training in a multi-layered neural network as applied to the
training of the weights of the connections between the

Fig. 3(a). Block diagram of Type-2 recurrent network

Fig. 3(b). Schematic configuration of a controller based on a
Type-2 recurrent network

Fig. 4. Modelling of the robot’s forward dynamics

Fig. 5. Neural-network-based IMC system for robot control

Fig. 6. Specialised learning for neural controller

Neural model 509

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

hidden layer and the output layer in the two types of
recurrent networks.

The weights between the input and hidden layers can also
be updated by applying the standard BP algorithm. In the
case of the type-2 networks, the feedback weights were
traincd using a version of the BP algorithm modified to
handle recurrency.10

5. APPLICATION TO THE CONTROL OF A SCARA
ROBOT
This section describes the results of a simulated imple-
mentation of IMC to the control of a two-jointed (SCARA)
robot.

The plant to be controlled is the simplest example of an
articulated robot arm (Figure 7). This planar device
comprises two main links with two actuated joints. Actuator
1 applies torque �1 to drive joint 1 that directly connects link
1 (with inertia I1) to the base of the arm. Actuator 2 applies
torque �2 to drive joint 2 (with inertia I2) connecting link 2
(with inertia I3 and carrying payload m2) to link 1.

The distance between the axes of joints I and 2 is l1 and
the distance between the concentrated payload m2 and the
axis of joint 2 is l2. The angles of rotation of the actuators
are �1 and �2, respectively.

The dynamics equations of the robot arm can be written
as follows:9

�=M(�)�̈+C(�, �̇)+F(�, �̇) (17)

where �=[�1 �2]
T, �=[�1 �2]

T, �̇ and �̈ are the first and
second time derivatives of �, M(�) is the inertia matrix of
the robot, C(�, �̇) is a 2� 1 vector of centrifugal and
Coriolis terms and F(�, �̇) is a 2� 1 vector of viscous and
Coulomb friction terms.

M=� I1 +m2l
2
1

�m2l1l2Cos(ke(�1 +�2))
�m2l1l2Cos(ke(�1 +�2))

I2 +I3 +m2l
2
2

� (18)

C=�m2l1l2keSin(ke(�1 +�2))�̇2

m2l1l2keSin(ke(�1 +�2))�̇1
� (19)

F=�V1�̇1 +F1Sgn(�̇1)
V2�̇2 +F2Sgn(�̇2)

� (20)

Equation (17) can be rewritten as:

��1

�2
�=�M11

M21

M12

M22
���̈1

�̈2
�+�C11

C21

C12

C22
���̇1

�̇2
�+�F1Sgn(�̇1)

F2Sgn(�̇2)
�

(21)

where Mij is component (i, j) of M

C12 =C21 =m2l1l2keSin(ke(�1 +�2))

C11 =V1

C22 =V2

V1, V2 are viscous friction coefficients of the arm joints, F1,
F2 are joint Coulomb friction torques and ke is the actuator
encoder constant.

In practice, parameters such as V1, V2, F1, and F2 are not
known accurately and the dynamic model of the robot is
further complicated by the presence of factors like clear-
ances in bearings and backlash in the transmission system.
Note that although equation (21) is non-linear, it also
incorporates linear terms. This was the motivation for using
the type-1 neural network with both linear and non-linear
neurons to represent the robot dynamics.

The structural and training parameters for the various
neural networks are given in Table I.

5.1. Simulation I
In this simulation, type-1 networks were adopted as the
neural controller and neural model. The neural controller
was trained when the robot had a payload of 10 kg. To
demonstrate the adaptability of the proposed control
scheme, the payload was suddenly changed from 10 kg to
30 kg. The result obtained is shown in Figure 8. It can be
seen that a 300 percent load increase can be accommodated
by this controller which is a very good measure of its
robustness. The resulting outputs of the control system are
shown in Figures 9(a) to 9(d)

5.2. Simulation II
In this simulation, the use of type-2 neural networks for the
modelling and control of the SCARA robot was demon-
strated. The result obtained after the dynamics change is
plotted in Figure 10.

5.3. Simulation III
This simulation cmployed a conventional PID controller for
comparison with the neural control systems. The parameters
of the PID controller were: Kp =diag[150 150],
K1 =diag[10 10] and KD =diag[1 1]. Its performance after
the dynamics change is illustrated in Figure 11.

The root-mean-squared errors (RMSE) for the different
controllers are given in Table II

Fig. 7. Configuration of a SCARA robot

Table I. Structural and training parameters

NN 	 � � � N n

Type-1 0.0001 0.01 0.8 0.8 50 000 6+6
Type-2 0.0001 0.01 – – 50 000 12

Neural model510

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

6. CONCLUSION
This paper presents the use of recurrent neural networks to
implement internal model control (IMC) of a SCARA robot
arm. Both the controller and the model were realised with
neural networks.

From the results obtained, it can be seen that the IMC
system employing type-1 neural networks produced the best
performance, while the PID system yielded the poorest
control. A reason for the strong performance of the type-

Fig. 8. Desired and actual trajectories of the end-effector (after
dynamics change, using Type-1 neural networks)

Fig. 9(a). Output �1 of the control system (after dynamics change,
using Type-1 neural networks, first trial)

Fig. 9(b). Output �2 of the control system (after dynamics change,
using Type-1 neural networks, first trial)

Fig. 9(c). Output �1 of the control system (after dynamics change,
using Type-1 neural networks, second trial)

Fig. 9(d). Output �2 of the control system (after dynamics change,
using Type-1 neural networks, second trial)

Fig. 10. Desired and actual trajectories of end-effector (after
dynamics change, using Type-2 neural networks)

Neural model 511

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

1-network-based system was the inclusion of both linear
and non-linear neurons in the neural network. This facili-
tated the training of the controller because the linear
neurons could readily learn the linear part of the robot
dynamics and the non-linear neurons, the non-linear part.

In contrast, in the type-2 neural network as proposed by

Ku et al.,10 non-linear neurons had to learn both the linear
and non-linear parts, which gave less accurate results.

ACKNOWLEDGEMENTS
The authors wish to thank the European Commission for
funding this work under the ERDF Programme, and Erciyes
University for supporting �S. Yildirim’s doctoral studies.

References
1. S. Armito and F. Miyazaki, “Stability and robustness of PID

feedback control for robot manipulators of sensory capa-
bility,” First Int. Symposium on Robotics Research, Gouvieux,
France (1984) pp. 783–799.

2. K. Kreutz, “On manipulator control by exact linearization,”
IEEE Trans. Automation Control 34, No. 7, 763–767 (1989).

3. C.E. Garcia and M. Morari, “Internal model control-1; a
unifying review and some new results,” Ind. Eng. Chem.
Process Des. Dev. 21, No. 2, 308–323 (1982).

4. K. Warwick, G.W. Irwin and K.J. Hunt, Neural Networks for
Control and Systems (IEE, London, 1991).

5. W.S. Lee, B.D.O. Anderson, R.L. Kosut and I.M.Y. Mareels,
“A new approach to adaptive robust control,” Int. J. Adaptive
Control and Signal Processing 7, No. 3, 183–211(1993).

6. C.G. Economou, M. Morari and B.O. Palson, “Internal model
control, extension to non-linear systems,” Industrial and
Engineering Chemistry, Process Design Development 25, No.
2, 403–411(1986).

7. N. Bhat and T.J. McAvoy, “Use of neural nets for dynamical
modelling and control of chemical process systems,” Com-
puters and Chemical Engineering 14, Nos. 4–5, 573–583
(1990).

8. K.J. Hunt and D. Sbarbaro, “Neural networks for non-linear
internal model control,” IEE Proceedings, Part-D: Control
Theory and Applications 138, 431–438 (1991)

9. D.T. Pham and S. Yildirim, “Control of trajectory of a planar
robot using recurrent hybrid networks,” Int J. of Machine
Tools and Manufacture 39, No. 3, pp. 415–429 (1999)

10. C.C. Ku and K.Y. Lee, “Diagonal recurrent neural networks
for dynamic systems control,” IEEE Trans. on Neural
Networks 6, 144–156 (1995)

11. M.W. Spong and M. Vidyasagar, Robot Dynamics and Control
(Wiley, New York, 1989).

12. D.T. Pham and X. Liu, Neural Networks for Identification,
Prediction and Control, Fourth Printing (Springer-Verlag,
London, 1999).

Fig. 11. Desired and actual trajectories of end-effector (after
dynamics change, using PID controller)

Table II. Performance of different controllers

Controller RMSE
(Before dynamics

change)

RMSE
(After dynamics

change)

Type-1 0.0019361 0.005141
Type-2 0.002747 0.009282

PID 0.005929 0.04882

Neural model512

https://doi.org/10.1017/S0263574799002179 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002179

