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Abstract For a given inverse semigroup action on a topological space, one can associate an étale
groupoid. We prove that there exists a correspondence between the certain subsemigroups and the open
wide subgroupoids in case that the action is strongly tight. Combining with the recent result of Brown
et al., we obtain a correspondence between the certain subsemigroups of an inverse semigroup and the
Cartan intermediate subalgebras of a groupoid C*-algebra.
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0. Introduction

Given an action of an inverse semigroup on a topological space, one can associate an
étale groupoid by taking a germ (see Subection 1.3). For a given étale groupoid, one can
construct groupoid C*-algebras, which are initiated by Renault [9]. It is a natural task
to investigate the relation among them and actually many researchers have been doing
this (for example, see [2, 3]). In this paper, we establish a correspondence between the
set of certain subsemigroups and the set of wide open wide subgroupoids of the asso-
ciated groupoids. We consider inverse semigroups acting on topological spaces in the
“strongly tight” way (see Definition 2.1.1). Our main theorem, Theorem 2.1.10, states
that wide open subgroupoids of associated groupoids with strongly tight actions corre-
sponds to certain subsemigroups of the inverse semigroups. Combining with the work
in [1], we obtain a correspondence between Cartan intermediate subalgebras in groupoid
C*-algebras and certain subsemigroups of inverse semigroups. As an application, we com-
pute all Cartan intermediate subalgebras of the Cuntz algebras, which contains the fixed
point algebras.

This paper is organized as follows. Section 1 is devoted for preliminaries. In § 2,
we investigate open subgroupoids of étale groupoids associated with strongly tight
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actions. Then we establish a correspondence between open wide subgroupoids and certain
subsemigroups (Theorem 2.1.10).

In § 3, we give applications of our correspondence. The first application is regarding
to inverse semigroups which consist of compact bisections of étale groupoids. We show
that a class of open wide subgroupoids of an ample groupoid is described by an inverse
semigroup of compact bisections (Corollary 3.1.3). As the second application, we study
certain subsemigroups of the polycyclic monoids. This study is applied to the computa-
tion of Cartan intermediate subalgebras between the Cuntz algebras and the fixed point
algebras.

In § 4, we summarize the relation between Cartan intermediate subalgebras of C*-
algebras and certain subsemigroups of inverse semigroups. Then we compute Cartan
intermediate subalgebras of the Cuntz algebras which contains the fixed point algebras.

In § 5, we mention the relation between strongly tight actions and tight groupoids.
We give a characterization of a tight groupoid with the compact unit space in
Corollary 5.2.5.

1. Preliminaries

1.1. Inverse semigroups

We recall the basic notions about inverse semigroups. See [4] or [8] for more details. An
inverse semigroup S is a semigroup where for every s ∈ S there exists a unique s∗ ∈ S
such that s = ss∗s and s∗ = s∗ss∗. We denote the set of all idempotents in S by E(S) : =
{e ∈ S | e2 = 2}. It is known that E(S) is a commutative subsemigroup of S. An inverse
semigroup which consists of idempotents is called a (meet) semilattice. A zero element
is a unique element 0 ∈ S such that 0s = s0 = 0 holds for all s ∈ S. A unit is a unique
element 1 ∈ S such that 1s = s1 = s holds for all s ∈ S. In this paper, we assume that
every inverse semigroup always has a zero element, although it does not necessarily have
a unit. An inverse semigroup with a unit is called an inverse monoid. By a subsemigroup
of S, we mean a subset of S which is closed under the product and inverse of S. For
s, t ∈ S, we write s ≤ t if ts∗s = s holds. Then this defines a partial order on S. Note
that e ≤ f holds if and only if ef = e holds for e, f ∈ E(S). A pair s, t ∈ S is said to be
compatible if s∗t, st∗ ∈ E(S) holds. Notice that s, t are compatible if there exists u ∈ S
such that s, t ≤ u. A subsemigroup of an inverse semigroup S is said to be wide if it
contains E(S). A subset I ⊂ E(S) is called an ideal if e ∈ I and f ≤ e implies f ∈ I. A
subset C ⊂ I of an ideal I ⊂ E(S) is called a cover if for every e ∈ I\{0} there exists
c ∈ C such that ec �= 0.

For a topological space X, we denote by IX the set of all homeomorphisms between
open sets in X. Then IX is an inverse semigroup with respect to the product defined by the
composition of maps. For f, g ∈ IX , note that f ≤ g holds if and only if dom f ⊂ dom g
and f(x) = g(x) hold for all x ∈ dom f .

1.2. Étale groupoids

We recall the basic notions on étale groupoids. See [8, 11] for more details.
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A groupoid is a set G together with a distinguished subset G(0) ⊂ G, source and range
maps d, r : G → G(0) and a multiplication

G(2) : = {(α, β) ∈ G × G | d(α) = r(β)} � (α, β) �→ αβ ∈ G

such that

(1) for all x ∈ G(0), d(x) = x and r(x) = x,

(2) for all α ∈ G, αd(α) = r(α)α = α,

(3) for all (α, β) ∈ G(2), d(αβ) = d(β) and r(αβ) = r(α),

(4) if (α, β), (β, γ) ∈ G(2), we have (αβ)γ = α(βγ),

(5) every γ ∈ G, there exists γ′ ∈ G which satisfies (γ′, γ), (γ, γ′) ∈ G(2) and d(γ) =
γ′γ and r(γ) = γγ′.

Since the element γ′ in (5) is uniquely determined by γ, γ′ is called the inverse of γ and
denoted by γ−1. We call G(0) the unit space of G. A subgroupoid of G is a subset of
G which is closed under the inversion and multiplication. A subgroupoid of G is said to
be wide if it contains G(0).

A topological groupoid is a groupoid equipped with a topology where the multiplication
and the inverse are continuous. A topological groupoid is said to be étale if the source
map is a local homeomorphism. Note that the range map of an étale groupoid is also a
local homeomorphism. An étale groupoid is said to be ample if it has an open basis which
consists of compact sets. In this paper, we mainly treat ample groupoids.

A topological groupoid G is said to be topologically principal if the set

{x ∈ G(0) | G(x) = {x}}

is dense in G(0), where G(x) is the isotropy group at x ∈ G(0) :

G(x) : = {α ∈ G | d(α) = r(α) = x}.

1.3. Étale groupoids associated with inverse semigroup actions

An étale groupoid arises from an action of an inverse semigroup to a topological space.
We recall how to construct an étale groupoid from an inverse semigroup action. We begin
with the definition of an inverse semigroup action.

Let X be a topological space. Recall that IX is an inverse semigroup of homeo-
morphisms between open sets in X. An action α : S � X is a semigroup homomor-
phism S � s �→ αs ∈ IX . In this paper, we always assume that every action α satisfies⋃

e∈E(S) dom(αe) = X and dom(α0) = ∅. For e ∈ E(S), we denote the domain of αe by
Dα

e . Then αs is a homeomorphism from Dα
s∗s to Dα

ss∗ . We often omit α of Dα
e if there is

no chance to confuse.
For an action α : S � X, we associate an étale groupoid S �α X as the following. First

we put the set S ∗ X : = {(s, x) ∈ S × X | x ∈ Dα
s∗s}. Then we define an equivalence
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relation ∼ on S ∗ X by declaring that (s, x) ∼ (t, y) holds if

x = y and there exists e ∈ E(S) such that x ∈ Dα
e and se = te.

Set S �α X : = S ∗ X/∼ and denote the equivalence class of (s, x) ∈ S ∗ X by [s, x]. The
unit space of S �α X is X, where X is identified with the subset of S �α X via the
injection

X � x �→ [e, x] ∈ S �α X,x ∈ Dα
e .

The source map and range maps are defined by

d([s, x]) = x, r([s, x]) = αs(x)

for [s, x] ∈ S �α X. The product of [s, αt(x)], [t, x] ∈ S �α X is [st, x]. The inverse
should be [s, x]−1 = [s∗, αs(x)]. Then S �α X is a groupoid in these operations. For
s ∈ S and an open set U ⊂ Dα

s∗s, define

[s, U ] : = {[s, x] ∈ S �α X | x ∈ U}.

These sets form an open basis of S �α X. In these structures, S �α X is an étale groupoid.

2. Correspondence between subsemigroups and subgroupoids

In this section, we consider strong tight actions of inverse semigroups (Definition 2.1.1).
Then we establish a correspondence between certain subsemigroups of an inverse semi-
group and open wide subgroupoids of an étale groupoid associated with a strongly tight
action (Theorem 2.1.10). Then we observe a condition for an open wide subgroupoid to
be closed in terms of an inverse semigroup.

2.1. Correspondence between subsemigroups and subgroupoids

We begin with the definition of a strongly tight action.

Definition 2.1.1. Let S be an inverse semigroup and X be a locally compact Hausdorff
space. An action α : S � X is said to be ample if Dα

e ⊂ X is a compact set for all
e ∈ E(S). We say that an ample action α : S � X is strongly tight if {Dα

e }e∈E(S) is a
basis of X.

We remark that if there exists a strongly tight action α : S � X, then X is totally
disconnected and S �α X is an ample groupoid.

Strongly tight actions are related with the actions on tight spectrums of inverse semi-
groups, which are investigated in [3]. We will see a relation between strongly tight actions
and tight groupoids in § 5.

We construct subsemigroups from wide groupoids.

Definition 2.1.2. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be an action. Put G : = S �α X. For a wide subgroupoid H ⊂ G,
we define

TH : = {s ∈ S | [s,Ds∗s] ⊂ H}.
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Proposition 2.1.3. In the above notation, TH is a wide subsemigroup of S.

Proof. For e ∈ E(S), [e, De] ⊂ G(0) ⊂ H holds. Hence TH contains E(S).
Next, we show that TH is a subsemigroup of S. We show st ∈ TH for s, t ∈ TH . For

x ∈ D(st)∗st, it follows that [s, αt(x)], [t, x] ∈ H from s, t ∈ TH . Thus, we obtain

[st, x] = [s, αt(x)][t, x] ∈ H.

Therefore, we have [st, D(st)∗st] ⊂ H and st ∈ TH .
It is clear that TH is closed under the inverse. Hence TH is a wide subsemigroup

of S. �

We define a class of subsemigroups which corresponds to open wide subgroupoids
(c.f. Theorem 2.1.10).

Definition 2.1.4. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be an action. A wide subsemigroup T ⊂ S is said to be α-join closed
if T has the next property:

‘For every s ∈ S, s belongs to T if and only if there exists a finite set F ⊂ E(S) such
that sf ∈ T holds for all f ∈ F and Ds∗s ⊂

⋃
f∈F Df holds.’

Remark 2.1.5. The “only if” part in the previous definition always holds for all wide
subsemigroups T . Indeed, if s ∈ T , then F : = {s∗s} satisfies sf ∈ T for all f ∈ F and
Ds∗s ⊂

⋃
f∈F Ds∗s.

Proposition 2.1.6. Let S be an inverse semigroup, X be a locally compact Haus-
dorff space and α : S � X be an action. For a wide subgroupoid H ⊂ S �α X, the wide
subsemigroup TH ⊂ S is α-join closed.

Proof. Take s ∈ S and assume that there exists a finite set F ⊂ E(S) such that sf ∈
TH for all f ∈ F and Ds∗s ⊂

⋃
f∈F Df . It suffices to show s ∈ TH . For x ∈ Ds∗s, there

exists f ∈ F with x ∈ Df . Since we have sf ∈ TH , it follows

[s, x] = [sf, x] ∈ H.

Thus, we obtain [s, Ds∗s] ⊂ H and therefore s ∈ TH . �

The proof of the next proposition is left to the reader.

Proposition 2.1.7. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be an action. For a wide subsemigroup T ⊂ S, the map

T �α X � [t, x] �→ [t, x] ∈ S �α X

is an open map and an isomorphism onto its image.

Via the map in the previous proposition, T �α X is identified with the wide open
subgroupoid of S �α X.
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Lemma 2.1.8. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be an action. For a wide subsemigroup T ⊂ S, TT�αX ⊃ T holds.
Moreover, if T is α-join closed and α : S � X is ample, then TT�αX = T holds.

Proof. The inclusion TT�αX ⊃ T is clear. Assuming that T is α-join closed and
α : S � X is ample, we show TT�αX ⊂ T . Take s ∈ TT�αX and fix x ∈ Ds∗s. Since we
have [s, x] ∈ T �α X, there exists ex ∈ E(S) such that sex ∈ T and x ∈ Dex

. Since we
assume that Ds∗s is compact, there exists a finite set P ⊂ Ds∗s with Dt∗t ⊂

⋃
x∈P Dex

.
Using the condition that T is α-join closed, we obtain t ∈ T . Now we have shown
TT�αX ⊂ T . �

Lemma 2.1.9. Let S be an inverse semigroup, X be a locally compact Hausdorff space
and α : S � X be an action. Put G : = S �α X. For a wide groupoid H ⊂ G, TH �α X ⊂
H holds. Moreover, if H ⊂ G is open and α : S � X is strongly tight, TH �α X = H also
holds.

Proof. Assume that [s, x] ∈ TH �α X. Then there exists t ∈ TH such that [s, x] =
[t, x]. Now we have

[s, x] = [t, x] ∈ [t,Dt∗t] ⊂ H.

Next, we show the other inclusion TH �α X ⊃ H under the assumption that α is strongly
tight and H is open. Take [s, x] ∈ H. Since H is open and α is strongly tight, there exists
e ∈ E(S) such that x ∈ De ⊂ Ds∗s and [s, De] ⊂ H. One can see [se, D(se)∗se] ⊂ H, so
we have se ∈ TH . Therefore, it follows [s, x] = [se, x] ∈ TH �α X. �

The next theorem follows from Lemmas 2.1.8 and 2.1.9.

Theorem 2.1.10. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be an action. Assume that α : S � X is strongly tight and put
G : = S �α X. Let T denote the set of all wide α-join closed subsemigroups of S. In
addition, let H denote the set of all wide open subgroupoids of G. Then maps

T � T → T �α X ∈ H

and

H � H → TH ∈ T

are inverse maps of each other.

2.2. Closedness of subgroupoid

We give conditions where T �α X is closed in S �α X.

Definition 2.2.1. Let S be an inverse semigroup and T ⊂ S be a wide subsemigroup.
For s ∈ S, we define J T

s ⊂ E(S) as

J T
s : = {e ∈ E(S) | se ∈ T and e ≤ s∗s}.
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Proposition 2.2.2. In the above notation, J T
s is an ideal of E(S).

Proof. Assume e ∈ J T
s and f ≤ e. Then we have sf = sef ∈ T and f ≤ e ≤ s∗s.

Hence we obtain f ∈ J T
s . �

We remark that

J E(S)
s = {e ∈ E(S) | e ≤ s}

holds. This ideal appears in [3, Definition 3.11].
Assume that an action α : S � X is given. For an ideal J ⊂ E(S), we define D(J ) : =⋃
e∈J De. The next lemma is a slight generalization of [3, Proposition 3.14].

Lemma 2.2.3. Let S be an inverse semigroup, X be a locally compact Hausdorff space
and α : S � X be an action. Assume that we are given a wide subsemigroup T ⊂ S. Then
the formula

[s,D(J T
s )] = [s,Ds∗s] ∩ (T �α X)

holds for all s ∈ S.

Proof. Take [s, x] ∈ [s, D(J T
s )]. Then there exists e ∈ J T

s with x ∈ De. By the
definition of J T

s , we have se ∈ T and e ≤ s∗s. Hence we obtain

[s, x] = [se, x] ∈ [s,Ds∗s] ∩ (T �α X).

Now we have shown [s, D(J T
s )] ⊂ [s, Ds∗s] ∩ (T �α X). To show the reverse inclusion,

take [s, x] ∈ [s, Ds∗s] ∩ (T �α X). Since [s, x] belongs to T �α X, there exists t ∈ T and
f ∈ E(S) such that sf = tf and x ∈ Df hold. Since we have ss∗sf = sf = tf ∈ T , s∗sf
belongs to J T

s . Since we also have x ∈ Ds∗sf ⊂ D(J T
s ), we obtain [s, x] ∈ [s, D(J T

s )]. �

Proposition 2.2.4. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be an action. Assume that we are given a wide subsemigroup T ⊂ S.
The following conditions are equivalent:

(1) T �α X is a closed subset of S �α X,

(2) for every s ∈ S, D(J T
s ) is a closed subset of Ds∗s with respect to the relative

topology of Ds∗s.

Proof. First, we show that (1) implies (2). By Lemma 2.2.3 and (1), [s, D(J T
s )] is a

closed subset of [s, Ds∗s]. Since the restriction of the domain map d : [s, Ds∗s] → Ds∗s

is a homeomorphism, d([s, D(J T
s )]) = D(J T

s ) is closed in Ds∗s. Next, we show that
(2) implies (1). It follows that [s, D(J T

s )] is a closed subset of [s, Ds∗s] from the same
argument in the above and (2). We have that [s, Ds∗s]\[s, D(J T

s )] is open in S �α X
since [s, Ds∗s] is open in S �α X and [s, D(J T

s )] is closed in [s, Ds∗s]. One can see that
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the formula

S �α X\T �α X =
⋃
s∈S

([s,Ds∗s]\[s,D(J T
s )])

holds. Hence S �α X\T �α X is open in S �α X, which implies T �α X is closed in
S �α X. �

The next Lemma is essentially same as the [3, Proposition 3.7]. We give a proof for the
reader’s convenience.

Lemma 2.2.5 (c.f. [3, Proposition 3.7]). Let S be an inverse semigroup, X be a
locally compact Hausdorff space and α : S � X be a strongly tight action. Assume that
De �= ∅ holds for every e ∈ E(S)\{0}. For a ideal J ⊂ E(S) and a finite subset C ⊂ J ,
the followings are equivalent:

(1) C is a cover of J ,

(2)
⋃

c∈C Dc = D(J ).

Proof. First, we show (1) implies (2). The inclusion
⋃

c∈C Dc ⊂ D(J ) follows from
C ⊂ J . We show the reverse inclusion. Take x ∈ D(J ). Then there exists q ∈ J such that
x ∈ Dq. Assume that x �∈ Dc holds for all c ∈ C. For each c ∈ C, there exists ec ∈ E(S)
such that x ∈ Dec

and Dec
∩ Dc = ∅ since each Dc is closed in X and {De}e∈E(S) is a

basis of X. Since Dcec
= Dc ∩ Dec

= ∅ and we assume De �= ∅ for all e ∈ E(S)\{0}, we
have cec = 0. Putting p : = q

∏
c∈C ec, we have p ∈ J \{0} since J is ideal and x ∈ Dp.

However, we also have cp = 0 for each c ∈ C, which contradicts to the condition that C
is a cover.

Next, we show (2) implies (1). Take e ∈ J \{0}. Then there exists c ∈ C such that
De ∩ Dc �= ∅, which implies ec �= 0. Hence C is a cover of J . �

Now we obtain the characterization about the closedness of open wide subgroupoids.

Theorem 2.2.6. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be a strongly tight action. Assume that De �= ∅ holds for every
e ∈ E(S)\{0}. For a wide subsemigroup T ⊂ S, the following conditions are equivalent:

(1) T �α X is closed in S �α X,

(2) for every s ∈ S, D(J T
s ) is relatively closed in Ds∗s,

(3) for every s ∈ S, J T
s has a finite cover.

Proof. Now it suffices to show that (2) and (3) are equivalent, since Proposition 2.2.4
states that (1) and (2) are equivalent. First, we show that (2) implies (3). Since we assume
that the action α is ample, Ds∗s is compact. Then D(J T

s ) is also compact by (2). Hence
there exists a finite set C ⊂ J T

s such that
⋃

c∈C Dc = D(J T
s ). By Lemma 2.2.5, C is a

finite cover of J T
s .
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Next, we show that (3) implies (2). Take s ∈ S and a finite cover C of J T
s . By Lemma

2.2.5 again, we have D(J T
s ) =

⋃
c∈C Dc. Hence we have D(J T

s ) is compact and therefore
closed in Ds∗s since each Dc is compact. �

Wide clopen subgroupoids arise from partial group homomorphisms. We observe this
fact in the remainder of this subsection.

Let S be an inverse semigroup and Γ be a group. Put S× : = S\{0}. A map σ : S× → Γ
is called a partial homomorphism if σ(st) = σ(s)σ(t) holds for any pair s, t ∈ S× with
st �= 0. A partial homomorphism gives us a suitable subsemigroup as follows.

Proposition 2.2.7. Let S be an inverse semigroup, Γ be a group and σ : S× → Γ
be a partial homomorphism. Assume that we are given a locally compact space X and
an action α : S � X where De �= ∅ holds for each e ∈ E(S)\{0}. Then the following
statements hold:

(1) ker σ : = σ−1(e) ∪ {0} is a α-join closed wide subsemigroup of S,

(2) ker σ �α X is closed in S �α X.

Proof. First, we show (1). One can see that ker σ is a wide subsemigroup of S in a
straightforward way. We show kerσ is α-join closed. Take s ∈ S and assume that there
exists a finite set F ⊂ E(S) such that sF ⊂ ker σ and Ds∗s ⊂

⋃
f∈F Df . It suffices to show

s ∈ ker σ. We may assume that s �= 0. Then there exists f ∈ F such that Ds∗s ∩ Df �= ∅,
which implies sf �= 0. Since we have sf ∈ ker σ, it follows

σ(s) = σ(s)e = σ(s)σ(f) = σ(sf) = e.

Hence s ∈ ker σ.
Next, we show (2). Although it is possible to apply Proposition 2.2.4, we show (2) using

a cocycle* on a groupoid. We define the map cσ : S �α X → Γ by

cσ([s, x]) = σ(s), [s, x] ∈ S �α X.

Then cσ is a continuous cocycle. One can see that

ker σ �α X = c−1
σ (e)

holds. Hence kerσ �α X is closed in S �α X. �

3. Applications and examples

3.1. Inverse semigroups of compact bisections

Let G be an ample étale groupoid. Recall that an open set U ⊂ G is called a bisection
if the restrictions d|U and r|U are homeomorphisms onto the images. Let I(G) denote the

* A map from a groupoid to a group is called a cocycle if it preserves the products.
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set of all compact bisections of G. For U, V ∈ I(G), their product UV is defined by

UV : = {αβ ∈ G | α ∈ U, β ∈ V, d(α) = r(β)}.

Then UV belongs to I(G). It is known that I(G) becomes an inverse semigroup. Note
that the inverse of U ∈ I(G) is given by

U−1 = {α−1 ∈ G | α ∈ U}.

The order of I(G) as an inverse semigroup coincides with the order defined by inclusion.
A pair U, V ∈ I(G) is said to be compatible if U−1V and UV −1 belong to E(I(G)).
If U, V ∈ I(G) are compatible, U ∪ V is an element of I(G). Note that U ∪ V is the
least upper bound of {U, V }. Thus, I(G) admits joins of compatible pairs in I(G). A
subsemigroup T ⊂ I(G) is said to be join closed if all joins of compatible pair of T also
belongs to T .

For U ∈ I(G), we have a homeomorphism ρU : d(U) → r(U) defined by

ρU (d(α)) = r(α), α ∈ U.

Then the map U �→ ρU defines an action ρ : I(G) � G(0). One can see that ρ is strongly
tight. The following theorem is essentially same as [7, Theorem 2.8].

Theorem 3.1.1 (c.f. [7, Theorem 2.8]). Let G be an ample étale groupoid. Then
G is isomorphic to I(G) �ρ G(0).

Proof. For α ∈ G, there exists Uα ∈ I(G) such that α ∈ Uα since G is ample. Then
[Uα, d(α)] ∈ I(G) �ρ G(0) is independent of the choice of Uα. Thus, we obtain the map

Φ: G � α �→ [Uα, d(α)] ∈ I(G) �ρ G(0).

One can see that Φ is an isomorphism as a morphism between étale groupoids. Indeed,
the map Ψ: I(G) �ρ G(0) → G defined by Ψ([U, x]) = d−1

U (x) is the inverse map of Φ. �

Lemma 3.1.2. Let G be an ample étale groupoid. Then a wide subsemigroup T ⊂
I(G) is ρ-join closed if and only if T is join closed.

Proof. Assume that T ⊂ I(G) is join closed. Take U ∈ I(G) and there exists a finite
set F ⊂ E(I(G)) such that UF ∈ T and Dρ

U∗U ⊂
⋃

O∈F Dρ
O. Observe that elements in

UF are pairwisely compatible and
∨

O∈F UO = U holds. Since T is join closed, U belongs
to T .

To show the converse, assume that T ⊂ I(G) is ρ-join closed. Let U, V ∈ T be compati-
ble. Put F : = {U−1U, V −1V } ⊂ E(I(G)). Then one can see that (U ∪ V )F ={U, V }⊂ T
hold. Since we have

dom(ρU∪V ) = d(U) ∪ d(V ) = dom ρU ∪ dom ρV ,

we obtain U ∪ V ∈ T by the ρ-closedness of T . �

Theorem 2.1.10, Theorem 3.1.1 and Lemma 3.1.2 yield the next corollary.
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Corollary 3.1.3. Let G be an ample étale groupoid. Then there is a correspondence
between the set of all open wide subgroupoids of G and the set of all wide join closed
subsemigroups of I(G).

3.2. Polycyclic monoids

We apply Theorem 2.1.10 to the polycyclic monoids Pn. See [5] or [8, Example 3 in
Chapter 4.2] for details on the polycyclic monoids. Remark that the polycyclic monoids
are called the Cuntz semigroups in [8].

Definition 3.2.1. Let n ≥ 2 be a natural number. The polycyclic monoid Pn is an
inverse monoid defined by

Pn : = ı < s1, s2, . . . , sn | s∗i sj = δi,j1 > .

Set Σn : = {1, 2, . . . , n} and

ΣN

n : = {(xi)∞i=1 | xi ∈ Σn for all i ∈ N}.

It follows that ΣN
n is a compact Hausdorff space from Tychonoff’s theorem. We write a

finite sequence on Σn like μ = (μ1, μ2, . . . , μl), where each μj is an element of Σn. Here,
l ∈ N is called the length of μ, which we denote by |μ|. The only element of length zero
is denoted by ε, which is called the empty word. We denote the set of all finite sequence
on Σn by Σ∗

n. For μ ∈ Σ∗
n, we define a cylinder set C(μ) ⊂ ΣN

n as the set of all infinite
sequences which begin with μ :

C(μ) : = {(xi)∞i=1 ∈ ΣN

n | xi = μi for all i = 1, 2, . . . , |μ|}.

We represent an element of C(μ) as μx with x ∈ ΣN
n. Each C(μ) is a compact open set

of ΣN
n and the family of all C(μ) is a basis of ΣN

n. For μ ∈ Σ∗
n, we define sμ ∈ Pn as

sμ : = sμ1sμ2 · · · sμ|μ| .

For the empty word ε ∈ ΣN
n, we define sε = 1. It is known that an element of Pn\{0} is

represented as the form sμs∗ν for unique μ, ν ∈ Σ∗
n.

Now we define an action β : Pn � ΣN
n. For sμs∗ν ∈ Pn, define βsμs∗

ν
: C(μ) → C(ν) by

βsμs∗
ν
(νx) = μx, x ∈ ΣN

n.

Then the map sμs∗ν �→ βsμs∗
ν

defines an action β : Pn � ΣN
n. Since the domain of sμs∗μ

coincides with C(μ), the action β is strongly tight.
For k, l ∈ N, we define

P k,l
n : = {sμs∗ν ∈ Pn | |μ| = k, |ν| = l}.

Observe that

Mn : =
⋃
k∈N

P k,k
n ∪ {0} = {sμs∗ν ∈ Pn | |μ| = |ν|} ∪ {0}

is a wide subsemigroup of Pn.
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We investigate β-join closed subsemigroups T ⊂ Pn such that Mn ⊂ T . For m ∈ N,
define

Pm
n : =

⋃
k−l∈mZ

P k,l
n ∪ {0}.

Then one can see that Pm
n is a β-join closed subsemigroup which contains Mn. Notice

that P 0
n = Mn. Conversely, we obtain the following proposition.

Proposition 3.2.2. Assume that T � Pn is a β-join closed subsemigroup which
contains Mn. Then T = Pm

n holds for some m ∈ N.

In order to prove this proposition, we prepare a few lemmas. The next lemma follows
from straightforward calculations.

Lemma 3.2.3. For i, j, k, l ∈ N, we have

P i,j
n P k,l

n =

{
P i+k−j,l

n ∪ {0} (k ≥ j),
P i,j−k+l

n ∪ {0} (k ≤ j).

Lemma 3.2.4. Let T ⊂ Pn be a wide subsemigroup which contains Mn. Then the
following statements hold :

(1) If sμs∗ν ∈ T holds, then P
|μ|,|ν|
n ⊂ T holds.

(2) P k,l
n ⊂ T implies P l,k

n ⊂ T .

(3) P k,l
n ⊂ T implies P k+1,l+1

n ⊂ T .

Moreover, if T is β-join closed, then the following holds:

(4) If P k,l
n holds for k, l ∈ Z>0, then P k−1,l−1

n ⊂ T holds.

Proof. (1) Assume |μ| = |μ′| and |ν| = |ν′| hold for μ′, ν′ ∈ ΣN
n. Then we have

sμ′s∗μ, sνs∗ν′ ∈ Mn ⊂ T . Since we assume sμs∗ν ∈ T , it follows

sμ′sν′ = sμ′s∗μsμs∗νsνs∗ν′ ∈ T.

Hence we have P
|μ|,|ν|
n ⊂ T .

(2) is clear, so we show (3) next. Take sμs∗ν ∈ P k,l
n and x, y ∈ Σn arbitrarily. Then we

have

sμxs∗νx = sμs∗νsνxs∗νx ∈ T,

where we use the fact sνxs∗νx ∈ Mn ⊂ T . Using (1) in the above, we obtain
P k+1.l+1

n ⊂ T .
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Finally we show (4) under the assumption that T is β-join closed. Take sμs∗ν ∈ P k−1,l−1
n .

For each x ∈ Σn, we have

sμs∗νsνxs∗νx = sμxs∗νx ∈ T,

since we assume P k,l
n ⊂ T . Observe that

Dβ
(sμs∗

ν)∗sμs∗
ν

= Dβ
sνs∗

ν
=

⋃
x∈Σn

Dβ
sνxs∗

νx
(=C(ν)).

Since T is β-join closed, we have sμs∗ν ∈ T . Hence we have shown P k−1,l−1
n ⊂ T . �

Proof of Proposition 3.2.2. We may assume that Mn � T . We define

m : = min{||μ| − |ν|| ∈ N | sμs∗ν ∈ T\Mn}(>0).

We show T = Pm
n . By the definition of m, there exists sμs∗ν ∈ T such that ||μ| − |ν|| = m.

Since T is closed under the inverse, we may assume |μ| − |ν| = m. Using (1) of Lemma
3.2.4, we have P

|μ|,|ν|
m ⊂ T . Applying (4) of Lemma 3.2.4 repeatedly, we obtain Pm,0

n ⊂ T
and it follows P 0,m

n ⊂ T from (2) of Lemma 3.2.4. Now one can see that P k,l
n ⊂ T holds

for k, l with k − l ∈ mZ. Hence we obtain Pm
n ⊂ T .

Next, we show T ⊂ Pm
n . Assume that there exists sμs∗ν ∈ T such that sμs∗ν �∈ Pm

n . We
may assume that |μ| > |ν|. Take a, b ∈ N such that |μ| − |ν| = am + b and 1 ≤ b ≤ m − 1.
We have P

|μ|,|ν|
n ⊂ T by (1) of Lemma 3.2.4. Using (4) of Lemma 3.2.4 repeatedly, we

have P am+b,0
n ⊂ T . Since we have Pm,0

n ⊂ T , it follows

P (a−1)m+b,0
n ⊂ P am+b,0

n Pm,0
n ⊂ T,

where we used Lemma 3.2.3. Repeating this argument inductively, we obtain P b,0
n ⊂ T .

This contradicts to the minimality of m. Now we have shown T = Pm
n . �

By Theorem 2.1.10 and Proposition 3.2.2, an open proper intermediate subgroupoid
between Pn �α ΣN

n and Mn �β ΣN
n is given by the form Pm

n �β ΣN
n for some m ∈ N.

Now we see Pm
n �β ΣN

n is closed. Observe that Pn �β ΣN
n has a continuous cocy-

cle c : Pn �β ΣN
n → Z defined by c([sμs∗ν , x]) = |μ| − |ν|. Since we have Pm

n �β ΣN
n =

c−1(mZ), it follows that Pm
n �β ΣN

n is a closed subset of Pn �β ΣN
n. Hence we obtain

the next proposition.

Proposition 3.2.5. Every open wide normal subgroupoid of Pn �β ΣN
n which contains

Mn �β ΣN
m is closed.

It follows from Corollary 5.2.5 that Pn �β ΣN
n is isomorphic to the tight groupoid of

Pn. See § 5 for more details.

4. Applications to the theory of C*-algebras

4.1. Analysis of cartan intermediate subalgebras by using inverse semigroups

In this section, we explain a correspondence between Cartan intermediate subalgebras
and certain subsemigroups of an inverse semigroup.

https://doi.org/10.1017/S0013091522000402 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000402


874 F. Komura

Definition 4.1.1. Let A be a C*-algebra. A commutative subalgebra D ⊂ A is called
a Cartan subalgebra if the following conditions hold :

(1) The inclusion D ⊂ A is non-degenerate (i.e. D contains an approximate unit
for A).

(2) The set of normalizers generates A, where n ∈ A is called a normalizer if nDn∗ ∪
n∗Dn ⊂ D holds.

(3) There is a faithful conditional expectation E : A → D.

(4) The commutant D′ coincides with D, where D′ : =
⋂

d∈D{a ∈ A | da = ad}.

In this case, we call (A, D) a Cartan pair.

We investigate a certain class of intermediate C*-subalgebras between Cartan pairs
defined as follows.

Definition 4.1.2. Let (A, D) be a Cartan pair. Then an intermediate C*-subalgebra
D ⊂ B ⊂ A is called a Cartan intermediate subalgebra if (B.D) is a Cartan pair.

Renault’s cerebrated theorem states that a Cartan pair arises from a twisted groupoid.
We refer to [1, 10, 11] for twists of étale groupoids. A twisted groupoid over G is a
topological groupoid Σ with the central extension

G(0) × T ↪→ Σ
q
� G,

where T is the circle group. In this paper, this twist is abbreviated to q : Σ → G. We denote
the reduced C*-algebra of the twist q : Σ → G by C∗

λ(Σ). Recall that C∗
λ(Σ) contains

C0(G(0)) as a subalgebra. We denote the reduced C*-algebra of G by C∗
λ(G), which is

isomorphic to the reduced C*-algebra of the trivial twist G × T → G.

Theorem 4.1.3 (Renault [10, Theorem 5.9]). Let (A, D) be a Cartan pair where
A is separable. Then there exists a twist q : Σ → G such that A is isomorphic to C∗

λ(Σ)
via an isomorphism which maps D to C0(G(0)), where G is second countable topologically
principal locally compact Hausdorff étale groupoid. This twist q : Σ → G is unique up to
isomorphism.

Remark 4.1.4. We shall remark that étale groupoids arising from Cartan pairs are
Hausdorff, while étale groupoids arising from inverse semigroup actions are not necessarily
Hausdorff. In [3, Theorem 3.15], the authors obtained a necessary and sufficient condition
where étale groupoids arising from inverse semigroup actions are Hausdorff.

From now on, we identify C∗
λ(Σ) and C0(G(0)) with A and D respectively for a Cartan

pair (A, D).
Let q : Σ → G be a twist and H ⊂ G be a wide open subgroupoid. [1, Lemma 3.2]

states that ΣH : = q−1(H) naturally becomes a twist over H and there exists a natural
inclusion C∗

λ(ΣH) ⊂ C∗
λ(Σ). The authors in [1] showed this map H �→ C∗

λ(ΣH) gives a
certain correspondence as follows.
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Theorem 4.1.5 (Brown et al. [1, Theorem 3.3, Lemma 3.4]). Let (A, D) be a
Cartan pair with a separable A and q : Σ → G be an associated twist. Then the above
map H �→ C∗

λ(ΣH) gives a one-to-one correspondence between the set of open wide sub-
groupoids of G and the set of Cartan intermediate subalgebras D ⊂ B ⊂ A in the sence
of Definition 4.1.2. In addition, there exists a conditional expectation from C∗

λ(Σ) to
C∗

λ(ΣH) if and only if H ⊂ G is closed.

Combining Theorem 4.1.5 with Theorem 2.1.10, we obtain the next Corollary.

Corollary 4.1.6. Let (A, D) be a Cartan pair with separable A and q : Σ → G be an
associated twist. Assume that G=S �α X holds for some strongly tight action α : S � X.
Then there exists a one-to-one correspondence between the set of α-join closed wide
subsemigroups of S and the set of Cartan intermediate subalgebras D ⊂ B ⊂ A. More
precisely, the map T �→ C∗

λ(ΣT�αX) gives the above correspondence.

Example 4.1.7. We investigate certain subalgebras of the Cuntz algebras by using
the polycyclic monoids here. For n ∈ N with n ≥ 2, the Cuntz algebra On is the universal
unital C*-algebra generated by isometries S1, . . . , Sn which satisfy Cuntz relation as
follows:

S∗
i Sj = δi,j1,

n∑
i=1

SiS
∗
i = 1.

For a finite sequence μ = (μ1, . . . , μl) on {1, . . . , n}, we define

Sμ : = Sμ1Sμ2 · · ·Sμl
.

Then On is the closure of the linear span of {SμS∗
ν}μ,ν , where μ and ν are taken over

the all finite sequences on {1, . . . , n}. Let Dn be the subalgebra of On generated by
{SμS∗

μ}μ, where μ is taken over the all finite sequences on {1, . . . , n}. We denote the
gauge action by τ : T � On. Note that the gauge action satisfies τz(Si) = zSi for all
z ∈ T and i = 1, 2, . . . , n. We denote the fixed point algebra of τ by

Oτ
n : =

⋂
z∈T

{x ∈ On | τz(x) = x}.

Then Oτ
n is the closure of the linear span of

{SμS∗
ν ∈ On | |μ| = |ν|},

where |μ| denotes the length of μ.
The polycyclic monoids have strongly tight actions β : Pn � ΣN

n, described in § 3.2.
Put Gn : = Pn �β ΣN

n. Then Gn is a topologically principal locally compact Hausdorff
second countable ample groupoid. For si ∈ Pn, let χ[si,Ds∗

i
si

] denote the characteristic
function on [si, Ds∗

i si
] ⊂ Gn. Then {χ[si,Ds∗

i
si

]}n
i=1 are elements of C∗

λ(Gn) and generate
C∗

λ(Gn). Since {χ[si,Ds∗
i

si
]}n

i=1 satisfies the Cuntz relation, On and C∗
λ(Gn) are isomorphic
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via the unique isomorphism Φ: On → C∗
λ(Gn) such that Φ(Si) = χ[si,Ds∗

i
si

] holds for all
i = 1, . . . , n. One can see that

Φ(Dn) = C(ΣN

n) and Φ(Oτ
n) = C∗

λ(Mn �β ΣN

n)

hold. Define Om
n ⊂ On to be the subalgebra generated by

{SμS∗
ν ∈ On | |μ| − |ν| ∈ mZ}.

One can see that

Φ(Om
n ) = C∗

λ(Pm
n �β ΣN

n)

holds. Therefore, it follows from Proposition 3.2.2 that a Cartan intermediate subalgebra
Oτ

n ⊂ B ⊂ On coincides with Om
n for some m ∈ N. Moreover, every Cartan intermediate

subalgebra between Oτ
n and On admits a conditional expectation from On by Proposition

3.2.5 and Theorem 4.1.5.
We note that Om

n is isomorphic to Onm . Indeed, {Sμ}|μ|=m generates Om
n and satisfies

the Cuntz relation.

5. Relation between strongly tight actions and tight groupoids

In this section, we observe that tight groupoids, which are investigated in [3], are related
with strongly tight actions.

5.1. Tight groupoids

First, we recall the definition of tight groupoids. Refer to [2] or [3] for more details. Let
S be an inverse semigroup. A character on E(S) is a non-zero semigroup homomorphism
from E(S) to {0, 1}, where {0, 1} is equipped with the usual multiplication. We denote
the set of all characters on E(S) by Ê(S). Letting Ê(S) be equipped with the point-
wise convergence topology, Ê(S) is a locally compact Hausdorff space. For a ξ ∈ Ê(S),
ξ−1({1}) ⊂ E(S) is a proper filter in the following sense :

(1) ξ−1({1}) does not contain 0,

(2) if e and f belongs to ξ−1({1}), then ef also belongs to ξ−1({1}),

(3) if e ∈ ξ−1({1}) and f ≥ e hold, then f belongs to ξ−1({1}).

A character ξ ∈ Ê(S) is called an ultracharacter if ξ−1({1}) is a maximal proper filter.
A character ξ ∈ Ê(S) is an ultracharacter if and only if there is no character η ∈ Ê(S)
such that ξ < η holds. The set of all ultracharacters on E(S) is denoted by Ê∞(S). The
closure of Ê∞(S) in Ê(S) is denoted by Êtight(S). An element in Êtight(S) is called a
tight character.
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We define the spectral action β : S � Ê(S). For e ∈ E(S), put

Dβ
e : = {ξ ∈ Ê(S) | ξ(e) = 1}.

Note that Dβ
e is a compact open set of Ê(S). For s ∈ S and ξ ∈ Dβ

s∗s, define βs(ξ) ∈ Dβ
ss∗

by

βs(ξ)(e) : = ξ(s∗es), e ∈ E(S).

Then βs : Dβ
s∗s → Dβ

ss∗ is a homeomorphism. The map s �→ βs defines an action β : S �

Ê(S). It is known that Ê∞(S) and Êtight(S) are β-invariant (see [2, Proposition 12.11]).
The restrictions of β to Ê∞(S) and Êtight(S) are denoted by

θ∞ : S � Ê∞(S) and θ : S � Êtight(S)

respectively. The tight groupoid of S is defined as Gtight(S) : = S �θ Êtight(S).

5.2. Characterization of tight groupoids

In this subsection, we characterize strongly tight actions with non-empty domains. The
proof of the next proposition is left to the reader.

Proposition 5.2.1. Let S be an inverse semigroup, X be a locally compact Hausdorff
space and α : S � X be an action. For x ∈ X, we define ξx : E(S) → {0, 1} by

ξx(e) : =

{
1 (x ∈ Dα

e ),
0 (x �∈ Dα

e ).

Then ξx ∈ Ê(S).

Strongly tight actions with non-empty domains are characterized as the following
theorem.

Theorem 5.2.2. Let S be an inverse semigroup, X be a locally compact Haus-
dorff space and α : S � X be a strongly tight action such that De �= ∅ holds for
each e ∈ E(S)\{0}. Then the map X � x �→ ξx ∈ Ê(S) in Proposition 5.2.1 gives a
homeomorphism

X � x �→ ξx ∈ Ê∞(S)

which induces an isomorphism

S �α X � [s, x] �→ [s, ξx] ∈ S �θ∞ Ê∞(S).

Proof. This is a simple modification of [12, Proposition 5.5]. We give a proof for the
reader’s convenience.

For x ∈ X, we show ξx ∈ Ê∞(S). Assume that there exists η ∈ Ê(S) such that ξx < η.
Then there exists f ∈ E(S) such that ξx(f) = 0 and η(f) = 1. Since we assume that
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{Dα
e }e∈E(S) is a basis of X, there exists e ∈ E(S) such that x ∈ Dα

e and Dα
e ∩ Dα

f = ∅.
By the assumption ξx < η, we have η(e) = 1. By Dα

ef = Dα
e ∩ Dα

f = ∅, we have ef =
0 and therefore, η(ef) = 0. This contradicts to η(ef) = η(e)η(f) = 1. Hence ξx is an
ultracharacter.

We define the map Φ: X � x �→ ξx ∈ Ê∞(S). We show that Φ is a homeomorphism.
It is easy to show that Φ is continuous. To show that Φ is injective, take x, y ∈ X with
x �= y. Since a family {Dα

e }e∈E(S) is a basis of X, there exists e ∈ E(S) such that x ∈ Dα
e

and y �∈ Dα
e . Then ξx(e) = 1 and ξy(e) = 0. Therefore, we have ξx �= ξy and Φ is injective.

Next, take ξ ∈ Ê∞(S) to show that Φ is surjective. Because a family {Dα
e | ξ(e) = 1}

has the finite intersection property,
⋂

ξ(e)=1 Dα
e is not empty. Take x ∈

⋂
ξ(e)=1 Dα

e . Then
we have ξ ≤ ξx. By the maximality of ξ, we obtain ξ = ξx. Therefore, the map x �→ ξx is
surjective.

Now one can check that Φ(Dα
e ) = Dβ

e holds. Using this, it follows that Φ is a
homeomorphism.

It is straightforward to check that there exists a (unique) isomorphism which maps
[s, x] ∈ S �α X to [s, ξx] ∈ S �θ∞ Ê∞(S). �

Remark 5.2.3. It seems difficult to drop the assumption that De �= ∅ for e ∈
E(S)\{0}. Define matrices

p =
(

1 0
0 0

)
, q =

(
0 0
0 1

)
.

Then E : = {0, p, q, 1} is a semilattice with respect to the usual multiplication. Let
X = {x} be a singleton. Define an action α : E � X by declaring D1 = X and Dp =
Dq = D0 = ∅. Then α is strongly tight, although Ê∞ is not homeomorphic to X. Note
that ξx, which is defined in the proof of Theorem 5.2.2, is not an ultracharacter. Therefore,
it seems difficult to find a natural map between X and Ê∞.

The author in [6] showed the following theorem.

Theorem 5.2.4 (Lawson [6, Theorem 2.5]). Let E be a semilattice with zero and

unit elements. Then Ê∞ = Êtight holds if and only if Ê∞ is compact.

Theorem 5.2.2 and Theorem 5.2.4 yield the following characterization of tight
groupoids.

Corollary 5.2.5. Let S be an inverse semigroup. Consider the following conditions.

(1) S has a strongly tight action on a compact Hausdorff space X.

(2) Ê(S)∞ is compact,

(3) Ê(S)tight = Ê(S)∞.

Then (1) ⇔ (2) and (2) ⇒ (3) hold. If S has a unit element, (3) ⇒ (2) also holds.
Moreover, if (1) holds, then S � X is isomorphic to Gtight(S).
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Remark 5.2.6. The implication (3) ⇒ (2) in Corollary 5.2.5 dose not necessarily hold
in general. Let E be a semilattice generated by 0 and {pi}i∈N with the relation

pipj =

{
pi (i = j),
0 (i �= j).

Then Ê∞ = Êtight holds, although Ê∞ is not compact. Indeed Ê∞ is homeomorphic
to N.

Remark 5.2.7. There exists a semilattice E such that Ê∞ is a locally compact
although Ê∞ � Êtight holds. Let E be the semilattice in Remark 5.2.6. Put E1 : =
E ∪ {1}. Then Ê1∞ is locally compact. In addition, we have Ê1∞ � Ê1

tight. Indeed,
Ê1∞ and Ê1

tight are isomorphic to N and N ∪ {∞} respectively. Therefore, we can not
relax the condition (2) in Corollary 5.2.5.
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