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Abstract
In this paper, we carry out an investigation on modelling basis risk and measuring risk reduction in a
longevity hedge constructed by index-based longevity swaps. We derive the fitting procedures of the
M7-M5 and common age effect+Cohorts models and define the level of longevity risk reduction. Based
on a wide range of hedging scenarios of pension plans, we find that the risk reduction levels are often
around 50%–80% for a large plan, while the risk reduction estimates are usually smaller than 50% for
a small plan. Moreover, index-based hedging looks more effective under a more precise hedging
scheme. We also perform a detailed sensitivity analysis on the hedging results. The most important
modelling features are the behaviour of simulated future variability, portfolio size, speed of reaching
coherence, data size and characteristics, simulation method, and mortality structural changes.
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1. Introduction

It is a global phenomenon that life expectancy continues to rise. This trend has been persistent
and driven by significant progresses in hygiene, nutrition, lifestyle, medical knowledge, and
health care. Although it is definitely no mean feat for humans, it presents a significant challenge to
pension plan sponsors and annuity providers. There is the so-called longevity risk that pension
plans or annuity portfolios pay more than expected because of unanticipated improvements in
mortality. Roughly speaking, this risk has two components, systematic longevity risk and
non-systematic longevity risk, in which only the latter can be mitigated by increasing the plan
or portfolio size.
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There are generally three broad approaches for financial institutions to tackle longevity risk (Cairns
et al., 2008). The first is the use of insurance and reinsurance, in which the unwanted risk is passed on
to an insurer or reinsurer after paying a premium. The second is natural hedging (Li & Haberman,
2015), which is basically a diversification strategy and exploits the opposite changes in the values of
annuities and life insurances. The third approach, capital market solutions, has attracted much
attention in recent years. These solutions include insurance securitisation, mortality- or longevity-
linked securities, and derivatives. Insurance securitisation involves securitising a class of business as a
complex package and then selling the highly structured securities to capital market investors. More-
over, some currently popular bespoke de-risking methods like buy-ins, buy-outs, and longevity swaps
are also customised transactions for hedging specific portfolios. On the other hand, standardised
mortality- or longevity-linked securities and derivatives have their cash flows linked to an index or
reference population, but not the (book) population underlying the portfolio being hedged. There
would then be a potential mismatch between the hedging instrument and the portfolio, due to certain
demographic differences (e.g. age profile, sex, socioeconomic status). There are also two other
important issues. First, the experience of a small portfolio tends to be more volatile and is more likely
to deviate further from that of the reference population. Second, the payoff structures of the hedging
tool and the portfolio would usually be quite different. These three sources of discrepancies give rise to
longevity basis risk, the assessment of which is under much research in the latest actuarial literature.

While most longevity transactions thus far have been customised, index-based solutions and standardised
products could potentially draw more interest from financial institutions both inside and outside the
insurance sector. They have substantial potential to allow effective risk management at lower costs and
provide significant capital savings. As noted above, however, the potential mismatch between the hed-
ging instrument and the pension or annuity portfolio to be hedged leads to longevity basis risk, which is
composed of demographic basis risk (demographic or socioeconomic differences), sampling basis risk
(random outcomes of individual lives), and structural basis risk (differences in payoff structures). For
small- to medium-sized pension plans or annuity portfolios, the mortality experience would be more
volatile, which means that sampling basis risk and structural basis risk would have more impact and
hence need to be properly allowed for. Haberman et al. (2014) and Villegas et al. (2017) proposed a
decision tree framework as a practical guide for choosing a two-population mortality projection model
for assessing demographic basis risk. The major options are namely the M7-M5 model, the
CAE+Cohorts (common age effect + cohort effect) model, and the characterisation approach. In this
paper, we put the earlier work in Haberman et al. (2014) into practice and measure longevity basis risk
under various practical conditions. In particular, we take all the three basis risk components into account
and investigate a variety of hedging scenarios using UK population and industry data sets.

The structure of this paper is as follows. Section 2 analyses the historical mortality patterns and
improvements as reflected in three UK data sets. Section 3 provides the details of the M7-M5 and CAE
+Cohorts models we have used. Section 4 explains the simulation technique and the calibration method
adopted. Section 5 examines a range of hedging scenarios of pension portfolios using index-based
longevity swaps, and calculates the corresponding levels of longevity risk reduction. Section 6 performs
an extensive sensitivity analysis on the hedging results by making a series of changes to the original model
settings and assumptions, and also the time series processes. Lastly, Section 7 concludes the paper.

2. Data Features

The UK mortality data used in this paper are collected from the Continuous Mortality Investigation
(CMI; Self-Administered Pension Scheme Mortality Investigation), Office for National Statistics
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(ONS; by deprivation subgroups), and Human Mortality Database (HMD 2017; England and Wales).
The first two data sets are taken as the underlying experience of the pension or annuity portfolio being
hedged. The last data set is assumed to represent the experience of the reference population of the
hedging instrument. The retirement age range of 60–89 is covered in the analysis, while the data of ages
90+ are scarce and so are excluded.

Figure 1 plots the logit mortality rates of different CMI groups of male pensioners under normal
retirement at ages 60–69, 70–79, and 80–89. The solid line corresponds to the pension range of
£1–£8,500 p.a., the dashed line refers to £8,500+ p.a., and the dotted lines depict their potential
underlying linear trends over time. It can be seen that the higher pension groups have lower mortality
and more volatile experience in general, but the differences between the two pension groups tend to
reduce over age. Moreover, the differences in mortality levels between industries appear quite
random and are rather small, especially at older ages. Table 1 states the average mortality rate and
the average annual rate of improvement in mortality rate for each group during the period. The
higher pension groups generally have lower mortality levels, and the differences in average mortality
rates between industries look quite small, though the pensioners in financials seem to have slightly
lower mortality levels than the others. Moreover, the improvement rates range largely from around
1%–5% p.a. and have a tendency to reduce over age. The lower pension groups, which have higher
mortality rates, seem to experience greater improvements in mortality for many of the cases. The
differences in improvement rates between industries are mostly randomly scattered, except that the
pensioners in local authority appear to enjoy greater mortality improvements than the rest.

Figure 2 shows the logit mortality rates of England IMD (index of multiple deprivation) quintile
groups of males for the same age groups as above. The five different lines with progressively lighter
shades represent the most deprived areas to the least consecutively, in which the IMD is an overall
relative measure of deprivation, based on a number of socioeconomic factors such as income,
employment, and education. It is very clear that mortality increases with the deprivation level for all
age groups, but the differences between the quintile groups become smaller at older ages. The
declining temporal trends are all fairly steady, as the data exposures are very large. Table 2 lists the
average mortality rate and the average annual rate of improvement in mortality rate for each group
during the period. Less deprived areas have lower mortality levels and also higher improvement rates
than more deprived areas. The improvement rates range from 1.3% to 3.6% p.a. and are highest at
ages 70–79.

Figure 3 displays the logit mortality rates of the English and Welsh male population from 2000 to
2014. The decreasing mortality trends over time are stable for all age groups with little variability,
due to the very large population exposures. Table 3 gives the average mortality rate and the average
annual rate of mortality improvement for each age group. The improvement rates range from 2.3%
to 3.5% p.a. They are lowest at ages 80–89, and like the IMD quintile groups, those lives aged 70–79
experience the highest improvement rates.

Between the CMI pensioners (Table 1) and IMD quintile groups (Table 2), the mortality levels of the
lower pension groups are comparable to those of the third most deprived areas, whereas the higher
pension groups have slightly lower mortality than the least deprived areas. One interesting obser-
vation is that while the lower pension (less wealthy) groups seem to have greater mortality
improvements in many cases, the less deprived (wealthier) areas clearly have higher improvement
rates. This conflicting difference may be explained by two reasons. First, the former uses only the
pension amount in dividing the groups, but the latter adopts the IMD based on a combination of
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Basic materials (age groups 60-69, 70-79, 80-89)

Industrials (age groups 60-69, 70-79, 80-89)

Consumer goods (age groups 60-69, 70-79, 80-89)

Consumer services (age groups 60-69, 70-79, 80-89)

Utilities (age groups 60-69, 70-79, 80-89)

Financials (age groups 60-69, 70-79, 80-89)

Figure 1. Logit mortality rates of Continuous Mortality Investigation male pensioners from 2000
to 2014. The solid line corresponds to the pension range of £1–£8,500 p.a., the dashed line refers
to £8,500+ p.a. (for technology, the split is by £4,500 p.a. instead), and the dotted lines depict
their potential underlying linear trends over time.
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seven domains, so the two sets of results may correspond to individuals with different demographic
features. Second, the data exposures of each CMI industry are much smaller than those of the IMD
quintile groups, and the experience is unavoidably a lot more volatile. Between the CMI pensioners
and English and Welsh population (Table 3), the lower pension groups have mortality levels and
improvement rates roughly comparable to those of the English and Welsh population.

3. Model Descriptions

In this paper, we apply the M7-M5 model and the CAE+Cohorts model in Haberman et al. (2014) to
the three data sets. The M7-M5 model is a two-population extension of the Cairns–Blake–Dowd
model (Cairns et al., 2006, 2009) and has two major components:

logit qRx;t = κRt;1 + x�xð ÞκRt;2 + x�xð Þ2�σ2
� �

κRt;3 + γ
R
t�x = ηRx;t (reference component)

logit qBx;t�logit qRx;t = κBt;1 + x�xð ÞκBt;2 = ηBx;t (book component)

In the reference component, qRx;t is the mortality rate of the reference population at age x in year t,
κRt;1, κ

R
t;2, and κRt;3 refer to the level, slope, and curvature, respectively, of the mortality curve across age

in year t, and γRt�x describes the cohort effect of those lives born in year t−x. In the book component,
the difference in the logit mortality rate between the book and reference populations in year t,
logit qBx;t�logit qRx;t, is captured by another two parameters κBt;1 and κBt;2. The two terms

x= 1
no: of ages

P
x
x and σ2 = 1

no: of ages

P
x

x�xð Þ2, and ηRx;t and ηBx;t denote the overall reference and book

components. The mortality rates can then be expressed as qRx;t =
exp ηRx;tð Þ

1 + exp ηRx;tð Þ =
1

exp �ηRx;tð Þ +1 and

qBx;t =
exp ηBx;t + η

R
x;tð Þ

1+ exp ηBx;t + η
R
x;tð Þ =

1
exp �ηBx;t�ηRx;tð Þ + 1. Moreover, there are three identifiability constraintsP

c
γRc = 0;

P
c
cγRc = 0; and

P
c
c2γRc =0; which ensure that the cohort parameters have a unique set of

solutions and fluctuate around zero over successive cohorts.

While Haberman et al. (2014) used the binomial distribution assumption, we model the random
numbers of deaths at age x in year t of the reference and book populations with the Poisson

Technology (age groups 60-69, 70-79, 80-89)

Local authority (age groups 60-69, 70-79, 80-89)

Figure 1. Continued.
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distribution instead, i.e., DR
x;t � Poisson eRx;tm

R
x;t

� �
and DB

x;t � Poisson eBx;tm
B
x;t

� �
; which are in

agreement with most of the current literature. The terms eRx;t and eBx;t are the corresponding central
exposed to risk measures. We further assume that the force of mortality is constant within each

Table 1. Average mortality levels and improvements of Continuous Mortality Investigation male pensioners
from 2000 to 2014.

Lower pension group Higher pension group

Industry\ages Average level Improvement (p.a. (%)) Average level Improvement (p.a. (%))

Basic materials
60–69 0.0129 3.3 0.0093 1.3
70–79 0.0385 3.5 0.0275 1.8
80–89 0.1136 2.5 0.0921 2.0

Industrials
60–69 0.0136 2.7 0.0080 1.6
70–79 0.0380 2.1 0.0259 2.1
80–89 0.1155 2.1 0.0905 4.3

Consumer goods
60–69 0.0133 3.2 0.0093 2.2
70–79 0.0378 2.8 0.0278 1.4
80–89 0.1076 2.2 0.0843 1.3

Consumer services
60–69 0.0145 3.8 0.0096 3.8
70–79 0.0422 1.6 0.0285 1.8
80–89 0.1139 2.5 0.0929 1.7

Utilities
60–69 0.0124 3.7 0.0081 1.4
70–79 0.0380 3.3 0.0273 3.3
80–89 0.1096 3.3 0.0936 1.7

Financials
60–69 0.0102 3.6 0.0078 3.1
70–79 0.0332 3.6 0.0283 4.6
80–89 0.1010 1.7 0.0871 0.8

Technology
60–69 0.0100 2.8 0.0074 1.3
70–79 0.0374 3.4 0.0267 2.5
80–89 0.1185 4.1 0.0854 1.2

Local authority
60–69 0.0135 4.6 0.0085 6.4
70–79 0.0391 4.8 0.0280 4.0
80–89 0.1117 2.7 0.0906 4.3

Most deprived to least deprived areas (black to light grey) – males

Figure 2. Logit mortality rates of England index of multiple deprivation quintile groups from
2001 to 2015 for age groups 60–69, 70–79, and 80–89.
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age-time cell and so it is equal to the central death rate. Then the central death rates of the reference
and book populations can be expressed as mR

x;t =�ln 1�qRx;t
� �

= ln 1 + exp ηRx;t

� �� �
and

mB
x;t =�ln 1�qBx;t

� �
= ln 1 + exp ηBx;t + η

R
x;t

� �� �
. Under the Poisson assumption, the log likelihood

Table 2. Average mortality levels and improvements of England index of multiple
deprivation quintile groups from 2001 to 2015.

Males

Group\ages Average level Improvement (p.a. (%))

Most deprived areas
60–69 0.0221 2.1
70–79 0.0522 2.4
80–89 0.1237 1.3

Second most deprived areas
60–69 0.0162 2.6
70–79 0.0428 2.9
80–89 0.1139 1.7

Third most deprived areas
60–69 0.0129 2.8
70–79 0.0367 3.3
80–89 0.1082 1.9

Fourth most deprived areas
60–69 0.0111 3.0
70–79 0.0331 3.4
80–89 0.1032 2.2

Least deprived areas
60–69 0.0093 3.2
70–79 0.0291 3.6
80–89 0.0963 2.4

Figure 3. Logit mortality rates of English and Welsh male population from 2000 to 2014 for age
groups 60–69, 70–79, and 80–89.

Table 3. Average mortality levels and improvements of English and Welsh male population
from 2000 to 2014.

Ages Average level Improvement (p.a. (%))

60–69 0.0145 3.1
70–79 0.0398 3.5
80–89 0.1119 2.3
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functions of the two populations are:

lR =
X
x;t

dR
x;t ln e

R
x;t + d

R
x;t lnm

R
x;t�eRx;tm

R
x;t� ln dR

x;t !
� �� �

lB =
X
x;t

dB
x;t ln e

B
x;t + d

B
x;t lnm

B
x;t�eBx;tm

B
x;t� ln dB

x;t !
� �� �

in which dR
x;t and dB

x;t are the observed numbers of deaths. The iterative updating schemes for
estimating the model parameters are given in the Appendix.

For projecting and simulating future mortality rates, we follow Haberman et al. (2014) and model
the time series of κRt;1, κ

R
t;2, and κRt;3 with a multivariate random walk with drift (MRWD):

κRt;1

κRt;2

κRt;3

0
BBB@

1
CCCA=

d1

d2

d3

0
BB@

1
CCA +

κRt�1;1

κRt�1;2

κRt�1;3

0
BBB@

1
CCCA +

ϵt;1

ϵt;2

ϵt;3

0
BB@

1
CCA

The parameters d1, d2, and d3 are the drift terms (slopes of the linear trends), and εt,1, εt,2, and εt,3 are
the multivariate normal error terms with mean zero and covariance matrix Σ. The future variability
of κRt;1, κ

R
t;2, and κRt;3 increase over time. Moreover, we model the time series of γRc with an auto-

regressive integrated moving average process (ARIMA(1,1,0)):

γRc �γRc�1 =ϕ0 +ϕ1 γRc�1�γRc�2

� �
+ωc

The slope of the long-term linear trend is equal to ϕ0/(1−ϕ1) if | ϕ1 | <1. The size of autocorrelations depends

on the value of ϕ1. The term ωc is the normal error term with mean zero and variance σ2ω and is independent

of ϵt;1; ϵt;2; ϵt;3

� �
. If |ϕ1| <1, the future variability of γRc is finite and increases over time. Furthermore, we

model the time series of κBt;1 and κBt;2 with a vector autoregressive process of order one (VAR(1)):

κBt;1

κBt;2

 !
=

φ1;0

φ2;0

 !
+

φ1;1 φ1;2

φ2;1 φ2;2

" #
κBt�1;1

κBt�1;2

 !
+

ξt;1

ξt;2

 !

The size of autocorrelations depends on the values of φ1,1, φ1,2, φ2,1, and φ2,2. The two terms ξt,1 and ξt,2 are
the bivariate normal error terms with mean zero and covariance matrix Ψ. If it is required that the projected
book-to-reference ratio of mortality rates at each age should converge approximately in the long term1, all

the eigenvalues of the matrix
φ1;1 φ1;2
φ2;1 φ2;2

� �
must be smaller than one in magnitude, and so both κBt;1 and κBt;2

tend to a constant over time. Under such conditions, the future variability of κBt;1 and κBt;2 are bounded across

time. Note that ϵt;1; ϵt;2; ϵt;3;ωc

� �
and ξt;1; ξt;2

� �
are independent in each year t. More technical details of

time series modelling can be found in Tsay (2002). In fact, using other time series processes could produce
very different effects. A sensitivity analysis on time series modelling is provided in section 6.

The CAE+Cohorts model is a two-population extension of the Lee & Carter (1992) model and also
has two main components:

logit qRx;t = αRx + βRx κ
R
t + γRt�x = ηRx;t (reference component)

logit qBx;t�logit qRx;t = αBx + β
R
x κ

B
t = ηBx;t (book component)

1 As noted in Cairns et al. (2011), it would be reasonable to expect that at each age x, the projected (central
estimate) ratio of qBx,t /q

R
x,t will not diverge as t→∞.
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In the reference component, αRx depicts the mortality schedule over age x, κRt is the mortality index
reflecting the overall mortality improvement over time t, with βRx as the age-specific sensitivity
measure, and γRt�x incorporates the cohort effect of the lives who were born in year t−x. In the book
component, the difference in the logit mortality rate between the two populations
is described by another Lee–Carter structure with the parameters αBx , βRx (the same βRx as that
in the reference component), and κBt . There are five identifiability constraints

P
x
βRx = 1;P

t
κRt = 0;

P
c
γRc = 0;

P
c

c�cð ÞγRc =0; and
P
t
κBt = 0; in which c= 1

no: of cohorts in reference

P
c
c. These

constraints make sure that all the model parameters have unique solutions. The mortality rates and
log likelihood functions can be treated similarly as under the M7-M5 model.

We then model the time series of κRt as a random walk with drift (RWD), i.e., κRt = d + κRt�1 + ϵt. The
parameter d is the drift term (slope of the linear trend) and εt is the normal error term with mean zero and
variance σ2ϵ . The future variability of κ

R
t increases over time. Moreover, we model the time series of γRc as

an ARIMA(1,1,0), like in the M7-M5 model, and assume that εt and ωc are independent. Finally, we
model the time series of κBt as an autoregressive process of order one, AR(1), i.e., κBt =φ0 +φ1κ

B
t�1 + ξt.

The long-term mean of κBt is equal to φ0/(1−φ1) if |φ1| <1. The extent of autocorrelations depends on the
size of φ1. The term ξt is the normal error term with mean zero and variance σ2ξ . If it is required that the
projected book-to-reference ratio of mortality rates at each age should converge approximately in
the long run, | φ1 | must be smaller than one and so the projected κBt converges to φ0/(1−φ1) over time.
(The closer φ1 is to zero, the faster the process converges.) Under this condition, the future variability of
κBt is bounded across time. The error terms ϵt;ωc

� �
and ξt are treated as independent.

The BIC (Bayesian information criterion) values of fitting the two models to the different data sets
and the time series parameter estimates are provided in the Appendix.

4. Future Simulations

From a modelling or regulatory perspective (e.g. Comité Européen des Assurances, 2007), evaluating
uncertainty of future outcomes needs to cover all of process error, parameter error, and model error
(or process risk, parameter uncertainty/risk, and model uncertainty/risk). Here we adapt the
residuals bootstrapping method (Koissi et al., 2006, Li, 2014) to incorporate both process
error (variability in the time series) and parameter error (uncertainty in estimating parameters) in
simulating future mortality rates:

(a) The residuals from fitting the M7-M5 model or CAE+Cohorts model to the actual data
are resampled, with replacement, for each age-time cell within all x and t. The
standardised deviance residuals of the two populations are computed by using the two

formulae rRx;t =
1ffiffiffiffiffi
ϕ̂R

p sign dR
x;t�eRx;tm̂

R
x;t

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 dR

x;t ln dR
x;t

.
eRx;tm̂R

x;t

� �� �
�dR

x;t + eRx;tm̂R
x;t

� �r
and

rBx;t =
1ffiffiffiffi
ϕ̂B

p sign dB
x;t�eBx;tm̂

B
x;t

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 dB

x;t ln dB
x;t

.
eBx;tm̂B

x;t

� �� �
�dB

x;t + eBx;tm̂B
x;t

� �r
. The dispersion

parameters are estimated by ϕ̂R = 1
nR
d
�nRp

P
x;t 2 dR

x;t ln dR
x;t

.
eRx;tm̂

R
x;t

� �� �
�dR

x;t + e
R
x;tm̂

R
x;t

� �
and

ϕ̂B = 1
nB
d
�nBp

P
x;t 2 dB

x;t ln dB
x;t

.
eBx;tm̂

B
x;t

� �� �
�dB

x;t + e
B
x;tm̂

B
x;t

� �
; where nRd and nRp are the number of

data points and the number of effective parameters of the reference population, and nBd and nBp are
those of the book population.
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(b) The inverse functions of the residuals formulae in step (a) are used to turn the resampled residuals

into a pseudo sample of the numbers of deaths dR ið Þ
x;t and dB ið Þ

x;t for all x and t, in which the
superscript (i) represents the ith scenario.

(c) The M7-M5 model or CAE+Cohorts model is fitted to the pseudo data sample from step (b) and

correspondingly the model parameters κR ið Þ
t;1 ; κR ið Þ

t;2 κR ið Þ
t;3 ; γR ið Þ

c ; κB ið Þ
t;1 ; κB ið Þ

t;2 ; or αR ið Þ
x ; βR ið Þ

x ; κR ið Þ
t ; γR ið Þ

c ;
�

αB ið Þ
x ; κB ið Þ

t Þ are calculated. The step allows for parameter error.
(d) The time series processes are fitted to the temporal model parameters of the pseudo data

sample κR ið Þ
t;1 ; κR ið Þ

t;2 ; κR ið Þ
t;3 ; γR ið Þ

c ; κB ið Þ
t;1 ; κB ið Þ

t;2 ; or κR ið Þ
t ; γR ið Þ

c ; κB ið Þ
t

� �
from step (c) to simulate their

future values. This step allows for process error.
(e) Samples of future mortality rates, qR ið Þ

x;t and qB ið Þ
x;t , for all x and future t, are generated from

incorporating the calculated parameters from step (c) and the simulated values from step (d) into
ηR ið Þ
x;t and ηB ið Þ

x;t . This set of future mortality rates forms one random future scenario.

(f) Steps (a) to (e) are repeated to produce 5,000 random future scenarios.
(g) For each random scenario, the future number of survivors in the pension portfolio over time is

simulated as lB ið Þ
x+ 1;t + 1 � Binomial lB ið Þ

x;t ; 1�qB ið Þ
x;t

� �
. The notation lB ið Þ

x;t is the future number of lives

aged x at time t in the book population. Different starting values of lBx;0 at the valuation date may
be used in turn to examine the effect of different initial portfolio sizes. (In principle, the future
number of lives in the reference population can also be simulated in the same fashion, but we
omit this step for computation convenience, as the size of the reference population here is very
large for a binomial distribution assumption.)

Note that while Haberman et al. (2014) chose to ignore parameter error of the reference population
and did not perform the bootstrapping on the reference population, we still carry out the
bootstrapping for both populations in order to formalise the overall procedure. In fact, we
have experimented with their approach but realise that it tends to underestimate demographic
basis risk. Moreover, the extent of model error (uncertainty in model selection) can be assessed
by comparing the results obtained from different models and assumptions. This way requires
some form of subjective or qualitative judgement, which may involve certain individual bias.
An alternative, being more theoretically sound, is to adopt a Bayesian framework to incorporate
all of process error, parameter error, and model error simultaneously. However, this
Bayesian approach is technically demanding (e.g. Markov chain Monte Carlo simulation) and
much more computationally intensive (Li, 2014), particularly for use in insurance or actuarial
practice.

Using the simulated environment, we implement a simple numerical optimisation procedure to
determine the optimal positions of the hedging instruments. In this paper, we set an objective
to minimise the 99.5% value-at-risk (VaR) (minus the mean) of the present value of the
aggregate pension portfolio position. In practice, other risk measures (e.g. standard deviation
and 99.5% expected shortfall) or a mix of different objectives (e.g. risk minimisation with a
targeted level of profitability) may also be used, depending on the purpose of the analysis. Note
that when the number of unknown quantities to be estimated increases (e.g. multiple index-
based derivatives are available for hedging), there may be a higher chance of the procedure
getting trapped in a local optimum rather than obtaining the true global optimum. Some simple,
practical methods to mitigate this problem include using other sensible starting values,
applying alternative numerical algorithms, simplifying the model settings where possible,
and repeating the optimisation procedure by setting some or all the previous solutions as the
new starting values.
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5. Hedging Results

The effectiveness of an index-based longevity hedge can be described as how much longevity risk is
transferred away. The remaining part can then be seen as an outcome of longevity basis risk. To be
consistent with Coughlan et al. (2011), we define the level of longevity risk reduction for a longevity
hedge imposed on a pension plan or annuity portfolio as:

longevity risk reduction= 1� risk hedgedð Þ
risk unhedgedð Þ

	 

´ 100%

The terms risk(unhedged) and risk(hedged) are the portfolio’s aggregate longevity risk before and
after the hedging. This metric provides the proportion of the portfolio’s initial longevity risk that is
being hedged away. We apply some risk measures commonly used in the literature (Dowd & Blake,
2006), including the variance, standard deviation, 99.5% VaR, and 99.5% expected shortfall
(conditional VaR), to the random present value of the portfolio liability. The 99.5% VaR is of
particular interest in practice, as it is embedded in the calculation of the Solvency Capital
Requirement (SCR) under Solvency II2. Measuring the levels of risk reduction in different index-
based longevity hedges could help identify potential opportunities for capital savings.

In this section, we first consider a simple hypothetical case study of a pension plan to illustrate the
concept. The current date is taken as the start of the calendar year 2014. Suppose all the pensioners
in the plan are now aged exactly 65 and each pension pays $1 per year on survival from ages 66 to 90.
The pension plan is already closed and there are no more new members. The pensioners (book popu-
lation) have the same mortality experience as that reflected in the CMI data or the ONS data (starting
from year 2000 or 2001). The pension plan sponsor intends to minimise the longevity risk exposure by
constructing a longevity hedge with standardised longevity swaps. (Note: Bespoke longevity swaps are
by far the most commonly used hedging instruments in current practice.) Assume that an index-based
25-year longevity swap for the same birth cohort as the pensioners with annual exchange of payments is
available in the de-risking market, in which the reference population in the floating leg is the English and
Welsh male population. The payments on the fixed leg of the swap are calculated from the central
estimates of future mortality rates, based on the HMD data from year 1980. This simplifying assumption
implies a zero risk premium and would affect only the price but not the effectiveness of the hedge. Let the
interest rate be 1% p.a. flat during the whole period. (Note: UK Gilt 10-year and 30-year yields were
1.05% p.a. and 1.67% p.a. as at 24 April 2017.) Later we will cover a more complex pension plan with
multiple cohorts, in which there are two cases of an open pension plan and a closed one.

The present value of future liability of the pension plan is equal to
P25
t= 1

lB ið Þ
65 + t;t 1 + rð Þ�t, in which r is the

interest rate. Moreover, the present value of future cash inflows of the longevity swap as a floating

rate receiver is expressed as
P25
t =1

tp
R ið Þ
65 �tp

R ; forward
65

� �
1 + rð Þ�t, where the random future survivor

index tp
R ið Þ
65 and the forward survivor index tp

R ; forward
65 are calculated by adapting the survival

probability formula tpR65 = 1�qR65;0
� �

1�qR66;1
� �

::: 1�qR65+ t�1;t�1

� �
. Then the present value of

the aggregate pension plan position after taking the longevity hedge is stated asP25
t =1

lB ið Þ
65 + t;t 1 + rð Þ�t�w

P25
t =1

tp
R ið Þ
65 �tp

R ; forward
65

� �
1 + rð Þ�t; and the cash outflow of the net position at

2 Under Solvency II, the SCR is the amount of capital required to cover all losses over a 1-year time horizon
with a probability of at least 99.5%. By contrast, the focus of this paper is on the present value of the entire future
liability.
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each time t=1, 2, … , 25 is given by lB ið Þ
65 + t;t�w tp

R ið Þ
65 �tp

R ; forward
65

� �
. The weight w is the notional

amount of the longevity swap required to minimise the 99.5% VaR (minus the mean) of the present
value of the aggregate position.

For the IMD quintile groups, the portfolio’s initial longevity risk levels before hedging, with regard to
the standard deviation, 99.5% VaR (minus the man), and 99.5% expected shortfall (minus the mean),
are roughly about 1.5%, 3%, and 4% of the portfolio’s expected present value. Table 4 provides the
estimated levels of longevity risk reduction under different initial portfolio sizes. The longevity risk
reduction estimates using the standard deviation, 99.5% VaR, and 99.5% expected shortfall (condi-
tional VaR) vary from about 60% to 95% for the three largest portfolio sizes. These estimates are quite
close between the three risk measures in general. On the other hand, the estimates using the variance,
which has a different scale to the others, are usually larger at 90% or over for the bigger portfolios.
Moreover, as the initial portfolio size becomes smaller, sampling basis risk in the future simulations
grows in significance, and consequently the risk reduction level decreases. But this decline in risk
reduction looks a little uneven, and is not too significant until the portfolio size drops to 25,000 and
below. For a small portfolio size of 1,000, the risk reduction levels decrease to around 30%–40% only.
(Those reductions smaller than 50% are shaded in all the tables.) These results suggest that sampling
basis risk is negligible when the portfolio has more than, say, around 20,000 lives, but the effect can be
significant when the portfolio size is down to just a few thousand.

Furthermore, for the bigger portfolios, the third most deprived areas have greater risk reductions
than the others. It implies that the simulated tp

B ið Þ
65 and tp

R ið Þ
65 have higher dependence for the third

most deprived areas. The people living in these areas have medium income, employment, education,
and so on, and they can potentially be matched more closely by the overall reference population.
In contrast, the most deprived areas have the smallest risk reduction estimates for the larger portfolio
sizes, ranging from around 60%–70%. This observation suggests that the simulated tp

B ið Þ
65 of the

most deprived groups may deviate more significantly from the simulated tp
R ið Þ
65 of the general

population when compared to the other groups.

Besides the overall present value, we also investigate the individual cash flows and compute their risk
reduction levels specifically in each future year. Figure 4 shows the risk reduction effect (in terms of
99.5% VaR) of the cash flows in each year for a portfolio size of 100,000 males under the CAE
+Cohorts model. It can be seen that the risk reduction estimates of the individual cash flows are
actually very small in the early years, but they increase progressively over time to reach a high level in
the later years. This effect appears to arise from the fact that the RWD in the reference component
produces unbounded future variability whereas the AR(1) in the book component yields bounded
future variability. The variability in the latter would reduce in significance relatively across time,
meaning that the simulated differences between the two populations would become less important
comparatively, resulting in a lower level of demographic basis risk being modelled for the longer term.
This model implication is in line with the usual view that two related populations’ mortality
improvements may diverge temporarily but would likely move back in line as time goes by.
Its significance will further be tested in section 6.

We now study a more realistic hypothetical scenario of a pension plan with multiple cohorts. Suppose
there are currently 30,000 pensioners in the plan, and their demographic structure, from ages 60 to 89,
is displayed in Figure 5. We consider two cases of an open pension plan and a closed plan. For the open
pension plan, 1,400 new members join the plan at age 60 every year, and an index-based longevity
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Table 4. Level of longevity risk reduction (in % of initial longevity risk) in a hypothetical scenario of England
index of multiple deprivation quintile groups of a single male cohort.

M7-M5 CAE+Cohorts

Group\size Variance SD 99.5% VaR 99.5% ES Variance SD 99.5% VaR 99.5% ES

Most deprived areas
Infinite 87 64 71 70 90 68 68 69
100,000 87 64 72 70 90 69 68 68
50,000 86 63 70 69 90 68 67 68
25,000 85 62 67 67 87 64 63 63
10,000 83 59 64 62 85 62 59 59
5,000 80 55 59 57 80 56 52 52
2,500 73 48 51 50 73 48 46 48
1,000 60 37 38 40 57 34 33 34

Second most deprived areas
Infinite 96 81 83 83 98 85 87 86
100,000 96 79 81 80 97 83 83 83
50,000 95 78 79 79 97 81 81 81
25,000 94 76 77 77 95 78 76 77
10,000 92 71 71 71 91 71 67 67
5,000 88 65 62 62 87 64 62 62
2,500 80 55 54 53 77 52 52 52
1,000 65 41 41 41 59 36 33 34

Third most deprived areas
Infinite 100 94 94 94 100 95 94 94
100,000 99 90 91 91 99 90 90 90
50,000 99 88 88 89 98 87 86 86
25,000 98 84 84 84 97 82 81 81
10,000 95 77 74 75 93 74 71 70
5,000 91 69 69 69 88 65 62 63
2,500 83 59 56 57 78 53 51 50
1,000 66 42 40 40 58 35 33 34

Fourth most deprived areas
Infinite 98 88 81 76 99 88 84 82
100,000 98 86 81 75 99 88 87 85
50,000 97 82 78 73 98 85 84 82
25,000 96 80 76 71 96 81 79 79
10,000 94 75 74 71 93 73 70 69
5,000 90 68 67 64 87 64 62 61
2,500 82 57 57 55 77 52 50 50
1,000 65 41 42 41 58 35 33 34

Least deprived areas
Infinite 97 83 75 70 98 87 83 82
100,000 96 80 76 71 98 85 81 79
50,000 94 77 72 65 97 83 80 78
25,000 95 78 73 69 96 79 78 77
10,000 91 69 66 64 91 71 69 67
5,000 88 65 64 63 86 63 60 60
2,500 80 55 54 52 75 50 49 48
1,000 61 37 34 36 56 34 32 33

Note: VaR, value-at-risk; ES, expected shortfall.
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swap for the cohort aged 60 now and with a maturity of 30 years is used to construct the hedge.
On the other hand, for the closed pension plan, there are no new members, and two index-based
longevity swaps for the two cohorts aged 60 and 70 now, with maturities of 30 and 20 years,
respectively, are used for the hedge. Each pension pays $1 per year on survival from ages 61 to 90. The
duration of the hedging scheme is 30 years from the current date, and we only consider the portfolio
cash flows during this period. All the other previous settings are kept equal.

Note that for the open pension plan, those aged 31–59 now will join the plan later in the future, while the
current pensioners are aged 60–89. For demonstration purposes, we use a single longevity swap for the
cohort aged 60 now, which is in the middle of the age range under consideration. For the closed pension
plan, we use two longevity swaps for the two cohorts aged 60 and 70 now, in which the first one covers
the entire duration and the second one refers roughly to the weighted average age of the current
pensioners. Table 5 shows that the longevity risk reduction estimates regarding the standard deviation
and the extreme risk measures range largely from about 40% to 60% for the open pension plan, and
from around 60%–80% for the closed pension plan. These estimates are generally smaller than those in
Table 4, because the earlier scenario involves one swap to match one cohort exactly, while the two
portfolios here use only one or two swaps to hedge multiple cohorts approximately. Consequently, the
extent of demographic basis risk, in terms of age or cohort differences, is greater in these cases.

Figure 4. Level of longevity risk reduction (in % of initial longevity risk; in terms of 99.5%
value-at-risk) of individual cash flows in a hypothetical scenario of England index of multiple
deprivation quintile groups of a single cohort of 100,000 males under CAE+Cohorts model.

Figure 5. Initial demographic structure of a hypothetical pension plan with multiple cohorts.
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Moreover, the closed pension plan has larger risk reduction estimates than the open pension plan, as the
closed plan uses two swaps to hedge only the current pensioners with no new members.

When the life market is immature, the index-based swap transactions available may be restricted to a few
major cohorts due to liquidity issues (e.g. Coughlan et al., 2011), and an “approximate” hedge can be
constructed like the demonstration above. If longevity swaps for multiple cohorts and with varying
maturities become available in the market, they may be exploited to reduce the extent of demographic
basis risk and improve the overall hedge effectiveness. However, the number of pensioners at each age in
the example here is only around a thousand or less, and calibrating one unique swap to each single
cohort separately would induce much sampling basis risk. An alternative approach is to calibrate
multiple swaps altogether as a group to the whole plan, instead of mapping specifically one swap on each
cohort. The overall hedge effectiveness could then be improved, although implicitly there would be some
offsetting effects between the swaps of different cohorts. We now test eleven index-based longevity swaps
for the cohorts aged 35, 40, 45, … , 85 at present on the open pension plan, with a (delayed) maturity
of 5, 10, 15, 20, 25 years for those who have not joined the plan as yet and maturities of 30, 25, 20, 15,
10, 5 years for the current pensioners. We also try six index-based longevity swaps for the cohorts aged
60, 65, 70, … , 85 now on the closed pension plan, with maturities 30, 25, 20, … , 5 years, respec-
tively. Table 6 illustrates that this alternative approach of using “aggregate calibration”’ with 5-year age
buckets increases the risk reduction estimates in many of the cases. The effect is more obvious for the
open pension plan, which comprises both existing pensioners and new members but has involved only
one swap in the previous setting. Though there would be intricate subsidising effects across the swaps of
different cohorts, it appears that the aggregate amount of demographic basis risk is decreased and the
overall hedge effectiveness is improved. Comparatively, the effect of including more swaps is mild for the
closed pension plan, which suggest that the two swaps in the previous setting with 10-year age buckets
would already be adequate to cover the lives of multiple cohorts in that case and more precise hedging
would not lead to much improvement.

Table 5. Level of longevity risk reduction (in % of initial longevity risk) in a hypothetical scenario of England
index of multiple deprivation quintile groups of 30,000 males of multiple cohorts.

M7-M5 CAE+Cohorts

Group\plan Variance SD 99.5% VaR 99.5% ES Variance SD 99.5% VaR 99.5% ES

Most deprived areas
Open 75 50 53 51 59 36 38 37
Closed 81 56 61 59 81 57 55 55

Second most deprived areas
Open 82 57 53 52 67 42 42 38
Closed 92 72 73 72 93 74 71 71

Third most deprived areas
Open 84 60 59 60 69 44 43 41
Closed 96 80 79 79 96 79 78 78

Fourth most deprived areas
Open 84 60 59 58 70 45 48 46
Closed 95 77 77 73 95 78 78 75

Least deprived areas
Open 81 57 55 55 71 46 46 44
Closed 92 71 70 66 94 75 75 73

Note: VaR, value-at-risk; ES, expected shortfall.
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For the CMI pensioners, the initial longevity risk levels before hedging, with regard to the standard
deviation and the tail risk measures, are approximately around 1.5%, 3.5%, and 4.5% of the expected
present value. Tables 7–9 present the risk reduction results for the CMI pensioners, which have similar
patterns to those of the IMD quintile groups. For instance, the longevity risk reduction estimates
regarding the standard deviation and the tail risk measures are mostly in the range of around
50%–80% for a portfolio size of 100,000. When the portfolio size is just 1,000, the estimates decrease
to about 30%–40% only. Also, more precise hedging often leads to better hedge effectiveness. On the
other hand, for the bigger portfolios, the CMI pensioners generally have smaller risk reduction esti-
mates than the IMD quintile groups. Note that the IMD groups are significant sectors of the entire
population and so they can be matched more closely by the reference population. But for the smaller
portfolios, the differences in the hedging results between the CMI pensioners and the IMD groups are
less clear, which again highlight the importance of sampling basis risk. In addition, the two models
produce more different results between them for the CMI pensioners, which may be due to the smaller
data sizes of the CMI data set. The noisy patterns in a smaller data sample may have been captured
somewhat differently under the unique properties of each model.

In the CMI data set, the financials and technology industries have only around 10,000 lives or less
per year in their data. The high sampling variability in a small dataset may flow through to the
temporal parameters computed, leading to an overestimation of demographic basis risk. The char-
acterisation approach in Haberman et al. (2014) may then be adopted, in which the book data (with
a small size) are not modelled directly but a combination of some alternative proxy data (with large
sizes) is modelled instead. For instance, comparing the average mortality levels and improvement
rates between Tables 1 and 2, the lower (higher) pension group in financials may be proxied by the
fourth most (least) deprived IMD group. For a pension plan with 100,000 lives all aged 65, assuming
half of the lives have a low pension and the other half have a high pension, the risk reduction

Table 6. Level of longevity risk reduction (in % of initial longevity risk) in a hypothetical scenario of England
index of multiple deprivation quintile groups of 30,000 males of multiple cohorts (with swaps of 5-year age
buckets).

M7-M5 CAE+Cohorts

Group\plan Variance SD 99.5% VaR 99.5% ES Variance SD 99.5% VaR 99.5% ES

Most deprived areas
Open 85 62 68 67 93 73 72 72
Closed 84 60 67 66 87 64 63 62

Second most deprived areas
Open 95 77 78 78 96 81 81 80
Closed 93 73 67 74 93 74 74 73

Third most deprived areas
Open 97 84 84 84 97 84 84 83
Closed 97 82 83 83 96 81 79 79

Fourth most deprived areas
Open 96 79 77 70 97 83 83 83
Closed 96 79 77 74 96 79 78 75

Least deprived areas
Open 95 77 75 69 96 79 80 78
Closed 92 72 71 66 94 76 75 74

Note: VaR, value-at-risk; ES, expected shortfall.
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Table 7. Level of longevity risk reduction (in % of initial longevity risk) in a hypothetical scenario of Continuous
Mortality Investigation pensioners of a single male cohort.

M7-M5 CAE+Cohorts

Group\size Variance SD 99.5% VaR 99.5% ES Variance SD 99.5% VaR 99.5% ES

Basic materials (normal retirement; lower pension group)
100,000 87 65 63 63 95 77 74 73
1,000 60 37 36 38 57 34 37 36

Industrials (normal retirement; lower pension group)
100,000 77 52 51 39 81 56 50 49
1,000 54 32 35 27 52 30 25 28

Consumer goods (normal retirement; lower pension group)
100,000 81 57 39 29 92 72 66 62
1,000 57 35 31 25 55 33 27 31

Commercial services (normal retirement; lower pension group)
100,000 95 78 79 79 97 83 79 79
1,000 66 41 41 41 55 33 30 28

Utilities (normal retirement; lower pension group)
100,000 65 41 58 56 93 73 70 69
1,000 50 29 30 33 54 32 27 28

Local authority (normal retirement; lower pension group)
100,000 94 75 73 58 98 85 83 83
1,000 59 36 33 25 54 32 30 27

Note: VaR, value-at-risk; ES, expected shortfall.

Table 8. Level of longevity risk reduction (in % of initial longevity risk) in a hypothetical scenario of Continuous
Mortality Investigation pensioners of 30,000 males of multiple cohorts.

M7-M5 CAE+Cohorts

Group\plan Variance SD 99.5% VaR 99.5% ES Variance SD 99.5% VaR 99.5% ES

Basic materials (normal retirement; lower pension group)
Open 76 51 50 49 66 42 43 44
Closed 84 60 60 58 88 66 64 62

Industrials (normal retirement; lower pension group)
Open 67 43 46 29 58 35 32 30
Closed 69 44 45 37 71 47 42 39

Consumer goods (normal retirement; lower pension group)
Open 70 45 38 29 64 40 35 36
Closed 79 54 45 37 86 62 56 49

Commercial services (normal retirement; lower pension group)
Open 84 60 58 57 65 41 40 40
Closed 93 73 74 72 93 74 70 70

Utilities (normal retirement; lower pension group)
Open 54 32 47 46 63 39 38 35
Closed 71 47 56 51 89 66 63 60

Local authority (normal retirement; lower pension group)
Open 81 56 54 47 66 42 44 44
Closed 91 69 67 55 94 75 73 72

Note: VaR, value-at-risk; ES, expected shortfall.
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estimates regarding the standard deviation and the tail risk measures are 85%, 86%, and 82%,
respectively, using the M7-M5 model, and are 82%, 78%, and 76% using the CAE+Cohorts model,
via the characterisation approach. For the former case, the VAR(1) process in the book components
of the two characterising groups has four dimensions in total, while for the latter case, it has only
two dimensions. We find that it is practically difficult for the VAR(1) process in the first case to
possess the convergence property. So we adopt a reduced version of the time series process, which is
to fit a bivariate VAR(1) process to each characterising group and assumes that the error terms of the
two bivariate processes are correlated. Finally, it should be noted that the mapping in the example
above is not precise at all and better proxies can be sought if book data with more details on
categorising pensioners or policyholders are available.

6. Sensitivity Analysis

In this section, we carry out a sensitivity analysis on the hedging results by making a series of changes to
the initial model settings and assumptions. The tested items include the interest rate, swap weight, older
ages, data fitting period, simulation method, other mortality projection models, and additional model
features. When a change is made, other things are kept equal unless otherwise specified. This analysis
allows us to have a better understanding of the robustness of the hedging results under different con-
ditions. Table 10 shows that in general, as the interest rate increases, the risk reduction estimates for the
present value decreases. The later individual cash flows have greater risk reduction and are affected more
by a higher interest rate than the earlier cash flows. As such, the aggregate risk reduction decreases as the
interest rate rises. But from an interest rate of 1%–5% p.a., the changes in the estimates shown in the
table are only 9% or less in magnitude. Furthermore, the hedging results under a variable interest rate

Table 9. Level of longevity risk reduction (in % of initial longevity risk) in a hypothetical scenario of Continuous
Mortality Investigation pensioners of 30,000 males of multiple cohorts (with swaps of 5-year age buckets).

M7-M5 CAE+Cohorts

Group\plan Variance SD 99.5% VaR 99.5% ES Variance SD 99.5% VaR 99.5% ES

Basic materials (normal retirement; lower pension group)
Open 88 65 65 63 94 75 74 74
Closed 85 62 62 59 90 69 69 67

Industrials (normal retirement; lower pension group)
Open 76 51 56 37 83 58 55 55
Closed 72 47 48 40 71 46 41 40

Consumer goods (normal retirement; lower pension group)
Open 79 54 46 30 91 70 66 64
Closed 79 54 45 38 85 61 55 49

Commercial services (normal retirement; lower pension group)
Open 95 77 79 78 96 80 76 76
Closed 93 74 76 75 94 75 72 71

Utilities (normal retirement; lower pension group)
Open 62 38 63 62 92 72 72 71
Closed 71 46 57 50 87 64 61 61

Local authority (normal retirement; lower pension group)
Open 91 70 68 54 96 80 80 78
Closed 91 70 68 57 94 76 75 74

Note: VaR, value-at-risk; ES, expected shortfall.
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environment simulated from the discretised Cox–Ingersoll–Ross (CIR) model3 are also given in the table.
The model is fitted to the most recent few years of historically low interest rates. The risk reduction
estimates are clearly smaller under variable interest rates than under constant interest rates, reflecting the
influence of interest rate risk. Although it is difficult to foresee how long the current low interest rates
would last, it can be perceived that higher interest rates with more fluctuations would reduce the hedge
effectiveness further. Interest rate swaps and government bonds may then be incorporated into the
hedging scheme to reduce the impact of interest rate risk (Tsai et al., 2011).

So far, the estimation of the optimal positions and hedging results has been based on simulated
scenarios from the fitted M7-M5 model or CAE+Cohorts model and numerical optimisation with
regard to the 99.5% VaR. If the standard deviation or the 99.5% expected shortfall (conditional
VaR) is taken as the risk measure instead in the optimisation process, it can be seen from Table 11
that the resulting differences are minimal. This observation is probably a result of the simulated
distribution of the portfolio present value, which looks largely symmetric without much skewness.
Moreover, when the swap size is simply set as the initial portfolio size (i.e. a hedge ratio of one), the
corresponding differences in risk reduction are also very small, because the original, numerically
optimised hedge ratio is actually quite close to one. Furthermore, when the swap weight is computed
from a “wrong” model which is different to the one being used to generate the simulations, there is
still not much change in the risk reduction estimates.

We also test a wider age range from 60 to 99. The ONS population data are not split by single age for
ages 90+ and the corresponding HMD old-age proportions are used as a proxy here. The two models
are re-fitted to the new age range. Suppose that there are four different pensions, in which one pays £1
per year on survival from ages 66 to 90 for those pensioners aged 65 at present (as in the original
settings), one from ages 66 to 100 for those aged 65 now, one from ages 76 to 100 for those aged 75
now, and one from ages 86 to 100 for those aged 85 presently. Assume that index-based longevity
swaps for the same birth cohorts as the pensioners are available with maturities of 25, 35, 25, and

Table 10. Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 (left figure) versus CAE+
Cohorts (right figure)) under different interest rate assumptions.

100,000 males
CMI pensioners (basic materials;
normal retirement; lower pension)

IMD group
(most deprived areas)

Interest rate (p.a. (%)) SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

1 65/77 63/74 63/73 64/69 72/68 70/68
2 63/77 61/73 60/73 63/69 69/67 68/67
3 62/76 59/71 58/71 62/68 69/67 69/68
4 60/75 58/72 57/71 62/68 68/67 67/68
5 58/74 55/71 54/71 61/68 67/66 66/67
CIR 53/52 55/55 53/55 57/57 62/58 61/59

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk;
ES, expected shortfall; CIR, Cox–Ingersoll–Ross.

3 Note that the CIR model is a short interest rate model and is probably too simplified for long-term
projection. Its use here is merely to demonstrate the potential effect of interest rate risk on the hedge effectiveness.
For more realistic long-term projection, other important features such as economic cycles and future impact of
monetary policies should properly be allowed for.
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15 years, respectively. The figures in the first two rows of Table 12 suggest that the models are fairly
robust to incorporating advanced ages into the modelling process, except for some estimates of the
IMD quintile group, which may be caused by the use of approximate population data for ages 90+.
Also, it is observed that the risk reduction levels are higher for those pensions with longer durations, as
the later individual cash flows have greater risk reduction effect than the earlier cash flows.

Table 13 demonstrates that the differences in risk reduction between two fitting periods for the
reference population starting from years 1980 and 1990 are within 5%. Using a slightly shorter data
period (starting from 1 or 2 years later) for the book population, the risk reduction levels change by
6% or less. It seems that the two models are quite robust to different data fitting periods, but book
data of a longer period are needed to carry out a more thorough testing.

Besides residuals bootstrapping, a simpler parametric method is to simulate the errors of the fitted
time series processes directly to generate random future mortality rates. This method, however,
allows for only process error but not parameter error, and may understate longevity basis risk.
The figures in Table 14 reveal that the parametric method does underestimate demographic basis risk
and so overestimates the level of longevity risk reduction by around 8%–20% in magnitude. Proper
allowance for parameter error is important, though the parametric method is generally much faster
than the residuals bootstrapping process.

Based on the previous simulations, the differences in the risk reduction estimates between the
M7-M5 and CAE+Cohorts models become more obvious when the data size is small or when the
hedging scheme is not precise enough. Since model error is not negligible under certain conditions,
three extra models are considered here for further comparison. The first model is a cohort extension
of the first approach in Carter & Lee (1992), which applies the Lee & Carter (1992) model to each
population and then co-models the two mortality indices:

logit qRx;t = αRx + βRx κ
R
t + γRt�x (reference population)

logit qBx;t =αBx + β
B
x κ

B
t + γ

R
t�x (book population)

Kt =Θ +Kt�1 +Δt (bivariate random walk with drift`)

Table 11. Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 (left figure) versus CAE+
Cohorts (right figure)) using different swap weights.

100,000 males
CMI pensioners (basic materials;
normal retirement; lower pension)

IMD group
(most deprived areas)

Swap weight SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

Optimisation (99.5% VaR) 65/77 63/74 63/73 64/69 72/68 70/68
Optimisation (99.5% ES) 63/77 63/74 63/73 64/68 71/67 70/69
Optimisation (SD) 65/77 63/74 63/72 64/69 71/67 70/68
One-to-one 65/77 62/74 62/74 63/66 70/65 69/66
Wrong model 65/77 62/72 61/71 63/67 70/67 69/68

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk;
ES, expected shortfall.
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The notation Kt = κRt ; κ
B
t

� �0, Θ is the vector drift term, and Δt is the bivariate normal error term.
The second model is a cohort extension of the third approach in Carter & Lee (1992), which assumes
that the two mortality indices follow a co-integrated process (Li & Hardy, 2011):

logit qRx;t =αRx + βRx κ
R
t + γRt�x (reference population)

logit qBx;t = αBx + β
B
x κ

B
t + γ

R
t�x (book population)

Table 12. Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 (left figure) versus CAE+
Cohorts (right figure)) using older ages in modelling.

100,000 males
CMI pensioners (basic materials;
normal retirement; lower pension)

IMD group
(most deprived areas)

Pay age range SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

66–90 (old) 65/77 63/74 63/73 64/69 72/68 70/68
66–90 (new) 64/78 62/76 59/74 52/59 60/62 58/63
66–100 76/86 76/85 74/84 56/61 69/65 69/66
76–100 74/80 73/78 72/76 56/58 65/62 64/63
86–100 65/64 63/63 63/59 55/53 60/55 61/57

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk;
ES, expected shortfall.

Table 13. Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 (left figure) versus CAE+
Cohorts (right figure)) using different data fitting periods.

100,000 males
CMI pensioners (basic materials;
normal retirement; lower pension)

IMD group
(most deprived areas)

Data period SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

From 1980 (reference) 65/77 63/74 63/73 64/69 72/68 70/68
From 1990 (reference) 63/76 62/70 58/68 62/66 74/65 71/65
From 1 year later (book) 64/77 64/76 65/75 64/70 72/70 73/70
From 2 years later (book) 63/76 63/73 61/72 69/73 77/74 76/74

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk;
ES, expected shortfall.

Table 14. Levels of longevity risk reduction (in % of initial longevity risk; M7-M5 (left figure) versus CAE+
Cohorts (right figure)) using different simulation methods.

100,000 males
CMI pensioners (basic materials;
normal retirement; lower pension)

IMD group
(most deprived areas)

Simulation method SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

Bootstrapping 65/77 63/74 63/73 64/69 72/68 70/68
Parametric 73/87 73/86 72/84 84/83 84/82 84/81

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk; ES,
expected shortfall.
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κRt = θ + κRt�1 + δt (RWD)

κBt = a0 + a1κRt +ωt (co-integrated process)

The parameters θ, a0, and a1 define the co-integrated process, and δt and ωt are independent normal
error terms. The final one is a cohort extension of the model proposed by Zhou et al. (2013), which
uses a common age-specific sensitivity measure between the two populations and a weakly stationary
AR(1) process for the difference between the two mortality indices:

logit qRx;t = αRx + βRx κ
R
t + γRt�x (reference population)

logit qBx;t = αBx + β
R
x κ

B
t + γ

R
t�x (book population)

κRt = θ + κRt�1 + δt (RWD)

κRt �κBt =b0 + b1 κRt�1�κBt�1

� �
+ωt (AR(1) process)

The notation θ, b0, and b1 are the parameters of the time series processes, and δt and ωt are
independent normal error terms.

The first two extra models above are “non-coherent” while the last model is “coherent” (Li & Lee,
2005). When a two-population mortality projection model is coherent, the projected (central esti-
mate) ratio of future mortality rates between the two populations at each age tends to a constant in
the long term. The common view in the literature is that two related populations’ future mortality
trends may deviate in the short term but would move more consistently over the long term. A lack of
this long-term coherence in the modelling may result in an overestimation of longevity basis risk.
Apart from the coherence of the central estimates, the simulated future variability is also an
important factor. Under the first two models, both kappa parameters of the two populations have
unbounded future variability. But under the last model, while the kappa parameter of the reference
population also has unbounded future variability, the difference between the kappa parameters of
the two populations has bounded future variability. The major implication is that the two popu-
lations’ future mortality movements could diverge more freely under the first two models, especially
in the long term, but they would become more consistent over time under the last model.

Table 15 provides the risk reduction estimates computed from the M7-M5 and CAE+Cohorts
models and also the three extra models discussed above. The first two extra models, which are
non-coherent and have unbounded future variability, produce very small risk reduction estimates.
It appears that there is a significant overestimation of demographic basis risk. By contrast, the
M7-M5 model, the CAE+Cohorts model, and the last extra model are all coherent and have
bounded future variability between the two populations. Their risk reduction estimates are broadly
in agreement with one another and reflect a more proper allowance for demographic basis risk4.

4 Besides using the various models, we have also followed the Solvency II Standard Formula and tested
different pairs of “longevity shocks” to the book and reference populations. Based on the past data, we find that
index-based longevity hedging would reduce any portfolio loss significantly when there are considerable unan-
ticipated mortality improvements. Even if the longevity shock is larger for the book population than for the
reference population, due to the existence of longevity basis risk, the reduction in the portfolio loss from an index-
based hedge would still be sizable, given that the shocks on the two populations are in the same direction. These
scenario testings suggest that the very low risk reduction levels produced by the first extra model do not look
reasonable.
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In spite of the differences in the structures between the various types of two-population mortality
projection models, the coherence property and the behaviour of simulated future variability, which
depend largely on the assumed time series processes, are the major factors in determining the
calculated level of longevity risk reduction.

In the past century, mortality improvement trends have not always been so smooth over time. There
could be one-off events such as wars, epidemics, and catastrophes, leading to temporary, sharp
changes in mortality levels (i.e. mortality jumps). There could also be long-term effects like medical
developments and climate changes, resulting in permanent shifts in mortality improvement rates (i.e.
structural changes). Figure 6 displays the mortality index of the English and Welsh male population,
in which there are a few “mortality spikes” (red) before 1950 and a shift in the improvement trend
(blue) during around 1970. It is difficult to allow for them in the modelling process as these events
are either rare or hard to detect precisely. Based on the HMD data of several developed countries, we
examine three additional scenarios here using some arbitrary assumptions. The first scenario involves
structural changes, the second one involves mortality jumps, and the final one has both. We adjust
the last extra model in Table 15 to incorporate these effects, which are implicitly assumed to have the
same kind of impact on the two populations:

κR�t = θt + κR�t�1 + δt ðRWDmodifiedwith variable drift θt; i:e: structural changesÞ

κRt = κR�t +Nt Yt RWDfurthermodifiedwithmortality jumpsNt Ytð Þ

θt = ð2θ; θ; θ=2Þ0 ðstructural changes’ transitionmatrix

0:99 0:01 0

0:01 0:98 0:01

0 0:01 0:99

0
BB@

1
CCAÞ

Pr Nt = 0ð Þ= 0:99; Pr Nt = 1ð Þ= 0:01 (frequency of a mortality jump)

Yt � Normal 30; 102
� �

(severity of a mortality jump)

in which the parameter values are very approximately deduced from the frequencies and severities of
such historical incidents as the World Wars, Spanish Flu, and past structural changes in mortality
improvement. These additional features can be switched off by simply setting θt as a constant and
Nt as zero.

Table 15. Levels of longevity risk reduction (in % of initial longevity risk) under different two-population
mortality projection models.

100,000 males
CMI pensioners (basic materials;
normal retirement; lower pension)

IMD group
(most deprived areas)

Model SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

M7-M5 65 63 63 64 72 70
CAE+Cohorts 77 74 73 69 68 68
Extra model 1 7 8 4 28 22 22
Extra model 2 45 52 51 53 57 55
Extra model 3 77 74 74 67 64 64

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk;
ES, expected shortfall.
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Table 16 illustrates that the inclusion of structural changes increases the risk reduction estimates with
regard to the tail risk measures by more than 10% in magnitude, but the integration of mortality
jumps produces very little changes in risk reduction. As structural changes are assumed to have an
ongoing impact on both populations in the model, the two populations’ mortality levels would move
more consistently over the long term, and so demographic basis risk would reduce. In contrast,
the temporary effects of mortality jumps do not have much influence on the risk reduction levels.
Considering the importance of structural changes, we further consider two more scenarios:
(a) θt= (3θ, θ, θ/2)'; and (b) κRt �κB�t =b0 + b1 κRt�1�κB�t�1

� �
+ωt, ηt= (0.2θ, 0, 0)', ιt= ιt−1+ηt,

κBt = κB�t + ιt, in which ηt and θt are independent. The first one has a bigger drop in mortality than the
previous cases when there is a structural change, and the second one involves a possibility of a
greater structural impact on the book population than on the reference population, where the model
becomes non-coherent. In the first case, the risk reduction estimates are larger than previously,
because the impact of structural changes on both populations are bigger at the same time. In the
second case, the risk reduction levels are lower, as there is a possibility of long-term deviations
between the two populations which lead to higher demographic basis risk.

As mentioned earlier, the M7-M5 and CAE+Cohorts models are coherent, under which the projected
book-to-reference ratio of future mortality rates at each age converges to a constant in the long term.
But in the short term, the two projected trends could deviate from each other, the extent to which

Figure 6. Mortality index of English and Welsh male population under CAE+Cohorts model.

Table 16. Levels of longevity risk reduction (in % of initial longevity risk) using models with additional features
deduced from historical incidents.

100,000 males
CMI pensioners (basic materials;
normal retirement; lower pension)

IMD group
(most deprived areas)

Additional feature SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

M7-M5/CAE 65/77 63/74 63/73 64/69 72/68 70/68
Extra model 3 77 74 74 67 64 64
+ Structural 83 85 84 74 80 79
+ Jump 80 72 71 70 64 65
+ Structural and jump 91 91 91 77 78 78
+Larger structural on both groups 86 90 89 80 87 86
+Larger structural on book only 79 75 75 72 71 70

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk; ES,
expected shortfall.
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depends on how quickly the fitted time series process in the book component converges in the
projections. For instance, under the CAE+Cohorts model, the projected values of κBt reach the
constant φ0/(1−φ1) faster if φ1 is closer to zero. Moreover, under the two models, the fitted time series
processes in the reference component generate unbounded future variability, while those in the
book component produce bounded future variability. The former variability would dominate
gradually while the latter would reduce in its influence. Consequently, the extent of demographic
basis risk would decrease over time in the future simulations.

To further investigate the significance of times series modelling assumptions, we now consider five
possible variations. The first one is to use univariate RWD processes in the reference component
under the M7-M5 model. The second alternative is to remove the independence assumption between
the time series error terms of the two components. The third one is to use integrated autoregressive
processes in the reference component. The fourth is to select a higher order of two for the auto-
regressive processes in the book component. The final alternative is to apply random walk without
drift processes in the book component.

Table 17 gives the level of longevity risk reduction for each set of time series processes. When univariate
RWD processes rather than the MRWD are used in the reference component under the M7-M5 model,
the risk reduction levels are slightly lower, though the differences seem to be immaterial. When the time
series error terms of the two components are treated as correlated instead of independent, the changes in
the risk reduction estimates are mostly negligible. It appears that both of these correlation assumptions
do not have a significant impact on the computation of hedge effectiveness.

Table 17. Levels of longevity risk reduction (in % of initial longevity risk) using different sets of time series
processes.

100,000 males
CMI pensioners (basic materials; normal

retirement; lower pension)
IMD group

(most deprived areas)

Reference component/book component SD 99.5% VaR 99.5% ES SD 99.5% VaR 99.5% ES

(Original)
M7-M5 (MRWD/VAR(1)) 65 63 63 64 72 70
CAE+Cohorts (RWD/AR(1)) 77 74 73 69 68 68

(1)
M7-M5 (RWD/VAR(1)) 62 60 60 60 67 69

(2)
M7-M5 (correlated MRWD and VAR(1)) 66 63 61 60 66 64
CAE+Cohorts (correlated RWD and AR(1)) 79 76 75 66 65 66

(3)
M7-M5 (VARIMA(1,1,0)/VAR(1)) 56 53 52 52 62 64
CAE+Cohorts (ARIMA(1,1,0)/AR(1)) 72 69 68 62 63 63

(4)
M7-M5 (MRWD/VAR(2)) 45 55 47 35 58 35
CAE+Cohorts (RWD/AR(2)) 75 73 72 69 72 71

(5)
M7-M5 (MRWD/BRW) 56 36 37 44 41 37
CAE+Cohorts (RWD/RW) 13 6 7 20 19 15

Note: CMI, Continuous Mortality Investigation; IMD, index of multiple deprivation; VaR, value-at-risk;
ES, expected shortfall; MRWD, multivariate random walk with drift; VAR, vector autoregressive process;
RWD, random walk with drift; AR, autoregressive; VARIMA, vector autoregressive integrated moving average;
ARIMA, autoregressive integrated moving average; BRW, bivariate random walk without drift; RW,
random walk without drift.
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If the MRWD (RWD) in the reference component under the M7-M5 (CAE+Cohorts) model is
replaced by the vector autoregressive integrated moving average VARIMA(1,1,0) process (ARIMA
(1,1,0)), the risk reduction estimates drop by about 10% (5%) in magnitude. Though the integrated
autoregressive processes, like the random walk processes, generate unbounded future variability, the
precise levels of their variability across time would be different to those of the random walk pro-
cesses, leading to different risk reduction levels. Moreover, the projected paths of the integrated
autoregressive processes would take some time to converge to the ultimate linear trends and the
speed of convergence depends on the values of the autoregressive parameters computed.

When a higher order of two is used for the VAR process in the book component under the M7-M5 model,
the risk reduction estimates are much smaller. Though the VAR(2) is still weakly stationary, its speed of
convergence is slower than that of the original VAR(1), because of the longer lag and greater autoregressive
effects. Thus the projected trends of the two populations would deviate for a longer period before the final
convergence, resulting in lower risk reduction levels. On the other hand, the AR(2) in the book component
under the CAE+Cohorts model still coverages quickly, so there is not much change in risk reduction.

When the autoregressive processes in the book component are replaced by the random walk without
drift processes (bivariate BRW or univariate RW), the two mortality projection models are still
coherent because of the flat projected trends of the book component. But Table 17 shows that the risk
reduction estimates then become very small. The random walk processes produce unbounded future
variability, and so the two populations’ mortality movements could diverge significantly in the future
simulations, especially in the long term. It can be seen again that the assumed behaviour of simulated
future variability of the book component is critical in the calculation of longevity risk reduction.

7. Concluding Remarks

In this paper, we have conducted an extensive study on modelling longevity basis risk and measuring
longevity risk reduction in index-based swap hedging. We first examine the past mortality rates and
improvements based on the CMI, ONS, and HMD data sets. Then we derive in detail the fitting
procedures of the M7-M5 and CAE+Cohorts models and the bootstrapping method. After defining
the level of longevity risk reduction, we investigate a range of hedging scenarios including open or
closed pension plans of a single cohort or multiple cohorts with different portfolio sizes. In parti-
cular, we use index-based longevity swaps to construct the longevity hedge. The major finding is that
the risk reduction levels are often around 50%–80% for a large portfolio, whereas the risk reduction
estimates are usually smaller than 50% for a small portfolio. While the precise level of risk reduction
depends on the specific hedging scenario being considered, index-based longevity hedging looks
more effective for a larger pension plan and under a more tailored hedging scheme.

Finally, we carry out a thorough sensitivity testing on the hedging results by making a variety of changes
to the original model settings and assumptions, and also the time series processes. The most significant
modelling assumptions and settings include the behaviour of simulated future variability of the book
component, portfolio size, speed of reaching coherence between the two populations, data size and
characteristics, simulation method, and mortality structural changes. Relatively, the other conditions
tested have limited influence on the calculated hedging results. In building an index-based longevity hedge
for a pension plan or annuity portfolio, one should contemplate these factors and perform adequate
testing on their potential impact on hedge effectiveness. Further research is needed when more data of
longer periods and for different types of pension plans can be collected in the future.
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Appendix

The parameters in the reference component of the M7-M5 model are first computed using the updating
equation θ� = θ�∂l

∂θ

.
∂2l
∂θ2 (Brouhns et al., 2002) and the following iterative updating scheme:

(a) Set the initial parameter values of κRt;1, κ
R
t;2, κ

R
t;3, and γRc to zero and calculate η̂Rx;t and m̂R

x;t for all
x and t, which are the fitted values of ηRx;t and mR

x;t.

(b) Update κRt;1 for all t.
(c) Recalculate η̂Rx;t and m̂R

x;t for all x and t and then update κRt;2 for all t.

(d) Recalculate η̂Rx;t and m̂R
x;t for all x and t and then update κRt;3 for all t.

(e) Recalculate η̂Rx;t and m̂R
x;t for all x and t and then update γRc for all c.

(f) Adjust κRt;1, κ
R
t;2, κ

R
t;3, and γRc for all t and c to incorporate the three identifiability constraints.

(g) Recalculate η̂Rx;t and m̂R
x;t for all x and t and then calculate lR.

(h) Repeat steps (b) to (g) until the increase in lR is less than 10−11.

Table A.1 lists the various equations we have derived for implementing this updating scheme.

Taking the computed parameters κ̂Rt;1, κ̂
R
t;2, κ̂

R
t;3, and γ̂Rc from above as given (i.e. conditional like-

lihood), the parameters in the book component of the M7-M5 model are estimated via the updating
equation again and the iterative updating scheme below:

(a) Set the initial parameter values of κBt;1 and κBt;2 to zero and calculate the fitted values η̂Bx;t and m̂B
x;t

for all x and t.
(b) Update κBt;1 for all t.
(c) Recalculate η̂Bx;t and m̂B

x;t for all x and t and then update κBt;2 for all t.

(d) Recalculate η̂Bx;t and m̂B
x;t for all x and t and then calculate lB.

(e) Repeat steps (b) to (d) until the increase in lB is less than 10−11.

Empirically, we find that the tolerance level of 10−11 is often sufficient to ensure the parameters
converge in the iterative estimation process.

The parameters in the reference component of the CAE+Cohorts model are calculated by the same
updating equation and the iterative updating scheme below:

(a) Set the initial parameter values of αRx as the average (over time) logit mortality rate of the
reference population observed at age x, βRx as 1

no: of ages, and κRt and γRc as zero. Then calculate
the fitted values η̂Rx;t and m̂R

x;t for all x and t.
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(b) Update αRx for all x.
(c) Recalculate η̂Rx;t and m̂R

x;t for all x and t and then update κRt for all t.

(d) Recalculate η̂Rx;t and m̂R
x;t for all x and t and then update βRx for all x.

(e) Recalculate η̂Rx;t and m̂R
x;t for all x and t and then update γRc for all c.

(f) Adjust αRx , β
R
x , κ

R
t , and γRc for all x, t, and c to incorporate the first four identifiability constraints.

(g) Recalculate η̂Rx;t and m̂R
x;t for all x and t and then calculate lR.

(h) Repeat steps (b) to (g) until the increase in lR is less than 10−11.

Table A.2 provides the equations we have deduced for running the updating scheme.

Conditioning on the calculated α̂Rx , β̂
R
x , κ̂

R
t , and γ̂Rc , the parameters in the book component of the

CAE+Cohorts model are estimated by the updating equation and the iterative updating scheme as
follows:

(a) Set the initial parameter values of αBx as the average (over time) logit mortality rate of the book
population observed at age x minus α̂Rx , and κBt as zero. Then calculate the fitted values η̂Bx;t and
m̂B

x;t for all x and t.
(b) Update αBx for all x.
(c) Recalculate η̂Bx;t and m̂B

x;t for all x and t and then update κBt for all t.

(d) Adjust αBx and κBt for all x and t to incorporate the last identifiability constraint.
(e) Recalculate η̂Bx;t and m̂B

x;t for all x and t and then calculate lB.

(f) Repeat steps (b) to (e) until the increase in lB is less than 10−11.

Table A.3 gives the BIC values of fitting the M7-M5 and CAE+Cohorts models to the various data
sets. In each cell, the left figure is the BIC value for the reference component, and the right figure is
the BIC value for the book component. For all the data sets (except the book component of the least
deprived areas), the M7-M5 model produces the lowest BIC values, but the differences are rather
small. We have also examined the residuals by age, year, and cohort, and overall there are no
significant patterns in the residuals. Note that the BIC and the residuals examination provide a useful
way to assess how well the models are fitted to the data, but the fitted models do not necessarily
produce accurate forecasts. Table A.4 lists the parameter estimates of the different time series pro-
cesses. As expected, all the drift terms are negative, representing overall mortality improvements.
Moreover, all the values of φ1 are smaller than one in magnitude, which means that the fitted AR(1)
processes are weakly stationary.
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Table A.1. Equations derived for iterative updating scheme under M7-M5 model.

Updating equation for reference component

∂lR
∂κRt;i

=
P
x

dRx;t
mR

x;t
�eRx;t

� �
∂mR

x;t

∂κRt;i
∂2 lR

∂ κRt;ið Þ2 =
P
x

dR
x;t

mR
x;t

∂2mR
x;t

∂

�
κR
t;i

�2� ∂mR
x;t

∂κR
t;i

	 
2

mR
x;tð Þ2 �eRx;t

∂2mR
x;t

∂ κRt;ið Þ2

0
BBB@

1
CCCA

∂lR
∂γRt�x

=
P
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t�x

dRx;t
mR

x;t
�eRx;t

� �
∂mR

x;t

∂γRt�x

∂2 lR

∂ γRt�xð Þ2 =
P
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t�x

dR
x;t

mR
x;t
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∂mR
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0
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1
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� �
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Updating equation for book component

∂lB
∂κBt;i

=
P
x

dBx;t
mB

x;t
�eBx;t

� �
∂mB

x;t

∂κBt;i
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∂ κBt;ið Þ2 =
P
x
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∂

�
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Identifiability constraints
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Table A.2. Equations derived for iterative updating scheme under CAE+Cohorts model.

Updating equation for reference component
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Table A.3. Bayesian information criterion values of fitting M7-M5 and CAE+Cohorts
models to different data sets.

Groups M7-M5 CAE+Cohorts

Basic materials 13,040/2,848 13,089/2,915
Industrials 13,040/2,929 13,089/3,037
Consumer goods 13,040/2,702 13,089/2,786
Consumer services 13,040/3,042 13,089/3,133
Utilities 13,040/2,600 13,089/2,686
Financials 13,040/2,065 13,089/2,133
Local authority 13,040/2,630 13,089/2,700
Most deprived areas 13,040/4,439 13,089/4,562
Second most deprived areas 13,040/4,248 13,089/4,352
Third most deprived areas 13,040/4,187 13,089/4,217
Fourth most deprived areas 13,040/4,211 13,089/4,254
Least deprived areas 13,040/4,191 13,089/4,167

Table A.4. Estimated parameters of various time series processes.

M7-M5 CAE+Cohorts

Groups d1/d2/d3 φ1,0/φ1,1/φ1,2/φ2,0/φ2,1/φ2,2 d φ0/φ1

Basic materials −0.0244/0.000453/
0.0000239

−0.0138/−0.0658/−3.670/0.00445/
0.0124/0.308

−0.700 −0.102/0.0990

Industrials −0.0244/0.000453/
0.0000239

0.00988/0.424/−3.837/0.00151/
0.0299/0.834

−0.700 0.436/0.693

Consumer goods −0.0244/0.000453/
0.0000239

−0.0175/0.201/−3.525/0.00351/
0.0180/0.492

−0.700 0.551/0.217

Consumer services −0.0244/0.000453/
0.0000239

0.0268/0.470/2.863/0.000645/
0.0194/0.277

−0.700 0.267/0.386

Utilities −0.0244/0.000453/
0.0000239

−0.0748/−0.147/−1.162/0.00520/
−0.0109/−0.0101

−0.700 −0.228/−0.173

Financials −0.0244/0.000453/
0.0000239

−0.252/0.150/8.024/0.0152/0.0102/
−0.385

−0.700 0.619/0.327

Local authority −0.0244/0.000453/
0.0000239

−0.0450/0.489/−3.033/0.000419/
−0.0626/−0.119

−0.700 −0.267/0.126

Most deprived areas −0.0244/0.000453/
0.0000239

−0.0244/0.899/−5.115/−0.0132/
0.0104/0.288

−0.700 0.209/0.885

Second most
deprived areas

−0.0244/0.000453/
0.0000239

0.0224/0.843/−1.341/−0.0138/
0.0672/−0.743

−0.700 0.0881/0.726

Third most deprived
areas

−0.0244/0.000453/
0.0000239

−0.0151/0.331/0.849/0.00153/
−0.0735/0.615

−0.700 −0.00947/0.296

Fourth most
deprived areas

−0.0244/0.000453/
0.0000239

−0.0272/0.803/0.146/0.0103/
−0.0316/−0.219

−0.700 −0.0208/0.712

Least deprived areas −0.0244/0.000453/
0.0000239

−0.0655/0.714/−0.806/0.00991/
−0.0115/0.201

−0.700 −0.116/0.653
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