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We present both numerical and analytical results from a spatial stability analysis
of the coupled gas–liquid hydrodynamic equations governing the first wind-induced
(FWI) liquid-jet break-up regime. Our study shows that an accurate evaluation of the
growth rate of instabilities developing in a liquid jet discharging into a still gaseous
atmosphere requires gas viscosity to be included in the stability equations even for
low Weg , where Weg = ρg U 2

l R0/σ , and ρg, Ul, R0 and σ are the gas density, the liquid
injection velocity, the jet radius and the surface tension coefficient, respectively. The
numerical results of the complete set of equations, in which the effect of viscosity in
the gas perturbations is treated self-consistently for the first time, are in accordance
with recently reported experimental growth rates. This permits us to conclude that the
simple stability analysis presented here can be used to predict experimental results.
Moreover, in order to throw light on the physical role played by the gas viscosity
in the liquid-jet break-up process, we have considered the limiting case of very high
Reynolds numbers and performed an asymptotic analysis which provides us with
a parameter, α, that measures the relative importance of viscous effects in the gas
perturbations. The criterion |α| � 1, with α computed a priori using only the much
simpler inviscid stability results is a guide to assess the accuracy of a stability analysis
in which viscous diffusion is neglected. We have also been able to explain the origin
of the ad hoc constant 0.175 introduced by Sterling & Sleicher (J. Fluid Mech. vol. 68,
1975, p. 477) to correct the discrepancies between Weber’s results (Z. Angew. Math.
Mech. vol. 11, 1931, p. 136) and the experimental ones.

1. Introduction
The stability analysis of liquid jets is relevant for the analysis of several commercial

atomization devices and, in particular, for pressure atomizers such as those used in
diesel engines, turbojet afterburners, ink-jet printers, etc. In these devices, a high-
velocity jet of a given liquid discharges from a circular hole into a stagnant atmos-
phere, and different breakup regimes present themselves depending on a large number
of parameters, such as liquid-jet velocity, nozzle design and gas density. The injector
geometry influences the liquid-jet breakup; as pointed out by Reitz & Bracco (1982)
and Lin & Reitz (1998), turbulence, liquid velocity profile and cavitation within the
nozzle are factors which can decisively affect the breakup of the liquid jet. On the
other hand, with regard to the outer atmosphere influence on the jet breakup, Reitz
& Bracco (1982) concluded that if the outer gas density is increased and both the
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2 J. M. Gordillo and M. Pérez-Saborid

nozzle geometry and the liquid injection velocity are kept constant, the growth rate
of perturbations leading to the jet breakup is enhanced.

In the present paper, and in order to isolate the influence of the aerodynamic effects
on the jet breakup, we will deal with situations in which the breakup mechanisms
associated with cavitation, liquid velocity profile or liquid turbulence are absent.
These conditions can be achieved in experimental set-ups such as those reported by
Sterling & Sleicher (1975), Kalaaji et al. (2003) and González & Garcı́a (2004), where
convergent nozzles with a small length to diameter ratio are used. In these facilities,
the liquid-jet exiting the nozzle is laminar and vorticity is confined within a layer, of
thickness δl , adjacent to the jet interface.

Under these conditions, it is experimentally observed that, for the lower injection
velocities, a liquid jet is not formed and a dripping regime is obtained owing to surface-
tension confinement forces overcoming liquid inertia and gravity (see Clanet &
Lasheras 1999; Ambravaneswaran, Phillips & Basaran 2000; Ambravaneswaran et al.
2004; Le Dizès 1997; Lin & Lian 1989). If the liquid velocity is progressively increased
by keeping the rest of parameters constant, a liquid jet is formed giving rise to a
jetting regime. For the lower liquid velocities within the jetting regime, the breakup
length lb depends linearly on the injection velocity Ul . This can be explained by
Rayleigh’s (1878) pioneering investigations. In Rayleigh’s analysis, the inertia of the
outer atmosphere is not taken into account and, therefore, surface-tension forces are
the only ones responsible for instability. However, for a larger injection velocity, we
obtain the so-called first wind-induced breakup regime (FWI), for which experiments
show that the liquid jet length increases with velocity until it reaches a maximum
(Sterling & Sleicher 1975; Lin & Reitz 1998). In these experiments, the shortening
in the breakup length that can be solely attributed to aerodynamic effects due to lb
is such that lr � lb, where lr ∼ Ul δ

2
l /νl is the liquid relaxation length and Ul and νl

are the liquid injection velocity and kinematic viscosity, respectively. The size of the
drops in the FWI is still of the order of the jet radius, although smaller than those
obtained in the Rayleigh regime.

In spite of all the experimental and theoretical efforts made through the years,
Rayleigh’s breakup regime is the only one that is perfectly understood. In an attempt
to explain the experimental results at larger injection velocities, Weber (1931) extended
Rayleigh’s work to include the effect of the surrounding gas inertia into the stability
analysis. Weber considered a simple Kelvin–Helmholtz model, uniform liquid and gas
velocity profiles, and retained viscosity only in the liquid linear stability equations. He
found that the inclusion of aerodynamic effects into the analysis predicts, as observed
experimentally, a maximum in the curve of breakup length vs. injection velocity.
However, the maximum predicted by this theory occurs for lower velocities than
those measured experimentally, which led Sterling & Sleicher (1975) to extend the
analysis by including the effect of the gas viscosity. For this purpose, they introduced
an ad hoc parameter whose effect is to reduce the perturbed gas pressure at the jet
interface. The value of this parameter (0.175) was adjusted so that the predicted break-
up lengths agreed with the experimental ones. It has been shown that the growth rates,
measured under controlled experimental conditions Kalaaji et al. 2003; González &
Garcı́a 2004, are reproduced well assuming this ad hoc attenuation constant. The
good agreement with the experiments suggests that the Sterling & Sleicher (1975)
approximation to account for gas viscosity, is conceptually valid. However, in spite of
the importance of the FWI breakup regime for numerous applications, there is still
no study in the literature that includes, self-consistently, the effect of gas viscosity in
the equations governing the liquid-jet breakup.
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On the first wind-induced liquid-jet break-up regime 3

As pointed out above, the condition lb � lr , which is implicitly assumed in this
study, is experimentally achieved in experimental set-ups such as those reported by
Sterling & Sleicher (1975), Kalaaji et al. (2003) and González & Garcı́a (2004), but
only within a certain velocity range. Indeed, if the liquid velocity is sufficiently high,
the liquid jet starts breaking up only a few diameters downstream of the nozzle, giving
rise to the so-called second wind-induced break-up regime, and a further increase in
the liquid velocity leads to the atomization regime, where the breakup of the jet
starts at the injector outlet. In both the second wind-induced and the atomization
regimes, the drops obtained are much smaller than the orifice diameter and lr � O(lb).
Consequently, the liquid velocity profile (see Hoyt & Taylor 1977; Yoon & Heister
2004), the possible cavitation of the liquid within the nozzle and the aerodynamic
interaction with the surrounding atmosphere, play a role in the breakup process under
these experimental conditions. See Reitz & Bracco (1982) and Lin & Reitz (1998)
and references therein for a more detailed quantitative description of these regimes
since they are out of the scope of this study.

In the framework of co-flowing liquid–gas jets it has been shown that, in the limit
of high Reynolds numbers, the primary instability mechanism leading to atomization
is controlled, for large values of the momentum ratio, M = ρgU

2
g /ρlU

2
l , by the gas

shear-layer thickness (Villermaux 1998; Lasheras & Hopfinger 2000; Marmottant &
Villermaux 2004) and, in the case of M � 1, by the liquid shear-layer thickness (Hoyt &
Taylor 1977; Gordillo, Pérez-Saborid & Gañán Calvo 2001). In the above-cited studies,
liquid and gas viscosities only enters into the analysis through the liquid and gas basic
velocity profiles. However, in the more theoretical approach by Lin & Chen (1998)
and Yecko, Zaleski & Fullana (2002), viscosity was also considered in the equations
governing the perturbations; moreover, the importance of interfacial shear in the
development of instabilities leading to atomization was also stressed. In the context
of the atomization of planar liquid sheets Lozano et al. (2001) also retain gas viscosity
both in the basic state and in the stability equations.

The purpose of the present paper is to solve, by including gas viscosity in a
self-consistent manner, the stability equations modelling the breakup of a liquid
jet injected into a still air atmosphere in the cases in which liquid velocity profile
relaxation effects can be neglected. It will be shown that the results of the present
analysis and the experimentally measured growth rates provided by Kalaaji et al.
(2003) are in excellent agreement and thus, a simple stability analysis such as the
one presented here, can be used to predict experimental results. Furthermore, the role
played by gas viscosity has been elucidated by performing an asymptotic analysis
that recovers the numerical results for sufficiently high Reynolds numbers. The
asymptotics show that the role played by gas viscosity can be split in two separate
effects: On the one hand, at zeroth order, viscosity generates a gas boundary layer
surrounding the liquid jet that diminishes the aerodynamic interaction between the
liquid jet and the surrounding atmosphere with respect to the Kelvin–Helmholtz
model (Gordillo et al. 2001). On the other hand, for sufficiently high Reynolds
numbers, viscous effects in the perturbed quantities are confined to Stokes layers
developing at the jet surface as a consequence of the continuity of velocities across the
interface.

The paper is structured as follows: in § 2, we formulate the equations governing the
basic flow and the perturbations and compare the numerical with the experimental
results. Section 3 is devoted to the asymptotic stability analysis and a comparison
between numerical and asymptotic results is provided. Finally, conclusions are
presented in § 4.
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2. Formulation of the problem and numerical results
A liquid jet discharging into a still gaseous atmosphere generates a boundary-layer

type of flow in the surrounding medium which is induced by gas viscosity. It will be
shown that the growth of the perturbations leading to the jet breakup strongly
depends on the basic gas velocity field and, consequently, a correct computation of
the downstream evolution of the gas boundary layer is essential for the subsequent
analysis.

The basic flow has been computed assuming that the liquid velocity profile, Ul ,
is uniform and the radius of the jet, R0, constant. This approach is consistent since
relaxation effects in the liquid velocity profile can be neglected under the experimental
conditions leading to the FWI breakup regime (Sterling & Sleicher 1975; Kalaaji et al.
2003; González & Garcı́a 2004); moreover, the influence of the gas viscous shear in
the liquid velocity profile will be small since

µg/µl � 1, (2.1)

where the subscripts l and g in (2.1) indicate liquid and gas, respectively. In addition,
accelerations due to gravity are neglected since, either gravity is transversal to the flow
direction (Sterling & Sleicher 1975) or Fr= U 2

l /g lb � 1 in the experiments considered
here. Indeed, even in the most unfavourable case, consistent with the experimental
conditions reported in Sterling & Sleicher (1975) and Kalaaji et al. (2003) that
lb ∼ 102R0, R0 ∼ 10−3 m and Ul ∼ 10 m s−1, the Froude number is such that Fr ∼ 102 �1.

In the high-Reynolds-number limit, Reg = Ul R0/νg =Re (νl/νg) � 1, the dimension-
less continuity and momentum equations governing the basic gas flow in cylindrical
coordinates read

∂Ug

∂zg

+
1

ξ

∂(ξVg)

∂ξ
= 0, (2.2)

Ug

∂Ug

∂zg

+ Vg

∂Ug

∂ξ
=

1

ξ

∂

∂ξ

(
ξ
∂Ug

∂ξ

)
, (2.3)

where ξ = r/R0 and zg = zνg/Ul R
2
0 . Moreover, the characteristic scales used to define

the dimensionless axial (Ug) and radial (Vg) gas velocity components are Ul and νg/R0,
respectively. The solution to the system (2.2)–(2.3), which must be solved subjected
to the boundary conditions,

z = 0, Ug = Ug(ξ, 0), (2.4)

ξ = 1, Ug = 1, Vg = 0, ξ → ∞ Ug → 0, (2.5)

has been obtained through the numerical procedure described in Gordillo et al. (2001)
and has been checked against that of the flow along a cylinder provided in Tutty,
Price & Parsons (2002). Note that the condition for the axial velocities in (2.4) is taken
to be the self-similar Blasius-type solution describing the boundary layer forming at
a flat plate emerging normally to a wall (Rodrı́guez-Rodrı́guez, Sánchez & Martı́nez-
Bazán 2004). It has to be pointed out that this initial condition is also valid in the case
where the jet emerges directly from a nozzle which is not bounded by a rigid wall.

Figures 1(a) and 1(b) show, respectively, the growth of the gas boundary-layer
thickness and the decrease of the shear stress, τf = ∂Ug/∂ξ (ξ =0), along the liquid-jet
interface. Note that the solution obtained is free of parameters and, consequently,
(2.2)–(2.5) need to be solved only once. Moreover, although this solution does not
satisfy the continuity of the shear stress at the interface, the calculated growth rates
are in close agreement with the experimental ones, as will be shown below.
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Figure 1. (a) Gas velocity profiles at different axial positions. Note the downstream growth
of the boundary layer. (b) Shear stress along the liquid jet interface.

The evolution of the perturbations along the liquid jet is solved by linearizing the
Navier–Stokes equations around the already obtained gas and liquid basic states.
Since the basic flow is essentially non-parallel, any of the dimensionless perturbed
axial, radial and azimuthal velocity components (ul,g, vl,g, wl,g) and pressure fields pl,g

can be expressed, in the usual WKB decomposition (Bertolotti, Herbert & Spalart
1992; Fernández-Feria 1999) as q(ξ, zl, τ, θ) = q̄(ξ, zl)χ(zl, τ, θ), being

χ(zl, τ, θ) = exp

[
i

(
Re

∫ zl

0

k(ζ ) dζ − Ωτ + mθ

)]
, (2.6)
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6 J. M. Gordillo and M. Pérez-Saborid

and θ the azimuthal angle. The dimensionless axial coordinate is defined as zl = z/

ReR0, where Re = Ul R0/νl is the Reynolds number. The characteristic length and
velocity scales used to define the dimensionless velocity, time (τ ), frequency (Ω) and
wavenumber (k) are R0 and Ul , respectively; perturbed gas and liquid pressures are
made non-dimensional using ρlU

2
l and ρg U 2

l as characteristic scales. Introducing per-
turbations of the form (2.6) into the linearized Navier–Stokes equations and retaining
terms up to order 1/Re, the equations governing the variables (ul,g, vl,g, wl,g, pl,g)
read, with b ≡ ik,

1

Re

∂ul,g

∂zl

= −bul,g −
(

∂vl,g

∂ξ
+

vl,g

ξ
+

i m wl,g

ξ

)
, (2.7)

1

Re
Ul,g

∂vl,g

∂zl

= iΩ vl,g − ∂pl,g

∂ξ

+
1

Re

[
− (νl,g/νl)

∂Vl,g

∂ξ
− b Re Ul,g − (νl,g/νl)

(
1 + m2

ξ 2
− b2

)]
vl,g

+
1

Re

(
−(νl,g/νl) Vl,g +

(νl,g/νl)

ξ

)
∂vl,g

∂ξ

+
(νl,g/νl)

Re

∂2vl,g

∂ξ 2
− 2i m wl,g(νl,g/νl)

Re ξ 2
, (2.8)

1

Re
Ul,g

∂wl,g

∂zl

= iΩ wl,g − i m pl,g

ξ
+

1

Re

[
− (νl,g/νl)

Vl,g

ξ
− b ReUl,g

− (νl,g/νl)

(
1 + m2

ξ 2
− b2

)]
wl,g +

1

Re

(
−(νl,g/νl) Vl,g +

(νl,g/νl)

ξ

)
∂wl,g

∂ξ

+
(νl,g/νl)

Re

∂2wl,g

∂ξ 2
+

2i m (νl,g/νl) vl,g

Reξ 2
, (2.9)

1

Re

∂pl,g

∂zl

= iΩ ul,g − b pl,g +
1

Re

[
− ∂Ul,g

∂zl

− (νl,g/νl)

(
m2

ξ 2
− b2

)]
ul,g

+
1

Re

(
−(νl,g/νl) Vl,g +

(νl,g/νl)

ξ

)
∂ul,g

∂ξ
+

(νl,g/νl)

Re

∂2ul,g

∂ξ 2

+

(
−∂Ul,g

∂ξ
+

Ul,g

ξ

)
vl,g + Ul,g

∂vl,g

∂ξ
+

i m Ul,g

ξ
wl,g. (2.10)

Note that (2.7) is the linearized continuity equation and (2.8)–(2.10) stand for the
radial, azimuthal and axial components of the linearized momentum equation, respec-
tively. The system (2.7)–(2.10) must be solved subjected to the following boundary
conditions at ξ = 0,

if m = 0,
∂ul

∂ξ
= 0, vl = wl = 0,

∂pl

∂ξ
= 0, (2.11)

if m = 1, ul = pl = 0,
∂vl

∂ξ
= 0, i vl − wl = 0, (2.12)

if m > 1, ul = vl = wl = pl = 0. (2.13)

In addition, the linearized kinematic conditions to be satisfied by the perturbations at
the gas–liquid interface, which is located at ξ = 1+f (zl) χ(zl, τ, θ), are the continuity
of the velocity across the interface and the free-surface condition, respectively,
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On the first wind-induced liquid-jet break-up regime 7

given by

ξ = 1 : ug = ul − ∂Ug

∂ξ
f, vg = vl, wg = wl, (2.14)

1

Re

∂f

∂zl

= (i Ω − b) f + v. (2.15)

The force balance at the interface leads to the next set of dynamic conditions to be
satisfied at ξ = 1,

−µg

µl

∂2Ug

∂ξ 2
f +

(
∂ul

∂ξ
− µg

µl

∂ug

∂ξ

)
+ b

(
vl − µg

µl

vg

)
= 0, (2.16)

im

(
vl − µg

µl

vg

)
+

(
∂wl

∂ξ
− µg

µl

∂wg

∂ξ

)
−

(
wl − µg

µl

wg

)
= 0, (2.17)

pl − ρg

ρl

pg − 2

Re

(
∂vl

∂ξ
− µg

µl

∂vg

∂ξ

)
− 2µg

µl Re

∂Ug

∂ξ
b f

+ f We−1(1 − m2 − b2 + 2 iΩb) + 2bWe−1v = 0, (2.18)

where (2.16)–(2.17) stand for the continuity of the tangential shear stress across the
interface and (2.18) is the normal stress jump condition. In (2.18), the Weber number
is defined as We= ρl U

2
l R0/σ , with σ the surface tension coefficient. Furthermore, in

order to compare with experiments, it proves convenient to define at this point the
Ohnesorge number, Oh=

√
We/Re.

The resulting system (2.7)–(2.18) gives rise to a set of parabolized stability equations
(PSE), which could be solved using the method proposed by Bertolotti et al. (1992).
However, these authors also show that the solution provided by the PSE method
differs, for sufficiently high Reynolds numbers, only slightly from that obtained by
the approach which consists in setting to zero the left-hand side terms of (2.7)–(2.10)
and (2.15), (1/Re ∂/∂zl ≡ 0) and solving the local eigenvalue problem at different
axial locations. In this paper we have chosen the latter approach since it is easier to
implement and not very expensive in terms of computing time. Thus, given Ω , the
velocity profiles at an axial position zg , and the set of parameters We, Re, ρg/ρl , µg/µl ,
equations (2.7)–(2.18) have been discretized using a Chebychev spectral collocation
method (Lin & Chen 1998; Yecko et al. 2002), for which liquid and gas domains have
been mapped into the Chebychev space η ∈ [−1, 1] through the transformations

ξ = 1
2
(η + 1) for 0 � ξ � 1,

ξ =
2 L + 1 − η

L (1 + η)
with L = − 1 +

√
2/2

2 − (1 + 10
√

zg)(1 −
√

2/2)
for ξ > 1.


 (2.19)

The purpose of the chosen transformation for the gas domain is to cluster as many
discrete points as possible within the gas boundary layer, whose thickness is estimated
as ∼ O(10

√
zg). Moreover, the spatial gas and liquid domains are discretized using 60

and 25 points, respectively, since usual convergence tests showed that an increase in
the number of points did not result in a significant improvement of the results.

The nonlinear eigenvalue problem in k has been solved through the routine DGVCC
of the IMSL library once it is transformed into a linear one using the matrix com-
panion method (Bridges & Morris 1984). In order to validate the numerical imple-
mentation, we have reproduced both the critical Reynolds numbers for the boundary
layer along a cylinder provided in table 1 of Tutty et al. (2002) and the eigenvalue

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

60
26

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005006026


8 J. M. Gordillo and M. Pérez-Saborid
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Figure 2. Ωi = 0 isocontours in the (kr , ki) complex plane for both axisymmetric (m= 0,
continuous line) and asymmetric (m=1, dotted line) at different axial positions and for several
Weber and Ohnesorge numbers.

corresponding to the atomization conditions considered by Lin & Chen (1998) in
their table 1, once we noticed that the calculated results in that table corresponded
to a value of the Weber number of 106.

Since our final purpose is to compare the computed growth rates with those mea-
sured under well-controlled experimental conditions, the values of the control para-
meters are calculated assuming the same physical properties of the liquids used by
Kalaaji et al. (2003), with ρa = 1.2 kg m−3, νa = 1.5×10−5 m2 s−1. Moreover, the range
of values of the parameters defining the operating conditions (Re, We and zg) are
calculated consistently with the experimental situations under which the growth rates
provided in figure 8 of Kalaaji et al. (2003) are measured.

Figure 2 represents several k(Ω) isocontours (Ωi = 0) in the complex wavenumber
plane for both axisymmetric (m =0) and asymmetric (m =1) unstable modes at
several axial locations and different values of both Weber and Ohnesorge numbers.
The instability is convective owing to the range of Weber numbers considered being
well within the jetting parametric region (see Ambravaneswaran et al. 2004), and the
same conclusion can be drawn from the fact that the isocontours in figure 2 do not
exhibit a cusp singularity (Olendraru et al. 1999). Consequently, from the point of view
of linear stability theory, the downstream propagation and growth of disturbances
excited at a frequency Ω from the exit nozzle is equivalent to solving the so-called
signalling problem by Huerre & Monkewitz (1990) downstream of the excitation
source. In order to show that the k(Ω) branches shown in figure 2 correspond to
downstream growing modes we have, at least, two different alternatives. The classic
procedure, described by Huerre & Monkewitz (1990), consists in solving k(ω) for
values of ω = ωr + i ωi =Ω + i ωi such that Im(ω) � 0. Using causality arguments,
Huerre & Monkewitz (1990) showed that only those roots k+(Ω) such that the sign of
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On the first wind-induced liquid-jet break-up regime 9

Im[k+(ω)] change from positive to negative if Im(ω) is lowered from a positive value to
zero, represent downstream spatially growing waves of the type ei(k+(Ω) z−Ω t). Another
alternative procedure to identify whether the already obtained eigenvalue k(Ω) is
relevant to describe the response to a periodic forcing of frequency Ω downstream or
upstream of the excitation source, consists in determining the sign of the group velocity
dω/d k at the local extremum of the already obtained curve k(Ω). Note that the ex-
tremum is located at a value of Ωm such that d ki/d Ω(Ωm) = 0 and, consequently, the
group velocity is real and can be calculated as [dkr (Ω)/dΩ(Ωm)]−1. Indeed, using the
method of steepest descent, Gordillo & Pérez-Saborid (2002) showed that the spatial
eigenvalues k+(Ω), relevant for the large-time response downstream of the source (rays
x/t → 0+), are those included in a curve k(Ω) such that d kr (Ω)/d Ω(Ωm) > 0. We have
chosen this latter alternative because all the information needed to decide whether
the spatial eigenvalues k(Ω) are relevant for the downstream or upstream response
to the periodic forcing at a real frequency Ω , is contained in the already calculated
curve k(Ω). Thus, no more eigenvalues k(ω), for complex ω need be calculated.

Consequently, owing to dkr (Ω)/dΩ(Ωm) 
 1 > 0 at the maximum of each isocontour
represented in figure 2, the spatial branches depicted in this figure correspond to
downstream convectively unstable modes. From figure 2 also observe that, given a
mode, We and Oh, both the maximum spatial amplification and the range of unstable
wavenumber increases for decreasing zg , this being a consequence of the fact that,
the thicker the gas boundary layer is (the larger zg is), the smaller is the aerodynamic
effect. Figure 2 also shows that the axisymmetric mode growth rate is larger than
that of their asymmetric counterparts for wavelengths of the order of that of the
radius. Contrarily, asymmetric modes grow faster than the axisymmetric ones for long
wavelengths. Moreover, except for the larger values of both the Weber and Ohnesorge
numbers (We = 5000, Oh = 0.32), the maximum of the spatial amplification varying
Ω and keeping the rest of parameters constant, correspond to axisymmetric modes.
This result indicates that asymmetric disturbances may grow faster than axisymmetric
ones for sufficiently large values of both the Weber number (what is in qualitative
agreement with Yang 1992) and of the Ohnesorge number.

In view of the above conclusions it is to be expected that for moderate Weber num-
bers and in the case of naturally excited jets, the jet breaks up owing to the combined
growth of both axisymmetric and long-wavelength helicoidal (m = 1) perturbations,
consistent with Hoyt & Taylor (1977) observations. However, in spite of the considera-
tions concerning helicoidal modes, only m =0 cases are to be studied in what follows,
since we will deal with experiments in which the jet is excited axisymmetrically.

The spatial amplification factor −ki, which is calculated for the experimental fre-
quencies considered by Kalaaji et al. (2003), is a decreasing function of the axial
coordinate zg as depicted in figure 3(a). As pointed out above, this is mainly due to
the fact that the boundary-layer growth smoothes the velocity gradients in the gas
and, consequently, the aerodynamic effect of the surrounding atmosphere diminishes.
However, we postpone a full discussion about the role of gas viscosity on the develop-
ment of the instability to § 3, where it will be shown that gas viscosity must be retained
in the perturbed equations in order to reproduce the experimental results. Also
relevant in figure 3(a) is the fact that the spatial amplification growth rates reach, suffi-
ciently far downstream, their corresponding values in vacuum, which are represented
in this figure as horizontal lines. This is consistent with the large boundary-layer
thickness (see figure 1a) which yields negligible aerodynamic effects (Gordillo et al.
2001). The eigenfunctions corresponding to an intermediate axial position zg =
4.95 × 10−2 under the same conditions as figure 3(a) can be depicted in figure 3(b).
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10 J. M. Gordillo and M. Pérez-Saborid
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Figure 3. (a) Downstream evolution of the spatial amplification growth rate, −ki for different
values of the Weber number. Dashed lines indicate the growth rates in vacuum. Oh =0.021,
Ω =0.74 and physical properties corresponding to those of water and air. (b) Eigenfunctions
at zg =4.95 × 10−2 for We = 50, Oh =0.021, Ω = 0.74 and physical properties corresponding
to those of water and air.

Once the axial evolution of the spatial amplification has been obtained, and given
a dimensionless breakup length zb

g , the averaged perturbation growth rate k̄i, can be
computed, making use of (2.6) as

k̄i =
1

zb
g

∫ zb
g

0

ki(zg) dzg. (2.20)
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On the first wind-induced liquid-jet break-up regime 11

This quantity can be easily measured experimentally once the amplitude of the jet
radius (εR0) at zg =0 and the break-up length lb = RegR0z

b
g , with Reg =UlR0/νg , are

known. In effect, since the nonlinearities are confined to only a narrow region close
to the breakup point,

k̄i = ln(ε)
R0

lb
. (2.21)

However, the different experimental studies in the literature (see Kalaaji et al. 2003;
Sterling & Sleicher 1975; González & Garcı́a 2004) usually provide the value of
the dimensionless temporal growth rate Ωi =ωi(ρ R3

0/σ )1/2, ωi being its dimensional
counterpart, instead of that of (2.21). Consequently, we have transformed our results
making use of the Gaster approximation (Gaster 1962),

Ωi = k̄iWe1/2, (2.22)

where the validity of (2.22) is ensured since, in the experimental conditions under
consideration, the Weber number is sufficiently high for the group velocity to be
approximated to Ul (Keller, Rubinow & Tu 1973). Note that the averaged perturbation
growth rate, k̄i , depends on the dimensionless breakup length zb

g which, in turn,
depends on the initial perturbation amplitude εR0. Consequently, k̄i depends on the in-
itial perturbation amplitude and, either zb

g or εR0 must be provided in our model in
order to compare with existing experiments. In our calculations we have fixed zb

g = 5,
which is a value consistent with the conditions under which the experiments of Kalaaji
et al. (2003) were performed. Nevertheless, if the purpose of the model was to provide
the breakup length given an initial perturbation amplitude εR0, it could be obtained
from ∫ zb

g

0

ki(zg) dzg =
ln(ε)

Reg

. (2.23)

Figure 4 shows the temporal amplification of disturbances for the same frequencies
Ω , liquid properties and injection velocities as those used by Kalaaji et al. (2003) in
their figure 8. In this figure, the horizontal lines represent the temporal growth rates
for a liquid jet in vacuum. Note that the larger the injection velocity, the larger is the
spatial amplification of disturbances, this result being a consequence of the fact that
the relative importance of the aerodynamic term (ρg/ρl)pg increases with respect to

the capillary one We−1f in (2.18) for an increasing Ul . Indeed, a simple estimation
of the order of magnitude of the ratio of both terms leads to O[(ρg/ρl)pg/(We−1f )] ∼
O(Weg), where Weg = (ρg/ρl)We. Also note from this figure that the growth rates
start to deviate from the solution in vacuum for gas Weber numbers as low as
Weg ∼ 0.05.

As depicted in figure 4, the computed values agree well with the experimentally
measured ones, except for some dispersion shown by the latter. Thus, experimental
results on the FWI breakup regime can be predicted using a linear stability analysis
that retains self-consistently the effects of gas viscosity in the perturbations. It should
be pointed out that the experimental growth rates corresponding to the lower injection
velocities are not represented in figure 4 because, contrary to the case of high injection
velocities (� 10 m s−1) of interest here, they could not be accurately measured (Kalaaji
et al. 2003).

It is important to emphasize that the successful approach proposed by Sterling &
Sleicher (1975), which is able to fit the experimental results, introduce an ad hoc,
semi-empirical constant, whose purpose is to account for viscous effects in the gas,
whereas in the present study, gas viscosity is retained self-consistently into the analysis.
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Figure 4. Comparison of the numerically computed (continuous line) and experimentally mea-
sured (circles) temporal growth rates. Experimental points are taken (with permission) from
figure 8 of Kalaaji et al. (2003). The parameters corresponding to each figure are (a) ρl =
998 kg m−3, µl = 10−3 kg m−1 s−1, σ = 72.9 × 10−3 N m−1, Ω = 0.74; (b) ρl = 1112 kgm−3, µl =
4.2 × 10−3 kg m−1 s−1, σ = 70.6 × 10−3 N m−1, Ω = 0.68; (c) ρl = 1172 kg m−3, µl =1.65 ×
10−2 kg m−1 s−1, σ = 70.1 × 10−3 Nm−1, Ω = 0.58. In the three cases considered, the liquid
jet radius is R =33.3 × 10−6 m and the outer fluid properties are those corresponding to air.

However, the precise effect of gas viscosity on the development of the perturbation
is not clear from the results presented so far. Indeed, gas viscosity enters into the
perturbed equations in two different ways: through the basic gas velocity profiles
and through the perturbed stress tensor τ ′ = µg(∇ug + ∇T ug). In the next section, it
will be shown that both contributions must be retained in order to reproduce the
experimentally measured growth rates.

3. Asymptotic analysis
It has been shown in § 2 how the experimental results on the FWI breakup regime

can be both explained and reproduced by a model based on a linear spatial stability
analysis of the coupled liquid–gas dynamics. Since the set of equations (2.7)–(2.18)
has been fully solved numerically in the previous section under the approximation
1/Re ∂/∂zl = 0, it is now of interest to consider such a system in some limiting
cases in which there exist simpler solutions that bring to light the physics of the
role of the gas viscosity in the breakup process. In this section, we carry out an
asymptotic analysis of the stability equations for the gas (2.7)–(2.18) valid for large
RegΩ , being Reg = Re νl/νg , and boundary-layer thickness and wavenumber, δg and
k respectively, of the order of those found in the experimental conditions of interest
here: δg/R0 ∼ O(1) and k ∼ O(1). In such a limit, the analysis shows that the effects
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On the first wind-induced liquid-jet break-up regime 13

of viscosity in the gas perturbations are confined to a narrow layer adjacent to the
gas–liquid boundary. Outside this layer, which we will call the ‘Stokes layer’, the
perturbations are non-viscous and have been already analysed elsewhere (Gordillo
et al. 2001). By matching the solution in the Stokes layer with that in the non-viscous
region, we will deduce that the effect of the viscous perturbations in the gas stream
can be accounted for by means of an approximate model which solves the spatial
stability problem only for the liquid phase subject to a modified pressure boundary
condition at the interface due to the presence of the gas. A similar modification was
suggested in an ad hoc manner by Sterling & Sleicher and, therefore, our results
may throw light on the physical meaning of their approximate analysis. Moreover,
we will also provide a criterion to decide a priori whether the viscosity in the gas
perturbations or, in other words, the contribution of the perturbed stress tensor τ ′,
should be retained in the stability analysis.

Omitting the g-subscripts, the equations governing the viscous perturbations for
the gas u, v and p are

iku +
∂v

∂ξ
+

v

ξ
= 0, (3.1)

−iΩv + ikUv = −∂p

∂ξ
+

1

Reg

(
∂2v

∂ξ 2
+

1

ξ

∂v

∂ξ
− v

ξ 2
− k2v − v

∂V

∂ξ
− V

∂v

∂ξ

)
, (3.2)

−iΩu + ikUu + v
∂U

∂ξ
= −ikp +

1

Reg

(
∂2u

∂ξ 2
+

1

ξ

∂u

∂ξ
− k2 u − u

∂U

∂zg

− V
∂u

∂ξ

)
, (3.3)

where U (ξ ) and V (ξ ) are, respectively, the known unperturbed gas axial and radial
velocities which depend parametrically on zg . For large Reynolds numbers, viscous
effects are confined to a narrow boundary layer adjacent to the liquid jet surface ξ = 1,
the width of which is of order O[(RegΩ)−1/2] as can be obtained by comparing inertia
and viscous terms in the momentum equations (3.2)–(3.3). The continuity equation
(3.1) then shows that, for k ∼ O(1), the increments in the radial component of the
perturbed velocity must be �v ∼ O(u/

√
RegΩ). Therefore, to analyse the viscous

boundary layer it proves convenient to introduce new variables y and v∗ defined as

y =
√

RegΩ(ξ − 1), v = vl(1) +
v∗√
RegΩ

, (3.4)

where vl(1) is the radial liquid velocity at the free surface. In addition, for (ξ − 1) � 1,
and since 1/

√
Reg Ω � δg/R0 ∼ O(1), the unperturbed gas axial and radial velocities

can be approximated, respectively, by

U (ξ ) 
 1 + U ′(1)(ξ − 1) + · · · = 1 +
1√

RegΩ
U ′(1)y, (3.5)

V (ξ ) 
 0.5V ′′(1)(ξ − 1)2 + · · · =
1

2 RegΩ
V ′′(1)y2. (3.6)

Note that use of the continuity equation (2.2) has been made in order to deduce (3.6).
On introducing the continuity equation (3.1) into (3.2)–(3.3) and expressing results in
terms of the variables (3.4), we obtain the following system of equations:

iku = −∂v∗

∂y
− vl(1) + O

[
(RegΩ)−1/2

]
, (3.7)

i[Ω − k]
∂v∗

∂y
+ Ω

∂3v∗

∂y3
= k2p − i(Ω − k) vl(1) − ikU ′(1)vl(1) + O

[
(RegΩ)−1/2

]
, (3.8)
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14 J. M. Gordillo and M. Pérez-Saborid

∂p

∂y
=

i√
Reg Ω

(Ω − k) vl(1) + O

(
1

RegΩ

)
. (3.9)

Observe that after (3.8)–(3.9) are solved for v∗ and p, u can be obtained directly
from (3.7). In order to solve for v∗ and p, we use a perturbation scheme of the form

p = p0 +
1√

RegΩ
p1, (3.10)

where, according to (3.9), p0 must be a constant and

p1 = p1c + i(Ω − k) vl(1) y. (3.11)

The boundary conditions for v∗ in (3.8) are

v∗(0) = 0,
∂v∗

∂y
= −iku(1) − vl(1) = −ik

(
ul(1) − U ′(1) f

)
− vl(1), (3.12)

where f is the perturbed jet radius and ul(1) is the liquid axial perturbed velocity
at the jet surface; notice that we have made use of the continuity of longitudinal
velocities across the interface (2.14). The general solution of (3.8) subjected to the
boundary conditions (3.12) at y = 0 yield the solution

v∗ =
A

β
(eβy − 1) +

B

i(Ω − k)
y, (3.13)

where we have defined the constants

β ≡ exp

(
i

(
3π

4
+

γ

2

)) √
| Ω − k |

Ω
, (3.14)

with γ = arg((Ω − k)/Ω) such that Re(β) < 0, and

B = k2p0 − i(Ω − k)vl(1) − ikU ′(1)vl(1), (3.15)

A = −ik[ul(1) − U ′(1) f ] − vl(1) − B

i(Ω − k)
. (3.16)

Note that the constants p0 and p1c will be obtained from the matching with the outer
solution. In the limit y → ∞,

v(y → ∞) → vl(1) +
B

i(Ω − k)
(ξ − 1) − 1√

RegΩ

A

β
, (3.17)

p(y → ∞) → p0 + i(Ω − k)vl(1)(ξ − 1) +
p1c√
RegΩ

. (3.18)

Equation (3.17) reveals that, outside the Stokes layer, the radial velocity suffers an
increment −A/(

√
Reg Ω β) with respect to that at the free surface, vl(1). As will be

shown below, this term introduces a correction for the gas pressure at the free surface
of the order of 1/

√
Reg(Ω − k).

Outside the boundary layer analysed above, viscous effects are negligible in the
perturbations and equations (3.2)–(3.3) can be written as

1

ξ

∂

∂ξ

(
ξ
∂p

∂ξ

)
− k2p = −2ikU ′v, (3.19)

v =
i

kU − Ω

∂p

∂ξ
, (3.20)
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On the first wind-induced liquid-jet break-up regime 15

where we have neglected terms of order O[(RegΩ)−1L(v)], L(v) representing linear
expressions of v and its derivatives. From (3.19)–(3.20) we also obtain the following
differential equation for p

∂2p

∂ξ 2
= k2p −

(
2kU ′

Ω − kU
+

1

ξ

)
∂p

∂ξ
, (3.21)

where terms of order O[(RegΩ)−1] have also been neglected; as shown in Gordillo
et al. (2001), the solution of (3.21) which is bounded at ξ → ∞ must satisfy at ξ = 1
the condition

P (Ω, k) ≡ p(1)

p′(1)
= −

∫ ∞

1

1

ξ

1

n2(ξ )

[
Uk − Ω

U (1)k − Ω

]2

dξ, (3.22)

where n(ξ ) is the particular solution of (3.21) which satisfies the boundary conditions
n(1) = 1 and n′(1) = 0. Equations (3.19)–(3.20) can be solved using the following
perturbation scheme

v = w1(ξ ) +
1√

RegΩ
w2(ξ ), (3.23)

p = Π1(ξ ) +
1√

RegΩ
Π2(ξ ), (3.24)

where v and p in (3.23)–(3.24) must match the behaviours (3.17)–(3.18) at ξ → 1. To
accomplish this we expand (3.23)–(3.24) around ξ = 1 in the form

v = [w1(1) + w′
1(1)(ξ − 1)] +

1√
RegΩ

w2(1), (3.25)

p = [Π1(1) + Π ′
1(1)(ξ − 1)] +

1√
RegΩ

Π2(1). (3.26)

Observe that, since both Π1(ξ ) and Π2(ξ ) satisfy (3.21), condition (3.22) implies
that

Π1(1)

Π ′
1(1)

=
Π2(1)

Π ′
2(1)

= P. (3.27)

After some algebraic computations using (3.19)–(3.21), comparison of (3.25) with
(3.17) and (3.26) with (3.18) yields

p0 = Π ′
1(1)P = i(Ω − k)Pvl(1), (3.28)

p1c = Π ′
2(1)P = iP (Ω − k)(−A/β). (3.29)

Therefore, the perturbed pressure at ξ = 1, which quantifies the aerodynamic effect
of the surrounding gaseous atmosphere, can be approximated by

p(1) = p0 + (RegΩ)−1/2p1c = i(Ω − k)vl(1)P [1 + α] + O[[Reg(Ω − k)]−1], (3.30)

where α is given by

α =
1√

−iReg(Ω − k)

(
Pk2 +

ikul(1)

vl(1)

)
, (3.31)

with Re[
√

−iReg(Ω − k)] < 0 in (3.31). Note that use of the kinematic free-surface
condition vl(1) = −i f (Ω − k) has been made in order to deduce (3.30). Thus, once P
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16 J. M. Gordillo and M. Pérez-Saborid

is computed using (3.22), the gas pressure over the liquid jet can be calculated through
the asymptotic equation (3.30) as a function of ul(1), vl(1), Ω , k and Reg . Notice that
the two different contributions of gas viscosity on the aerodynamic effect are clearly
differentiated in (3.30). Indeed, the only term that explicitly incorporates the influence
of the gas velocity profile in (3.30) is P , which results of solving the inviscid equation
(3.21). Furthermore, the effect of retaining viscous diffusion into the perturbed
equations (3.1)–(3.3) can be evaluated, with errors ∼ O([Reg(Ω −k)]−1) through (3.31).
Consequently, since P strongly depends on Ug(ξ ) (see (3.22)), a correct estimation
of the aerodynamic effect requires us to perform the stability analysis using realistic
basic velocity profiles. Moreover, the condition which, in view of (3.30) permits us to
safely neglect viscosity in the perturbed equations, is |α| � 1, α being defined in (3.31).
Also note that, if Reg(Ω −k) ∼ O(1), viscous diffusion must be retained in the stability
equations since, from (2.10), we have O[(Ω − k)ug] ∼ O(vg∂Ug/∂ξ ) ∼ O(1/Reg∂

2ug/

∂ξ 2) and, consequently, we would commit order-unity errors if we neglected the
perturbed viscosity terms from the stability equations. Observe that the criterion
|α| � 1, with α computed a priori using only the much simpler inviscid stability
results should still serve as a guide to assess the accuracy of a stability analysis
in which viscous diffusion is neglected (see, for instance, Villermaux 1998; Gordillo
et al. 2001; Marmottant & Villermaux 2004; Boeck & Zaleski 2005). Note that the
value of α can be calculated readily from the inviscid stability results, as follows.
Once the values of k, ul(1) and vl(1) are computed from the inviscid spatial stability
analysis, P is calculated from the integral (3.22). Finally, α is given by simply
substituting the results obtained into (3.31). However, (3.30) also indicates that, owing
to O[ul(1)/vl(1)] ∼ O(1), the criterion to ensure the validity of an inviscid stability
analysis in the cases in which O(P ) ∼ O(1), is simply |Reg(Ω − k)| � 1 and thus, the
exact calculation of P can be avoided.

In order to validate the asymptotic equation (3.30), the exact value of the gas pres-
sure at the gas–liquid interface, pE , will be compared with those obtained through
different approximations. On the one hand, pE will be calculated through the numeri-
cal procedure described in § 2 and, on the other hand, we will compute the approxima-
tions pI = i(Ω − k)vl(1)P and pV =pI (1+α) obtained, respectively, by neglecting and
retaining α in (3.30). Furthermore, the gas pressure provided by the Sterling & Sleicher
(1975) model, represented as pSS and given by

pSS(1) = 0.175 i(Ω −k)vl(1)
Ω2

(Ω − k)2
P = 0.175 i(Ω −k)vl(1)

Ω2

(Ω − k)2
−K0(k)

kK1(k)
, (3.32)

will also be compared with pE . In (3.32), P ≡ p(1)/p′(1) = −K0(k)/k K1(k) since the
Sterling & Sleicher (1975) model assumes an uniform gas velocity profile. Also notice
that pI , pV and pSS will be computed taking k, ul(1) and vl(1) from the numerical
solution already obtained in the previous section.

Table 1 shows the comparison of pE with pI (gas pressure at the interface if
viscous diffusion is neglected in the perturbed equations) for increasing values of
the liquid Reynolds number. From this table, note that the relative error, εI =(p −
pI )/p is ∼ O(α), in accordance with (3.30). Consequently, since the relative error
εI remains significant even for Reynolds numbers as large as 105, viscous diffusion
must be retained into the stability equations in order to describe properly the FWI
breakup regime. Note that the relative error εI does not scale with 1/

√
Reg , but

with 1/
√

Reg(Ω − k) as shown in (3.30). Indeed, O(1/
√

Reg) � O[1/
√

Reg(Ω − k)]
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Re pE pI |εI | |α|

105 −5.41 × 10−3 − i 1.15 × 10−2 −2.54 × 10−3 − i 1.12 × 10−2 2.3 × 10−1 3.33 × 10−1

106 −4.01 × 10−3 − i 1.22 × 10−2 −2.79 × 10−3 − i 1.23 × 10−2 9.5 × 10−2 1.05 × 10−1

107 −3.41 × 10−3 − i 1.30 × 10−2 −3 × 10−3 − i 1.31 × 10−2 3.14 × 10−2 3.32 × 10−2

Table 1. Comparison of the gas pressure at the interface for an air–water jet for increasing
Reynolds numbers using different approximations. We= 50, Oh = 0.021, zg =2.2, Ω = 0.74.

Re pE pV |εV | |α|

105 −5.41 × 10−3 − i 1.15 × 10−2 −6.18 × 10−3 − i 1.01 × 10−2 1.35 × 10−1 3.33 × 10−1

106 −4.01 × 10−3 − i 1.22 × 10−2 −4.06 × 10−3 − i 1.19 × 10−2 2.34 × 10−2 1.05 × 10−1

107 −3.41 × 10−3 − i 1.30 × 10−2 −3.43 × 10−3 − i 1.30 × 10−2 2.9 × 10−3 3.32 × 10−2

Table 2. Comparison of the gas pressure at the interface for an air–water jet for increasing
Reynolds numbers using different approximations. We = 50, Oh = 0.021, zg = 2.2, Ω = 0.74.

Re pE pSS

105 −5.41 × 10−3 − i 1.15 × 10−2 −3.33 × 10−2 − i 1.52 × 10−3

106 −4.01 × 10−3 − i 1.22 × 10−2 −3.65 × 10−2 − i 1.67 × 10−3

107 −3.41 × 10−3 − i 1.30 × 10−2 −3.92 × 10−2 − i 1.80 × 10−3

Table 3. Value of the gas pressure using (3.32) for the same conditions as those
indicated in tables 1 and 2.

since, for the high-Weber-number flows considered here, ∂kr/∂Ω 
 1 → Ωr 
 kr , and
O(ki) ∼ O(We−1/2) � 1; consequently, |Ω − k| � 1 and Reg � Reg|Ω − k|.

A further check on the validity of the asymptotic analysis is provided in table 2,
where pV is compared with pE . In this case, the relative error εV = (p − pV )/p is
much smaller than α for sufficiently large values of the Reynolds number, consistent
with the asymptotic analysis.

Finally, pSS is compared with pE in table 3 in order to check the accuracy of the
Sterling & Sleicher model. As can be deduced by comparing (3.30) and (3.32), their
approach of modelling gas viscosity through an ad hoc multiplicative factor seems to
be qualitatively correct but, from this table, note that the values of pSS differ by an
order of magnitude from the exact ones. This disagreement arises because both basic
gas velocity profile and gas Reynolds number vary from one experimental situation
to another, whereas the Sterling & Sleicher (1975) multiplicative factor does not. This
result is in contradiction to the success of Sterling & Sleicher’s model in predicting
experimental results (see Kalaaji et al. 2003; González & Garcı́a 2004). A plausible
explanation for this disagreement is provided in figure 5, where the correct value of
the multiplicative factor, F , which is defined as

F = pE

[
i(Ω − k)vl(1)

Ω2

(Ω − k)2
−K0(k)

k K1(k)

]−1

, (3.33)

is represented as a function of the intact jet length, zg . Notice that, under the realistic
experimental conditions for which the multiplicative factor is represented in figure 5,
F is no longer real and, in addition, evolves downstream. However, the mean value
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Im (F)
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Figure 5. Factor F , calculated (3.33) with the numerical values computed from the following
set of values for the parameters: We= 450, Oh =0.021, Ω =0.74. Continuous and dotted lines
indicate, respectively, real and imaginary parts of F . Physical properties of water (see caption
to figure 3) and air. The horizontal line is placed at 0.175.

of its modulus,

|F̄ | =
1

zb
g

∫ zb
g

0

|F | dzg = 0.14, (3.34)

which is fairly close to the value F = 0.175 used by Sterling & Sleicher (1975).
Consequently, the Sterling & Sleicher (1975) factor may be interpreted as a measure
of the mean variation of the basic velocity profiles and viscous diffusion in the
perturbations along the intact length of the jet.

Finally, note that the asymptotic analysis performed in this section give good results
only for very large Reynolds numbers. Since experiments are usually performed at
much lower Reynolds numbers, in general, we must resort to the complete numerical
analysis described in the previous section for the prediction of experimental growth
rates. Nevertheless, the relevance of the asymptotics stems from the fact that it
clarifies the role of gas viscosity in the development of the instability and, in addition,
it permits us to identify a parameter, α, which provides us with a criterion to determine
the validity of inviscid linear stability analysis.

4. Conclusions
In this paper we have studied the breakup of a liquid jet discharging in a stagnant

atmosphere. In order to treat the effect of gas viscosity rigorously, we have performed
a linear spatial stability analysis in which viscosity is retained self-consistently in the
gas perturbations. For this purpose, we have computed the downstream evolution of
the gas velocity profiles induced by the liquid jet and have retained in the stability
equations viscous diffusion terms ∼ O(1/Re). The numerically obtained perturbation
growth rates are computed under the approximation 1/Re ∂/∂zl = 0 by discretizing
the coupled gas–liquid stability equations using a Chebychev spectral collocation
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method (Lin & Chen 1998; Yecko et al. 2002) and solving them through the matrix
companion method (Bridges & Morris 1984). The stability of both axisymmetric
(m = 0) and helicoidal (m =1) modes has been considered and the results show that
asymmetric disturbances may grow faster than axisymmetric ones only for sufficiently
large values of both the Weber and Ohnesorge numbers. The numerical growth
rates for axisymmetric disturbances are compared with experiments, and an excellent
agreement is obtained. This permits us to conclude that a simple stability analysis
such as the one presented here can be used to predict experimental results.

In addition, in order to elucidate the precise role of gas viscosity into the problem,
we have performed an asymptotic analysis valid for axisymmetric disturbances, which
shows that, for sufficiently large values of the Reynolds number, viscous effects in the
perturbations are confined within a ‘Stokes layer’ adjacent to the liquid–gas interface.
Moreover, the resulting asymptotic expression for the gas pressure at the liquid
interface, which reflects the influence of the aerodynamic effect of the surrounding
gaseous atmosphere on the liquid jet, permits us to differentiate clearly the influence
of both the basic velocity profile and viscous diffusion in the development of the
instability. It is found that, for sufficiently high Reynolds numbers, the asymptotic
results are in agreement with the exact numerical ones up to terms of order |α| � 1,
where α is the parameter defined in (3.31) which measures the relative importance of
viscosity in the gas perturbations. The parameter α can be computed a priori using
solely inviscid stability results and its smallness constitutes a criterion to assess the
validity of the simpler non-viscous stability analysis. A similar criterion can easily
be deduced in other physical situations such as those arising in the study of the
atomization of liquid jets with high-speed coflowing gas streams. Equation (3.30) also
indicates that, in the cases in which O(P ) ∼ O(1), the criterion to ensure the validity
of an inviscid stability analysis is simply |Reg(Ω − k)| � 1.

Finally, asymptotics also reveals that, for sufficiently high Re, the complete analysis
can be simplified to solve the stability equations in the liquid region subject to a
modified pressure boundary condition which takes into account the presence of the
gas. This resembles the treatment given to the problem by Sterling & Sleicher (1975),
although in our paper both the result and the limits of validity have been obtained
in a self-consistent manner. Although the results of the asymptotic analysis are valid
only for Reynolds numbers which are too large to be compared with experiments, its
relevance stems from the fact that it clarifies the role played by gas viscosity in the
development of instabilities and, in addition, it permits us to identify a parameter,
α, which provides us with a criterion to determine the validity of inviscid linear
stability analysis. In general, in order to predict results under realistic experimental
conditions we must solve numerically the complete set of linear stability equations
of § 2 corresponding to the coupled liquid–gas problem which self-consistently retains
viscosity effects in the gas perturbations.

The authors greatly acknowledge P. Attanè for providing us with helpful experi-
mental information. They would also like to thank H. González and J. Garcı́a for their
careful reading of the manuscript and helpful suggestions.
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González, H. & Garcı́a, F. J. 2004 Comment on breakup length of forced liquid jets [Phys. Fluids
15, 2469 (2003)]. Phys. Fluids (submitted).
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