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Abstract. In the past four decades, the notion of quantum polynomial-time computability has been

mathematically modeled by quantum Turing machines as well as quantum circuits. This paper seeks

the third model, which is a quantum analogue of the schematic (inductive or constructive) definition

of (primitive) recursive functions. For quantum functions mapping finite-dimensional Hilbert spaces to

themselves, we present such a schematic definition, composed of a small set of initial quantum functions

and a few construction rules that dictate how to build a new quantum function from the existing ones. We

prove that our schematic definition precisely characterizes all functions that can be computable with high

success probabilities onwell-formed quantumTuringmachines in polynomial time, or equivalently uniform

families of polynomial-size quantum circuits. Our new, schematic definition is quite simple and intuitive

and, more importantly, it avoids the cumbersome introduction of the well-formedness condition imposed

on a quantum Turing machine model as well as of the uniformity condition necessary for a quantum circuit

model. Our new approach can further open a door to the descriptional complexity of quantum functions, to

the theory of higher-type quantum functionals, to the development of new first-order theories for quantum

computing, and to the designing of programming languages for real-life quantum computer

§1. Background, motivation, and the main results. In early 1980s emerged a
groundbreaking idea of exploiting quantum physics to build mechanical computing
devices, dubbed as quantum computers, which have completely altered the way we
used to envision “computers.” Subsequent discoveries of more efficient quantum
computations for factoring positive integers [29] and searching unstructured
databases [13, 14] than classical computations prompted us to look for more
mathematical and practical problems that can be solvable effectively on the quantum
computers. Efficiency in quantum computing has since then rapidly become an
important research subject of computer science as well as physics.
As a mathematical model to realize quantum computation, Deutsch [10]

introduced a notion of quantum Turing machine (or QTM, for short), which
was later discussed by Yao [39] and further refined by Bernstein and Vazirani
[4]. This mechanical model largely expands the classical model of (probabilistic)
Turing machine by allowing a physical phenomenon, called quantum interference,
to take place on its computation. A different Hamiltonian formalism of Turing
machine was also suggested by Benioff [3]. A QTM has an ability of computing a
quantum function mapping a finite-dimensional Hilbert space to itself by evolving
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QUANTUM POLYNOMIAL TIME COMPUTABILITY 1547

unitarily a superposition of (classical) configurations of the machine, starting with
a given input string and an initial inner state. A more restrictive use of the term of
“quantum function” is found in, e.g., [37], in which quantum functions take classical
input strings and produce either classical output strings of QTMs or acceptance
probabilities of QTMs. Throughout this paper, nevertheless, quantum functions
refer only to functions acting on Hilbert spaces of arbitrary dimensions.
To ensure the unitary nature of quantum computation, a QTM requires its

mechanism to meet the so-called well-formedness condition on a single-tape model
of QTM [4] and a multitape model [35, 37] (as well as [26]). Refer to Section 2.2 for
their precise definitions.
Bernstein and Vazirani further formulated a new complexity class, denoted by

BQP, as the collection of all languages recognized by well-formed QTMs running in
polynomial time with error probability bounded from above by 1/3. Furthermore,
QTMs equipped with output tapes can compute string-valued functions in place of
languages, and those functions form a function class, called FBQP.
From a different viewpoint, Yao [39] expanded Deutsch’s notion of quantum

network [11] and formalized a notion of quantum circuit, which is a quantum
analogue of classical Boolean circuit. Different from the classical Boolean circuit
model, a quantum circuit is composed of quantum gates, each of which represents a
unitary transformation acting on a Hilbert space of a small, fixed dimension. To act
as a “programmable” unitary operator, a family of quantum circuits requires the
so-called uniformity condition, which ensures that a blueprint of each quantum
circuit is easily rendered. Yao further demonstrated that a uniform family of
quantum circuits is powerful enough to simulate a well-formed quantum Turing
machine. As Nishimura and Ozawa [25] pointed out, the uniformity condition of a
quantum circuit family is necessary to precisely capture quantum polynomial-time
computation. With this uniformity condition, BQP and FBQP are characterized
exactly by uniform families of quantum circuits made up of polynomially many
quantum gates.
This current paper boldly takes the third approach toward the characterization

of quantum polynomial-time computability. Unlike the aforementioned mechanical
device models, our approach is to extend the schematic (inductive or constructive)
definition of (primitive) recursive functions on natural numbers. Such a schematic
definition was thought in the 19th century by Peano [27], opposed to the definition
given by Turing’s machine model [31]. This classical scheme comprises a small set
of initial functions and a small set of rules, which dictate how to construct a new
function from the existing ones. For instance, every primitive recursive function is
built from the constant, successor, and projection functions by applying composition
and primitive recursion finitely many times. In particular, the primitive recursion
introduces a new functionwhose values are defined by induction. Recursive functions
(in the form of ì-recursive functions [18, 19]) further require an additional scheme,
known as the minimization (or the least number) operator. These functions coincide
with the Herbrand-Gödel formalism of general recursive functions (see [9]). For a
historical account of these notions, refer to, e.g., [28]. Similar schematic approaches
to capture classical polynomial-time computability have already been sought in the
literature [6–8, 23, 33, 34]. Those approaches have led to quite different research
subjects from what the Turing machine model provides.
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Our purpose in this paper is to give a schematic definition of quantum functions
to capture the notion of quantum polynomial-time computability and, more
importantly, to make such a definition simpler and more intuitive for a practical
merit of our own. Our schematic definition (Definition 3.1) includes a set of initial
quantum functions, I (identity),NOT (negation of a qubit), PHASEè (phase shift
by eiè), ROTè (rotation around xy-axis by angle è), SWAP (swap between two
qubits), andMEAS (partial projective measurement), as well as construction rules,
composed of composition (Compo[·,·]), branching (Branch[·,·]), and multiqubit
quantumrecursion (kQRec[·, · |·]).Our choice of these initial quantum functions and
construction rules stems mostly from a universal set of quantum gates in use in the
past literature. Our quantum recursion, on the contrary, is quite different in nature
from the primitive recursion used to build primitive recursive functions. Instead of
using the successor function to count down the number of inductive iterations in the
primitive recursion, the quantum recursion uses a divide-and-conquer strategy of
reducing the number of accessible qubits needed for performing a specified quantum
function. Within our new framework, we can implement typical unitary operators,
such as the Walsh-Hadamard transform (WH), the controlled-NOT (CNOT), and
the global phase shift (GPS).
An immediate merit of our schematic definition is that we can avoid the

cumbersome introduction of the well-formedness condition imposed on the QTM
model and the uniformity condition on the quantum circuit model. Another
advantage of our schemata is that each scheme has its own inverse; namely, for any
quantum function g defined by one of the schemata, its inverse g–1 is also defined by
the same kind of scheme. For instance, the inverses of the quantum functionsROTè
and kQRect [g,h,p|{fs}s∈{0,1}k ] introduced inDefinition 3.1 are exactlyROT–è and

kQRect [g
–1,p–1,h–1|{f–1s }s∈{0,1}k ], respectively (Proposition 3.5).

For a further explanation of our main contributions, it is time to introduce
a succinct notation of ✷QP1 (where ✷ is pronounced “square”) to denote the
set of all quantum functions built from the initial quantum functions and by a
finite series of sequential applications of the construction rules. Since the partial
measurement (MEAS) is not a unitary operator, we denote the class obtained from

✷
QP
1 without use ofMEAS by ✷̂

QP
1 . Briefly, let us discuss clear differences between

our schematic definition and the aforementioned two formalisms of polynomial-
time quantumly computable functions in terms of QTMs and quantum circuits.
Two major differences are listed below.
1) While a single quantum circuit takes a fixed number of input qubits, our

quantum function takes an “arbitrary” number of qubits as an input. This situation
is similar toQTMs because aQTMhas an infinite tape and uses an arbitrary number
of tape cells during its computation as extra storage space. On the contrary to the

QTMs, a ✷̂QP1 -function is constructed using the same number of qubits as its original
input in such a way that a quantum circuit has the same number of input qubits and
output qubits.
2) The two machine models exhort an algorithmic description to dictate the

behavior of eachmachine;more specifically, aQTMuses a transition function,which
algorithmically describes how each step of the machine acts on certain qubits, and
a family of quantum circuits uses its uniformity condition to render the design of
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QUANTUM POLYNOMIAL TIME COMPUTABILITY 1549

quantum gates in each quantum circuit. Unlike these two models, no ✷QP1 -function
has any mechanism to store information on the description of the function itself but
the construction process itself specifies the behavior of the function.
As a consequence, the above mentioned differences help the ✷QP1 -functions take

a distinctive position among all possible computational models that characterize
quantum polynomial-time computability, and therefore we expect them to play an
important role in analyzing the features of quantum polynomial-time computation
from a quite different perspective.
In Section 3.1, we will formally present our schematic definition of✷QP1 - functions

(as well as ✷̂
QP
1 -functions) and show in Section 4.1 that ✷

QP
1 (also ✷̂

QP
1 ) can

characterize all functions in FBQP. More precisely, we assert in the main theorem
(Theorem4.1) that any function from {0,1}∗ to {0,1}∗ in FBQP can be characterized
by a certain polynomial p and a certain quantum function g ∈ ✷

QP
1 in such a

way that, by using an appropriate coding scheme, in the final quantum state of g
on instances x and the runtime bound p(|x|), we observe an output value f(x)
with high probability. This theorem will be split into two lemmas, Lemmas 4.2
and 4.3. The former lemma will be proven in Section 4.1; however, the proof
of the latter lemma is so lengthy that it will be postponed until Section 5. In
this proof, we will construct a ✷

QP
1 -function that can simulate the behavior of a

given QTM.
Notice that, since BQP is a special case of FBQP, BQP is also characterized by

our model. In our proof of the characterization theorem (Theorem 4.1), we will
utilize a main result of Bernstein and Vazirani [4] and that of Yao [39] extensively.
In Section 4.2, we will apply our characterization, in the help of a universal QTM
[4, 25], to obtain a quantum version of Kleene’s normal form theorem [18, 19], in
which there is a universal pair of primitive recursive predicate and function that can
describe the behavior of every recursive function.
Unlike classical computation on natural numbers (equivalently, strings over finite

alphabets by appropriate coding schemata), quantum computation refers to a series
of certain manipulations of a single vector in a finite-dimensional Hilbert space and
we need only high precision to approximate each function in FBQP by such a vector.
This fact allows us to choose a different set of schemata (initial quantum functions
and construction rules) to capture the essence of quantum computation. In Section
6.1, we will discuss this issue using an example of a general form of the quantum
Fourier transform (QFT). This transform may not be “exactly” computed in our
current framework of✷QP1 but we can easily expand✷

QP
1 to compute the generalized

QFT exactly if we include an additional initial quantum function, such as CROT
(controlled rotation).
Concerning future research on the current subject, we will discuss in Section 6

four new directions of the subject. Our schematic definition provides not only
a different way of describing languages and functions computable quantumly
in polynomial time but also a simple way of measuring the “descriptional”
complexity of a given language and a function restricted to instances of specified
length. This new complexity measure will be useful to prove basic properties

of ✷̂QP1 -functions in Section 3. Its future application will be briefly discussed in
Section 6.2.
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Kleene [20, 21] defined recursive functionals of higher types by extending the
aforementioned recursive functions on natural numbers. A more general study of
higher-type functionals has been conducted in computational complexity theory for
decades [7, 8, 16, 23, 30, 33, 34]. In a similar spirit, our schematic definition enables
us to study higher-type quantum functionals. In Section 6.3, using oracle functions
(function oracles or oracles), we will define type-2 quantum functionals, which may
guide us to a rich field of research in the future.
A schematic definition of how to construct a target ✷QP1 -function can be viewed

as a “program” that describes a series of instructions on which schemata to use.
Hence, our schematic formulation opens a door to a new, practical application
to the designing of succinct programming languages to control the operations of
real-life quantum computers. In Section 6.4, we will briefly argue on an application
of the schematic definition to the future development of “quantum programming
languages.” As a further application of our schematic definition, we can look into a
new aspect of first-order theories and their subtheories. Earlier, a quantum analogue
ofNP (nondeterministic polynomial time class) and beyondwere sought in [36] with
the use of bounded quantifiers over quantum states in finite-dimensional Hilbert
spaces. In a similar vein, we expect that ✷QP1 will serve as a foundation to the
introduction of first-order theories and their subtheories over quantum states in
Hilbert spaces.

§2. Fundamental notions and notation. We begin with explaining basic notions
and notation necessary to read through the subsequent sections. Let us assume the
reader’s familiaritywith classicalTuringmachines (see, e.g., [15]). For the foundation
of quantum information and computation, in contrast, the reader refers to basic
textbooks, e.g., [17, 24].

2.1. Numbers, languages, and qustrings. The notation Z indicates the set of all
integers andN expresses the set of all natural numbers (that is, non-negative integers).
For convenience, we set N+ = N – {0}. Moreover, Q denotes the set of all rational
numbers and R indicates the set of all real numbers. For two numbers m,n ∈ Z
with m ≤ n, the notation [m,n]Z denotes an integer interval {m,m+1,m+2, ...,n},
compared to a real interval [α,â] for α,â ∈ R with α ≤ â . In particular, [n] is
shorthand for [1,n]Z for any n ∈N+. ByC, we express the set of all complex numbers.
Given α ∈ C, α∗ expresses the complex conjugate of α. Polynomials are assumed to
have natural numbers as their coefficients and they thus produce nonnegative values
fromnonnegative inputs.A real numberα is called polynomial-time approximable1 if
there exists amultitape polynomial-time deterministic TuringmachineM (equipped
with awrite-only output tape) that, on each input of the form1n for a natural number
n, produces a finite binary fraction, M (1n), on its designated output tape with
|M (1n) – α| ≤ 2–n. Let C̃ be the set of complex numbers whose real and imaginary
parts are both polynomial-time approximable. For a bit a ∈ {0,1}, a indicates 1 – a.
Given amatrixA,AT denotes its transpose andA† denotes the transposed conjugate
of A.

1Ko andFriedman [22] first introduced this notion under the name of “polynomial-time computable.”
To avoid reader’s confusion in this paper, we prefer to use the term “polynomial-time approximation.”

https://doi.org/10.1017/jsl.2020.45 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.45


QUANTUM POLYNOMIAL TIME COMPUTABILITY 1551

An alphabet is a finite nonempty set of “symbols” or “letters.” Given such an
alphabet Σ, a stringoverΣ is a finite series of symbols taken fromΣ.The concatenation
of two strings u and w is expressed as u ·w or more simply uw. The length of a string
x, denoted by |x|, is the number of all occurrences of symbols in x. In particular,
the empty string has length 0 and is denoted ë. We write Σn (resp.,Σ≤n) for the
subset of Σ∗ consisting only of all strings of length n (resp., length at most n) and
we set Σ∗ =

⋃
n∈N
Σn (the set of all strings over Σ). A language over Σ is a subset

of Σ∗. Given a language S, its characteristic function is also expressed by S; that is,
S(x) = 1 for all x ∈ S and S(x) = 0 for all x /∈ S. A function on Σ∗ (i.e., from Σ∗ to
Σ∗) is polynomially bounded if there exists a polynomial p satisfying |f(x)| ≤ p(|x|)
for all strings x ∈ Σ∗.
For each natural number k ≥ 1,Hk expresses aHilbert space of dimension k and

each element ofHk is expressed as |φ〉 usingDirac’s “ket” notation. In this paper, we
are interested only in the case where k is a power of 2 and we implicitly assume that k
is of the form2n for a certainn ∈N. Any element ofH2 that has the unit norm is called
a quantum bit or a qubit. By choosing a standard computational basisB1 = {|0〉,|1〉},
every qubit |φ〉 can be expressed as α0|0〉+α1|1〉 for an appropriate choice of two
values α0,α1 ∈C (called amplitudes) satisfying |α0|2+ |α1|2 = 1. We also express |φ〉
as a column vector of the form (

α0
α1); in particular, |0〉= ( 10) and |1〉= ( 01). In a more

general case of n ≥ 1, we use Bn = {|s〉 | s ∈ {0,1}n} as a computational basis ofH2n
with |Bn| = 2n. Given any number n ∈ N+, a qustring of length n is a vector |φ〉 of
H2n with unit norm; namely, it is of the form

∑
s∈{0,1}n αs |s〉, where each amplitude

αs is in C with
∑
s∈{0,1}n |αs |2 = 1. Notice that a qubit is a qustring of length 1.

The exception is the null vector, denoted simply by 0, which has norm 0. Although
the null vector could be a qustring of “arbitrary” length n, we instead refer to
it as the qustring of length 0 for convenience. We use the notation Φn for each n ∈ N
to denote the collection of all qustrings of length n. Finally, we set Φ∞ =

⋃
n∈N
Φn

(the set of all qustrings).
When s = s1s2 ···sn with si ∈ {0,1} for any index i ∈ [n], the qustring |s〉 coincides

with |s1〉 ⊗ |s2〉 ⊗ ··· ⊗ |sn〉, where ⊗ denotes the tensor product and is expressed
as, for example, |00〉 = (1 0 0 0)T , |01〉 = (0 1 0 0)T , and |11〉 = (0 0 0 1)T . The
transposed conjugate of |s〉 is denoted by 〈s | (with the “bra” notation). For instance,
if |φ〉 = α|01〉+ â |10〉, then 〈φ| = α∗〈01|+ â∗〈10|. The inner product of |φ〉 and
|ø〉 is expressed as 〈φ|ø〉 and the norm of |φ〉 is thus

√
〈φ|ø〉. When we observe or

measure |φ〉 in the computational basis Bn, we obtain each string s ∈ {0,1}n with
probability |〈s |φ〉|2.
Let H∞ =

⋃
n∈N+H2n . We extend the “length” notion to arbitrary quantum

states in H∞. Given each non-null vector |φ〉 in H∞, the length of |φ〉, denoted by
ℓ(|φ〉), is the minimal number n ∈ N satisfying |φ〉 ∈ H2n ; in other words, ℓ(|φ〉)
is the logarithm of the dimension of the vector |φ〉. Conventionally, we further set
ℓ(0) = ℓ(α) = 0 for the null vector 0 and any scalar α ∈ C. By this convention, if
ℓ(|φ〉) = 0 for a quantum state |φ〉, then |φ〉 must be the qustring of length 0. A
qustring |φ〉 of length n is called basic if |φ〉 = |s〉 for a certain binary string s and
we often identify such a basic qustring |s〉 with the corresponding classical binary
string s for convenience. Since all basic qustrings in Φn form Bn, H2n is spanned by
all elements in Φn.
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The partial trace over a system B of a composite system AB , denoted by trB ,
is a quantum operator for which trB(|φ〉〈φ|) is a vector obtained by tracing out B
from the outer product |φ〉〈φ| of a quantum state |φ〉. Regarding a quantum state
|φ〉 of n qubits, we use a handy notation trk(|φ〉〈φ|) to mean the quantum state
obtained from |φ〉 by tracing out all qubits except for the first k qubits. For example,
it follows for ó1,ó2,ô1,ô2 ∈ {0,1} that tr1(|ó1〉〈ó2| ⊗ |ô1〉〈ô2|) = |ó1〉〈ó2| · tr(|ô1〉〈ô2|),
where tr(B) denotes the trace of a matrix B. The trace norm ‖A‖tr of a square
matrix A is defined by ‖A‖tr = tr(

√
AA†). The total variation distance between two

ensembles p = {pi}i∈A and q = {qi}i∈A of real numbers over a finite index set A is
1
2‖p – q‖1 = 12

∑
i∈A ||pi | – |qi ||.

Throughout this paper, we take special conventions concerning three notations,
|·〉, ⊗, and ‖ · ‖, which respectively express quantum states, the tensor product, and
the ℓ2-norm. These conventions slightly deviate from the standard ones used in,
e.g., [24], but they make our mathematical descriptions in later sections simpler and
more succinct.
Notational conventions. We freely abbreviate |φ〉⊗ |ø〉 as |φ〉|ø〉 for any two

vectors |φ〉 and |ø〉. Given two binary strings s and t, |st〉 means |s〉⊗ |t〉 or |s〉|t〉.
Let k and n be two integers with 0< k< n. Any qustring |φ〉 of length n is expressed
in general as |φ〉 =∑

s :|s|=k |s〉|φs〉, where each |φs〉 is a qustring of length n – k.
This qustring |φs〉 can be viewed as a consequence of applying a partial projective
measurement to the first k qubits of |φ〉, and therefore it is possible to express
|φs〉 succinctly as 〈s |φ〉. With this new, convenient notation, |φ〉 coincides with∑
s :|s|=k |s〉⊗〈s |φ〉, which is simplified as

∑
s :|s|=k |s〉〈s |φ〉. Notice that, when k = n,

〈s |φ〉 is a scalar, say, α inC. Hence, |s〉⊗〈s |φ〉 is |s〉⊗α and it is treated as a column
vectorα|s〉; similarly, we identifyα⊗|s〉withα|s〉. In these cases,⊗ is treatedmerely
as the scalar multiplication. As a consequence, the equality |φ〉 =∑

s :|s|=k |s〉〈s |φ〉
holds even when k = n. Concerning the null vector 0, we also take the following
special treatment: for any vector |φ〉 ∈ H∞, (i) 0⊗|φ〉 = |φ〉⊗0 = 0, (ii) |φ〉⊗0 =
0⊗|φ〉= 0, and (iii) when |ø〉 is the null vector, 〈φ|ø〉= 〈ø|φ〉= 0. Associated with
those conventions on the partial projective measurement 〈φ|ø〉, we also extend the
use of the norm notation ‖ · ‖ to scalars. When ℓ(|φ〉) = ℓ(|ø〉), ‖〈φ|ø〉‖ expresses
the absolute value |〈φ|ø〉|; more generally, for any number α ∈ C, ‖α‖ means |α|.
With these extra conventions, when |φ〉 has the form∑

s :|s|=k |s〉〈s |φ〉, the equation
‖|φ〉‖2 =

∑
s :|s|=k ‖〈s |φ〉‖2 always holds for any index k ∈ [n].

2.2. Quantum Turing machines. We assume the reader’s fundamental knowledge
on the notion of quantum Turing machine (or QTM) defined in [4]. As was done in
[35], we allow a QTM to equip multiple tapes and to move its multiple tape heads
nonconcurrently either to the right or to the left, or to make the tape heads stay still.
Such a QTMwas also discussed elsewhere (e.g., [26]) and is known to polynomially
equivalent to the model proposed in [4].
To compute functions from Σ∗ to Σ∗ over a given alphabet Σ, we generally

introduce QTMs as machines equipped with output tapes on which output strings
are written in a certain specified way by the time the machines halt. By identifying
languages with their characteristic functions, such QTMs can be seen as language
acceptors as well.
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Formally, a k-tape quantum Turing machine (referred to as k-tape QTM), for
k ∈ N+, is a sextuple (Q,Σ,Γ1× ···×Γk,ä,q0,Qf), where Q is a finite set of inner
states including the initial state q0 and a set Qf of final states with Qf ⊆Q, each Γi
is an alphabet used for tape i with a distinguished blank symbol # satisfying Σ⊆ Γ1,
and ä is a quantum transition function from Q× Γ̃(k)×Q× Γ̃(k)×{L,N,R}k to C,
where Γ̃(k) stands for Γ1×···×Γk . For convenience, we identify L, N, and R with
– 1, 0, and +1, respectively, and we set D = {0,± 1}. For more information, refer
to [35].
All tape cells of each tape are indexed sequentially by integers. The cell indexed

0 on each tape is called the start cell. At the beginning of the computation, M
is in the inner state q0, all the tapes except for the input tape are blank, and all
tape heads are scanning the start cells. A given input string x1x2 ···xn is initially
written on the input tape in such a way that, for each index i ∈ [n], xi is in cell
i (not cell i – 1). When M enters a final state, an output of M is the content of
the string written on an output tape (if M has only a single tape, then an output
tape is the same as the tape used to hold inputs) from the start cell, stretching
to the right until the first blank symbol. A configuration of M is expressed as
a triplet (p,(hi)i∈[k],(zi)i∈[k]), which indicates that M is currently in inner state
p having k tape heads at cells indexed by h1, ...,hk with tape contents z1, ...,zk ,
respectively. The notion of configuration will be slightly modified in Sections 4–5
to make the proof of our main theorem simpler. An initial configuration is of the
form (q0,0,x) and a final configuration is a configuration having a final state. The
configuration space is spanned by the basis vectors in {|q,h,z〉 | q ∈ Q,h ∈ Zk,z ∈
Γ∗1 ×···Γ∗k}. For a nonempty string zi and an index h ∈ [|zi |], zi [h] denotes the hth
symbol in zi . For example, if zi = 01101, then zi [1] = 0, zi [2] = 1, and zi [5] = 1.
The time-evolution operator Uä of M acting on the configuration space is induced
from ä as

Uä |p,h,z〉=
∑

q,w,d

ä(p,zh,q,z
′
h,d )|q,hd ,z ′〉,

where p ∈Q, h = (hi)i∈[k] ∈ Zk , z = (zi)i∈[k] ∈ Γ∗1 ×···×Γ∗k , zh = (zi [hi ])i∈[k], hd =
(hi +di)i∈[k], and z ′ = (z ′i )i∈[k], where each z

′
i is the same as z except for the hi -th

symbol.Moreover, in the summation, variables q, z ′h = (z
′
i [hi ])i∈[k], and d = (di)i∈[k]

respectively range over Q, Γ̃(k), and Dk . Any entry of Uä is called an amplitude.
Quantum mechanics demand the time-evolution operator Uä of the QTM to be
unitary.
Each step of M consists of two phases: first apply ä and then perform a partial

projective measurement, in which we check whetherM is in a final state (i.e., an inner
state in Qf). Formally, a computation ofM on input x is a series of superpositions
of configurations produced by sequential applications of Uä and measurements,
starting from an initial configuration of M on x. If M enters a final state along
a computation path, this computation path terminates; otherwise, its computation
must continue.
A k-tape QTM M = (Q,Σ,Γ̃(k),ä,q0,Qf) is well-formed if ä satisfies three

local conditions: unit length, separability, and orthogonality. To explain these
conditions, as presented in [35, Lemma 1], we first introduce the following
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notations. For our convenience, we set E = {0, ± 1, ± 2} and H = {0, ± 1,♮}.
Given elements (p,ó,ô) ∈ Q× (Γ̃(k))2, å = (εi)i∈[k] ∈ Ek , and d = (di)i∈[k] ∈ Dk ,
we define Då = {d ∈ Dk | ∀i ∈ [k] (|2di – εi | ≤ 1)} and Ed = {ε ∈ Ek | d ∈ Då}.
Moreover, let hd,å = (hdi ,εi )i∈[k], where hdi ,εi = 2di – εi if εi 6= 0 and hdi ,εi = ♮
otherwise. Finally, we define ä(p,ó) =

∑
q,ô,d ä(p,ó,q,ô,d )|q,ô,d 〉 and ä[p,ó,ô|å] =∑

q∈Q
∑
d∈Då ä(p,ó,q,ô,d )|Ed |

–1/2|q〉|hd,å〉, where ó,ô ∈ Γ̃(k) and d ∈Dk .
1. (unit length) ‖ä(p,ó)‖= 1 for all (p,ó) ∈Q× Γ̃(k).
2. (orthogonality) ä(p1,ó1) · ä(p2,ó2) = 0 for any distinct pair (p1,ó1),(p2,ó2) ∈
Q× Γ̃(k).

3. (separability) ä[p1,ó1,ô1|å] · ä[p2,ó2,ô2|å′] = 0 for any distinct pair å,å′ ∈ Ek
and for any pair (p1,ó1,ô1),(p2,ó2,ô2) ∈Q× (Γ̃(k))2.

The well-formedness of a QTM captures the unitarity of its time-evaluation
operator.

Lemma 2.1 (Well-Formedness Lemma of [35]). A k-tape QTM M with a
transition function ä is well-formed iff the time-evolution operator of M preserves
the ℓ2-norm.

Given a nonempty subset K of C, we say that a QTM is of K-amplitude if all
values of its quantum transition function belong toK. It is of significant importance
to limit the choice of amplitude within an appropriate set K of reasonable numbers.
With the use of such a set K, we introduce two important complexity classes BQPK
and FBQPK .

Definition 2.2. Let K be any nonempty subset of C and let Σ be any
alphabet.

1. A subset S of Σ∗ is in BQPK if there exists a multitape, polynomial-time, well-
formed QTM M with K-amplitudes such that, for every string x, M outputs
S(x) with probability at least 2/3 [4].

2. A single-valued function f from Σ∗ to Σ∗ is called bounded-error quantum
polynomial-time computable if there exists a multitape, polynomial-time, well-
formed QTM M with K-amplitudes such that, on every input x, M outputs
f(x) with probability at least 2/3. Let FBQPK denote the set of all such
functions [37].

The use of arbitrary complex amplitudes turns out to make BQPK quite powerful.
As Adleman, DeMarrais, and Huang [1] demonstrated, BQPC contains all possible
languages, and thus BQPC is no longer recursive. Therefore, we usually pay our
attention only to polynomial-time approximable amplitudes and, for this reason,
when K = C̃, we always drop subscript K and briefly write BQP and FBQP instead
of BQPK and FBQPK , respectively. It is also possible to further limit the amplitude
set K to {0,±1,± 3

5,± 4
5} because BQP = BQP{0,±1,± 35 ,± 45} holds [1].

2.3. Quantum circuits. A k-qubit quantum gate, for k ∈ N+, is a unitary operator
acting on a Hilbert space of dimension 2k . Since any quantum state is a vector in a
certain Hilbert space, each entry of such a quantum state is customarily called
an amplitude. The Walsh-Hadamard transform (WH) and the controlled-NOT
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transform (CNOT) defined as

WH =
1√
2

(
1 1
1 – 1

)
and CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


,

are typical quantum gates acting on 1 qubit and 2 qubits, respectively. If a quantum
gateU acting on k qubits is applied to a k-qubit quantum state |φ〉, then we obtain a
new quantum stateU |φ〉. Notice that every quantum gate preserves the norm of any
quantum state given as an input. A quantum circuit is a product of a finite number of
layers, where each layer is a Kronecker product of allowed quantum gates. We often
concentrate on a particular set of quantum gates to construct quantum circuits. Let
us consider the specific quantum gates: the CNOT gate and three one-qubit gates of
the form

Z1,è =

(
eiè 0
0 1

)
, Z2,è =

(
1 0
0 eiè

)
, and Rè =

(
cosè – sinè
sinè cosè

)
,

where è is a real number with 0 ≤ è < 2ð. Notice that WH equals R ð
4
. Those

gates form a universal set of quantum gates [2] sinceWH and Z2, ð4 (called the ð/8

gate) can approximate any single-qubit unitary operator to arbitrary accuracy. For
convenience, we call them elementary gates. The set of CNOT , WH , and Z2, ð4 is

also known to be universal [5].
Given an amplitude set K, a quantum circuit C is said to have K-amplitudes

if all entries of each quantum gate used inside C are drawn from K. For any k-
qubit quantum gate and any integer n > k, G (n) denotes G ⊗ I⊗n–k , the n-qubit
expansion of G. An n-qubit quantum circuit is formally defined as a finite sequence
(Gm,ðm),(Gm–1,ðm–1), ...,(G1,ð1) such that each Gi is an ni -qubit quantum gate
with ni ≤ n and ði is a permutation on {1,2, ...,n}. This quantum circuit represents
the unitary operator U = UmUm–1 ···U1, where Ui is of the form V †

ði
G (n)i Vði and

Vði (|x1 ···xn〉) = |xði (1) ···xði (n)〉 for each i ∈ [m]. The size of a quantum circuit is
the total number of quantum gates in it. Yao [39] and later Nishimura and Ozawa
[25] showed that, for any k-tape QTM and a polynomial p, there exists a family of
quantum circuits of size O(p(n)k+1) that exactly simulatesM.
A family {Cn}n∈N of a quantum circuit is said to be P-uniform if there exists a

deterministic (classical) Turing machine that, on input 1n, produces a code of Cn
in time polynomial in the size of Cn, provided that we use a fixed, efficient coding
scheme to describe each quantum circuit.

Proposition 2.3 ([39] (see also [25])). For any language L over an alphabet {0,1},
L is in BQP iff there exist a polynomial p and a P-uniform family {Cn}n∈N of quantum

circuits having C̃-amplitudes such that ‖〈L(x)|C|x||x10p(|x|)〉‖2 ≥ 2
3 holds for all x ∈

{0,1}∗, where L is seen as the characteristic function of L.
Yao’s inspiring proof [39] of Proposition 2.3 gives a foundation to our proof of

Lemma 4.3, which provides in Section 3.1 a simulation of a well-formed QTM by
an appropriately chosen ✷QP1 -function.
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§3. A new, simple schematic definition. As noted in Section 1, the “schematic”
definition of recursive functionmeans an inductive (or constructive) way of defining
the set of computable functions and it involves a small set of so-called initial functions
as well as a small set of construction rules, which are sequentially applied finitely
many times to build more complex functions from certain functions that have been
already constructed. A similar schematic characterization is known for polynomial-
time computable functions (as well as languages) [6–8, 23, 34]. Along this line of
work, we wish to present a new, simple schematic definition composed of a small
set of initial quantum functions and a small set of construction rules, intending to
make this schematic definition appropriately capture polynomial-time computable
quantum functions, where a quantum function is a function mapping H∞ to H∞.
As remarked briefly in Section 1, it is important to note that our term of “quantum
function” is quite different from the one used in, e.g., [37], in which “quantum
function” refers to functions that take classical input strings and produce either
classical output strings or acceptance probabilities of multitape polynomial-time
well-formed QTMs and thus it maps Σ∗ to either Σ∗ or the real unit interval [0,1],
where Σ is an appropriate alphabet.

3.1. Definition of ✷
QP
1
-functions. Our schematic definition induces a special

function class, called✷QP1 (where✷ is pronounced “square”), capturing polynomial-
time computable quantum functions mapping H∞ to H∞, which is composed
of a small set of initial quantum functions and four special construction rules:
composition, swapping, branching, and multiqubit quantum recursion. Definition
3.1 formally presents our schematic definition.
Hereafter, we say that a quantum function f from H∞ to H∞ is dimension-

preserving if, for every quantum state |φ〉 ∈ H∞, ℓ(|φ〉) = ℓ(f(|φ〉)).

Definition 3.1. Let ✷QP1 denote the collection of all quantum functions that
are obtained from the initial quantum functions in Scheme I by a finite number
(including zero) of applications of construction rules II–IV to quantum functions
that have been already constructed, where Schemata I–IV2 are given as follows. Let
|φ〉 be any quantum state inH∞.

I. The initial quantum functions. Let è ∈ [0,2ð)∩ C̃ and a ∈ {0,1}.
1) I (|φ〉) = |φ〉. (identity)
2) PHASEè(|φ〉) = |0〉〈0|φ〉+ eiè |1〉〈1|φ〉. (phase shift)
3) ROTè(|φ〉) = cosè|φ〉+ sinè(|1〉〈0|φ〉 – |0〉〈1|φ〉). (rotation around xy-
axis at angle è)

4) NOT (|φ〉) = |0〉〈1|φ〉+ |1〉〈0|φ〉. (negation)
5) SWAP(|φ〉) =

{ |φ〉 if ℓ(|φ〉)≤ 1,∑
a,b∈{0,1} |ab〉〈ba|φ〉 otherwise.

(swapping of 2

qubits)
6) MEAS[a](|φ〉) = |a〉〈a|φ〉. (partial projective measurement)

2The current formalism of Schemata I–IV corrects discrepancies caused by the early formalism given
in the extended abstract [38].
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II. The composition rule. From g and h, we define Compo[g,h] as follows:
Compo[g,h](|φ〉) = g ◦h(|φ〉) (= g(h(|φ〉))).

III. The branching rule. From g and h, we define Branch[g,h] as:
(i) Branch[g,h](|φ〉) = |φ〉 if ℓ(|φ〉)≤ 1,
(ii) Branch[g,h](|φ〉) = |0〉⊗g(〈0|φ〉)+ |1〉⊗h(〈1|φ〉) otherwise.

IV. The multiqubit quantum recursion rule. From g, h, dimension-preserving p,
and k,t ∈ N+, we define kQRect [g,h,p|Fk] as:
(i) kQRect [g,h,p|Fk](|φ〉) = g(|φ〉) if ℓ(|φ〉)≤ t,
(ii) kQRect [g,h,p|Fk](|φ〉) = h(

∑
s :|s|=k |s〉⊗fs(〈s |øp,φ〉)) otherwise,

where |øp,φ〉 = p(|φ〉) and Fk = {fs}s∈{0,1}k ⊆ {kQRect [g,h,p|Fk],I }. To
emphasize “k,” we call this rule by the k-qubit quantum recursion. In the case
of k = 1, we writeQRect [g,h,p|f0,f1] in place of 1QRect [g,h,p|{f0,f1}] for
brevity.

In Scheme I, PHASEè and ROTè correspond respectively to the matrices
Z2,è and Rè given in Section 2.3. Latter, we will argue that an angle è in
PHASEè and ROTè could be fixed to ð/4. The quantum function MEAS is
associated with a partial projective measurement, in the computational basis {0,1},
applied to the first qubit of |φ〉, when ℓ(|φ〉) ≥ 1, and it obviously follows that
ℓ(MEAS[i ](|φ〉))≤ ℓ(|φ〉).
Before proceeding further, to help the reader understand the behaviors of the

initial quantum functions listed in Scheme I, we briefly illustrate how these functions
transform basic qustrings of length 3. For bits a,b,c,d ∈ {0,1}with d 6= a, it follows
that I (|abc〉) = |abc〉, PHASEè(|abc〉 = eièa |abc〉, ROTè(|abc〉) = cosè|abc〉+(–
1)a sinè|abc〉, NOT (|abc〉) = |abc〉, SWAP(|abc〉) = |bac〉, MEAS[a](|abc〉) =
|abc〉, andMEAS[d ](|abc〉) = 0, where a = 1 – a.
Scheme IV is a core of the definition of ✷QP1 . The standard recursion rule used

to define a primitive recursive function f from two functions g and h has the form:
f(0,x) = g(x) and f(n+1,x) = h(n,x,f(n,x)) for any n ∈ N. This rule requires
an internal counter (in the first argument place of f ) that controls the number of
iterated applications of h. In Scheme IV, however, we do not use such a counter.
Instead, we use a divide-and-conquer strategy to slice a given quantum state qubit
by qubit. At each inductive step, we deal with k-qubit shorter quantum states until
the quantum state has become length t or less. We wish to provide two concrete
examples of how Scheme IV works in the cases of k = 1,2. Notice that, in the case
of k = 1, Scheme IV becomes the 1-qubit (or single-qubit) quantum recursion rule
described as:

(i′)QRect [g,h,p|f0,f1](|φ〉) = g(|φ〉) if ℓ(|φ〉)≤ t,
(ii′)QRect[g,h,p|f0,f1](|φ〉)=h(|0〉⊗f0(〈0|øp,φ〉)+|1〉⊗f1(〈1|øp,φ〉) otherwise,
where each of f0 and f1 must be either I or QRect [g,h,p|f0,f1].

Example 1. We first consider the case of k = 1. In this example, we set
t = 1, g = NOT , h = SWAP, and p = NOT , and we briefly write F for
QRec1[NOT,SWAP,NOT |f0,f1] with f0 = I and f1 = F . It is worth mentioning
that 0 is a special object and we obtain g(0) = 0 for any quantum function g
by Lemma 3.4(1). Let |φ〉 denote any quantum state in H∞ given as an input
to F.
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(1) Assume that |φ〉 has length 1 and is of the form α|0〉+â |1〉 in general. By
Lemma 3.4(2), it suffices for us to consider the computational basis B1 =
{|0〉,|1〉}. Since ℓ(|φ〉) ≤ t, the outcomes of f for those basis qubits |0〉 and
|1〉 are calculated as follows.
(i) F (|0〉) = g(|0〉) =NOT (|0〉) = |1〉.
(ii) F (|1〉) = g(|1〉) =NOT (|1〉) = |0〉.
Obviously, F (0) = 0 holds. Since |φ〉 is a superposition of the form α|0〉+

â |1〉, the above calculations instantly imply

F (|φ〉) = F (α|0〉+â |1〉) =NOT (α|0〉+â |1〉) = αNOT (|0〉)+âNOT (|1〉)
= α|1〉+â |0〉.

(2) Next, let us assume that |φ〉 is of length 2. In the case where |φ〉 is the
basis quantum state |00〉 in B2 = {|00〉,|01〉,|10〉,|11〉}, we obtain |øp,φ〉 =
|øNOT,00〉 = NOT (|00〉) = |10〉. Similarly, if |φ〉 is |01〉, |10〉, and |11〉, then
the quantum state |øp,φ〉 is |11〉, |00〉, and |01〉, respectively. Concerning
the partial projective measurement, it follows that, for any bit a ∈ {0,1},
〈1|1a〉= |a〉, 〈0|0a〉= |a〉, 〈1|0a〉= 0, and 〈0|1a〉= 0. Note also that I (0) = 0.
Using these equalities together with F (|0〉) = |1〉 and F (|1〉) = |0〉 obtained
in (1), we can calculate the outcome F (|φ〉) as follows.
(i) F (|00〉) = h(|0〉 ⊗ f0(〈0|øNOT,00〉) + |1〉 ⊗ f1(〈1|øNOT,00〉) = h(|0〉 ⊗
I (〈0|10〉) + |1〉 ⊗ F (〈1|10〉)) = h(|0〉 ⊗ I (0) + |1〉 ⊗ F (|0〉)) = h(|1〉 ⊗
F (|0〉)) = SWAP(|1〉⊗ |1〉) = SWAP(|11〉) = |11〉.

(ii) F (|10〉) = h(|0〉 ⊗ f0(〈0|øNOT,10〉) + |1〉 ⊗ f1(〈1|øNOT,10〉) = h(|0〉 ⊗
I (〈0|00〉) + |1〉 ⊗ F (〈1|00〉)) = h(|0〉 ⊗ I (|0〉) + |1〉 ⊗ F (0)) = h(|0〉 ⊗
I (|0〉)) = SWAP(|0〉⊗ |0〉) = SWAP(|00〉) = |00〉.

(iii) F (|01〉) = h(|0〉 ⊗ f0(〈0|øNOT,01〉) + |1〉 ⊗ f1(〈1|øNOT,01〉) = h(|0〉 ⊗
I (〈0|11〉) + |1〉 ⊗ F (〈1|11〉)) = h(|0〉 ⊗ I (0) + |1〉 ⊗ F (|1〉)) = h(|1〉 ⊗
F (|1〉)) = SWAP(|1〉⊗ |0〉) = SWAP(|10〉) = |01〉.

(iv) F (|11〉) = h(|0〉 ⊗ f0(〈0|øNOT,11〉) + |1〉 ⊗ f1(〈1|øNOT,11〉) = h(|0〉 ⊗
I (〈0|01〉) + |1〉 ⊗ F (〈1|01〉)) = h(|0〉 ⊗ I (|1〉) + |1〉 ⊗ F (0)) = h(|0〉 ⊗
I (|1〉)) = SWAP(|0〉⊗ |1〉) = SAWP(|01〉) = |10〉.
By Lemma 3.4(2), when |φ〉 is of the form α|00〉+â |10〉 for example, we

obtain

F (|φ〉) = F (α|00〉+â |10〉) = αF (|00〉)+âF (|10〉) = α|11〉+â |00〉.

(3) Let us consider the case where the length of |φ〉 is 3. For the computational
basis B3 = {|000〉,|001〉,|010〉, ...,|111〉}, we calculate the outcomes F (|φ〉)
only for inputs |φ〉 in {|001〉,|101〉}. Notice that |øNOT,001〉 = |101〉 and
|øNOT,101〉= |001〉. Recall from (1)–(2) that F (|01〉) = |01〉 and F (0) = 0.
(i) F (|001〉) = h(|0〉 ⊗f0(〈0|øNOT,001〉)+ |1〉 ⊗f1(〈1|øNOT,001〉) = h(|0〉 ⊗
I (〈0|101〉)+ |1〉⊗F (〈1|101〉)) = h(|0〉⊗ I (0)+ |1〉⊗F (|01〉)) = h(|1〉⊗
F (|01〉)) = SWAP(|1〉⊗ |01〉) = SAWP(|101〉) = |011〉.

(ii) F (|101〉) = h(|0〉 ⊗f0(〈0|øNOT,101〉)+ |1〉 ⊗f1(〈1|øNOT,101〉) = h(|0〉 ⊗
I (〈0|001〉)+ |1〉⊗F (〈1|001〉)) = h(|0〉⊗ I (|01〉)+ |1〉⊗F (0)) = h(|0〉⊗
I (|01〉)) = SWAP(|0〉⊗ |01〉) = SAWP(|001〉) = |001〉.
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If |φ〉 is of the formα|001〉+â |101〉 for example, Lemma3.4(2) implies thatF (|φ〉)=
F (α|001〉+â |101〉) = αF (|001〉)+âF (|101〉) = α|011〉+â |001〉.

Example 2. We see another example for the case of k = 2. By setting
t = 3, g = NOT , h = SWAP, and p = NOT for instance, we write F for
2QRec3[NOT,SWAP,NOT |f00,f01,f10,f11] with f00 = I , f01 =NOT , f10 = F ,
and f11 = F . Let |φ〉 denote any quantum state inH∞.

(1) When the length of |φ〉 is at most 3, we instantly obtain F (|φ〉) = g(|φ〉) =
NOT (|φ〉). For example, F (|0〉) = |1〉, F (|10〉) = |00〉, and F (|101〉) = |001〉.

(2) Assuming that the length of |φ〉 is 4, let us consider the basis quantum states
in B4 = {|0000〉,|0001〉,|0010〉, ...,|1111〉}. Here, we are focused only on two
cases: |φ〉 ∈ {|0101〉,|1011〉}. We remark that |øNOT,0010〉 = NOT (|0010〉) =
|1010〉 and |øNOT,1011〉=NOT (|1011〉) = |0011〉.
(i) F (|0010〉) = h(|00〉⊗f00(〈00|øNOT,0010〉)+ |01〉⊗f01(〈01|øNOT,0010〉)+

|10〉 ⊗ f10(〈10|øNOT,0010〉) + |11〉 ⊗ f11(〈11|øNOT,0010〉)) = h(|00〉 ⊗
I (〈00|1010〉) + |01〉 ⊗NOT (〈01|1010〉) + |10〉 ⊗ F (〈10|1010〉) + |11〉 ⊗
F (〈11|1010〉)) = h(|00〉⊗I (0)+ |01〉⊗NOT (0)+ |10〉⊗F (|10〉)+ |11〉⊗
F (0)) = h(|10〉 ⊗ F (|10〉)) = SWAP(|10〉 ⊗ |00〉) = SWAP(|1000〉) =
|0100〉.

(ii) F (|1101〉) = h(|00〉⊗f00(〈00|øNOT,1101〉)+ |01〉⊗f01(〈01|øNOT,1101〉)+
|10〉 ⊗ f10(〈10|øNOT,1101〉) + |11〉 ⊗ f11(〈11|øNOT,1101〉)) = h(|00〉 ⊗
I (〈00|0101〉) + |01〉 ⊗NOT (〈01|0101〉) + |10〉 ⊗ F (〈10|0101〉) + |11〉 ⊗
F (〈11|0101〉)) = h(|00〉⊗I (0)+ |01〉⊗NOT (|01〉)+ |10〉⊗F (0)+ |11〉⊗
F (0)) = h(|01〉⊗NOT (|01〉)) = SWAP(|01〉⊗|11〉) = SWAP(|0111〉) =
|1011〉.

3.2. A subclass of ✷
QP
1
and basic properties. Among the six initial quantum

functions in Scheme I, MEAS makes a quite different behavior. It can change
the norm as well as the dimensionality of quantum states, and this fact makes
it irreversible in nature. For this reason, it is often beneficial in practice to limit

our attention to a subclass of ✷QP1 , called ✷̂
QP
1 , which entirely prohibits the use of

MEAS.

Definition 3.2. The notation ✷̂
QP
1 denotes the subclass of ✷QP1 defined by

Schemata I-IV except forMEAS listed in Scheme I.

With no use ofMEAS in Scheme I, every quantum function f in ✷̂QP1 preserves
the dimensionality of inputs; in other words, f satisfies ℓ(f(|φ〉)) = ℓ(|φ〉) for any
input |φ〉 ∈ H∞.
Next, let us demonstrate how to construct typical unitary gates using our

schematic definition.

Lemma 3.3. The following functions are in ✷̂QP1 . Let |φ〉 be any element inH∞.

1. CNOT (|φ〉) =
{
|φ〉 if ℓ(|φ〉)≤ 1,
|0〉〈0|φ〉+ |1〉⊗NOT (〈1|φ〉) otherwise. (controlled-

NOT)
2. Z1,è(|è〉) = eiè |0〉〈0|φ〉+ |1〉〈1|φ〉.
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3. zROTφ(|φ〉) = eiè |0〉〈0|φ〉+ e–iè |1〉〈1|φ〉. (rotation around the z-axis)
4. GPSè(|φ〉) = eiè |φ〉. (global phase shift)
5. WH (|φ〉) = 1√

2
|0〉 ⊗ (〈0|φ〉 + 〈1|φ〉) + 1√

2
|1〉 ⊗ (〈0|φ〉 – 〈1|φ〉). (Walsh-

Hadamard transform)

6. CPHASEè(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 1,
1√
2

∑
b∈{0,1}(|0〉〈b|φ〉+ eièb |1〉〈b|φ〉) otherwise.

(controlled-PHASE)

Proof. It suffices to build each of the quantum functions given in the lemma
from the initial quantum functions and by applying the construction rules. These
target functions are constructed as follows.

(1) CNOT =Branch[I ,NOT ]. Note that, when ℓ(|φ〉)≤ 1, Scheme III(i) implies
CNOT (|φ〉) = |φ〉, matching Item 1 for CNOT .

(2) Z1,è =NOT ◦PHASEè ◦NOT .
(3) zROTè =Z1,è ◦PHASE–è .
(4) GPSè =Z1,è ◦PHASEè .
(5) WH =ROT ð

4
◦NOT .

(6) CPHASEè = Branch[WH,f], where f = Branch[I ,GPSè ]◦WH ◦NOT . ⊣
Since any✷QP1 -function f is constructedbyapplyingSchemata I–IV, anapplication

of one of the schemata is viewed as a basic step of the construction process of
generating f. This fact helps us define the descriptional complexity of f to be the
minimal number of times we use those schemata in order to construct f. For
instance, all the initial functions have descriptional complexity 1 because they use
Scheme I only once. As demonstrated in the proof of Lemma 3.3, the quantum
functions CNOT , Z1,è , and WH have descriptional complexity at most 3 and
zROTè and GPSè have descriptional complexity at most 4, whereas CPHASEè
is of descriptional complexity at most 15. This complexity measure is essential
in proving, e.g., Lemma 3.4 since the lemma will be proven by induction on the
descriptional complexity of a target quantum function. In Section 6.2, we will give
a short discussion on this complexity measure for a future study.

Fundamental properties of ✷̂QP1 -functions are given in the following lemma. A
quantum function from H∞ to H∞ is called norm-preserving if ‖f(|φ〉)‖ = ‖|φ〉‖
holds for all quantum states |φ〉 inH∞.

Lemma 3.4. Let f be any quantum function in ✷̂QP1 and let |φ〉,|ø〉 ∈H∞ andα ∈C.

1. f(0) = 0, where 0 is the null vector.
2. f(|φ〉+ |ø〉) = f(|φ〉)+f(|ø〉).
3. f(α|φ〉) = α ·f(|φ〉).
4. f is dimension-preserving and norm-preserving.

Proof. Let f be any ✷̂QP1 -function, let |φ〉,|ø〉 ∈H∞, and letα ∈C and è ∈ [0,2ð)
be constants. As mentioned earlier, we will prove the lemma by induction of the
descriptional complexity of f. If f is one of the initial quantum functions in Scheme
I, then it is easy to check that it satisfies Conditions 1–4 of the lemma. In particular,
when |φ〉 is the null vector 0, all of eiè |φ〉, cosè|φ〉, sinè|φ〉, 〈0|φ〉, 〈1|φ〉, and 〈ba|φ〉
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used in Scheme I are 0; thus, |b〉 ⊗ 〈1|φ〉 and |b〉 ⊗ 〈0|φ〉 are also 0 for each bit
b ∈ {0,1}. Therefore, Condition 1 follows.
Among Schemata II–IV, let us consider Scheme IV since the other schemata are

easily shown to meet Conditions 1–4. Let g, h, and p be quantum functions in ✷̂QP1 .
By induction hypothesis, we assume that g, h, and p satisfy Conditions 1–4. For
readability, we write f for kQRect [g,h,p|Fk]. In what follows, we are focused only
on Conditions 2 and 4 since the other conditions are easy to check. Our argument
will employ induction on the length of input |φ〉 given to f.
(i) Our goal is to show that f satisfies Condition 2. First, consider the case of
ℓ(|φ〉) ≤ t. It then follows that f(|φ〉+ |î〉) = g(|φ〉+ |î〉) = g(|φ〉)+g(|î〉)
since g is assumed to meet Condition 2. Next, we consider the case where
ℓ(|φ〉)> t. From the definition of f, we obtain f(|φ〉+ |î〉) = h(

∑
s :|s|=k |s〉⊗

fs(〈s |øp,φ,î〉)), where |øp,φ,î〉 = p(|φ〉+ |î〉). Since p(|φ〉+ |î〉) = p(|φ〉)+
p(|î〉) by induction hypothesis, we conclude that 〈s |øp,φ,î〉 = 〈s |øp,φ〉+
〈s |øp,î〉 for each string s ∈ {0,1}k . It then follows by induction hypothesis
that fs(〈s |øp,φ,î〉) = fs(〈s |øp,φ〉) +fs(〈s |øp,î〉), leading to the equation
|s〉⊗fs(〈s |øp,φ,î〉) = |s〉⊗fs(〈s |øp,φ〉)+ |s〉⊗fs(〈s |øp,î〉). Using Condi-
tion 2 for h, we obtain h(

∑
s :|s|=k |s〉 ⊗fs(〈s |øp,φ,î〉)) =

∑
s :|s|=k h(|s〉 ⊗

fs(〈s |øp,φ〉))+
∑
s :|s|=k h(|s〉⊗fs(〈s |øp,î〉)).We then conclude thatf(|φ〉+

|î〉) = f(|φ〉)+f(|î〉).
(ii) We want to show that f satisfies Condition 4. By induction hypothe-
sis, it follows that, for any s ∈ {0,1}k , ‖fs(〈s |øp,φ〉)‖ = ‖〈s |øp,φ〉‖ and
‖h(|φ〉)‖ = ‖|φ〉‖. These equalities imply that ‖f(|φ〉)‖2 = ‖h(∑s :|s|=k |s〉⊗
fs(〈s |øp,φ〉))‖2 = ‖∑

s :|s|=k |s〉⊗fs(〈s |øp,φ〉)‖2 =
∑
s :|s|=k ‖fs(〈s |øp,φ〉)‖2,

which equals
∑
s :|s|=k ‖〈s |øp,φ〉‖2. The last term coincides with ‖|øp,φ〉‖2,

which equals ‖p(|φ〉)‖2. This implies Condition 4 because ‖p(|φ〉)‖= ‖|φ〉‖.⊣
Lemma 3.4(4) indicates that all quantum functions in ✷̂QP1 also serve as functions

mapping Φ∞ to Φ∞ in place ofH∞ toH∞.
Given a quantum function g that is dimension-preserving and norm-preserving,

the inverse of g is a unique quantum function f satisfying the condition that, for
every |φ〉 ∈ H∞, f ◦g(|φ〉) = g ◦f(|φ〉) = |φ〉. This special quantum function f is
expressed as g–1.

The next proposition guarantees that ✷̂QP1 is closed under “inverse” since ✷̂
QP
1

lacksMEAS.

Proposition 3.5. For any quantum function g ∈ ✷̂
QP
1 , g

–1 exists and belongs

to ✷̂QP1 .

Proof. We prove this proposition by induction on the aforementioned descrip-
tional complexity of g. If g is one of the initial quantum functions, then its
inverse g–1 satisfies that I –1 = I , PHASE–1è = PHASE–è , ROT

–1
è = ROT–è ,

NOT –1 = NOT , and SWAP–1 = SWAP. If g is obtained from another quantum
function or functions by one of the construction rules, then its inverse satis-
fies that Compo[g,h]–1 = Compo[h–1,g–1], Branch[g,h]–1 = Branch[g–1,h–1], and
kQRect [g,h,p|{fs}s∈{0,1}k ]

–1 = kQRect [g
–1,p–1,h–1|{f–1s }s∈{0,1}k ]. ⊣
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Our choice of Schemata I–IV ismotivated by a particular universal set of quantum
gates. Notice that a different choice of initial quantum functions and construction
rules may lead to a different set of ✷QP1 -functions. Scheme I uses an “arbitrary”

angle of è in [0,2ð)∩ C̃ to introduce PHASEè and ROTè ; however, we can restrict
è to a unique value of ð4 since PHASEè andROTè for an arbitrary value è ∈ [0,2ð)
can be approximated with any desired accuracy usingWH and Z2, ð4 . This last part

comes from the fact that any single-qubit unitary operator can be approximated to
any accuracy from the quantum gatesWH andZ2, ð4 [5] (see also [24]). For a further

discussion on the choice of the schemata, see Section 6.1.

3.3. Construction of more complicated quantum functions. Before presenting the
main theorem (Theorem 4.1), we wish to prepare useful quantum functions and new
construction rules derived directly from Schemata I–IV. These quantum functions
and construction rules will be used for the proof of our key lemma (Lemma 4.3),
which supports the main theorem.
For each k ∈ N+, let us assume the standard lexicographic ordering < on {0,1}k

and all elements in {0,1}k are enumerated lexicographically as s1< s2< ···< s2k . For
example, when k = 2, we obtain 00< 01< 10< 11. Given each string s ∈ {0,1}n, sR
denotes the reversal of s; that is, sR = snsn–1 ···s2s1 if s = s1s2 ···sn–1sn.We expand this
notion to quantum states in the followingmanner. Given a quantum state |φ〉 ∈H2n ,
the reversal of |φ〉, denoted by |φR〉, is of the form∑

s :|s|=n 〈s |φ〉⊗|sR〉, where 〈s |φ〉
is merely a scalar. For instance, if |φ〉= α|01〉+â |10〉, then |φR〉= α|10〉+â |01〉.

Lemma 3.6. Let k ∈ N with k ≥ 2, let g,h ∈ ✷̂
QP
1 , and let Gk = {gs | s ∈ {0,1}k}

be a set of ✷̂QP1 -functions. The following quantum functions all belong to ✷̂
QP
1 . The

lemma also holds even if ✷̂QP1 is replaced by✷
QP
1 . Let |φ〉 be any quantum state inH∞.

1. Compo[Gk ](|φ〉) = gs1 ◦gs2 ◦ ··· ◦gs2k (|φ〉). (multiple composition)
2. Switchk[g,h](|φ〉) = g(|φ〉) if ℓ(|φ〉) < k and Switchk[g,h](|φ〉) = h(|φ〉)
otherwise. (switching)

3. LENGTHk[g](|φ〉) = |φ〉 if ℓ(|φ〉) < k and LENGTHk[g](|φ〉) = g(|φ〉)
otherwise.

4. REMOVEk(|φ〉) = |φ〉 if ℓ(|φ〉) < k and REMOVEk(|φ〉) =
∑
s :|s|=k 〈s |φ〉⊗

|s〉 otherwise.
5. REPk(|φ〉) = |φ〉 if ℓ(|φ〉) < k and REPk(|φ〉) =

∑
s :|s|=n–k 〈s |φ〉⊗ |s〉 other-

wise.
6. SWAPk(|φ〉)= |φ〉 if ℓ(|φ〉)< 2k andSWAPk(|φ〉)=

∑
s :|s|=k

∑
t:|t|=k |st〉〈ts |φ〉

otherwise.
7. REVERSE(|φ〉) = |φR〉.
8. Branchk[Gk](|φ〉) = |φ〉 if ℓ(|φ〉) < k and Branchk[Gk](|φ〉) =

∑
s :|s|=k |s〉 ⊗

gs(〈s |φ〉) otherwise.
9. RevBranchk[Gk](|φ〉) = |φ〉 if ℓ(|φ〉) < k and RevBranchk[Gk](|φ〉) =∑

s :|s|=k gs
(∑

u:|u|=n–k 〈us |φ〉⊗ |u〉
)
⊗|s〉 otherwise, where n = ℓ(|φ〉).

The difference between REMOVEk and REPk is subtle but REMOVEk moves
the first k qubits of an input to the end, whereas REPk moves the last k
qubits to the front. For basic qustrings of length 4, for instance, it holds that
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REP1(|a1a2a3a4〉) = |a4a1a2a3〉 and REMOVE1(|a1a2a3a4〉) = |a2a3a4a1〉. Sim-
ilarly, Branchk[Gk] applies each gs in Gk to the quantum state obtained from
|φ〉 by eliminating the first k qubits whereas RevBranchk[Gk] applies gs to
the quantum state obtained by eliminating the last k qubits, whenever k ≤
ℓ(|φ〉). For example, if Gk = {h}s∈{0,1}k for a single quantum function h, then,

for every string s ∈ {0,1}k , we obtain Branchk[Gk](|s〉|φ〉) = |s〉 ⊗ h(|φ〉) and
RevBranchk[Gk](|φ〉|s〉) = h(|φ〉)⊗|s〉.

Proof of Lemma 3.6. Let k ∈ N+, g ∈ ✷̂
QP
1 , and Gk = {gs | s ∈ {0,1}k} ⊆ ✷̂

QP
1 .

For each index i ∈ [k], let si denote lexicographically the ith element of {0,1}k .
1) We first set f2k = gs2k

and inductively define fi–1 =Compo[gsi–1,fi ] for every

index i ∈ [2,2k]Z to obtain f1 = Compo[Gk ]. The resulted quantum function
f1 clearly belongs to ✷̂

QP
1 because k is a fixed constant independent of inputs

to f1.
2) This is a special case of the single-qubit quantum recursion rule (or the 1-qubit
quantum recursion rule) in which t = k – 1, p= I , andf0 =f1 = I . Therefore,

Switchk[g,h] belongs to ✷̂
QP
1 .

3) Since LENGTHk[g] = Switchk[I ,g], LENGTHk is in ✷̂
QP
1 .

4) We begin with the case of k = 1. The desired quantum function REMOVE1
is defined as

REMOVE1(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 1,∑

a∈{0,1} |a〉⊗REMOVE1(〈a|øSWAP,φ〉) otherwise.

More formally, we set REMOVE1 = QRec1[I ,I ,SWAP|REMOVE1,
REMOVE1]. In the case of k = 2, we define REMOVE2 = REMOVE1 ◦
REMOVE1. For each index k ≥ 3, REMOVEk is obtained as follows.
Let h′k be the k compositions of REMOVE1 and define REMOVEk to be
LENGTHk[h

′
k]. We remark that LENGTHk is necessary in our definition

because h′k is not guaranteed to equal REMOVEk when ℓ(|φ〉)≤ k – 1.
5) First, we define REP1 as REP1 =QRec1[I ,SWAP,I |REP1,REP1], that is,

REP1(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 1,∑

a∈{0,1}SWAP(|a〉⊗REP1(〈a|φ〉)) otherwise.

Clearly, REP1 belongs to ✷̂
QP
1 . For a general index k > 1, we define REPk in

the following way. We first set h′k to be the k compositions of REP1. Finally,
we set REPk = LENGTHk[h

′
k].

6) We first realize the quantum function SWAPi,i+j , which swaps between
the ith and the (i + j)th qubits of any input. This goal is achieved by
inductively constructing SWAPi,i+j in the following way. Initially, we set
SWAPi,i+1 = REPi–1 ◦SWAP ◦REMOVEi–1. For any index j ∈ [k – i ], we
define SWAPi,i+j = SWAPi+j–1,i+j ◦SWAPi,i+j–1 ◦SWAPi+j–1,i+j . We then
set g = SWAPk,2k ◦SWAPk–1,2k–1 ◦ ··· ◦SWAP2,k+2 ◦SWAP1,k+1. At last, it
suffices to define SWAPk to be LENGTH2k[g].
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7) The desired quantum function REVERSE can be defined as REVERSE =
QRec1[I ,REMOVE1,I |REVERSE,REVERSE], namely,

REVERSE(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 1,
REMOVE1(

∑
a∈{0,1}(|a〉⊗REVERSE(〈a|φ〉))) otherwise.

8) Note that, when k = 2,Branchk[Gk] coincides withBranch and it thus belongs
to ✷̂QP1 . Hereafter, we assume that k ≥ 3. For each string s ∈ {0,1}k , let g(0)s =
gs . For each index i ∈Nwith i < k and each string s ∈{0,1}∗with |s |= k – i – 1,
we inductively define g(i+1)s to be Branch[g(i)s0 ,g

(i)
s1 ], that is,

g(i+1)s (|φ〉) =
{ |φ〉 if ℓ(|φ〉 ≤ 1,
|0〉⊗g(i)s0 (〈0|φ〉)+ |1〉⊗g(i)s1 (〈1|φ〉) otherwise.

Finally, we set Branchk[Gk] = g(k)ë , where ë is the empty string.
9) Assuming k ≥ 2, let RevBranchk[{gs}s∈{0,1}k ] = REMOVEk ◦ Branchk
[{gs}s∈{0,1}k ]◦REPk . ⊣

The next lemma shows that we can extend any classical bijection on {0,1}k to
its associated ✷̂QP1 -function, which behaves in exactly the same way as the bijection
does on the first k bits of its input.

Lemma 3.7. Let k be a constant in N+. For any bijection f from {0,1}k to {0,1}k ,
there exists a ✷QP1 -function gf such that, for any quantum state |φ〉 ∈ H∞,

gf(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ k – 1,∑

s∈{0,1}k |f(s)〉〈s |φ〉 otherwise.

Proof. Given a bijection f on {0,1}k , it suffices to show the existence of
✷̂
QP
1 -function h satisfying h(|s〉|φ〉) = |f(s)〉|φ〉 for any string s ∈ {0,1}k and
any quantum state |φ〉 ∈ H∞ since gf is obtained from h simply by setting

gf = LENGTHk[h]. Notice that, if h ∈ ✷̂
QP
1 , h(0) = 0 makes gf(0) equal 0.

A bijection on {0,1}k is, in essence, a permutation on {s1,s2, ...,s2k}, where each
si is lexicographically the ith string in {0,1}k , and thus it can be expressed as the
multiplication of a finite number of transpositions, each of which swaps between two
distinct numbers. This can be done by an application of the multiple composition
of the corresponding SWAPi,i+j , which is defined in the proof of Lemma 3.6(6).

Therefore, h belongs to ✷̂QP1 . ⊣
Given a quantum state |φ〉, it is possible to apply simultaneously a quantum

function f to the first k qubits of |φ〉 and another quantum function g to the rest.

Lemma 3.8. Given f,g ∈ ✷̂
QP
1 and k ∈ N+, the quantum function f≤k ⊗g, which

is defined by

(f≤k⊗g)(|φ〉) =
{
f(|φ〉) if ℓ(|φ〉)≤ k,∑
s∈{0,1}k f(|s〉)⊗g(〈s |φ〉) otherwise,

belongs to ✷̂QP1 .
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Proof. Given a quantum function f, we restrict the application of f to the last k
qubits of any input |φ〉 by setting f′ = QReck[f,I ,I |f0,f1], where f0 and f1 are
f′. It follows that f′(|φ〉|s〉) = |φ〉⊗f(|s〉) for any |φ〉 ∈ H∞ and s ∈ {0,1}k .
Let h = REPk ◦ f′ ◦ REMOVEk . This quantum function h satisfies that

h(|s〉|φ〉) = f(|s〉)⊗|φ〉 for any s ∈ {0,1}k . We then define Gk = {gs}s∈{0,1}k with

gs = g for every string s ∈ {0,1}k and set g ′ = h ◦Branchk[Gk]. It then follows that
the desired quantum function f≤k⊗g equals Switchk+1[f,g ′]. ⊣
Next, we present Lemma 3.9, which is useful for the proof of our key lemma

(Lemma 4.3) in Section 5. The lemma allows us to skip, before applying a given
quantum function, an arbitrary number of 0s until we read a fixed number of 1s.

Lemma 3.9. Let f be a quantum function in ✷̂QP1 and let k be a constant in N
+.

There exists a quantum function g in ✷̂QP1 such that g(|0m1k〉⊗|φ〉) = |0m1k〉⊗f(|φ〉)
and g(|0m+1〉) = |0m+1〉 for any number m ∈ N and any quantum state |φ〉 ∈ H∞. We

write this g as Skip[ f ]. The lemma also holds when ✷̂QP1 is replaced by ✷
QP
1 .

Proof. Let k ≥ 2. Given a quantum functionf ∈ ✷̂
QP
1 , we first expand f tof

′ so
that f′(|1k–1〉|φ〉) = |1k–1〉⊗f(|φ〉) for any |φ〉 ∈ H∞ and f′(|0m+1〉) = |0m+1〉 for
any m ∈ N. This quantum function f′ can be obtained inductively as follows. We
set fk–1 = Branch[I ,f], fi = Branch[I ,fi+1] for each i ∈ [k – 2], and finally define
f′ to be f1. When k = 1, we simply set f′ = f. The desired quantum function g in
the lemma must satisfy

g(|φ〉) =
{
|φ〉 if ℓ(|φ〉)≤ 1,
|0〉⊗f′(g(〈0|φ〉))+ |1〉〈1|φ〉 otherwise.

This g is formally defined as g =QRec1[I ,Branch[f
′,I ],I |g,I ]. This completes the

proof. ⊣
Within our framework, it is possible to construct a “restricted” form of the

quantum Fourier transform (QFT). Given a binary string s = s1s2 ···sk of length
k with si ∈ {0,1}, we denote by num(s) the integer of the form

∑k
i=1 si2

k–i . For
instance, num(011)= 1 ·21+1 ·20=5and num(1010)= 1 ·23+1 ·21=10.Moreover,
let ùk = e

2ði/2k , where i =
√
– 1.

Lemma 3.10. Let k be any fixed constant in N+. The following k-qubit quantum

Fourier transform belongs to ✷̂QP1 . For any element |φ〉 inH∞, let

Fk(|φ〉) =
{
|φ〉 if ℓ(|φ〉)< k,
1
2k/2

∑
t:|t|=k

∑
s :|s|=kù

num(s)num(t)
k |s〉〈t|φ〉 otherwise.

Proof. When k = 1, F1 coincides withWH and therefore F1 belongs to ✷̂
QP
1 by

Lemma 3.3. Next, assume that k ≥ 2. It is known that, for any x1,x2, ...,xk ∈ {0,1},

Fk(|x1x2 ···xk〉) =
1

2k/2
(|0〉+ùxk1 |1〉)(|0〉+ùxk–11 ù

xk
2 |1〉) ···(|0〉+

k∏

i=1

ù
xi
i |1〉). (3.1)

For this fact and its proof, refer to, e.g., [24].
Let us recall the special quantum function SWAPi,i+j from the proof of Lemma

3.6(6), which swaps between the ith and the jth qubits. Using CPHASEè , for any
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index pair i,j with i < j, we define CPHASE(i,j)è to be SWAP1,i ◦ SWAP2,j ◦
CPHASEè ◦SWAP2,j ◦SWAP1,i , in which we apply CPHASEè to the ith and the
jth qubits. We first want to constructG (1)k = Fk ◦REVERSE, which works similarly
to Fk but takes |φR〉 as an input instead. To achieve this goal, we define {G (i)j }i,j∈N+

inductively as follows. Initially, we set G (i)0 = I for any i ∈ N+. Next, we define

G (i)1 as G
(i)
1 =H if i = 1, and G

(i)
1 =REPi–1 ◦H ◦REMOVEi–1 otherwise. For any

index k ≥ 2,G (i)k is defined to beG
(i)
k–1 ◦CPHASE

(i,i+k–1)
ð
2k–1

◦(G (i)k–2)–1 ◦G
(i+1)
k–1 . It is not

difficult to show that G (1)k coincides with Fk ◦REVERSE by Eqn. (1).
Since G (1)k = Fk ◦REVERSE, it suffices to define Fk as G

(1)
k ◦REVERSE. ⊣

A general form of QFT, in which k is not limited to a particular constant, will be
discussed in Section 6.1 in connection to our choice of Schemata I–IV that form the
function class ✷QP1 .

§4. Main contributions. In Section 3.1, we have introduced the ✷QP1-functions

and the ✷̂QP1 -functions mappingH∞ toH∞ by applying Schemata I–IV for finitely

many times. Our main theorem (Theorem 4.1) asserts that ✷QP1 can precisely
characterize all functions in FBQP mapping {0,1}∗ to {0,1}∗, and therefore
characterize all languages in BQP over {0,1} by identifying languages with their
corresponding characteristic functions. This theorem will be proven by using two
key lemmas, Lemmas 4.2 and 4.3.

4.1. A new characterization of FBQP. Our goal is to demonstrate the power of

✷
QP
1 -functions (and thus ✷̂

QP
1 -functions) by showing in Theorem 4.1 that ✷

QP
1 -

functions (as well as ✷̂QP1 -functions) precisely characterize FBQP-functions on
{0,1}∗. For this purpose, unfortunately, there are twomajor difficulties to overcome.
The first difficulty arises in dealing with tape symbols of QTMs by qubits alone.

Notice that QTMs working over nonbinary input alphabets are known to be
simulated by QTMs taking the binary input alphabet {0,1}. Even if we successfully
reduce the size of input alphabets down to 2, in fact, the simulation of such
QTMs must require the proper handling of nonbinary tape symbols, in particular,
the distinguished blank symbol. For our later convenience, we use “b” to denote
the blank symbol, instead of #. In a similar vein, suppose that the outcome of a
✷
QP
1 -function f is composed of an important, meaningful portion and the other
“garbage” portion, which is a remnant of the computation process. Since we use
only qubits (|0〉 and |1〉) to express inputs and outputs, how can we distinguish
between the meaningful portion and the garbage portion? In order to simulate
QTMs by ✷

QP
1 -functions, we therefore need to “encode” all tape symbols into

qubits.
This paper introduces the following simple coding scheme. We set 0̂ = 00, 1̂ = 01,

and b̂=10.Wealso set 2̂ = 11 and 3̂= 10 for later use. The input alphabet Σ= {0,1} is
thus translated into {0̂,1̂} and the tape alphabet Γ= Σ∪{b} is encoded into {0̂,1̂,b̂}.
Given each binary string s = s1s2 ···sn with si ∈ {0,1} for every index i ∈ [n], a code s̃
of s indicates the string ŝ1ŝ2 ··· ŝn 2̂, where the last item 2̂ serves as an endmarker,which
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marks the end of the code. It then follows that |s̃ |= 2|s |+2. As quick examples, we
obtain 0̃110 = 0̂1̂1̂0̂2̂ = 0001010011 and 0̃1 · 1̃1 = 0̂1̂2̂1̂1̂2̂ = 000111010111. Later,
we will show in lemma 5.1 that the encoding of strings and the decoding of encoded

strings can be carried out by suitable ✷̂QP1 -functions.

Another difficulty comes from the inability of ✷̂QP1 -functions to expand their
qubits. Notice that a QTM is designed to freely use additional storage space by
moving its tape head simply to new, blank tape cells beyond its input area in which
an input is initially written. To simulate such a QTM, we need to simulate its entire
activities made in the freely expanding tape space as well. On the contrary, every

✷̂
QP
1 -function is dimension-preserving by Lemma 3.4(4), and thus the number of
input qubits must match that of output qubits. If we want to simulate extra storage
space of the QTM, then we need to feed the same amount of extra qubits to the

target ✷̂QP1 -function for use at the very beginning.
We resolve this second issue by extending each input of quantum functions by

adding extra 0s whose length is associated with the running time of the QTM.
For any polynomial p and any quantum function g on H∞, we define |φp(x)〉 =
|0|x|1〉|0p(|x|)1011p(|x|)+61〉|x〉 and |φpg (x)〉= g(|φp(x)〉) for every string x ∈ {0,1}∗.
Similarly, for any function f on {0,1}∗, we set |φp,f(x)〉= |0̃|f(x)|〉|0|f(x)|+11〉|φp(x)〉
and |φp,fg (x)〉= g(|φp,f(x)〉).
Any FBQP-function takes classical input strings and produces classical strings

that are outcomes of a polynomial-time quantum Turing machine with high
probability. In contrast, our ✷QP1 -functions f are to transform each quantum state
inH∞ to another one inH∞. To obtain classical output strings, we need to observe
the outcomes of f.
The main theorem (Theorem 4.1) roughly asserts the following: for any FBQP-

function f, there always exists a ✷̂
QP
1 -function g such that, when we observe the

first |f(x)| qubits of the outcome g(|φp(x)〉) (= |φpg (x)〉) of g on input |φp(x)〉, we
correctly obtain f(x) with high probability. Notice that g(|φp(x)〉) also contains
extra qubits, called “garbage” qubits, which are left unobserved in the process of
calculatingf(x). Those garbage qubits are actually the remnant of the computation
process of f. It is, however, possible to remove those qubits with high probability
by partly reversing the whole computation, if we know the output size |f(x)|
ahead of the computation (by expanding |φp(x)〉 to |φp,f(x)〉 and |φpg (x)〉 to
|φp,fg (x)〉).
Theorem 4.1 (Main Theorem). Let f be a polynomially-bounded function on

{0,1}∗. The following three statements are logically equivalent.
1. The function f is in FBQP.

2. For any constant ε ∈ [0,1/2), there exist a quantum function g in ✷̂QP1 and a
polynomial p such that |f(x)| ≤ p(|x|) and ‖〈f(x)|φpg (x)〉‖2 ≥ 1 – ε for all
x ∈ {0,1}∗.

3. For any constant ε ∈ [0,1/2), there exist a quantum function g in ✷̂QP1 and a
polynomial p such that |f(x)| ≤ p(|x|) and |〈Ψf(x)|φp,fg (x)〉|2 ≥ 1 – ε for all
x ∈ {0,1}∗, where |Ψf(x)〉= |f(x)〉|(0|f(x)|+11)2〉|φp(x)〉.
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In Statements 2–3 of Theorem 4.1, 〈f(x)|φpg (x)〉 is a non-null vector
whereas 〈Ψf(x)|φp,fg (x)〉 is just a scalar because ℓ(|f(x)〉|(0|f(x)|+11)2〉|φp(x)〉) =
ℓ(|φp,fg (x)〉).
Hereafter, we wish to prove the main theorem, Theorem 4.1. For a strategic

reason, we split the theorem into two technical lemmas, Lemmas 4.2 and 4.3. To
present the lemmas, we need to introduce additional terminology for QTMs. It is
easier in practice to design multitape well-formed QTMs rather than single-tape
ones. However, since multitape QTMs can be simulated by single-tape QTMs by
translating multiple tapes to multiple tracks of a single tape, toward the proof of
Theorem 4.1, it suffices to focus our attention only on single-tape QTMs.
A single-tape QTM is said to be in normal form if ä(qf,ó) = |q0〉|ó〉|R〉 holds for

any tape symbol ó ∈ Γ. If a QTM halts in a superposition of final configurations in
which a tape head returns to the start cell, then we call such a machine stationary.
Refer to [4] for their basic properties. For convenience, we further call a QTM
conservative if it is well-formed, stationary, and in normal form. Moreover, a well-
formed QTM is said to be plain if its transition function satisfies the following
specific requirement: for every pair (p,ó) ∈ Q ×Γ, ä(p,ó) has the form either
ä(p,ó) = eiè |q,ô,d 〉 or ä(p,ó) = cosè|q,ô,d 〉+sinè|q′,ô,′,d ′〉 for certain è ∈ [0,2ð)
and two distinct tuples (q,ô,d ) and (q′,ô′,d ′). Bernstein and Vazirani [4] claimed
that any single-tape, polynomial-time, conservative QTM M can be simulated
by an appropriate single-tape, polynomial-time, conservative, plain QTM M ′.
Additionally, whenM is of C̃-amplitudes, so isM ′.
Let us recall that any output string of a QTM begins at the start cell and stretches

to the right until the first blank symbol although there may be tape symbols left
unerased in other parts of the tape. For our later convenience, a QTM M is said
to have clean outputs if, when M halts, no nonblank symbol appears in the left-
side region of the output string, i.e., the region consisting of all cells indexed by
negative integers. Take a polynomial p that bounds the running time of M on
every input. Since M halts in at most p(|x|) steps on every instance x ∈ {0,1}∗, it
suffices for us to pay attention only to its essential tape region that covers all tape
cells indexed by numbers between – p(|x|) and +p(|x|). In practice, we redefine a
configuration ã of M on input x of length n as a triplet (q,h,ó1 ···ó2p(n)+1), where
p ∈ Q, h ∈ Z with – p(n) ≤ h ≤ p(n), and ó1, ...,ó2p(n)+1 ∈ {0,1,b} such that, for
every index i ∈ [2p(n)+ 1], ói is a tape symbol written at the cell indexed by i –
p(n) – 1. Note that the start cell comes in the middle of ó1 ···ó2p(n)+1. For notational
convenience, we further modify the notion of configuration by splitting the essential
tape region into two parts (z1,z2), in which z1 = ó1ó2 ···óp(n) refers to the left-side
region of the start cell, not including the start cell, and z2 = óp(n)+1óp(n)+2 ···ó2p(n)+1
refers to the rest of the essential tape region. This provides us with a modified
configuration of the form (q,h,z1z2). For a practical reason, we further alter it into
(z2,z1,h,q), which we call by a skew configuration. Associated with this alteration
of configurations, we also modify the original time-evolution operator, Uä , of M
so that it works on skew configurations. Be aware that this new operator cannot
be realized by the standard QTM model. To distinguish it from the original time-
evaluation operator Uä of M, we call it the skew time-evolution operator and write
it as Ûä .
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Lemma 4.2. Let f be any quantum function in ✷QP1 . There exist a polynomial p and

a single-tape, conservative, plain QTMM producing clean outputs with C̃-amplitudes
such that, for any quantum state |φ〉 in H2n , M starts with a non-null quantum state
|φ〉 given on its input/work tape and, when it halts after p(n) steps, the superposition
|çM,φ〉 of skew final configurations of M on |φ〉 is of the form f(|φ〉)⊗|0,qf〉, where
f(|φ〉) appears as the content of the tape from the start cell to the right until the first
blank symbol and qf is a unique final inner state of M.

Proof. We first show that all the initial functions in Scheme I can be exactly
computed in polynomial timeon appropriate single-tape, C̃-amplitude, conservative,
plain QTMs having clean outputs over the input/output alphabet {0,1}. For clarity,
our goal here is to demonstrate that, for every quantum function f in Scheme I,
there exists a QTM with the lemma’s properties such that a superposition |çM,φ〉
ofM’s skew final configurations is of the form f(|φ〉)⊗|0,qf〉, where f(|φ〉) is the
content ofM’s tape from the start cell to the right until the first blank symbol.
Since I (identity) is easy to simulate, let us consider PHASEè . In this case,

we take a QTM that applies a transition of the form ä(q0,ó) = e
ièó |qf,ó,N 〉 for

any bit ó ∈ {0,1}. Clearly, if we start with a skew initial configuration |φ〉|0〉|q0〉,
then we halt with PHASEè(|φ〉)⊗|0〉|qf〉; in short, this QTM “exactly computes”
PHASEè . For ROTè , we use the transition defined by ä(q0,ó) = cosè|qf,ó,N 〉+
(– 1)ó sinè|qf,〈ó|,N 〉 to exactly compute ROTè . To simulate NOT , we then define
a QTM to have a transition of ä(q0,ó) = |qf,ó,N 〉. In the case of SWAP, it suffices
to prepare inner states pó1 and ró2 as well as the following transitions: ä(q0,ó1) =
|pó1,#,R〉, ä(pó1,ó2) = |ró2,ó1,L〉, and ä(ró2,#) = |qf,ó2,N 〉 for bits ó1,ó2 ∈ {0,1}.
ConcerningMEAS[a](|φ〉), we start with checking the first qubit of |φ〉. If it is not
a, then we make a QTM reject the input; otherwise, we do nothing. More formally,
we define ä(q0,a) = |qrej〉,a,N and ä(q0,a) = |qf,a,N 〉. It is not difficult to see that
|çM,φ〉 has the form f(|φ〉)⊗|0,q0〉.
Next, we intend to simulate each of the construction rules on an appropriate

QTM. By induction hypothesis, there exist three polynomial-time, single-tape,
C̃-amplitude, conservative, plain QTMsMg ,Mh , andMp that satisfy the lemma for
g, h, and p, respectively. By installing an internal clock in an appropriate way with
a certain polynomial r, we can makeMg ,Mh , andMp halt in exactly r(n) time on
any input of length n ∈ N. In what follows, let |φ〉 denote any input inH∞.
[Composition] Consider the case of f = Compo[g,h]. We compute f as follows.

We first run Mh on |φ〉 and obtain a superposition of skew final configurations,
say, h(|φ〉)⊗|0,q′f〉 for a unique final inner state q′f ofMh . SinceMh is stationary
and in normal form, we can further runMg on the resulted quantum state h(|φ〉),
treating q′f as its new initial inner state and generating |çM,φ〉 = g(h(|φ〉))⊗|0,qf〉
for a unique final inner state qf ofMg .
[Branching] Assume that f = Branch[g,h]. We check the first qubit of |φ〉. If it

is 0, then we runMg on 〈0|φ〉; otherwise, we runMh on 〈1|φ〉. This produces |0〉⊗
g(〈0|φ〉)⊗ |0,qh,f〉+ |1〉⊗ h(〈1|φ〉)⊗ |0,qg,f〉, where qg,f and qh,f are respectively
unique final inner states of Mg and Mh . Notice that we do not need to check
whether ℓ(|φ〉)≥ 2. Formally, we add the following transitions to those ofMg and
Mh : ä(q0,0) = |q0,#g,R〉 and ä(q0,1) = |q0,#h,R〉, where #g and #h are designated
symbols marking the left of the new “start cells” for Mg and Mh , respectively. At
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terminating, the tape head moves back to the start cell. We then replace #g and #h
respectively with 0 and 1 by entering a new final inner state qf ; namely, ä(qg,f,#g) =
|qf,0,N 〉 and ä(qh,f,#h) = |qf,1,N 〉. This transition is unitarily possible.
[Multiqubit quantum recursion] Finally, let us demonstrate a simulation of the

multiqubit quantum recursion introduced by f = kQRect [g,h,p|Fk] with Fk =
{fs}s∈{0,1}k . For readability, let us consider only the simplest case where k =1,f0 =
f, and f1 = I . The other cases can be similarly treated. Consider the “multitape”
QTM Mf that roughly behaves as described below. Let T be a sufficiently large
positive constant.

(1) In this initial phase, starting with input |φ〉, we prepare a counter on a new
work tape and an internal clock on another work tape. We use the clock to
adjust the terminating timing of all computation paths. Count the number
ℓ(|φ〉) of qubits simply by incrementing the counter as moving the input tape
head from the start cell to the right. Initially, we set the current quantum
state, say, |î〉 expressed on the tape to be |φ〉 and set the current counter k to
be ℓ(|î〉) (= n). Go to the splitting phase.

(2) In this splitting phase, we inductively perform the following procedure using
the clock. (*) Assume that the input tape currently constains a quantum state
|î〉 and the counter has k = ℓ(|î〉). If k ≤ t, then idle until the clock hitsT and
then go to the processing phase. Otherwise, runMp on |î〉 to generate |øp,î〉
and observe the first qubit of |øp,î〉 in the computational basis, obtaining
〈b|øp,î〉 for each b ∈ {0,1}. If b is 1, then run Mh on |1〉〈1|øp,î〉, obtain
h(|1〉〈1|øp,î〉), which is viewed as f(|1〉〈1|î〉), idle until the clock hits T, and
then start the processing phase. On the contrary, when b is 0, move this bit 0
to a separate tape to remember and then update both |î〉 and k to be 〈0|øp,î〉
and k – 1, respectively. Continue (*).

(3) In this processing phase, we start with a quantum state |î〉, which is produced
in the splitting phase. Let k = ℓ(|î〉). We inductively perform the following
procedure. (**) If k ≤ t, then we run Mg on the input |î〉 and produce
g(|î〉), which is viewed as f(|î〉). Update |î〉 to be the resulted quantum
state. Otherwise, we move back the last stored bit 0 from the separate tape,
run Mh on |0〉|î〉, obtain h(|0〉|î〉), and then update |î〉 to be the obtained
quantum state and k to be k+1 since ℓ(|0〉|î〉) = k+1. If all b’s are consumed
(equivalently, k = n), then idle until the clock hits 2T , output |î〉, and halt.
Otherwise, continue (**).

The running time of the above QTM is bounded from above by a certain
polynomial in the length ℓ(|φ〉) because each of the procedures (*) and (**) is
repeated for at most ℓ(|φ〉) times. Although Mf stores bits on the separate tape,
those bits are all moved back and used up by the end of the computation. This
fact shows that a superposition of Mf ’s skew final configurations is of the form
f(|φ〉)⊗|0,qf〉 for a unique final inner state qf . Finally, we convert this multitape
QTM into a computationally equivalent single-tape QTM of the desired properties
in the lemma.
This completes the proof of Lemma 4.2. ⊣
For the notational sake, we writeM [r] for an output string written in a skew final

configuration r, which covers only an essential tape region ofM. We write FSCM,n
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to denote the set of all possible skew final configurations of M produced for any
input of length n.
The key to the proof ofTheorem4.1 is the following lemma,which ensures the exis-

tence of a ✷̂QP1 -function gwhose outcome g(|φp(|ø〉)〉) (= |φpg (|ø〉)〉) “almost” char-
acterize the encoded skew final configuration

∑
x:|x|=n

∑
r∈FSCM,n 〈x|ø〉|M̃ [r]〉|îx,r〉

ofM, where M̃ [r] is the encoding ofM [r]. Here, the encoding M̃ [r] is needed for the
construction of g in the proof of the lemma. However, as shown also in the proof,

executing an extra decoding procedure for M̃ [r] allows us to replace M̃ [r] byM [r].

Lemma 4.3 (Key Lemma). Let M be a single-tape, polynomial-time, C̃-amplitude,
conservative, plain QTM having clean outputs over the input/output alphabet
Σ = {0,1} and the tape alphabet Γ = {0,1,b}. Assume that, when M halts on
input |ø〉 of length n, a superposition of coded skew final configurations is of
the form

∑
x:|x|=n

∑
r∈FSCM,n 〈x|ø〉|M̃ [r]〉|îx,r〉, where |îx,r〉 denotes an appropriate

quantum state describing the rest of the coded skew final configurations other than

M̃ [r]. There exist a quantum function g in ✷̂
QP
1 and a polynomial p such that,

for any number n ∈ N+ and every quantum state |ø〉 ∈ H2n , |φpg (|ø〉)〉 has the
form

∑
x:|x|=n

∑
r∈FSCM,n 〈x|ø〉|M̃ [r]〉|î̂x,r〉 for certain quantum states {|î̂x,r〉}x,r

satisfying that, for any x,x′ ∈ {0,1}n and r,r′ ∈ FSCM,n, (i) ‖〈îx,r |îx′,r′〉‖ =
‖〈î̂x,r |î̂x′,r′〉‖ and (ii) 〈î̂x,r |î̂x,r′〉=0 if r 6= r′. Furthermore, it is possible tomodify g to
g ′, which satisfies |φp

g′
〉(|φ〉) =∑

x:|x|=n
∑
r∈FSCM,n 〈x|ø〉|M [r]〉|î̂

′
x,r〉 for appropriate

quantum states {|î̂′
x′,r′

〉}x′,r′ satisfying Conditions (i)–(ii).

The proof of Lemma 4.3 is lengthy and it is postponed until Section 5.Meanwhile,
we return to Theorem 4.1 and present its proof using Lemmas 4.2 and 4.3.

Proof of Theorem 4.1. Let ε ∈ [0,1/2) be any constant and let f be any
polynomially-bounded function mapping {0,1}∗ to {0,1}∗.
(1 ⇒ 2) Assume that f is in FBQP. Take a multitape, polynomial-time, C̃-

amplitude, well-formed QTM N that computes f with bounded-error probability.
Let us choose a polynomial p that bounds the running time of N on every input. It
is possible to “simulate”N with high success probability by a ceratin single-tape, C̃-
amplitude, conservative, plain QTM, say,M having clean outputs in such a way that
the machine takes input x and terminates with generating f(x)bw in the right-side
region of the start cell of the input/work tape with bounded-error probability, where
b is a unique blank tape symbol. Since any bounded-error QTM freely amplifies its
success probability, we assume without loss of generality that the error probability
of M is at most ε. Notice that the coded skew final configuration begins with an
output string. Thus, the superposition of coded skew final configurations ofM on

input x of length n must be of the form
∑
r∈FSCM,n |M̃ [r]〉|îx,r〉 for appropriately

chosen quantum states {|îx,r〉}r∈FSCM,n . SinceM computes f with error probability
at most ε, we conclude that

∑
r∈FSCM,n ‖〈f̃(x)|M̃ [r]〉|îx,r〉‖

2 ≥ 1 – ε for all x.
Lemma 4.3 further provides us with a special quantum function g ∈ ✷̂

QP
1 such

that, for any number n ∈ N and any string x ∈ {0,1}n, |φpg (x)〉 has the form
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∑
r∈FSCM,n |M [r]〉|î̂x,r〉 for certain quantum states {|î̂x,r〉}r∈FSCM,n satisfying

that, for all r,r′ ∈ FSCM,n, ‖îx,r〉‖ = ‖|î̂x,r〉‖ and 〈î̂x,r |î̂x,r′〉 = 0 if r 6= r′.
We thus conclude that ‖〈f(x)|φpg (x)〉‖2 =

∑
r∈FSCM,n ‖〈f(x)|M [r]〉|î̂x,r〉‖

2 =
∑
r∈FSCM,n |〈f̃(x)|M̃ [r]〉|

2‖|î̂x,r〉‖2 since 〈f(x)|M [r]〉 = 〈f̃(x)|M̃ [r]〉 and

〈î̂x,r |î̂x,r′〉= 0 if r 6= r′. Moreover, from ‖|îx,r〉‖= ‖|î̂x,r〉‖, it follows that the term
|〈f̃(x)|M̃ [r]〉|2‖|î̂x,r〉‖2 equals ‖〈f̃(x)|M̃ [r]〉|îx,r〉‖2. Therefore, ‖〈f(x)|φpg (x)〉‖2
is at least 1 – ε.
(2 ⇒ 3) Let ε be any constant in [0,1/2) and set ε′ = 1 –

√
1 – ε. Let

us choose a polynomial p and a function g ∈ ✷̂
QP
1 for which |f(x)| ≤ p(|x|)

and ‖〈f(x)|φpg (x)〉‖2 ≥ 1 – ε′ for all strings x ∈ {0,1}∗. Starting with an input
|φp,f(x)〉 (= |0̃|f(x)|〉|0|f(x)|+1〉1|φp(x)〉), we first apply g to the last part |φp(x)〉
of |φp,f(x)〉 and obtain |0̃|f(x)|〉|0|f(x)|+1〉1|φpg (x)〉. Next, we apply Lemma 5.1 to
encode the first |f(x)| qubits of |φpg (x)〉 with the help of |0|f(x)|+11〉 and then
obtain |çf,x〉 =

∑
s :|s|=|f(x)| |0̃|f(x)|〉|s̃〉 ⊗ 〈s |φpg (x)〉. Using the quantum function

COPY2 given in Lemma 5.2, we then copy each qustring |s̃〉 of |çf,x〉 into |0̃|f(x)|〉
and generate a quantum state of the form

∑
s :|s|=|f(x)|(|s̃〉|s̃〉⊗〈s |φpg (x)〉). We then

decode the first and the second occurrences of |s̃〉 into |0|f(x)|+11〉|s〉. For later
convenience, we transform the first occurrence of |0|f(x)|+11〉|s〉 to |s〉|0|f(x)|+11〉.
In what follows, we abbreviate |s〉〈s |φpg (x)〉 as |æpg [s]〉. Finally, we locally apply g–1
to this part |æpg [s]〉, producing |îx〉=

∑
s :|s|=|f(x)|(|s〉|(0|f(x)|+11)2〉⊗g–1(|æ

p
g [s]〉)).

Let |Ψf(x)〉 = |f(x)〉|(0|f(x)|+11)2〉|φp(x)〉. Since |φpg (x)〉 =
∑
s :|s|=|f(x)| |æ

p
g [s]〉

and g–1(|φpg (x)〉) = |φp(x)〉, we derive |φp(x)〉 =∑
s :|s|=|f(x)| g

–1(|æpg [s]〉). There-
fore, |Ψf(x)〉 coincides with

∑
s :|s|=|f(x)|(|f(x)〉|(0|f(x)|+11)2〉⊗g–1(|æ

p
g [s]〉)). Let us

consider the inner product 〈Ψf(x)|îx〉. By a simple calculation, 〈Ψf(x)|îx〉 equals∑
s :|s|=|f(x)| 〈f(x)|s〉 ⊗ ôx(s), where ôx(s) is the inner product between |φp(x)〉

and g–1(|æpg [s]〉). Since g–1 belongs to ✷̂QP1 and is dimension-preserving and norm-
preserving by Proposition 3.5 and Lemma 3.4, ôx(s) equals 〈æpg [s]|æpg [s]〉. Since
s is forced to take the value f(x) in 〈Ψf(x)|îx〉, it follows that 〈Ψf(x)|îx〉 =
〈æpg [f(x)]|æpg [f(x)]〉, which equals ‖〈f(x)|φpg (x)〉‖2. Therefore, we conclude that
|〈Ψf(x)|îx〉|2 = ‖〈f(x)|φpg (x)〉‖4 ≥ (1 – ε′)2 = 1 – ε, as requested.
(3⇒ 1) Since f is polynomially bounded, take a polynomial p such that |f(x)| ≤

p(|x|) holds for all strings x. Since we do not know the length of f(x), we want to
expand f by setting f1(x) =f(x)01

p(|x|)+2–|f(x)| so that |f1(x)|= p(|x|)+2 for all
strings x. Fix ε ∈ [0,1/2). Let us assume that there exist a function g1 ∈ ✷̂

QP
1 and a

polynomial p1 that satisfy |f1(x)| ≤ p1(|x|) and |〈Ψf1(x)|φ
p1,f1
g (x)〉|2 ≥ 1 – ε for all

instances x ∈ {0,1}∗.
Using Lemma 4.2 for the quantum function g1, we can take a single-tape,

polynomial-time, conservative, plain QTM M with C̃-amplitudes for which M on
input |φ〉 produces a clean output of g1(|φ〉) on its tape. We consider the following
machine. On input x ∈ Σ∗, we first compute the value p(|x|) deterministically
and generate |φp,f1〉= |03p(|x|)+71〉|0|x|1〉|0p(|x|)1011p(|x|)+61〉⊗ |x〉. We then runM
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on |φp,f1(x)〉 to produce |φp,f1g1 (x)〉. Since |〈Ψf1(x)|φ
p,f1
g1 (x)〉|2 ≥ 1 – ε, |φ

p,f1
g1 (x)〉

contains f1(x) with probability at least 1 – ε. From f1(x), we extract f(x) and
output it. This concludes that f is in FBQP. ⊣

4.2. Quantum normal form theorem. Our key lemmas, Lemmas 4.2 and 4.3,
further lead to a quantum version of Kleene’s normal form theorem [18, 19], which
asserts the existence of a primitive recursive predicate T (e,x,y) and a primitive
recursive function U (y) such that, for any recursive function f(x), an appropriate
index (called a Gödel number) e ∈N satisfies f(x) =U (ìy.T (e,x,y)) for all inputs
x ∈N, where ì is theminimization operator. This statement is, in essence, equivalent
to the existence of universal Turing machine [31]. Here, we wish to prove a slightly
weaker form of the quantum normal form theorem using Lemmas 4.2 and 4.3.

Theorem 4.4 (Quantum Normal Form Theorem). There exists a quantum
function f in ✷

QP
1 such that, for any quantum function g in ✷

QP
1 and any

constant ε ∈ (0,1/2), there exist a binary string e and a polynomial p satisfying
‖|øg,x〉〈øg,x | – trn(|çf,x〉〈çf,x |)‖tr ≤ ε for any input |x〉 with x ∈ {0,1}n, where
|øg,x〉= g(|x〉) and |çf,x〉= f(|ẽ〉|0p(|x|)1〉|x〉). Such a function f is called universal.
The extra term |0p(|x|)1〉 in |çf,x〉 is needed for providing g with enough work

space as in the case of Theorem 4.1. To prove the theorem, we utilize the fact that
there is a universal QTM, which can simulate all single-tape well-formed QTMs
with polynomial slowdown with any desired accuracy. Such a universal machine
was constructed by Bernstein and Vazirani [4, Theorem 7.1] and by Nishimura
and Ozawa [25, Theorem 4.1]. We say that M1 on input x1 simulates M2 on input
x2 with accuracy at most ε if the total variation distance between two probability

distributions {‖〈y|U p1(|x1|)M1
|c(x1)0,1 〉‖2}y∈{0,1}≤n and {‖〈y|U p2(|x2|)M2

|c(x2)0,2 〉‖2}y∈{0,1}≤n

is at most ε, where n = max{p1(|x1|),p2(|x2|)} and, for each index i ∈ {1,2}, UMi
is the time-evolution operator of Mi , pi(·) expresses the running time of Mi , c(xi )0,i
is the skew initial configuration of Mi on input xi , and y ranges over all possible
output strings ofMi .

Proposition 4.5 [4, 16, 24, 25]. There exists a single-tape, well-formed, stationary
QTM U such that, for every constant ε ∈ (0,1), a number t ∈ N, a single-tape well-
formed QTM M with C̃-amplitudes, U on input 〈M,x,t,ε〉 simulates M on input x
for t steps with accuracy at most ε with slowdown of a polynomial in t and log(1/ε),
where 〈M,x,t,ε〉 refers to a fixed, efficient encoding of a quadruplet (M,x,t,ε). Such
a QTM is called universal.

The improved factor log(1/ε) in Proposition 4.5 is attributed to Kitaev [16] and
Solovay (cited in [24, Appendix 3]).
For the proof of Theorem 4.4, we need to simulate a universal QTM U provided

by Proposition 4.5 on a certain conservative QTM even with lower accuracy.
Concerning the form of inputs given to f, we need to split a quadruplet (M,x,t,ε)
in the proposition into three parts (M,ε), t, and x and then modifyU so thatU can
take any input of the form |ẽ〉|0t1〉|x〉, where e = 〈M,ε〉, and mimicM on x within
time t with accuracy at most ε. Furthermore, we need to force U to produce clean
outputs by relocating all nonblank symbols appearing in the left-side region of any
output string to elsewhere in time polynomial in t.
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Theorem 4.4 now follows directly by combining Lemmas 4.2 and 4.3 and
Proposition 4.5.

Proof of Theorem 4.4. As explained above, let U denote a modified universal
QTM that takes inputs of the form |ẽ〉|0t1〉|x〉 for any numbers e,t ∈ N+ and
any string x ∈ {0,1}∗ and produces clean outputs. Given any quantum function
g ∈ ✷

QP
1 , Lemma 4.2 guarantees the existence of a polynomial p and a single-tape,

C̃-amplitude, conservative, plain QTM M having clean outputs for which, on
any input string x ∈ {0,1}n, M produces within p(n) steps a superposition
g(|0p(n)1〉|x〉)⊗|0,qf〉 of skew final configurations composed ofM’s essential tape
region andM’s internal status. To be more precise, we denote by ÛM the skew time-

evolution operator ofM and by c(x)0,M the skew initial configuration ofM on any input

|x〉. We further set |æM,x〉 to be Û p(n)M |c(x)0,M 〉 and g(|0p(n)1〉|x〉) to be |øg,x〉. Note that
|æM,x〉 equals |øg,x〉 ⊗ |0,qf〉. Since |øg,x〉〈øg,x | = trn(|øg,x〉〈øg,x | ⊗ |0,qf〉〈0,qf |),
|øg,x〉〈øg,x | can be expressed as trn(|æM,x〉〈æM,x |).
In contrast, we denote by Ûä the skew time-evolution operator of U and by

c(xe )0,U the skew initial configuration of U on the input |xe〉 for e = 〈M,ε〉 and
xe = ẽ0

r(|x|)1x. Let m = |xe | and set |æU,xe 〉 to be Û p(m)ä |c(xe )0,U 〉, which is written
as

∑
r∈FSCU,m |U [r]〉|îxe,r〉 for an appropriate set {|îxe,r〉}r∈FSCU,m of orthogonal

quantum states. Proposition 4.5 then ensures that, by an appropriate choice of a

polynomial s, the total variation distance between {‖〈y|Û tM |c(x)0,M 〉‖2}y∈{0,1}n and

{‖〈y|Û s(t)ä |c(xe )0,U 〉‖2}y∈{0,1}n is at most ε/2 for any number t ≥ 0.
We apply Lemma 4.3 and then obtain a ✷QP1 -quantum function f such that, for

any quantum state |φ〉, f(|φ〉) represents the result of Û s(p(n))ä applied to |φ〉. For
convenience, we express f(|xe〉) as |çf,xe 〉. Lemma 4.3 again implies that |çf,xe 〉 =∑
r∈FSCU,m |U [r]〉|î̂xe,r〉 with ‖îxe,r〉‖ = ‖|î̂xe,r〉 and 〈îx,r |îx,r′〉 = 0 for all distinct

pairs r,r′ ∈FSCU,m.We thus obtain trn(|çf,xe 〉〈çf,xe |) =
∑
r,r′∈FSCU,m |U [r]〉〈U [r

′]| ·
tr(|î̂xe,r〉〈î̂xe,r′ |) =

∑
r,r′∈FSCU,m 〈î̂xe,r′ |î̂xe,r〉|U [r]〉〈U [r

′]|, which equals
∑
r∈FSCU,m

‖|î̂xe,r〉‖2|U [r]〉〈U [r]|. Similarly, we obtain trn(|æU,xe 〉〈æU,xe |)
=

∑
r∈FSCU,m ‖|îxe,r〉‖

2|U [r]〉〈U [r]|. From those calculations together with

‖|îxe,r〉‖ = ‖|î̂xe,r〉‖, the equality trn(|çf,xe 〉〈çf,xe |) = trn(|æU,xe 〉〈æU,xe |) follows
immediately.
We thus conclude that ‖|øg,x〉〈øg,x | – trn(|çf,x〉〈çf,x |)‖tr = ‖trn(|æM,x〉〈æM,x |) –

trn(|æU,xe 〉〈æU,xe |)‖tr. The last term is upper-boundedby
∑
y:|y|=n |‖〈y|Û

s(p(n))
ä |c(x)0,U 〉‖2 –

‖〈y|Û p(n)M |c(x)0,M 〉‖2|, which is clearly at most ε. Therefore, f is universal. ⊣

§5. Proof of the key lemma. To complete the proof of Theorem 4.1, we need
to prove the key lemma, Lemma 4.3. This section intends to provide the lemma’s
desired proof. Our proof is inspired by a result of Yao [39], who demonstrated a
quantum-circuit simulation of a QTM.

5.1. Functional simulation of QTMs. An essence of the proof of Lemma 4.3
is a direct step-by-step simulation of the behavior of a single-tape, C̃-amplitude,
conservative, plain QTM M = (Q,Σ,Γ,ä,q0,Qf), which has clean outputs. For
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simplicity, we assume that Σ = {0,1} and Γ = {0,1,b}, where b here stands for a
unique blank tape symbol, instead of # used in early sections. We further assume
thatQf = {qf} andQ= {0,1}ℓ for a certain fixed even number ℓ> 0with q0=0ℓ and
qf = 1

ℓ . Let us assume that, starting with binary input string x written on the single
input/work/output tape,M halts in at most p(|x|) steps, where p is an appropriate
polynomial associated onlywithM.We further assume that all computation paths of
M on each input halt simultaneously. For convenience, we also demand thatp(n)>ℓ
for any n ∈ N. It is important to remember thatM eventually halts by entering the
unique final inner state qf and making the tape head stationed at the start cell and
that no nonblank symbol appears in the left-side region of any output string.
Let x = x1x2 ···xn be any input given to M, where xi is a bit in {0,1} for each

index i ∈ [n]. Associated with p, the essential tape region ofM on x consists of all
the tape cells indexed between – p(n) and +p(n). We express the tape content of
the essential tape region as a string of the form ó1ó2 ···ó2p(n)+1 having length exactly
2p(|x|)+1 over the tape alphabet Γ = {0,1,b}, where ói is a tape symbol written at
the cell indexed i – p(n) – 1 for every index i ∈ [2p(n)+1]. We trace the changes of
these symbols asM makes its moves.
Since all ✷QP1 -functions are defined to handle quantum states in H∞, we need to

encode each tape symbol and thus a tape content. Let us define a new qustring that
properly encodes a configuration ã = (q,h,ó1ó2 ···ó2p(n)+1) ofM to be

|q〉⊗ |s1,ó̂1〉⊗ |s2,ó̂2〉⊗ |s3,ó̂3〉⊗ ···⊗ |s2p(n)+1,ó̂2p(n)+1〉,

where each ó̂i is in {0̂,1̂,b̂}, each si ∈ {2̂,3̂} indicates the presence of the tape head
(where 2̂ means “the head rests here” and 3̂ means “no head is here”) at cell
i – p(n) – 1, and q is an inner state in Q. In the subsequent subsections, we call
such a qustring a code of the configuration ã ofM and denote it by |ã̂〉. This code
|ã̂〉 has length ℓ(|ã̂〉) = 8p(n)+ ℓ+4, which is even and greater than n.
Given any binary input x = x1x2 ···xn of length n, let us recall from

Section 4.1 that |φp(x)〉 = |0|x|1〉|0p(|x|)1〉|011p(|x|)+61〉|x〉 and |φp,f(x)〉 =
|0̃|f(x)|〉|0|f(x)|+11〉|φp(x)〉. Except for Step 1 in Section 5.2 as well as all steps
in Section 5.4, we always ignore the prefix strings 0̃|f(x)|0|f(x)|+110|x|10p(|x|)1 in
|φp,f(x)〉 and 0|x|10p(|x|)1 in |φp(x)〉, and we pay our attention to the remaining
qubits. The desired quantum function g will be constructed step by step through
Sections 5.2–5.5.

5.2. Constructing a coded initial configuration. Given a binary input x =
x1x2 ···xn, the initial configuration ã0 ofM on x is of the form (q0,0,b ···bxb ···b),
and thus the code |ã̂0〉 of ã0 must have the form

|q0〉⊗ |3̂,b̂〉⊗ ···⊗ |3̂,b̂〉⊗ |2̂,x̂1〉⊗ |3̂,x̂2〉⊗ |3̂,x̂3〉⊗ ···⊗ |3̂,x̂n〉⊗ |3̂,b̂〉⊗ ···⊗ |3̂,b̂〉,

where x̂i is the code of xi , q0 (= 0
ℓ) is the initial inner state, and x1 rests in cell 0.

Notice that ℓ(|ã̂0〉) = 8p(n)+ ℓ+4. In what follows, we show how to generate this
particular code |ã̂0〉 from the quantum state |φp(x)〉. For simplicity, we will ignore
the term |q̂0〉 in the following steps except for Step 8.
1)Startingwiththeinput|φp(x)〉,wefirsttransformitto|0n1〉|0p(n)1〉|1011p(n)+51〉|x〉

by the quantum function h1 = Skip[NOT ], which satisfies both h1(|0m1〉|ø〉) =
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|0m1〉⊗NOT (|ø〉) and h1(|0m+1〉) = |0m+1〉 for any numberm ∈N and any quantum

state |ø〉 ∈ H∞. Lemma 3.9 guarantees that h1 actually exists in ✷̂
QP
1 .

From |0p(n)1〉|1011p(n)+51〉, we wish to generate |0p(n)1〉|0p(n)1〉|010p(n)+51〉 by an
appropriately constructed ✷̂QP1 -functionf1. To define the desired quantum function

f1, we first construct another quantum function g1 that maps |0p(n)1〉|0m10k1〉 to
|0p(n)1〉|0m+110k–11〉 for any two integers m ≥ 0 and k ≥ 1 by setting

g1(|φ〉) =
{
|φ〉 if ℓ(|φ〉)≤ 1,
|0〉⊗g1(〈0|φ〉)+ |1〉⊗g2(〈1|φ〉) otherwise,

where g2 is introduced as

g2(|φ〉) =
{
|φ〉 if ℓ(|φ〉)≤ 1,
SWAP(|0〉⊗g2(〈0|φ〉)+ |1〉〈1|φ〉) otherwise.

More formally, we set g2 =QRec1[I ,SWAP,I |g2,I ] and set ĝ2 = Branch[I ,g2]. We
then set g1 = QRec1[I ,I ,ĝ2|g1,I ]. The quantum function f1 is finally defined as
f1 =QRec1[I ,g1,I |f1,I ]; namely,

f1(|φ〉) =
{
|φ〉 if ℓ(|φ〉)≤ 1,
g1(|0〉⊗f1(〈0|φ〉)+ |1〉〈1|φ〉) otherwise.

In a similarmanner, we further transform |0p(n)1〉|010p(n)+51〉 to |0p(n)1〉|02p(n)+21〉
|08p(n)+21〉. We then change |0n1〉|02p(n)+21〉 to |0n1〉|0n1〉|02p(n)–n+11〉 and
|0n1〉|08p(n)+21〉 to |0n1〉|0n1〉|08p(n)–n+11〉. Overall, the input |φp(x)〉 is turned
into |0n1〉|(0p(n)1)3〉|(0n1)2〉|02p(n)–n+11〉|08p(n)–n+11〉|x〉.
(*) In what follows, by ignoring |0n1〉|(0p(n)1)3〉|(0n1)2〉, we assume that our input

is temporarily |08p(n)–n+11〉|x〉.
2) For readability, we explain this step using an illustrative example of

|061〉|x1x2x3〉, which we intend to transform to |00〉|3̂x̂1x̂2x̂3〉. For this purpose,
we begin with changing |061x1x2x3〉 to |x3x2x1106〉 by applying REVERSE.
To obtain |x30x20x1001〉|00〉 from |x3x2x1〉|106〉, we further apply g3 = SWAP ◦

REP1, which changes |x3x2x1106〉 to |x30x2x1105〉. We repeatedly apply g3
and transform |x3x2x1〉|106〉 to |x30x20x10〉|103〉. This process can be done by
the quantum function h3 = 2QRec2[I ,h

′,g3|{h′′s }s∈{0,1}2 ] defined by the 2-qubit
quantum recursion, where h′=Branch2[{h′s}s∈{0,1}2 ] with h

′
a1=SWAP and h

′
a0= I

as well as h′′a1 = I and h
′′
a0 = h3 for each bit a ∈ {0,1}; namely,

h3(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 2,∑

a∈{0,1}(SWAP(|a1〉〈a1|øg3,φ〉)+ |a0〉⊗h3(〈a0|øg3,φ〉)) otherwise,

where |øg3,φ〉 stands for g3(|φ〉). We further apply g4 = REVERSE ◦h3 to change
|x3x2x1〉|106〉 to |031〉|x̂1x̂2x̂3〉. In a general case, the above process transforms
|0n1〉|x1x2 ···xm〉 to |1〉|x̂1x̂2 ··· x̂n〉.
Finally, we apply g5, which maps |031〉|x̂1x̂2x̂3〉 to |00〉|3̂x̂1x̂2x̂3〉, defined by

g5(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 1,
SWAP(|00〉⊗g5(〈00|φ〉)+

∑
y∈{0,1}2–{00}(|y〉〈y|φ〉)) otherwise.

In general, g5 changes |0n+11〉|x1x2 ···xn〉 to |3̂x̂1x̂2 ··· x̂n〉.
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(*) To explain our procedure further, for readability, we include more 0s to
|00〉|3̂x̂1x̂2x̂3〉, and hereafter we are focused on |(00)6〉|3̂x̂1x̂2x̂3〉.
3)We transform the first two bits 00 in |(00)6〉|3̂x̂1x̂2x̂3〉 to 11 (= 2̂) and thenmove

them to the end of the qustring, resulting in |(00)5〉|3̂x̂1x̂2x̂32̂〉. This transformation
is carried out as follows. Similarly to CNOT , we define k1 =NOT ◦SWAP ◦NOT .
Since k1(|00〉) = |11〉, it suffices to define f3 =REMOVE2 ◦k1.
4) In the beginning, our qustring is of the form |3̂x̂1x̂2x̂32̂〉 by ignoring the leading

bits (00)5. We pay our attention to the qustring located between 3̂ and 2̂. We place
the last two bits 2̂ into the location immediately right to 3̂x̂1 together with changing

2̂ to 3̂. We then obtain |3̂x̂13̂x̂2x̂3〉. This process is realized by an appropriate ✷̂QP1 -
function in the following fashion.
Let k2 denote a bijection from {0,1}6 to {0,1}6 satisfying that k2(vw2̂) = v2̂w

if v,w ∈ {0̂,1̂}, k2(3̂w2̂) = 3̂w3̂ if w ∈ {0̂,1̂}, k2(w3̂2̂) = w3̂3̂ if w ∈ {0̂,1̂}, and
k2(vwz) = vwz if v,w,z 6= 2̂. With this k2, we define g5 as

g5(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 6,∑

y:|y|=6 |k2(y)〉〈y|φ〉 otherwise.

By Lemma 3.7, g5 belongs to ✷̂
QP
1 . We then define a quantum function h5 by setting

h5 = 2QRec2[I ,g5,I |h5,h5,h5,h5], namely,

h5(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 2,∑

y∈{0̂,1̂,2̂,3̂} g5(|y〉⊗h5(〈y|φ〉)) otherwise.

After placing 3̂ into the right of 3̂x̂1, we finally obtain the qustring |(00)5〉|3̂x̂13̂x̂2x̂3〉.
5) Let us define h′5 = h5 ◦f3, which is the compositions of Steps 3–4. By applying

h′5 repeatedly, we can generally change |(00)n–1〉|3̂x̂1x̂2 ··· x̂n〉 to |3̂x̂13̂x̂2 ··· 3̂x̂n〉.
Furthermore, if we apply h′5 twice to |(00)3〉|3̂x̂13̂x̂23̂x̂3〉 in our example, then it
is possible to append |3̂b̂〉 to the end of the qustring by consuming (00)3, and
then we obtain |3̂x̂13̂x̂23̂x̂3〉|3̂b̂〉. Using |02p(n)–n+11〉 in |φp〉, we repeat Steps 3–4
2p(n) – n+1 times to encode the content of the first p(n)+1 tape cells indexed by
nonnegative numbers. Returning to our example, if we take |041〉, then this process
transforms |041〉|(00)6〉|3̂x̂1x̂2x̂3〉 into |041〉|(00)2〉|3̂x̂13̂x̂23̂x̂3〉|3̂b̂〉. To realize this
transform by an appropriate ✷̂QP1 -function, since Steps 3–4 exclude |041〉, we first
need to extend h′5 to H1 = Skip[h

′
5] by Lemma 3.9. The repetition of Steps 3–4 is

done by the following quantum function f5:

f5(|φ〉) =
{
|φ〉 if ℓ(|φ〉)≤ 1,
H1(|0〉⊗f5(〈0|φ〉)+ |1〉〈1|φ〉) otherwise.

More generally, f5 changes |02p(n)–n+11〉|(00)2p(n)–n+1〉|3̂x̂1x̂2 ··· x̂n〉 to |02p(n)–n+11〉
|3̂x̂13̂x̂2 ··· 3̂x̂n〉|3̂b̂3̂b̂ ··· 3̂b̂〉 with p(n) – n+1 copies of 3̂b̂.
6) Suppose that our qustring has the form |(00)2〉|3̂x̂13̂x̂23̂x̂3〉|3̂b̂〉 by ignoring

|041〉. We want to change the leftmost 3̂ to 2̂, resulting in |(00)2〉|2̂x̂13̂x̂23̂x̂3〉|3̂b̂〉.
For our purpose, we first choose a unique bijection p satisfying that p(2̂) = 3̂,
p(3̂) = 2̂, and p(y) = y for all other y ∈ {0,1}2. Using Lemma 3.7, we expand this
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bijection p to its associated quantum function gp. The quantum function f6 is then
defined as

f6(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 2,
gp(|00〉⊗f6(〈00|φ〉)+

∑
y∈{0,1}2–{00} |y〉〈y|φ〉) otherwise.

7) We then change the series of 00’s in |(00)2〉|2̂x̂13̂x̂23̂x̂3〉|3̂b̂〉 into 10’s. To make
this change, we prepare h6 = SWAP ◦NOT ◦CNOT ◦NOT . Note that h6(|00〉) =
|10〉 and h6(|11〉) = |11〉. We then set

f7(|φ〉) =
{ |φ〉 if ℓ(|φ〉)≤ 2,
h6(|00〉⊗f7(〈00|φ〉)+

∑
y:|y|=2∧y 6=00 |y〉〈y|φ〉) otherwise.

This quantum function f7 changes |(00)2〉 to |(10)2〉, which equals |3̂b̂〉, and thus
we obtain |3̂b̂〉|2̂x̂13̂x̂23̂x̂3〉|3̂b̂〉. To obtain p(n) copies of |3̂b̂〉 in the left-side region
of |2̂〉 in general, the string (00)2p(n) is needed to consume.
8) In this final step, we include the term |q0〉 (= |0ℓ〉) into our proce-

dure. We combine Steps 1–7 to transform |0ℓ〉|02p(n)–n+11〉|08p(n)–n+21〉|x〉 to
|q0〉|3̂b̂ ··· 3̂b̂〉|2̂x̂13̂x̂23̂x̂3 ··· 3̂x̂n〉|3̂b̂ ··· 3̂b̂〉 by the quantum function F1 defined as
F1 =RevBranchℓ [{gs}s∈{0,1}ℓ ], where g0ℓ = f7 and gs = I for any string s different

from 0ℓ .

5.3. Simulating a single step. To simulate an entire computation of M on any
given input x, we need to simulate all steps of M one by one until M eventually
enters the final inner state qf . In what follows, we demonstrate how to simulate a
single step ofM by changing a head position, a tape symbol, and an inner state in
a given configuration.
Note that M’s step involves only three consecutive cells, one of which is being

scanned by the tape head. To describe such three consecutive cells together with
M’s inner state, in general, we use an expression r of the form ps1ó1s2ó2s3ó3 using
p ∈ {0,1}ℓ , ói ∈ {0,1,b}, and si ∈ {2,3} for each index i ∈ [3]. Each expression with
si = 2 indicates thatM is in state q, scanning the ith cell of the three cells. The length
of r is clearly ℓ+6. Let T be the set of all possible such r’s. Notice that T is a finite
set. The code |r̂〉 of r = ps1ó1s2ó2s3ó3 is |q〉|ŝ1,ó̂1〉|ŝ2,ó̂2〉|ŝ3,ó̂3〉, which is of length
ℓ+12.
For simplicity, we call r a target if s1 = 3, s2 = 2, s3 = 3, and ä(q,ó2) is defined.

For later use, s1ó1s2ó2s3ó3 without q is called a pretarget if qs1ó1s2ó2s3ó3 is a target.
1) Let r = qs1ó1s2ó2s3ó3 be any fixed element in T. We prepare a flag qubit |0〉 in

the end of |φ〉 to mark that a simulation ofM’s single step is in progress or has been
already done. Let us define a quantum functionf8, which transforms |r̃〉|0〉 to either
|r̃〉|0〉 or |s̃〉|1〉, where s is an expression obtained from r by applying ä once if r is
a target. Let A denote the set of all targets in T and set A⋄ = {r̃ | r ∈ A}. Similarly,
we define T ⋄ from T.
For this purpose, we first define a supporting quantum function hr(|b〉|ø〉) =

NOT (|b〉)⊗|r̃〉〈r̃|ø〉+∑
s∈{0,1}ℓ+12–A⋄(|b〉⊗|s〉〈s |ø〉) for each target r ∈ T and any

b ∈ {0,1}. Next, we define {gr}r∈T as follows. If r is a non-target in T, then we set
gr = I . In what follows, we assume that r is a target. Let gr(|0〉|s〉|φ〉) = |0〉|s〉|φ〉
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for any string s ∈ {0,1}ℓ+12. SinceM is plain,M has only two kinds of transitions,
shown in (i) and (ii) below.
(i) Consider the case where ä(q,ó2) = e

iè |q′,ô,d 〉. When d = L, we set

gr(|1〉|q〉|3̂,ó̂1〉|2̂,ó̂2〉|3̂,ó̂3〉|φ〉) = eiè |1〉|q′〉|2̂,ó̂1〉|3̂,ô̂〉|3̂,ó̂3〉|φ〉.

When d =R, in contrast, we define

gr(|1〉|q〉|3̂,ó̂1〉|2̂,ó̂2〉|3̂,ó̂3〉|φ〉) = eiè |1〉|q′〉|3̂,ó̂1〉|3̂,ô̂〉|2̂,ó̂3〉|φ〉.

(ii) Consider the casewhere ä(q,ó2)= cosè|q1,ô1,d1〉+sinè|q2,ô2,d2〉. If (d1,d2)=
(R,L), then we define gr as

gr(|1〉|q〉|3̂,ó̂1〉|2̂,ó̂2〉|3̂,ó̂3〉|φ〉) = cosè|1〉|q1〉|3̂,ó̂1〉|3̂,ô̂1〉|2̂,ó̂3〉|φ〉
+sinè|1〉|q2〉|2̂,ó̂1〉|3̂,ô̂2〉|3̂,ó̂3〉|φ〉.

The other values of (d1,d2) are similarly handled.
Notice that {gr(|1〉|r̃〉)}r∈A forms an orthonormal set becauseM is well-formed,

and thus ä satisfies all the conditions stated in Section 2.2. Once the flag qubit
becomes |1〉, we do not need to apply gr ◦hr . Thus, we further set g ′r = Branch[gr ◦
hr,I ]. By combining all g

′
r ’s, we define g as g = Compo[{g ′r}r∈T ], which implies

g(|0〉|φ〉) =
∑

r∈T
gr(|1〉|r̃〉〈r̃|φ〉)+

∑

s∈{0,1}ℓ+12–T⋄

(|0〉|s〉〈s |φ〉)

for any quantum state |φ〉 ∈ H∞. We can claim that g is norm-preserving and it
can be constructed from the initial quantum functions in Definition 3.1 by applying

the construction rules. From this claim, g falls into ✷̂
QP
1 . Finally, we define f8 =

REMOVE1 ◦(g≤ℓ+13⊗I ), where g≤ℓ+13⊗I is defined as in Lemma 3.8. Intuitively,
f8 changes the content of three consecutive tape cells whose middle cell is being
scanned by the tape head.
2) We want to apply f8 to all three consecutive tape cells. First, we find a code

of a pretarget ŝ1ó̂1ŝ2ó̂2ŝ3ó̂3 (using the quantum recursion), move an inner state
q as well as a marker |0〉 forward (by REPℓ+1) to generate a block of the form
|0〉|q〉|ŝ1ó̂1ŝ2ó̂2ŝ3ó̂3〉 and apply f8 to this block. This changes |0〉 to |1〉 to record the
execution of the current procedure. We then move the obtained inner state and the
marker back to the end (by REMOVEℓ+1). This entire procedure can be executed
by an appropriate quantum function, say, F2.
To be more formal, we first set another quantum function p to beREMOVEℓ+1 ◦

LENGTHℓ+13[f8]◦REPℓ+1. The quantum function F ′
2 is then defined as

F ′
2(|φ〉|0〉|q〉) =

{ |φ〉|0〉|q〉 if ℓ(|φ〉)< ℓ+13,
p(

∑
s :|s|=4(|s〉⊗F ′

2(〈s |φ〉|0〉|q〉))) otherwise.

To complete the transformation,we further defineF2=REPℓ+1◦F ′
2 ◦REMOVEℓ+1.

After the application of F2, the first qubit of |0〉|q〉|φ〉 turns to |1〉, marking an
execution ofM’s single step. If we want to repeat an application of F2, we need to
reset |1〉 back to |0〉.
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5.4. Completing the entire simulation. We have shown in Section 5.3 how to
simulate a single step ofM on x by F2. Here, we want to simulate all steps ofM by
applyingF2 inductively to any input of the form |0p(|x|)1〉⊗|ø〉, where |ø〉 represents
a superposition of coded configurations ofM on x. This process is implemented by
a new quantum function F3, which repeatedly applies NOT ◦F2 to |0〉|ø〉, where
NOT is used to reset |1〉 to |0〉.
We first take the quantum function ĝ = Skip[NOT ◦F2] given by Lemma 3.9.

The desired quantum function F3 must satisfy

F3(|φ〉) =
{
|φ〉 if ℓ(|φ〉)≤ 1,
|0〉⊗ ĝ(F3(〈0|φ〉))+ |1〉⊗ I (〈1|φ〉) otherwise.

Note that the number of the applications of ĝ is exactly p(|x|). This function
F3 can be realized with a use of the single-qubit quantum recursion of the form
F3 =QRec1[I ,Branch[ĝ,I ],I |F3,I ].

5.5. Preparing an output. Assume that a superposition of coded skew final config-

urations ofM on the given input x of length n has the form
∑
r∈FSCM (x) |M̃ [r]〉|îx,r〉

for a certain series {|îx,r〉}r∈FSCM,n of quantum states, where M [r] indicates M’s
output string appearing in a skew final configuration r including only the essential
tape region ofM on x.
To show the first part of Lemma 4.3, in the end of our simulation, we need to

generate M̃ [r] in the leftmost portion of the qustring obtained by the simulation.
To achieve this goal, we first move the content of the left-side region of the start cell
to the right end of the essential tape region.
As an illustrative example, suppose that we have already obtained the quantum

state |3̂b̂3̂b̂3̂b̂〉|2̂0̂3̂0̂3̂1̂〉|3̂b̂〉 after executing steps in Section 5.4. In this case, the
outcomeofM in this skewfinal configuration r is 001, and thus M̃ [r] = 0̂0̂1̂2̂ holds. In

what follows, we want to transform |3̂b̂3̂b̂3̂b̂〉|2̂0̂3̂0̂3̂1̂〉|3̂b̂〉 to |0̂0̂1̂2̂〉|3̂b̂3̂b̂3̂b̂〉|1̂3̂3̂3̂〉,
which equals |M̃ [r]〉|3̂b̂3̂b̂3̂b̂〉|1̂3̂3̂3̂〉, by an appropriate ✷̂QP1 -function, say, F4.
(i) Starting with |3̂b̂3̂b̂3̂b̂〉|2̂0̂3̂0̂3̂1̂〉|3̂b̂〉, to mark the end portion of the tape

cell, we change the last marker 3̂ to 1̂ by applying NOT to 3̂ and then obtain

|3̂b̂3̂b̂3̂b̂〉|2̂0̂3̂0̂3̂1̂〉|1̂b̂〉. This process is referred to as f9.
(ii) By moving repeatedly the leftmost |3̂b̂〉 in |3̂b̂3̂b̂3̂b̂〉|2̂0̂3̂0̂3̂1̂〉|1̂b̂〉 to the end

of the qustring, we eventually produce |2̂0̂3̂0̂3̂1̂〉|1̂b̂3̂b̂3̂b̂3̂b̂〉. To realize this entire
transform, we need to define

f10(|φ〉) =
{ |φ〉 if ℓ(|φ〉)< 4,∑

a∈{0,1} |2̂â〉〈2̂â|φ〉+
∑
z∈B4REMOVE4(|z〉⊗f10(〈z|φ〉)) otherwise,

whereB4 = {0,1}4 – {2̂0̂,2̂1̂}. More formally, we definef10 asf10 =2QRec4[I ,h′′,I |
{fz}z∈{0,1}4 ], where h

′′ = Branch[{h′′z }z∈{0,1}4 ] with h
′′
2̂0̂
= h′′

2̂1̂
= I and h′′z =

REMOVE4 as well as f2̂0̂ = f2̂1̂ = I and fz = f10 for any z ∈ B4.
(iii) The current qustring has the form |2̂0̂3̂0̂3̂1̂〉|1̂b̂〉|3̂b̂3̂b̂3̂b̂〉. We sequentially

remove each of the markers {1̂,2̂,3̂} in |2̂0̂3̂0̂3̂1̂〉|1̂b̂〉 to the end of the entire qustring
and produce |0̂0̂1̂b̂〉|3̂b̂3̂b̂3̂b̂〉|1̂3̂3̂2̂〉. To implement this process, we apply h8 defined
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by h8 = 2QREC3[I ,REMOVE2,I |{hy}y∈{0,1}4 ], where h1̂b̂ = I and hy = h8 for all

y ∈ {0,1}4 – {1̂b̂}; in other words,

h8(|φ〉) =
{
|φ〉 if ℓ(|φ〉)< 4,
REMOVE2(|1̂b̂〉〈1̂b̂|φ〉+

∑
y∈{0,1}4–{1̂b̂} |y〉⊗h8(〈y|φ〉)) otherwise.

(iv) At last, we change the rightmost b̂ in |0̂0̂1̂b̂〉 to 2̂ and then obtain |0̂0̂1̂2̂〉 (=
|0̃01〉). To produce such a qustring, we apply the quantum function h6 defined by

h9(|φ〉) =
{
|φ〉 if ℓ(|φ〉)< 2,∑
y∈{0̂,1̂} |y〉⊗h9(〈y|φ〉)+ |b̂〉〈2̂|φ〉+ |2̂〉〈b̂|φ〉 otherwise.

Formally, we set h9=2QRec1[I ,h
′
9,I |{hy}y∈{0,1}2 ], where h

′
9=Branch[{h′′y }y∈{0,1}2 ]

with h′′
2̂
= h′′

b̂
= SWAP ◦NOT ◦SWAP and h′′y = I together with h2̂ = hb̂ = I and

hy = h9 for any y ∈ {0̂,1̂}.
(vi) To perform Steps (i)–(v) at once, we combine all quantum functions used in

Steps (i)–(v) and define a single quantum function F4 = h9 ◦h8 ◦f10 ◦f9. Overall,
the resulted qustring is |0̂0̂1̂2̂〉|3̂b̂3̂b̂3̂b̂〉|1̂3̂3̂2̂〉.
The quantum state |φpF4(x)〉 can be expressed as

∑
r∈FSCM,n |M̃ [r]〉|î̂x,r〉 for certain

quantum states {|î̂x,r〉}r . Since we deal with an essential tape region of M, it
instantly follows that, for every x,x′ ∈ {0,1}n and r,r′ ∈ FSCM,n, ‖〈îx,r |îx′,r′〉‖ =
‖〈î̂x,r |î̂x′,r′〉‖ and 〈î̂x,r |î̂x,r′〉 = 0 if r 6= r′. Therefore, F4 satisfies the condition of
the first part of the lemma.
For the second part of the lemma, we further need to retrieve |M [r]〉

from the coded qustring |M̃ [r]〉. From the previous illustrative example

|0̂0̂1̂2̂〉|3̂b̂3̂b̂3̂b̂〉|1̂3̂3̂2̂〉, we need to produce |001〉|1〉|3̂b̂3̂b̂3̂b̂〉|1̂3̂3̂2̂〉|1000〉. For this
purpose, we use the quantum function g7 defined by g7 = 2QRec1[I ,REMOVE1,
I |{g ′z}z∈{0,1}2 ], where g

′
0y = g7 and g

′
1y = I for any y ∈ {0,1}; namely,

g7(|φ〉) =
{ |φ〉 if ℓ(|φ〉)< 2,
REMOVE1(

∑
y∈{0,1}(|0y〉⊗g7(〈0y|φ〉)+ |1y〉〈1y|φ〉)) otherwise.

Using g7, we finally set F5 = g7 ◦F4 to obtain the second part of the lemma.
This completes the proof of Lemma 4.3.

5.6. Simple applications of the simulation procedures. The proof of Lemma 4.3
provides useful procedures not only for the construction of the desired quantum
function g but also for other special-purpose quantum functions. Hereafter, as
simple applications of the simulation procedures given in Steps 1–6 of Section 5.2,
wewill explain how to encode/decode classical strings and how to duplicate classical

information by ✷̂QP1 -functions.
Steps 1–8 in Section 5.2 describe a transformation between classical strings and

their encodings. A slight modification of Step 2 introduces an encoder Encode,
which properly encodes binary strings s to s̃ .

Lemma 5.1. There exists a quantum function Encode in ✷̂
QP
1 that satisfies

Encode(|0k+11〉 ⊗ |φ〉) =∑
s∈{0,1}k (|s̃〉 ⊗ |s〉〈s |φ〉) for any number k ∈ N and any
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quantum state |φ〉 ∈H∞. Moreover, the quantum functionDecode =Encode–1 is also

in ✷̂QP1 .

Given extra bits 0k+11, the first k qubits of |φ〉 is properly encoded by Encode by
consuming 0k+11. For example, Encode changes |031〉|a1a2〉 to |â1â22̂〉 andDecode
returns |â1â22̂〉 back to |031〉|a1a2〉. Notice that Proposition 3.5 ensures Decode ∈
✷̂
QP
1 from Encode ∈ ✷̂

QP
1 .

Quantum mechanics in general prohibits us from duplicating unknown quantum
states; however, it is possible to copy each classical string quantumly. We thus have
the following quantum function COPY2, which copies the content of the first k
qubits of any input.

Lemma 5.2. There exists a quantum function COPY2 in ✷̂
QP
1 that satisfies the

following condition: for any k ∈ N+ and any |φ〉 ∈ H∞,

COPY2(|0̃k〉⊗ |φ〉) =
∑

s∈{0,1}k
(|s̃〉⊗ |s̃〉〈s̃ |φ〉).

The encoding 0̃k of 0k is needed to distinguish 0k from any part of |φ〉 because k is
not a fixed constant. When |φ〉 has the form |x̃〉|ø〉, the quantum function COPY2
works as COPY2(|0̃k〉⊗ |x̃〉|ø〉) = |x̃〉⊗ |x̃〉|ø〉.
Proof ofLemma 5.2. Wewish to construct the desired quantum functionCOPY2

as follows. Tomake our construction process readable, we use an illustrative example

of |0̃k〉|φ〉 = |0̃2〉|ã1a2〉 (= |0̂0̂2̂〉|â1â22̂〉) to show how each constructed quantum
function works.

1) Steps 1–6 of Section 5.2 transform |0̂0̂1̂〉|â1â2〉 to |2̂â13̂â2〉|3̂〉. By a slight
modification of these steps, it is possible to transform |0̂0̂2̂〉|â1â22̂〉 to
|3̂â13̂â22̂〉|2̂〉. We denote by f1 a quantum function that realizes this
transformation.

2) By copying âi in 3̂âi onto 3̂ for each i ∈ {1,2}, we change 3̂âi to âi âi and then
obtain |â1â1â2â22̂〉|2̂〉. This step can be formally made in the following way.
First, we define a quantum function h2 that satisfies h2(|b1b2〉|b3b4〉⊗ |φ〉) =
|b4b2b1b3〉 ⊗ |φ〉 for any φ ∈ H∞. Such a quantum function actually exists
by Lemma 3.7. Second, we set DUP to be h–12 ◦ (SWAP ◦NOT ◦SWAP ◦
CNOT )◦h2 ◦NOT . It then follows that DUP(|3̂〉|â〉⊗ |φ〉) = |â〉|â〉⊗ |φ〉 for
any bit a ∈ {0,1} and any quantum state |φ〉 ∈H∞. With thisDUP, we further
define f2 by the 4-qubit quantum recursion as

f2(|φ〉) =
{
|φ〉 if ℓ(|φ〉)< 4,
DUP(

∑
a∈{0,1} |3̂â〉⊗f2(〈3̂â|φ〉)+

∑
y∈B′4

|y〉〈y|φ〉 otherwise,

where B ′
4 = {0,1}4 – {3̂0̂,3̂1̂}.

3) Next, we transform |â1â1â2â22̂〉|2̂〉 to |â1â22̂〉|2̂â2â1〉. This transformation can
be done by f3 defined as

f3(|φ〉)=
{
|φ〉 if ℓ(|φ〉)< 4,
REMOVE2(

∑
y∈{0,1}4–{2̂2̂} |y〉⊗f3(〈y|φ〉)+ |2̂2̂〉〈2̂2̂|φ〉) otherwise.
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4) We then change |â1â22̂〉|2̂â2â1〉 to |2̂â2â1〉|2̂â2â1〉 by removing each two qubits
in the first part to the end. This process is precisely realized by f4 defined as

f4(|φ〉)=
{
|φ〉 if ℓ(|φ〉)< 4,
REMOVE2(

∑
y∈{0,1}2–{2̂}(|y〉⊗f5(〈y|φ〉))+ |2̂〉〈2̂|φ〉) otherwise.

5) Finally, we reverse the whole qustring to obtain |â1â22̂〉|â1â22̂〉 by applying
REVERSE.This completes the proof of the lemma. ⊣

§6. Future challenges. In Definition 3.1, we have defined ✷QP1 -functions on H∞
and we have given in Theorem 4.1 a new characterization of FBQP-functions in
terms of these ✷QP1 -functions. To point out the directions of future research, we
wish to raise a challenging open question in Section 6.1 and to present in Sections
6.2 and 6.3 three possible implications of our schematic definition to the subjects of
descriptional complexity, firt-order theories, and higher-type functionals. In Section
6.4, wewill remark a practical application to the designing of quantumprogramming
languages.

6.1. Seeking a more reasonable schematic definition. Our schematic definition
(Definition 3.1) is composed of the initial quantum functions, which are derived
from natural, simple quantum gates, and the construction rules, including the
multiqubit quantum recursion, which significantly enriches the scope of constructed
quantum functions. The choice of initial functions and construction rules that we
have used in this paper directly affects the richness of ✷QP1 -functions. Although

our ✷QP1 is sufficient to characterize FBQP, if we further seek for enriching the

✷
QP
1 -functions, one way is to supplement additional initial quantum functions. As
a concrete example, let us consider the quantum Fourier transform (QFT), which
plays an important role in, e.g., Shor’s factoring quantum algorithm [29]. We have
demonstrated in Lemma 3.10 how to implement a restricted form of QFT working

on a fixed number of qubits, and thus it belongs to ✷̂
QP
1 . Nonetheless, a more

general form of QFT, acting on an “arbitrary” number of qubits, may not be

realized precisely by ✷̂QP1 -functions although it can be approximated to any desired

accuracy by the ✷̂QP1 -functions. To remedy the exclusion of QFT from our function

class ✷QP1 , for instance, we can expand the current ✷̂
QP
1 by including as an initial

quantum function the quantum function defined as

CROT (|φ〉|0j〉) = |0〉〈0|φ〉|0j〉+ùj |1〉〈1|φ〉|0j〉 (controlled rotation),

where ùj = e
2ði/2j , with an extra term 0j . It is not difficult to construct QFT

from quantum functions in this expanded ✷̂
QP
1 obtained by adding CROT .

As this example shows, it remains important to seek for a simpler, more
reasonable schematic definition of quantum functions, which are capable of precisely
characterizing both BQP and FBQP and also simplifying the proof of Theorem 4.1.
From the minimalist’s viewpoint, on the contrary, we may be able to eliminate

certain schemata or replace themby simpler ones but still ensure the characterization
result of BQP and FBQP in terms of✷QP1 -functions. As a concrete example, we may
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ask whether our multiqubit quantum recursion can be replaced by 1-qubit quantum
recursion at the cost of adding extra initial quantum functions.

6.2. Introduction of descriptional complexity and first-order theories. As noted in
Section 3.1, our schematic definition of ✷QP1 -functions provides us with a natural
means of assigning the descriptional complexity—a new complexity measure—to
each of those quantum functions in ✷QP1 . This complexity measure has been used
to prove, for instance, Lemma 3.4. As a consequence of our main theorem, this
complexity measure concept also transfers to languages in BQP and functions in
FBQP, and thus it naturally helps us introduce the notion of the descriptional
complexities of such languages and functions.
It is further possible for us to extend this complexity measure to “arbitrary”

languages and functions on {0,1}∗, which are not necessarily limited to FBQP and
BQP, and to discuss their “relative” complexity to ✷

QP
1 . More formally, given a

function f on {0,1}∗, the✷QP1 -descriptional complexity of f at length n is the minimal
number of times we use initial quantum functions and construction rules to build a

✷
QP
1 -function g for which |〈Ψf(x)|φ

p,f
g (x)〉|2 ≥ 2/3 hold for a certain polynomial p

with |f(x)| ≤ p(|x|) for all strings x of length exactly n. We write dc(f)[n] to denote
the✷QP1 -descriptional complexity of f at length n. Obviously, every✷

QP
1 -function has

constant ✷QP1 -descriptional complexity at every length. In a similar spirit but based
on quantum finite automata, Villagra and Yamakami [32] discussed the quantum
state complexity restricted to inputs of length exactly n (as well as length at most n).
It has turned out that such complexity measure is quire useful. Refer to [32] for the
detailed definitions. Our new complexity measure dc(f)[n] is also expected to be a
useful tool in classifying languages and functions in descriptional power in a way
that is quite different from what QTMs and quantum circuits do.
In a much wider perspective, our schematic definition of polynomial-time

quantum computability may lead to the future development of an appropriate
form of first-order theories over quantum states in Hilbert spaces or first-order
quantum theories, for short. In the literature, first-order theories and their natural
subtheories have become a fruitful research subject in mathematical logic and
recursion theory and they have also found numerous applications in other fields
as well. A weak form of their subtheories has been studied in quantum complexity
theory. For instance, using bounded quantifiers over quantum states in Hilbert
spaces, quantum analogues of NP and the Meyer-Stockmeyer polynomial(-time)
hierarchy have been discussed in [36]. Unfortunately, we are still far away from
obtaining well-accepted first-order theories and useful subtheories for quantum
computing.

6.3. Extension to type-2 quantum functionals. Conventionally, functionsmapping
Σ∗ to Σ∗ are categorized as type-1 functionals, whereas type-2 functionals are
functions taking inputs from Σ∗ together with type-1 functionals. In computational
complexity theory, such type-2 functionals have been extensively discussed in, e.g.,
[7, 8, 16, 23, 30, 33, 34].
In analogy to the classical case, we call ✷QP1 -functions on H∞ type-1 quantum

functionals. To introduce type-2 quantum functionals, we start with an arbitrary
quantum function O mapping H∞ to H∞, which is treated as a function oracle (an
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oracle function or simply an oracle) in the following formulation. From such an
oracle O, we define a new linear operator Õ as Õ(|x̃〉) =

∑
s :|s|=|x|αs |s̃〉 if O(|x〉)

is of the form
∑
s :|s|=|x|αs |s〉 for any string x ∈ {0,1}∗, where s̃ is the code of s,

defined in Section 4.1. Note that ℓ(Õ(|x̃〉)) = 2ℓ(O(|x〉))+2.
First, we expand our initial functions and construction rules given in Definition

3.1 by replacing any quantum function, say, f(|φ〉) in each scheme of the definition
with f(|φ〉,O). Second, we introduce another initial quantum function, called the
query functionQUERY . For any twoqustrings |φ〉 and |ø〉of length n, let |φ〉⊕|ø〉=∑
s :|s|=n

∑
t:|t|=n 〈s |φ〉〈t|ø〉|s⊕ t〉, where s⊕ t means the bitwise XOR of s and t. As

a special case, it follows that Õ(|x̃〉)⊕ Õ(|x̃〉) = |02|x|+2〉 for any x ∈ {0,1}∗. The
query function is then defined as

QUERY (|φ〉,O)

=
∑

n∈[t]

∑

x∈Σn

∑

s∈Σn


|x̃〉⊗ (Õ(|x̃〉)⊕|s̃〉)⊗〈x̃s̃ |φ〉+

∑

y∈Σ4n+4∧y 6=x̃s̃

|y〉〈y|φ〉




for all |φ〉 ∈ H∞, where t = ⌊(ℓ(|φ〉) – 4)/4⌋. In particular, QUERY (|x̃〉|s̃〉|φ〉)
equals |x̃〉⊗ (Õ(|x̃〉⊕ |s̃〉)⊗|φ〉. It also follows that QUERY ◦QUERY (|φ〉,O) =
I (|φ〉) since Õ(|x̃〉)⊕ Õ(|x̃〉) = |02|x|+2〉.
Notice that if O is in ✷QP1 then the function QO(|φ〉) =def QUERY (|φ〉,O) also

belongs to ✷QP1 . It is also possible to show similar results discussed in the previous
sections. These basic results can open a door to a rich field of higher-type quantum
computability and we expect fruitful results to be discovered in this new field.

6.4. Application to quantum programming languages. A practical application of
our schematic definition can be found in the area of quantumprogramming languages.
Since the early days of quantum computing research, a significant effort has been
made by physicists, computer scientists, and computer engineers to draw apragmatic
road map to a real-life quantum computer.
Toward the realization of such quantum computers, most research has focused

on their hardware construction. For the building of “multipurpose” quantum
computers, however, it is more desirable to make them “programmable” in such
a way that any run of an appropriate “quantum program” freely alters computing
processes for different target problemswithout remodeling their hardware each time.
Aquantumprogramhere refers to a finite series of instructions on how to operate the
quantum computer step by step. To write such a quantum program, nevertheless, we
need to develop well-structured programming languages for the quantum computer
(dubbed as quantum programming languages). Various quantum programming
languages have been discussed over two decades in due course of developing real-life
quantum computers. Refer to surveys, e.g., [12] for a necessary background.
Our schematic definition provides a description of how to define a given ✷

QP
1 -

function. This description can be viewed as a set of instructions, each of which
instructs how to apply each scheme to build the desired quantum function and
it thus resembles a program that dictates how to construct the quantum function.
Therefore, our schematic description of a construction process of quantum functions
may help us design appropriate quantum programming languages in the future.

https://doi.org/10.1017/jsl.2020.45 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.45


1586 TOMOYUKI YAMAKAMI

Acknowledgments. This work was done while the author was at the University
of Ottawa between 1999 and 2003, and it was financially supported by the Natural
Sciences and Engineering Research Council of Canada.
An extended abstract appeared under the title “A recursive definition of quantum

polynomial time computability (extended abstract)” in the Proceedings of the
9th Workshop on Non-Classical Models of Automata and Applications (NCMA
2017), Prague, Czech Republic, August 17–18, 2017, Österreichische Computer
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