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1. Introduction

The large t asymptotics to all orders of ζ(s) is studied in [3]; the second part of
this paper analyses the large t asymptotics of a certain generalization of ζ(s). In
this analysis, as well as in a new formulation of |ζ(s)|2, there appear certain single
and double exponential sums. Here, motivated by the appearance of the above
single and double Riemann-zeta type sums, we revisit such sums. In particular, in
§ 2, we revisit a novel identity derived in [3] and also, using the results of [3], we
present a variant of the above identity. These two identities, used by themselves
or in combination with classical techniques [8], allow us to derive several estimates
in a simpler way than using only the classical techniques. In § 2, we also derive
some estimates for certain specific Riemann-zeta type single sums; these sums arise
in §§ 3 and 5 as a result of using the identities discussed in § 2.1 for estimating
double Riemann-type sums. In § 3, we derive some simple estimates for double
Riemann-zeta type exponential sums, we review some well-known estimates for the
Euler-Zagier sums defined on the critical strip 0 � σ � 1, and establish a connection
between these two types of sums. Some of the results of this section are derived
via the results of § 2. In § 4, we provide sharp estimates for particular cases of
Euler-Zagier and Mordell-Tornheim sums. In § 5, we derive estimates for two types
of double exponential sums, denoted by S1 and S2 which involve ‘small’ sets. The
analysis of S1 is also based on the results of § 2 and illustrates the fact that double
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sums involving ‘small’ sets can be studied via the variant of the identities of [3]
presented in § 2.1, in a simpler way than using classical estimates. Furthermore,
and more importantly, this novel approach yields sharp results. This fact is further
demonstrated in the analysis of S2: this sum can be studied directly via classical
estimates or even via ‘rough’ estimates, however, the above novel approach yields
significantly sharper results; details are given in § 5.

Notation
[A] = integer part of A.

2. Asymptotic estimates and identities of certain single exponential
sums

In this section, we analyse sums of the type

B(t)∑
m=A(t)

eif(m), 1 � A(t) < B(t), (2.1)

for the following three particular cases of f(m),

t ln
(

1 +
t

m

)
, t ln

(
1 +

m

t

)
, t ln m, (2.2)

with t > 0 and m ∈ Z
+.

The third case of (2.2) corresponds to the classical exponential sums related to
Riemann zeta function. In this case, partial summation and the Phragmén-Lindelöf
convexity principle (PL) (known also as Lindelöf’s theorem) implies

[t]∑
m=1

1
mσ

eit ln m =
[t]∑

m=1

m−σ+it =

{
O

(
t((1/2)−(2/3)σ) ln t

)
, 0 � σ � 1

2 ,

O
(
t((1/3)−(13)σ) ln t

)
, 1

2 < σ < 1.
(2.3)

The exponents (1/2) − (2/3)σ and (1/3) − (1/3)σ have been improved only
slightly in the last 100 years with the best current result due to Bourgain [1].

2.1. Two useful asymptotic identities

In what follows we present a slight variant of two useful asymptotic identities
derived in [3].

Below we study sums of the type (2.1) with f(m) given by the third case of
(2.2): the cases (i) and (ii) correspond to t � A(t) < B(t) and A(t) < B(t) = O(t),
respectively.

Lemma 2.1. Let s = σ + it, 0 < σ < 1:

(i)

[(η/2π)]∑
n=[t]+1

1
ns

=
1

1 − s

( η

2π

)1−s

+ O

(
1
tσ

)
, t <

η

2π
< ∞, t → ∞. (2.4)
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(ii)

[(t/η1)]∑
n=[(t/η2)]+1

1
ns

= χ(s)
[(η2/2π)]∑

n=[(η1/2π)]+1

1
n1−s

+ E(σ, t, η2) − E(σ, t, η1), t → ∞,

ε < η1 < η2 <
√

t, ε > 0; dist(ηj , 2πZ) > ε, j = 1, 2, (2.5)

where as t → ∞,

E(σ, t, η) = κeiγ
(η

t

)s
(

1 + O

(
1
t

))

+

⎧⎨
⎩

O
(

η
t

)
, ε < η < t1/3, 3η3 < αt,

O
(
e−(αt/η2) + η4

t2

)
, t1/3 < η <

√
t, 3η2 < αt,

(2.6a)

with κ given by

κ(σ, t, η) =
1
α

+
i

2α3

η2

t

[
α2

η2
(β2 + σ − 1) − 2

αβ

η
− α + 2

]
,

where α, β, γ are defined by

α(η) = 1 − e−iη, η > 0, (2.6b)

β(σ, t, η) = t − η

[
t

η

]
− i(σ − 1), 0 < σ < 1, t > 0, η > 0, (2.6c)

γ(t, η) = t − η − η

[
t

η

]
, t > 0, η > 0, (2.6d)

and χ(s) is defined by

χ(s) =
(2π)s

π
sin

(πs

2

)
Γ(1 − s), s ∈ C. (2.6e)

The above results are valid uniformly with respect to η and σ.

Proof. (i) Equation (2.4) is given by equation (1.9) of [3], with

η1 = 2πt > (1 + ε)t and η2 = η > η1,

for some ε > 0.
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(ii) Regarding (2.5), we first recall equation (4.2) of [3]:

ζ(s) =
[t/η]∑
n=1

1
ns

+ χ(s)
[(η/2π)]∑

n=1

1
n1−s

+ ie−((iπs)/2) Γ(1 − s)√
2π

e−i([t/η]+1)ηe−(iπ/4) ηs

√
t
κ(σ, t, η)

+ e−iπsΓ(1 − s)e−(πt/2)ησ−1

×
{

O
(

η
t

)
, ε < η < t1/3, 3η3 < αt,

O
(
e−(αt)/(η2) + η4

t2

)
, t1/3 < η <

√
t, 3η2 < αt,

dist(η, 2πZ) > ε, 0 < σ < 1, t → ∞. (2.7)

The asymptotic formula

Γ(σ − iξ) =
√

2πξσ−(1/2)e−(πξ/2)e(iπ/4)eiξξ−iξe−(iπσ/2)

×
[
1 + O

(
1
ξ

)]
, ξ → ∞,

which is proven in Appendix A of [3], implies

e−(iπs/2)Γ(1 − s) =
√

2πeitt(1/2)−se−(iπ/4)

(
1 + O

(
1
t

))
, t → ∞.

Thus, equation (2.7) becomes

ζ(s) =
[t/η]∑
n=1

1
ns

+ χ(s)
[η/2π]∑
n=1

1
n1−s

+ E(σ, t, η),

with E defined in (2.6a). Evaluating this expression for two different values of η,
namely η1 and η2, where 0 < ε < η1 < η2 <

√
t, and subtracting the resulting

equations we obtain (2.5). �

Remark 2.2. Equation (2.4) is a special form of the general case

[η/2π]∑
n=[τ ]+1

1
ns

=
1

1 − s

( η

2π

)1−s

+ O

(
1
tσ

)
, 0 � σ < 1, t → ∞,

where τ = O(t), provided that τ > (1 + ε)(t/2π), for some ε > 0.
In connection with equation (2.5), the definitions of α, β, γ yield the following

bounds:

|α| > ε, 0 < |β| < η + 1, 0 < |γ| � η.
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2.2. Asymptotic estimates of single sums

In the following two Lemmas we consider (2.1) and set A(t) = 1, B(t) = [t], with
f(m) given by the first and second case of (2.2).

Lemma 2.3. Let f(m) be defined by the first case of (2.2). Then

[t]∑
m=1

1
mσ

eif(m) =

{
O

(
t(1/2)−(2/3)σ ln t

)
, 0 � σ � 1

2 ,

O
(
t(1/3)−(1/3)σ ln t

)
, 1

2 < σ < 1,
t → ∞. (2.8)

Proof. Observe that the k-th derivative of f(x) satisfies

f (k)(x) = (−1)k−1(k − 1)! t

[
1

(x + t)k
− 1

xk

]
.

Thus, ∣∣∣f (k)(x)
∣∣∣ = (k − 1)!

t

xk
C(x, t; k),

where C(x, t; k) is defined by

C(x, t; k) =
1 +

∑k−1
n=1

(
k
n

)
(x/t)n

1 +
∑k

n=1

(
k
n

)
(x/t)n

.

The function C(x, t; k) is bounded, namely,

1 − 2−k < C(x, t; k) < 1, for 1 < x < t. (2.9)

Hence, we can use theorem 5.14 of [8] with

λk =
(k − 1)!

2π

t

(2α)k
(1 − 2−k), h =

2k

1 − 2−k
, k � 2.

Setting A(t) = 1 and B(t) = [t] in (2.1), we define

D(σ, t) =
[t]∑

m=1

1
mσ

eif(m), (2.10)

with f(m) given by the first case of (2.2).
For k = 2, by applying the partial summation technique, we obtain

D(0, t) = O(t1/2 ln t), t → ∞. (2.11)

Similarly, for k = 3, we obtain

D

(
1
2
, t

)
= O

(
t1/6 ln t

)
, t → ∞. (2.12)

We also note the following:
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1. The Phragmén-Lindelöf convexity principle (PL) implies

D(σ, t) =

{
O

(
t(1/2)−(2/3)σ ln t

)
, 0 � σ � 1

2 ,

O
(
t(1/3)−(1/3)σ ln t

)
, 1

2 < σ < 1,
t → ∞,

which gives (2.8).

2. If

σ = σ(�) = 1 − �

2L − 2
, L = 2	−1, � � 3, � ∈ N,

then for σ = σ(�) � 1/2, we find

D(σ, t) = O(t(1/(2L−2)) ln t), t → ∞. (2.13)

3. The PL principle allows the extension of the above result for the case of
σ ∈ (σ(�), σ(� + 1)) and 0 � σ � 1/2.

4. Let Dδ be defined by

Dδ(σ, t) =
[tδ]∑

m=1

1
mσ

eif(m), (2.14)

where δ is a sufficiently small, positive constant.
By applying theorem 5.14 of [8], for k = [1/δ] + 1, it can be shown that

Dδ(σ, t) = O(t(1−σ)δ), t → ∞. (2.15)

However, we do not present the details of this proof here, since (2.15) can be
obtained by the following simple estimate:∣∣∣∣∣∣∣

[tδ]∑
m=1

1
mσ

eif(m)

∣∣∣∣∣∣∣ �
∫ tδ

1

1
xσ

dx = O(t(1−σ)δ), t → ∞.

�

Lemma 2.4. Let f(m) be defined by the second case of (2.2). Then

[t]∑
m=1

1
mσ

eif(m) = O(1), σ � 0, t → ∞. (2.16)

Proof. We follow the steps of the analysis in [8] and we observe that in this proce-
dure the upper and lower bounds of the term

∣∣f (k)(x)
∣∣ are independent of x. Indeed,

we have ∣∣f (k)(x)
∣∣ = (k − 1)!

t

(x + t)k
,

and using that 0 < x � t we get the conditions of theorem 5.13 in [8], that is,

λk �
∣∣f (k)(x)

∣∣ � hλk,

with λk = (((k − 1)!)/(2k))t1−k and h = 2k, for k � 2.
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Thus, we may obtain the optimal estimates for the sum appearing in the lhs of
(2.16). However, it is more efficient to use a different approach, based on lemma
4.8 of [8]. Indeed, it is straightforward to observe that f ′(x) = (1/(1 + (x/t))) is
monotonic and also f ′(x) satisfies 1/2 �

∣∣f ′(x)
∣∣ < 1. Thus, the above Lemma yields

[t]∑
m=1

eif(m) =
∫ t

1

eif(x)dx + O(1), t → ∞.

The integral in the rhs of the above equation gives the contribution

(2t)1+it − (t + 1)1+it

1 + it
= −i

21+it − (1 + (1/t))1+it

1 − (i/t)
= O(1), t → ∞.

Therefore, the estimate (2.16) holds for σ = 0.
The above analysis gives

b∑
m=a

eif(m) = O(1), for all 1 � a < b � t, t → ∞.

Hence, we apply the partial summation technique, with m � 1, that is,
m−σ � 1, σ > 0, and we obtain (2.16). �

3. Double zeta functions and Euler-Zagier double sums

In this section, we analyse the double zeta functions in the critical strip, namely
the case that the real part of the exponents is in the interval (0, 1).

3.1. Simple estimates for double exponential sums

Letting s = σ + it, σ ∈ (0, 1), we estimate the double sums appearing of the form

[t]∑
m=1

[t]∑
n=1

1
msns̄

. (3.1)

Lemma 3.1. The following estimate for (3.1) is valid:

[t]∑
m=1

[t]∑
n=1

1
msns̄

=

{
O

(
t(3/2)−(5/3)σ ln t

)
, 0 � σ � 1

2 ,

O
(
t(4/3)−(4/3)σ ln t

)
, 1

2 < σ < 1,
t → ∞. (3.2)

Proof. First, we will use the following ‘crude’ estimates:∣∣∣∣∣
[t]∑

m=1

[t]∑
n=1

1
msns̄

∣∣∣∣∣ �
∫ t

1

∫ t

1

1
xσ

1
yσ

dxdy = O
(
t2−2σ

)
, t → ∞. (3.3)

By employing techniques developed in [8] it is possible to improve the estimates
of (3.1). Observing that∣∣∣∣∣

[t]∑
m=1

[t]∑
n=1

1
msns̄

∣∣∣∣∣ �
[t]∑

m=1

∣∣∣∣∣
[t]∑

n=1

1
ns̄

∣∣∣∣∣ 1
mσ

, (3.4)
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and using the rough estimate

[t]∑
n=1

1
ns̄

= O
(
t(1/2)−(1/2)σ ln t

)
, t → ∞, (3.5)

we can improve the estimates of (3.3) as follows:

[t]∑
m=1

[t]∑
n=1

1
msns̄

= O
(
t1−σt(1/2)−(1/2)σ ln t

)
= O

(
t(3/2)−(3/2)σ ln t

)
, t → ∞.

(3.6)
Further improvement of (3.3) is obtained by employing (2.3), thus

[t]∑
m=1

[t]∑
n=1

1
msns̄

= O
(
t1−σ

)×
{

O
(
t(1/2)−(2/3)σ ln t

)
, 0 � σ � 1

2 ,

O
(
t(1/3)−(1/3)σ ln t

)
, 1

2 < σ < 1,
t → ∞,

which yields (3.2). �

Remark 3.2. The above improvement of the estimates becomes clearer for σ = 1/2,
where using (3.3), (3.6) and (3.2), we obtain as t → ∞ the estimates O(t),
O(t3/4 ln t) and O(t2/3 ln t), respectively.

3.2. Estimates of Euler-Zagier sums

In what follows we first review the estimates of the Euler-Zagier double sums as
they were obtained in [5], where techniques from [6] and [7] were extensively used.
A special case of theorem 1.1 in [5] reads as follows:

Theorem 1.1 in [5]. Let sj = σj + it, with 0 � σj < 1, j = 1, 2. Then the following
estimates are valid as t → ∞:

∑
1�m<n

1
ms1

1
ns2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O
(
t1−(2/3)(σ1+σ2)(ln t)2

)
, 0 � σ1 � 1

2 , 0 � σ2 � 1
2 ,

O
(
t((5/6)−(1/3))(σ1+2σ2)(ln t)3

)
, 1

2 < σ1 < 1, 0 � σ2 � 1
2 ,

O
(
t((5/6)−(1/3))(2σ1+σ2)(ln t)3

)
, 0 � σ1 � 1

2 , 1
2 < σ2 < 1,

O
(
t((2/3)−(1/3))(σ1+σ2)(ln t)4

)
, 1

2 < σ1 < 1, 1
2 < σ2 < 1.

(3.7)

As a corollary of the above, we obtain the analogue of corollary 1.2 in [5], namely,
as t → ∞, we have the following:

∑
1�m<n

1
mit

1
nit

= O
(
t(ln t)2

)
and

∑
1�m<n

1
m(1/2)+it

1
n(1/2)+it

= O
(
t1/3(ln t)2

)
.

The above results provide a ‘sharp’ generalization for double sums of the classical
result of [8], as this is reviewed in (2.3). In this sense, the above estimates improve
significantly the analogous results of [4].
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3.3. Relations between double exponential sums

The results of §§ 3.1 and 3.2 suggest a connection between the double zeta func-
tion and the Euler-Zagier sums. Actually, the following exact relation between the
Euler-Zagier sum and the leading asymptotic representation of |ζ|2 is valid:

2�
⎧⎨
⎩

[t]∑
m1=1

[t]∑
m2=1

1
ms̄

2(m1 + m2)s

⎫⎬
⎭−

⎛
⎝ [t]∑

m=1

1
ms

⎞
⎠

⎛
⎝ [t]∑

m=1

1
ms̄

⎞
⎠

= −
[t]∑

m=1

1
m2σ

+ 2�
⎧⎨
⎩

[t]∑
m=1

[t]+m∑
n=[t]+1

1
ms̄ns

⎫⎬
⎭ , s = σ + it ∈ C. (3.8)

This follows from the equation below by letting u = s, v = s̄, N = [t],

f(u, v) + f(v, u) +
N∑

m=1

1
mu+v

=

(
N∑

m=1

1
mu

)(
N∑

n=1

1
nv

)
+ g(u, v) + g(v, u), (3.9)

where f(u, v) and g(u, v) are defined by

f(u, v) =
N∑

m1=1

N∑
m2=1

1
mu

1

1
(m1 + m2)v

, g(u, v) =
N∑

m=1

N+m∑
n=N+1

1
munv

, (3.10)

with N an arbitrary finite positive integer and u ∈ C, v ∈ C.
The rhs of (3.8) can be estimated by using the results of § 2 and, in particular,

lemmas 2.1 and 2.3. Thus, (3.8) takes the form

2�
⎧⎨
⎩

[t]∑
m1=1

[t]∑
m2=1

1
ms̄

2(m1 + m2)s

⎫⎬
⎭−

⎛
⎝ [t]∑

m=1

1
ms

⎞
⎠

⎛
⎝ [t]∑

m=1

1
ms̄

⎞
⎠

=

⎧⎪⎪⎨
⎪⎪⎩

t1−2σ

1 − 2σ
+ O

(
t(1/2)−(5/3)σ ln t

)
+ O(1), 0 < σ < 1

2

ln t + O(1), σ = 1
2 ,

O(1), 1
2 < σ < 1,

t → ∞. (3.11)

Indeed, in order to estimate the rhs of equation (3.8), we use the elementary
estimate

[t]∑
m=1

1
m2σ

=

⎧⎨
⎩

ln t + O(1), σ = 1
2 ,

t1−2σ

1 − 2σ
+ O(1), 0 < σ < 1, σ �= 1

2 ,
t → ∞, (3.12)

as well as the result below.

Lemma 3.3. The following estimates are valid:

2�
⎧⎨
⎩

[t]∑
m=1

[t]+m∑
n=[t]+1

1
ms̄ns

⎫⎬
⎭ =

{
O

(
t(1/2)−(5/3)σ ln t

)
, 0 � σ � 1

2 ,

O
(
t(1/3)−(4/3)σ ln t

)
, 1

2 < σ < 1,
t → ∞. (3.13)
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Proof. In order to simplify the double sum appearing in the lhs of equation (3.13)
we use relation (2.4), taking η = 2π(t + m), equivalently [η/2π] = [t] + m:

[t]+m∑
n=[t]+1

1
ns

=
1

1 − s
(t + m)1−s + O

(
1
tσ

)

= i
1

1 + ((i(1 − σ))/t)
1

tsms−1

(
1
t

+
1
m

)1−s

+ O

(
1
tσ

)
.

Replacing in the lhs of (3.13) the sum over n by the above sum we find

2�
⎧⎨
⎩

[t]∑
m=1

[t]+m∑
n=[t]+1

1
ms̄ns

⎫⎬
⎭ = −2�

{
1
ts

[t]∑
m=1

1
m2σ−1

(
1
t

+
1
m

)1−s (
1 + O

(
1
t

))

+ O

(
1
tσ

) [t]∑
m=1

1
ms̄

}
, t → ∞. (3.14)

The first single sum in the rhs of (3.14) involves the function f(m) defined in the
first case of (2.2). Moreover, since 1 � m � t and 0 < σ < 1 we find

1
m2σ−1

(
1
t

+
1
m

)1−σ

� 1
m2σ−1

(
2
m

)1−σ

<
2

mσ
.

Thus, the analysis in the proof of lemma 2.3 yields the estimate

[t]∑
m=1

1
m2σ−1

(
1
t

+
1
m

)1−s

=

⎧⎪⎪⎨
⎪⎪⎩

O
(
t(1/2)−(2/3)σ ln t

)
, 0 � σ � 1

2 ,

O

⎛
⎝t

1
3
− 1

3
σ

ln t

⎞
⎠ , 1

2 < σ < 1,
t → ∞.

For the second single sum in the rhs of (3.14) we use the classical estimate (2.3)
Applying the above estimates of the two single sums in (3.14) yields (3.13). �

4. Further estimates for double exponential sums

In this section, we analyse two of the most well-known types of double exponential
sums, namely the Euler-Zagier and the Mordell-Tornheim sums. In this section, we
do not restrict the real parts of the exponents in the interval (0, 1).

4.1. Special cases of Euler-Zagier with different exponents

Lemma 4.1. Let SA denote double sum

SA =
[t]∑

m1=1

[t]∑
m2=1

1

(m1 + m2)
σ1+it

1
mσ2−it

2

, (4.1)

with σ1 < 0 and σ2 > 1. Then,∣∣SA

∣∣ = O
(
t(1/2)−σ1 ln t

)
, t → ∞. (4.2)
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Proof. Letting m2 = m, m1 + m2 = n, and employing the triangular inequality we
find

∣∣SA

∣∣ =

∣∣∣∣∣
[t]∑

m=1

m+[t]∑
n=m+1

1
nσ1+it

1
mσ2−it

∣∣∣∣∣ �
[t]∑

m=1

∣∣∣∣∣
m+[t]∑

n=m+1

1
nσ1+it

∣∣∣∣∣ 1
mσ2

. (4.3)

Taking into consideration (2.3) with σ1 = 0, we find

[t]∑
n=1

1
nit

= O
(
t1/2 ln t

)
, t → ∞.

Applying partial summation we obtain the estimate

m+[t]∑
n=m+1

1
nσ1+it

= O
(
t(1/2)−σ1 ln t

)
, t → ∞, (4.4)

for σ1 < 0 and 1 � m � [t].
Indeed, using (4.4) into (4.3) and noting that σ2 > 1, we find (4.2) �

Remark 4.2. An alternative proof of (4.4) can be derived by using the estimate

[t]∑
m=1

1
mσ−1+it

= O(t(3/2)−σ), 0 < σ < 1, t → ∞, (4.5)

for σ1 = σ − 1 < 0.
The proof of (4.5) is provided in Appendix A.

4.2. Special cases of Mordell-Tornheim sums

Lemma 4.3. Let SB denote double sum

SB =
[t]∑

m1=1

[t]∑
m2=1

1

(m1 + m2)
σ1+it

1
mσ2−it

2

1
mσ3

1

, (4.6)

with σ1 < 0, σ2 ∈ (0, 1) and σ3 � 1. Then,

∣∣SB

∣∣ =

⎧⎪⎨
⎪⎩

O
(
t1−σ1−σ2 ln t

)
, 0 < σ2 < 1

2 , σ3 = 1,

O
(
t1−σ1−σ2

)
, 0 < σ2 < 1

2 , σ3 > 1,

O
(
t(1/2)−σ1 ln t

)
, 1

2 � σ2 < 1, σ3 � 1,

t → ∞. (4.7)
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Figure 1. Change of the order of summation.

Proof. Splitting this sum into two sums, depending on whether m1/m2 > 1 or
m1/m2 < 1, we find

SB = S1 + S2, (4.8)

where

S1 =
[t]∑

m1=1

m1∑
m2=1

1

(m1 + m2)
σ1+it

1
mσ2−it

2

1
mσ3

1

, (4.9)

and

S2 =
[t]∑

m1=1

[t]∑
m2=m1+1

1

(m1 + m2)
σ1+it

1
mσ2−it

2

1
mσ3

1

. (4.10)

In order to estimate the sum S1, we change the order of summation, see figure 1.
Thus,

S1 =
[t]∑

m2=1

[t]∑
m1=m2

1

(m1 + m2)
σ1+it

1
mσ2−it

2

1
mσ3

1

,

or

S1 =
[t]∑

m2=1

[t]∑
m1=m2

1

(m1 + m2)
σ1+it

1
mσ2+1−it

2

m2

mσ3
1

. (4.11)

Using partial summation and the fact that ((m2)/(mσ3
1 )) � 1, it follows that

S1 = O
(
|S̃1|

)
, t → ∞, (4.12)
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where

S̃1 =
[t]∑

m2=1

[t]∑
m1=m2

1

(m1 + m2)
σ1+it

1
mσ2+1−it

2

. (4.13)

Then, proceeding as with the sum SA in (4.3), we obtain the estimate (4.2), that
is,

S1 = O
(
t(1/2)−σ1 ln t

)
, t → ∞. (4.14)

In order to estimate S2, we first note that

∣∣S2

∣∣ �
[t]∑

m1=1

∣∣∣∣∣
[t]∑

m2=m1+1

1

(m1 + m2)
σ1+it

1
mσ2−it

2

∣∣∣∣∣ 1
mσ3

1

. (4.15)

Then, taking into consideration that m1 < m2, we can use the following ‘crude’
estimate for the m2 sum:∣∣∣∣∣∣

[t]∑
m2=m1+1

1

(m1 + m2)
σ1+it

1
mσ2−it

2

∣∣∣∣∣∣ �
∫ t

m1+1

1
(m1 + x)σ1

1
xσ2

dx := J (m1, t) .

(4.16)
But,

m1 < x, or m1 + x < 2x, or (m1 + x)−σ1 < (2x)−σ1 .

Thus,

J (m1, t) <

∫ t

m1+1

2−σ1x−σ1−σ2dx = O
(
t1−σ1−σ2

)
+ O

(
m1−σ1−σ2

1

)
= O

(
t1−σ1−σ2

)
, t → ∞,

since σ1 + σ2 < 1. Hence, equations (4.15) and (4.16) yield

∣∣S2

∣∣ = O

(
t1−σ1−σ2

∫ t

1

dx

xσ3

)
= O

(
t1−σ1−σ2

)×
{

O(ln t), σ3 = 1,

O(1), σ3 > 1,
t → ∞.

(4.17)
�

Remark 4.4. One can apply the estimate used in (4.17) to S1, and then the esti-
mates (4.14) and (4.7) should be substituted by (4.17). Furthermore, for the special
cases σ1 = σ − 1, σ2 = σ and σ3 = 1, with σ ∈ (0, 1), the estimates (4.2) and (4.7)
take the form ∣∣SA

∣∣ = O
(
t(3/2)−σ ln t

)
, t → ∞, (4.18)

and

∣∣SB

∣∣ =

{
O

(
t2−2σ ln t

)
, 0 < σ < 1

2 ,

O
(
t(3/2)−σ ln t

)
, 1

2 � σ < 1,
t → ∞, (4.19)

respectively.
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5. Double sums for ‘small’ sets of summation

The analysis presented in [2] requires estimating the following sum:∑∑
(m1,m2)∈M

1
ms

1(m1 + m2)s̄
, (5.1)

where M is defined by

M =

{
m1 ∈ N

+, m2 ∈ N
+, 1 � m1 � [t], 1 � m2 � [t],

1
t1−δ2 − 1

<
m2

m1
< t1−δ3 − 1, t > 0

}
, (5.2)

with δ2 and δ3 positive constants.
The above sum can be related to the sum appearing in the first term of the lhs

of (3.8) via the following identity:

[t]∑
m1=1

[t]∑
m2=1

1
ms

1(m1 + m2)s̄
=

∑∑
(m1,m2)∈M

1
ms

1(m1 + m2)s̄
+ S1(σ, t, δ3) + S2(σ, t, δ2),

(5.3)

with

S1(σ, t, δ3) =
[((t/(t1−δ3 ))−1]−1∑

m1=1

[t]∑
m2=[(t1−δ3−1)m1]+1

1
ms

1(m1 + m2)s̄
(5.4)

and

S2(σ, t, δ2) =
[t]∑

m1=[t1−δ2 ]

[((m1)/(t1−δ2 ))−1]−1∑
m2=1

1
ms

1(m1 + m2)s̄
. (5.5)

Thus, estimating the sum (5.1) requires estimating the sum S1 and S2. The
relevant estimates are presented in theorems 5.1 and 5.4 below.

By making the change of variables m1 = m and m1 + m2 = n in (5.4) we can
rewrite S1 in the form

S1(σ, t, δ3) =
[((t/(t1−δ3 ))−1)]−1∑

m=1

[t]+m∑
n=[t1−δ3m]+1

1
msns̄

. (5.6)

Using the equation

t

t1−δ3 − 1
=

t

t1−δ3 (1 − tδ3−1)
= tδ3

(
1 + O

(
tδ3−1

))
, 0 < δ3 < 1, t → ∞,

it follows that for δ3 < 1/2, the upper bound of the expression [((t/(t1−δ3)) − 1] − 1
is equal either to [tδ3 ] or to [tδ3 ] − 1. Thus, it is sufficient to consider the
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following form of S1:

S1(σ, t, δ3) =
[tδ3 ]∑
m=1

[t]+m∑
n=[t1−δ3m]+1

1
msns̄

. (5.7)

Regarding the sum S2, by using the fact that

m1

t1−δ2 − 1
=

m1

t1−δ2

(
1 + O

(
tδ2−1

))
=

m1

t1−δ2
+ O

(
t2δ2−1

)
, 0 < δ2 < 1, t → ∞,

we conclude that [((m1)/(t1−δ2)) − 1] − 1 is equal either to [((m1)/(t1−δ2))] − 1 or
to [((m1)/(t1−δ2))], for δ2 < 1/2.

Thus, it is sufficient to consider the following form of S2:

S2(σ, t, δ2) =
[t]∑

m1=[t1−δ2 ]

[((m1)/(t1−δ2 ))]∑
m2=1

1
ms

1(m1 + m2)s̄
. (5.8)

Theorem 5.1. Define the double sum S1 by

S1(σ, t, δ) =
[tδ]∑

m=1

[t]+m∑
n=[t1−δm]+1

1
msns̄

, 0 < δ < 1, s = σ + it, 0 < σ < 1, t > 0.

(5.9)

Then,

S1(σ, t, δ) = O
(
t(1/2)−σG̃(σ, t, δ)

)
+ O

(
t(1−σ)δ

tσ

)
, 0 < σ < 1, t → ∞, (5.10)

where

G̃(σ, t, δ) = O
(
t(1−σ)δ

)
+ O

(
tσδ

)
, 0 < σ < 1, σ �= 1

2
, t → ∞, (5.11)

and

G̃

(
1
2
, t, δ

)
= O

(
t

δ
2 ln t

)
, t → ∞. (5.12)

Proof. It is convenient to split the S1 sum in terms of the following two sums:

SA(σ, t, δ) =
[tδ]∑

m=1

[t]∑
n=[t1−δm]+1

1
msns̄

, 0 < σ < 1, t > 0, (5.13)

and

SB(σ, t, δ) =
[tδ]∑

m=1

[t]+m∑
n=[t]+1

1
msns̄

, 0 < σ < 1, t > 0. (5.14)
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Thus, computing S1 reduces to computing SA and SB :

S1(σ, t, δ) = SA(σ, t, δ) + SB(σ, t, δ). (5.15)

We first analyse SB . In order to estimate the n-sum of SB we employ the identity
(2.4) with η = 2π(t + m), equivalently [η/2π] = [t] + m:

[t]+m∑
n=[t]+1

1
ns̄

=
1

1 − s̄
(t + m)1−s̄ + O(t−σ), 0 < σ < 1, t → ∞. (5.16)

We note that

1
1 − s̄

(t + m)1−s̄

ms
=

1
1 − σ + it

(t + m)1−σ

mσ

(t + m)it

mit

= − i

1 − ((i(1 − σ))/t)
t−s̄

(
1 +

m

t

)1−σ 1
mσ

(
1
t

+
1
m

)it

.

Using this expression in (5.16) and then substituting the resulting sum in (5.14) we
find

SB(σ, t, δ) = O(t−σ)
[tδ]∑

m=1

1
ms

+ O(t−σ)
[tδ]∑

m=1

{(
1 +

m

t

)1−σ 1
mσ

(
1
t

+
1
m

)it
}

,

0 < σ < 1, t → ∞. (5.17)

Using the fact that the function

(
1 +

m

t

)1−σ

, 1 � m � tδ, 0 � σ � 1, t > 0,

is bounded, and employing the classical result on partial summation of single sums,
see for example 5.2.1 of [8], it is possible to associate the second sum appearing in
(5.17) with

S̃B(σ, t, δ) =
[tδ]∑

m=1

1
mσ

eif(m), (5.18)

where f(m) is defined in the first case of (2.2). Furthermore, recalling that S̃B can
be estimated using (2.15), we obtain

S̃B(σ, t, δ) = O
(
t(1−σ)δ

)
, t → ∞, (5.19)

hence, it follows that∣∣∣∣∣∣∣
[tδ]∑

m=1

(
1 +

m

t

)1−σ 1
mσ

(
1
t

+
1
m

)it

∣∣∣∣∣∣∣ = O
(
t(1−σ)δ

)
, t → ∞.
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The first sum in (5.17) satisfies an identical estimate with the above, and then
equation (5.17) implies

SB(σ, t, δ) = O
(
t−σ+(1−σ)δ

)
, t → ∞. (5.20)

We next analyse SA. For the evaluation of the n-sum in the double sum SA

defined in (5.13) we will employ the asymptotic formula (2.5) with (t/η1) = t, that
is, η1 = 1, and

t

η2
+ 1 = t1−δm + 1, that is, η2 =

tδ

m
.

If m = 1 then η2 = tδ, and if m = tδ then η2 = 1. Thus, the inequalities in (2.5) are
satisfied and hence equation (2.5) yields

[t]∑
n=[t1−δm]+1

1
ns̄

= χ(s̄)
[((tδ)/(2πm))]∑

n=1

1
n1−s̄

+ Ē

(
σ, t,

tδ

m

)

− Ē(σ, t, 1), 0 < σ < 1, t → ∞. (5.21)

Inserting (5.21) into the definition (5.13) of SA we find

SA(σ, t, δ) = χ(s̄)
[tδ]∑

m=1

[((tδ)/(2πm))]∑
n=1

1
ms

1
n1−s̄

+ χ(s̄)
[tδ]∑

m=1

[
Ē

(
σ, t,

tδ

m

)
− Ē(σ, t, 1)

]
, 0 < σ < 1, t → ∞.

(5.22)

The occurrence of the term tδ in the above sums implies that these sums can be
easily estimated:∣∣∣∣∣∣∣

[tδ]∑
m=1

[((tδ)/(2πm))]∑
n=1

1
ms

1
n1−s̄

∣∣∣∣∣∣∣ �
∫ tδ

1

dx x−σ

∫ ((tδ)/(2πx))

1

dy yσ−1 = G̃(σ, t, δ),

0 < σ < 1, t → ∞, (5.23)

where

G̃(σ, t, δ) = O
(
t(1−σ)δ

)
+ O

(
tσδ

)
, 0 < σ < 1, σ �= 1

2
, t → ∞,

and

G̃

(
1
2
, t, δ

)
= O

(
tδ/2 ln t

)
, t → ∞.
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Recalling the asymptotic formula

χ(s) =
(

2π

t

)s−(1/2)

eite(iπ/4)

(
1 + O

(
1
t

))
, 0 < σ < 1, t → ∞, (5.24)

which is derived in the Appendix A of [3], it follows that

SA = O
(
t(1/2)−σ

)
G̃(σ, t, δ), t → ∞. (5.25)

Equations (5.15), (5.20) and (5.25) imply (5.10). �

For the estimation of SA, which gives the dominant contribution of S1, one can
also use an alternative approach, which is based on classical techniques appearing in
[7,8], and obtain slightly weaker, but essentially similar results. In this connection,
we obtain the following Lemma:

Lemma 5.2. Let SA be defined by (5.13). Then

SA = O
(
t(1/2)−σ ln t

)
G̃(σ, t, δ), 0 < σ < 1, t → ∞. (5.26)

Proof. Observing that m takes relatively ‘small’ values in the set of summation of
SA, we use the following inequality without losing crucial information

|SA| <

[tδ]∑
m=1

1
mσ

∣∣∣∣∣∣
[t]∑

n=[t1−δm]+1

1
ns̄

∣∣∣∣∣∣ .
Then, we estimate the n-sum using theorem 5.9 of [8], namely∑

a<n�b�2a

nit = O
(
t1/2

)
+ O

(
at−(1/2)

)
.

Using partial summation and the fact that a > mt1−δ, similarly to the proof of
theorem 5.12 of [8], we obtain that

[t]∑
n=[t1−δm]+1

1
ns̄

= O
(
t1/2t−(1−δ)σm−σ ln t

)
, t → ∞.

Thus,

SA =
[tδ]∑

m=1

1
m2σ

O
(
t(1/2)−σtδσ ln t

)
, t → ∞. (5.27)

Applying in (5.27) the fact that

[tδ]∑
m=1

1
m2σ

=

⎧⎪⎨
⎪⎩

O
(
t(1−2σ)δ

)
, 0 < σ < 1

2 ,

O(ln t), σ = 1
2 ,

O(1), 1
2 < σ < 1,

yields (5.26). �
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Remark 5.3. The estimates of SA given in (5.25) and (5.26) differ only by a ln t
term. The approach in the proof of lemma 5.2 implies that for 0 < δ < 1/3, the
estimate of SA is essentially the best which one should expect via the classical
techniques presented in [6–8]. In particular, for σ = 1/2, these techniques together
with theorem 5.14 of [8], suggest the estimate

SA

(
1
2
, t, δ

)
=

{
O

(
tδ/2(ln t)2

)
, 0 < δ < 1

3 ,

O
(
t1/6(ln t)2

)
, 1

3 � δ < 1,
t → ∞.

Theorem 1 of [7] together with the theorem 2.16 of [6], does not appear to give an
essential improvement of the above estimate.

Theorem 5.4. Define the double sum S2(σ, t, δ) by

S2(σ, t, δ) =
[t]∑

m1=[t1−δ]

[((m1)/(t1−δ))]∑
m2=1

1
ms

1(m1 + m2)s̄
, 0 < δ < 1, s = σ + it,

0 < σ < 1, t > 0. (5.28)

Then,

S2(σ, t, δ) = O
(
t1−2σ+(2σ+1)δ

)
, 0 < σ < 1, t → ∞. (5.29)

Proof. We find more convenient to treat this sum using some of the ‘crude’ meth-
ods, involving the integration, in order to benefit from the smallness of the set of
summation. Indeed, we observe that

|S2| �
∫ t

t1−δ

∫ ((x/(t1−δ))

1

1
xσ(x + y)σ

dydx := J2(t). (5.30)

Using the fact that t > x > t1−δ, as well as that x + y > t1−δ, then

J2(t) <
1

t2σ(1−δ)

∫ t

t1−δ

∫ ((x/(t1−δ))

1

dydx <
1

t2σ(1−δ)

∫ t

t1−δ

∫ tδ

1

dydx

=
1

t2σ(1−δ)

(
t − t1−δ

) (
tδ − 1

)
= O

(
t1−2σ+(2σ+1)δ

)
.

�

Remark 5.5. Using the techniques developed in [7] and [6] as are appropriately
modified in Appendix B, we obtain a slightly better estimate

S2(σ, t, δ) = O
(
t1−2σt2δσ(ln t)3

)
, 0 < σ < 1, t → ∞. (5.31)

The fact that this result does not provide a significant improvement to (5.29) is
due to the fact that in the latter approach we have exploited the smallness of the
set of summation via the integration process.
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It is possible to improve further the estimate (5.29), by obtaining a more accurate
estimate of the integral J2(t). Indeed, applying the following Lemma to (5.30), we
obtain

S2 = O
(
t1−2σ+δ

)
, 0 < σ < 1, t → ∞. (5.32)

Lemma 5.6. Let J2(t) be defined by (5.30). Then,

J2(t) =
t1−2σ+δ

2(1 − σ)

(
1 + O

(
t−2δ(1−σ), t−δ

))
, 0 < σ < 1, t → ∞. (5.33)

Proof.

J2(t) =
∫ t

t1−δ

∫ ((x/(t1−δ))

1

1
xσ(x + y)σ

dydx

=
∫ t

t1−δ

1
xσ

[
x1−σ

(
1 + tδ−1

)1−σ

1 − σ
− (x + 1)1−σ

1 − σ

]
dx

=
1

1 − σ

∫ t

t1−δ

x1−2σ

[(
1 + tδ−1

)1−σ −
(

1 +
1
x

)1−σ
]

dx

=
1

1 − σ

∫ t

t1−δ

x1−2σ

×
[
1 + (1 − σ)tδ−1 − 1 − 1 − σ

x
+ O

(
t2(δ−1),

1
x2

)]
dx, t → ∞.

Using the fact that x > t1−δ, the above integral takes the form

J2(t) = tδ−1

∫ t

t1−δ

x1−2σdx −
∫ t

t1−δ

x−2σdx +
∫ t

t1−δ

x1−2σdx O
(
t2(δ−1)

)
, t → ∞,

which yields (5.33). �

Theorem 5.7. Let δ ∈ (0, 1/2) and the double sum S2(σ, t, δ) be defined by (5.28).
Then,

S2(σ, t, δ) =

{
O

(
t1−2σ

)
+ O

(
tδ−2σ

)
, 0 < σ < 1

2 ,

O (ln t) + O
(
tδ−1

)
, σ = 1

2 ,
t → ∞. (5.34)

Proof. Letting m1 = m and m1 + m2 = n in the definition (5.28) of S2 we find

S2(σ, t, δ) =
[t]∑

m=[t1−δ]

[m(1+tδ−1)]∑
n=1+m

1
msns̄

. (5.35)

It is convenient to split the S2 sum in terms of the following two sums:

SA(σ, t, δ) =
[t]∑

m=[t1−δ]

P (t)∑
n=1+m

1
msns̄

, 0 < σ < 1, t > 0, (5.36)
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and

SB(σ, t, δ) =
[t]∑

m=[t1−δ]

[m(1+tδ−1)]∑
n=[t]+1

1
msns̄

, 0 < σ < 1, t > 0, (5.37)

where P (t) = min{[t], [m(1 + tδ−1)]}.
Hence

S2(σ, t, δ) = SA(σ, t, δ) + SB(σ, t, δ), 0 < σ < 1, t > 0. (5.38)

We first analyse SB. In this connection we define the function l(t) by

l(t) =
[
t − tδ

]
+ 1, t > 0. (5.39)

We observe that the upper limit of the n-sum of SB is greater or equal to [t] + 1
only if m � l(t). Thus, we rewrite SB in the form

SB(σ, t, δ) =
[t]∑

m=l(t)

[m(1+tδ−1)]∑
n=[t]+1

1
msns̄

, 0 < σ < 1, t > 0. (5.40)

In order to estimate the n-sum of SB we employ the identity (2.4) with η = 2πm(1 +
tδ−1):

[m(1+tδ−1)]∑
n=[t]+1

1
ns̄

=
1

1 − s̄

(
1 + tδ−1

)1−s̄
m1−s̄ + O(t−σ), 0 < σ < 1, t → ∞.

(5.41)

SB(σ, t, δ) = − i

t

[t]∑
m=l(t)

m1−2σ

1 − ((i(1 − σ))/t)
(
1 + tδ−1

)1−s̄

+ O(t−σ)
[t]∑

m=l(t)

m−s, 0 < σ < 1, t → ∞. (5.42)

Proceeding as with the evaluation of SB in theorem 5.1 we find that∣∣∣∣∣∣
[t]∑

m=l(t)

m−s

∣∣∣∣∣∣ � 1
1 − σ

[
t1−σ − (

t − tδ + 1
)1−σ

]
= O

(
tδ

tσ

)
, 0 < σ < 1, t → ∞.

Similarly, the first sum of (5.42) is of order tδ/t2σ. Thus,

SB(σ, t, δ) = O

(
tδ

t2σ

)
, 0 < σ < 1, t → ∞. (5.43)

We next consider SA. Our approach is based on the application of the asymptotic
formula (2.5) in the inner sum of SA.
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Indeed, for the case that P (t) = [m(1 + tδ−1)], by applying (2.5) in the inner sum
of SA with t/η2 = m and t/η1 = m(1 + tδ−1), we obtain

η2 =
t

m
and η1 =

t

m (1 + tδ−1)
=

t

m
− tδ

m
.

Observing that tδ/m � ((tδ)/(t1−δ)) = t2δ−1 = o(1), and using that dist((ηj/2π),
Z) > ε, j = 1, 2, we obtain that [η1/2π] = [η2/2π].

Similarly, for the case P (t) = [t] we obtain [η1/2π] = [η2/2π] = 0.
Thus, for the inner sum of SA the set of the summation of the rhs of (2.5) is

empty. Furthermore, the definition of E(σ, t, η) given in (2.6a) implies that

E(σ, t, ηj) = O
((ηj

t

)σ)
= O

(
1

mσ

)
, j = 1, 2.

Thus,

SA(σ, t, δ) = O

⎛
⎝ [t]∑

m=[t1−δ]

1
m2σ

⎞
⎠ , (5.44)

which along with (5.43) yields the estimate (5.34). �

Remark 5.8. For the particular case σ = 1/2 the estimates of S2 given by (5.29),
(5.31) and (5.32), take the form O(t(3/2)δ), O(tδ(ln t)3) and O(tδ), respectively,
which for δ > 0 arbitrarily small, are essentially the same.

We note that even the extensive use of the techniques appearing in Appendix
B does not appear to provide an estimate better than O(tδ), which is essentially
the same with the estimate obtained via the ‘rough’ techniques of lemma 5.6, for
δ ∈ (0, 1).

The result of theorem 5.7 yields the estimate O(ln t), for δ ∈ (0, 1/2), which
provides a significant improvement of the classical techniques on the estimate of
S2, when δ is not arbitrarily small. In [2], the sum S2 is estimated via a completely
different approach, and this yields the estimate O(tδ−(1/2) ln t) + O(1), for δ ∈ (0, 1).

Appendix A

(Proof of (4.5))

Let χ(s) be defined by (2.6e), then it is shown in [3] that

χ(s) =
(

2π

t

)s−(1/2)

eitei(π/4)

[
1 + O

(
1
t

)]
, s = σ + it, σ ∈ R, t → ∞.

(A.1)
Employing the well-known identity

ζ(s) = χ(s)ζ(1 − s), s ∈ C, (A.2)

with s = σ − 1 + it, we find

ζ(σ − 1 + it) = χ(σ − 1 + it)ζ(2 − σ − it). (A.3)
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Suppose that 0 < σ < 1. Using the fact that ζ(2 − σ − it) is bounded as t → ∞, as
well as the asymptotic estimate (A.1), equation (A.3) implies that

ζ(σ − 1 + it) = O
(
t(3/2)−σ

)
, 0 < σ < 1, t → ∞. (A.4)

Applying equation (3.1) of theorem 3.1 in [3], for η = 2πt we derive the following
result:

ζ(s) =
[t]∑

n=1

n−s − 1
1 − s

t1−s

+
e−((iπ(1−s))/2)

(2π)1−s

∞∑
n=1

N−1∑
j=0

e−nz−it ln z

(
1

n + (it/z)
d
dz

)j
z−σ

n + (it/z)

∣∣∣∣
z=i2πt

+
e((iπ(1−s))/2)

(2π)1−s

∞∑
n=2

N−1∑
j=0

e−nz−it ln z

(
1

n + (it/z)
d
dz

)j
z−σ

n + (it/z)

∣∣∣∣
z=−i2πt

+ O
(
(2N + 1)!!N22N t−σ−N

)
, 0 � σ � 1, N � 2, t → ∞, (A.5)

where the error term is uniform for all σ,N in the above ranges and the coeffi-
cients ck(σ) are given therein. This equation is derived in [3] under the assumption
that 0 < σ < 1. However, it is straightforward to verify that it is also valid for
−1 < σ < 0. Equations (A.5) and (A.4) imply that

[t]∑
m=1

1
mσ−1+it

= O
(
t(3/2)−σ

)
, 0 < σ < 1, t → ∞. (A.6)

Appendix B

(Proof of (5.31))

Letting m1 = m and m1 + m2 = n in the definition (5.28) of S2 we find

S2(σ, t, δ) = SA(σ, t, δ) + SB(σ, t, δ), 0 < σ < 1, t > 0, (B.1)

with SA and SB defined in (5.36) and (5.37), respectively.
The analysis in theorem 5.7 yields

SB(σ, t, δ) = O

(
tδ

t2σ

)
, 0 < σ < 1, t → ∞. (B.2)

We next consider SA. The derivation of this estimate consists of two parts:

I. The first part involves the proof

[t]∑
m=[t1−δ]

[t]∑
n=m+1

1
mitn−it

= O
(
t(ln t)3

)
, t → ∞. (B.3)

II. The second part involves the partial summation technique for double sums.
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For the first part we first prove that

M ′∑
m=M

N ′∑
n=N

1
mit

1
n−it

= O(t ln t), (B.4)

with n > m, and

{
A1

√
t < M < M ′ < 2M < A3t,

A2

√
t < N < N ′ < 2N < A4t,

for some positive constants

{Aj}4
1.

In this connection, we divide the set of summation similarly to the division
implemented in theorem 1 of [7], namely, in ‘small’ rectangles Δp,q, such that

{
M + p l1 � m � M + p l1 + l1,

N + q l2 � n � N + q l2 + l2.

Moreover, we pick

l1 = c1
M2

t
, l2 = c2

N2

t
, (B.5)

for some positive constants c1 and c2.
We make the following observations:

•
{

1 � l1 � M ⇔ A1

√
t < M < A3t,

1 � l2 � N ⇔ A2

√
t < N < A4t,

for some positive constants {Aj}4
1.

• The number of the ‘small’ rectangles Δp,q is O(MN/ l1 l2).

We use theorem 2.16 of [6] with

f(x, y) = t(ln x − ln y).

Then, in each rectangle Δp,q, with n > m (equivalently x > y), the conditions of
this theorem are satisfied with λ1 = t/M2 and λ2 = t/N2, because

∣∣fxx

∣∣ =
t

x2
,

∣∣fyy

∣∣ =
t

y2
and

∣∣fxy

∣∣ = 0.

Using the following facts:

• the conditions M > A1

√
t and N > A2

√
t, imply that λ1 < (1/(A2

1)) and λ2 <
(1/(A2

2)),

• all the quantities ln
∣∣Δp,q

∣∣, ∣∣ ln λ1

∣∣ and
∣∣ ln λ2

∣∣ are of order O(ln t),
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and employing equation (2.56) of [6], we find

∑∑
(m,n)∈Δp,q

eif(m,n) = O

(
ln t

t/MN

)
. (B.6)

Thus, the fact that the number of the rectangles Δp,q is O((MN)/( l1 l2)), implies
that

M ′∑
m=M

N ′∑
n=N

eif(m,n) = O

(
MN

t
ln t

MN

l1 l2

)
. (B.7)

Equation (B.4) follows from applying (B.5) in (B.7).
Finally, using the classical splitting for the sets of summation for exponential

sums, see [8] and [7], equation (B.3) follows from applying (B.4) for O((ln tδ)2) =
O((δ ln t)2) = O((ln t)2) times.

Considering the second part, under the condition that the expressions

bm,n − bm+1,n, bm,n − bm,n+1, bm,n − bm+1,n − bm,n+1 + bm+1,n+1, (B.8)

keep their sign, the following result is derived in [7]:

∣∣∣∣∣
M∑

m=1

N∑
n=1

am,nbm,n

∣∣∣∣∣ � 5GH, (B.9)

where

Sm,n �
m∑

μ=1

n∑
ν=1

aμ,ν , |Sm,n| � G, 1 � m � M, 1 � n � N, (B.10)

with

bm,n ∈ R, 0 � bm,n � H. (B.11)

We apply the above argument for bm,n = (1/(mσnσ)), thus the expressions in (B.8)
keep their sign, and furthermore

H =
1

t(1−δ)σ

1
t(1−δ)σ

= t−2σt2δσ.

Combining the above result with (B.3) yields

SA(σ, t, δ) = O
(
t1−2σt2δσ(ln t)3

)
, 0 < σ < 1, t → ∞. (B.12)

Equations (B.1), (B.2), (B.12) imply (5.31).
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